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Supplementary Figure 1 | Purification of MBP-TMD and αMBP-DARPin. 

(a) Cartoon of vesicle containing maltose binding protein fused to a transmembrane domain (MBP-TMD) 

captured on a glass coverslip decorated with αMBP-DARPin via crosslinking to GOPTS-PEG-NHS 

maleimide. 

(b) Schematic outline of the MBP-TMD and αMBP-DARPin proteins used for capturing vesicles to glass 

surface as in (a). 
(c) Ni-NTA chromatography of MBP-TMD upon its IPTG-induced expression in E. coli. After binding to the 

Ni-NTA matrix, MBP-TMD was released using a linear imidazole gradient. Expression, release from 

MBP-TMD MBP-TMD
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bacterial lysates, and Ni-NTA chromatography of MBP-TMD was monitored by SDS-PAGE and CB 

staining. Sup, supernatant; FT, flow through. 

(d) MBP-TMD affinity-purified by Ni-NTA chromatography was loaded onto a size exclusion column. Peak 

fractions were analyzed by SDS-PAGE and CB staining. 
(e) Ni-NTA chromatography of αMBP-DARPin upon its IPTG-induced expression in E. coli. After binding 

to the Ni-NTA matrix, αMBP-DARPin was released using a linear imidazole gradient. Expression, release 

from bacterial lysates, and Ni-NTA chromatography of αMBP-DARPin was monitored by SDS-PAGE and 

CB staining. 

(f) αMBP-DARPin affinity purified by Ni-NTA chromatography was loaded onto a size exclusion column. 

Peak fractions were analyzed by SDS-PAGE and CB staining. 

  



 4 

 
Supplementary Figure 2 | Purification and cysteine labelling of VDAC1 and VDAC1E73Q  
(a) Schematic outline of the production, purification and cysteine-labeling of recombinant human VDAC1 

using an IPTG-inducible bacterial expression construct encoding single cysteine VDAC1 (C127S, A134C, 

C232S) or its HKI binding-deficient variant VDAC1E73Q (E73Q, C127S, A134C, C232S) tagged with a N-

terminal His-tag. 
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(b) Inclusion bodies isolated from E. coli following IPTG-induced expression of VDAC1 or VDAC1E73Q 

were analyzed by SDS-PAGE and CB staining. 

(c) VDAC1 solubilized from inclusion bodies was refolded, loaded onto a cation exchange column and 

released using a linear salt gradient. Cation exchange chromatography of VDAC1 was monitored by 
SDS-PAGE and CB staining. Peak fractions were pooled and concentrated using an Amicon filter (post 

Amicon).  

(d) VDAC1 purified by cation exchange chromatography was cysteine-labeled with DY-547P1 and loaded 

onto a size exclusion column. Peak fractions were analyzed by SDS-PAGE, CB staining and in-gel-

fluorescence (IGF) analysis. 

(e) Cation exchange chromatography of VDAC1E73Q performed as in (c).  

(f) Size exclusion chromatography of Dy-547P1-labelled VDAC1E73Q performed as in (d). 
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Supplementary Figure 3 | Protein-lipid ratio optimization for reconstitution of MBP-TMD and 
VDAC1 in proteoliposomes. 

(a, b) Vesicles containing MBP-TMD in combination with VDAC1 or VDAC1E73Q were prepared using 

molar protein:lipid reconstitution ratios of 1:500 for MBP-TMD and the indicated ratios for VDAC1 and 

VDAC1E73Q in eggPC:DHPE-OG488 (99.5:0.5). Vesicles were captured on αMBP-DARPin-decorated 

coverslips, incubated with 200nM HK-N647 and analyzed for OG488 and HK-N647 fluorescence using TIRF 

microscopy. 

(c) Intensity plots of OG488 (blue) and HK-N647 (magenta) fluorescence on the surface of coverslips as in 
(a, b). Data shown are intensities measured in 4-12 different areas on the surface of one cover slip per 

condition and representative of three independent experiments. 
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Supplementary Figure 4 | Mild acidification does not affect binding of VDAC-containing vesicles to 
αMBP-DARPin-decorated coverslips. 

(a) Vesicles prepared by (co)-reconstitution of MBP-TMD, VDAC1 and/or VDAC1E73Q at molar protein:lipid 

reconstitution ratios of 1:500 (MBP-TMD), 1:50 (VDAC1) and 1:100 (VDAC1E73Q) in eggPC:DHPE-OG488 

(99.5:0.5) were captured on αMBP-DARPin-decorated coverslips in pH 7.5 buffer. After 5 min, OG488 

fluorescence levels were measured by TIRF microscopy. Incubation was then continued in pH 6.5 buffer 

for 5 min before measuring OG488 fluorescence levels again. This procedure was then repeated once 

more in pH 7.5 buffer.  
(b) Intensity plots of OG488 fluorescence on the surface of coverslips treated as in (a). Data shown are 

intensities measured in 5-10 different areas on the surface of one cover slip per condition and 

representative of three independent experiments. 
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Supplementary Table 1. Primers used for cloning and site-directed mutagenesis.  
 

Primer name Primer sequence (5’-3’) 
pColdI-hVDAC1 F  ATCATATCGAAGGTAGGCACGCTGTGCCACCCAC 
pColdI-hVDAC1 R  GCTTTTAAGCAGAGATTACCTATTTATGCTTGAAATTCCAGTCCTAGA

CCAAG 
hVDAC1-E73Q F ATGGACTGAGTACGGCCTGACGTTTACACAGAAATGGAATACCGAC 
hVDAC1-E73Q R GTCGGTATTCCATTTCTGTGTAAACGTCAGGCC 
hVDAC1 A134C F TTTCGACATTTGCGGGCCTTCCATCCGGGG 
hVDAC1 A134C R TCCATGTCGCTGCCCAGG 

 

 


