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Methods
Soil sampling and strain enrichment
Each site measured 100 m × 100 m, with samples collected from a depth of 20 cm. Within each site, five subplots (10 m×10 m) were established, and non-rhizosphere soil samples were collected using a five-point mixed sampling method. Samples from each subplot were combined into one composite sample per site. The black soil zone spans from the foothills and hilly areas of the Lesser and Greater Khingan Mountains to the Songnen Plain, which is predominantly used for cultivating maize, soybean, and spring wheat1-3. The black soil experiences a temperate semi-humid continental monsoon climate, with mean annual temperatures ranging from –5.5 °C to 13 °C and annual precipitation between 530 and 630 nm.
SEM analysis
Samples of cells were collected and then centrifuged at 12,000 rpm for 5 min, and the precipitates were washed 3 times with ddH2O. Samples were immobilized by 2.5% glutaraldehyde solution for 12 h and then centrifuged (12,000 rpm, 5 min). The precipitates were washed 3 times with ddH2O. Gradient dehydration with an ethanol sequence consisting of 30%, 50%, 70%, 85%, and 90% ethanol once each, and 100% ethanol twice. Each sample was dehydrated for 15 min and centrifuged at 12,000 rpm for 5 min to remove supernatants. A part of precipitates was freeze-dried using a freeze drier for 24 h and used for SEM4, 5.
Herbicides concentration determination
HPLC-MS was used to detect the content of herbicides in this study4, 6. Freeze-dried soil was sieved, and 10 g of sieved soil was accurately weighed into a 50 mL centrifuge tube. 5 mL of pure water and 20 mL of acetonitrile containing 0.5% acetic acid were added, and the sample was extracted by shaking for 1 h and ultrasonic extraction for 30 min after soaking overnight. 2.5 g of sodium chloride was added into the centrifuge tube, and the extracted sample was shaken for 1 min. Then the sample was centrifuged at 5,000 rpm for 3 min, and the supernatant was collected in a sample bottle. 1.5 mL of the supernatant was collected through 0.22 μm organic filter membrane and put into the injection bottle for measurement. The mobile phase A was 0.2% formic acid (v/v) in water, and the mobile phase B was methanol with a flow rate of 0.3 mL/min at a column temperature of 35 ℃ and an injection volume of 10 μL.
Proteomic processing and analysis
Briefly, an appropriate amount of sample was treated with Reagent ① (Extract) and subjected to low-temperature non-contact ultrasonication for 10 minutes. After high-speed centrifugation (14,000 rpm, 10 min), the supernatant containing soluble proteins was collected. Peptide separation was carried out using a Vanquish Neo chromatography system (Thermo Scientific) equipped with a uPAC High Throughput column (75 μm × 55 cm, Thermo Scientific, USA). Mobile phase A consisted of water with 2% acetonitrile and 0.1% formic acid, and mobile phase B contained 80% acetonitrile with 0.1% formic acid. The total chromatographic runtime was 8 minutes. Data acquisition was performed using Compass HyStar software (Bruker, Germany). Separated peptides were analyzed using a timsTOF Ultra2 mass spectrometer (Bruker, Germany) operated in positive ion mode with an ion source voltage of 4.5 kV. The mass spectrometry scanning range was set to 100–1700 m/z. 
Search parameters were configured as follows: peptide length 7–52; enzyme: trypsin/P; maximum missed cleavages: 2; variable modifications: oxidation (M) and acetyl (protein N-terminus); fixed modification: carbamidomethyl (C); protein FDR ≤ 0.01; peptide FDR ≤ 0.01; peptide confidence ≥ 99%; XIC width ≤ 75 ppm. Protein quantification was performed using the MaxLFQ algorithm. Differential expression was assessed using a t-test; proteins with a p-value < 0.05 and a fold change (FC) > 1.2 were considered differentially expressed.
Real-time quantitative PCR
Genomic DNA was removed through digestion with RNase-free DNase I (Takara) at 37 °C, followed by the addition of 50 mM EDTA. The enzymatic reaction was terminated by heat inactivation at 65 °C for 10 minutes. cDNA was synthesized using a RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific). After quantifying RNA concentration with a spectrophotometer (NanoDrop 2000, Thermo Scientific), 300 ng of total RNA was reverse-transcribed into cDNA.
Key metabolites detection
To assess biofilm formation, cells from different growth phases were collected and washed twice with phosphate-buffered saline (PBS, pH 7.2). The suspensions were adjusted to an optical density of 0.8 at 600 nm. Aliquots of 20 µL from each suspension were inoculated into 200 µL of fresh medium and incubated for 36 h. After incubation, the cultures were gently rinsed three times with PBS and dried at 60 °C for 30 min. Biofilms were stained with 100 µL of 1% (v/v) crystal violet (CV) solution for 15 minutes at room temperature. Unbound dye was removed by washing three times with PBS, and the samples were heat-fixed at 65 °C for 60 minutes. The stained biofilms were eluted with 200 µL of 33% acetic acid, and biofilm mass was quantified by measuring the absorbance at 595 nm.
ATP and NADH extraction and measurement: Cells from respective growth phases were harvested by centrifugation at 12,000 rpm for 5 min at 4 °C. The pellets were resuspended in 1 mL of buffer containing 0.4 M perchloric acid and 1.0 mM EDTA, followed by ultrasonication on ice for 5 min. Intact cells and debris were removed by subsequent centrifugation (12,000 rpm, 5 min, 4 °C). The supernatant was neutralized to pH 7.0 using 1 M K₂CO₃ and filtered through a 0.22 μm membrane. 
Metabolomic analysis
The mixture was subjected to low-temperature ultrasonic extraction for 30 minutes (5 °C, 40 kHz), incubated at −20 °C for 30 minutes, and centrifuged at 13,000 rpm for 15 minutes at 4 °C. The supernatant was collected, dried under a nitrogen stream, and reconstituted in 100 µL of reconstitution solution (acetonitrile:water = 1:1, v/v). After another round of low-temperature ultrasonication (5 °C, 40 kHz, 5 min), the sample was centrifuged again (13,000 rpm, 10 min, 4 °C). The final supernatant was transferred to an LC vial with an insert for instrumental analysis.
Metabolite separation and detection were performed using a UHPLC-Orbitrap Exploris 240 system (Thermo Fisher Scientific) operated by Meiji Biotechnology Co., Ltd. (Shanghai, China). Chromatographic separation was achieved on an HSST3 column (100 mm × 2.1 mm i.d., 1.8 µm) with a column temperature of 40 °C. The mobile phases consisted of (A) water/acetonitrile (95:5, v/v) with 0.1% formic acid and (B) acetonitrile/isopropanol/water (47.5:47.5:5, v/v/v) with 0.1% formic acid. The flow rate was set to 0.40 mL/min. Mass spectrometry detection was carried out in both positive and negative ion modes with a scanning range of m/z 70–1050. The ion spray voltages were 3500 V (positive) and –3000 V (negative). Sheath gas and auxiliary gas were set to 50 arb and 13 arb, respectively; the ion transfer tube temperature was 450 °C; and collision energy was cycled at 20, 40, and 60 eV.
Maize growth parameters measurement
Three biologically uniform replicates per treatment were selected for analysis. Plant height was measured from the base to the highest natural point of the shoot; root length was measured from the base to the longest root tip. The fourth fully expanded leaf from the apex was used for photosynthetic measurements. Net photosynthetic rate (Pn) was measured between 9:30 and 11:30 AM using a portable gas exchange system (LI-6400 XT, LI-COR, USA) at 30 °C, 380 µmol·mol⁻¹ CO₂, and 37–42% relative humidity7. The actual quantum yield of photosystem II (ΦPSII = (Fm′ − F′)/Fm′) was determined using a Hansatech FMS 300 chlorophyll fluorometer8.
Leaf tissues were deveined, and roots were collected for vitality assessment. Rhizosphere soil was sampled within 2 mm of the root surface, carefully removing root fragments, and stored at 4 °C and 28 °C for enzyme activity and metagenomic analyses, respectively. All samples for biomass, physiological indices, soil properties, and metagenomics were processed in parallel with one-to-one correspondence for subsequent correlation analysis.
Leaf and root samples (0.5 g) were homogenized in an ice-cold mortar with 10 mL of 50 mM sodium phosphate buffer (pH 7.8). The homogenate was centrifuged at 10,000 rpm for 10 minutes at 4 °C. The supernatant was collected as a crude enzyme extract for assays of soluble protein9, malondialdehyde (MDA)10, and proline content11. Soluble sugar content in leaves and roots was determined using the anthrone method, and chlorophyll content was measured according to Ni et al. (2009)12. Root activity was assessed using the triphenyl tetrazolium chloride (TTC) reduction method.
Soil enzyme activities, including β-galactosidase, α-glucosidase, β-glucosidase, phosphatase, and urease, were measured colorimetrically. Protease and dehydrogenase activities were determined using modified ninhydrin and triphenyl tetrazolium chloride methods, respectively. MDA content was quantified according to Heath and Packer (1968).
Metagenomic Analysis
Genomic DNA was extracted using the FastPure Stool DNA Isolation Kit (Magnetic bead) (MJYH, Shanghai, China). DNA concentration and purity were assessed spectrophotometrically, and integrity was evaluated via 1% agarose gel electrophoresis. The DNA was fragmented using a Covaris M220 system (Geneco, China) to an average size of ~350 bp for paired-end (PE) library construction.
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Figure S1 Map of soil sample collection sites and distribution of herbicide residues.
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Figure S2 Degradation capabilities (a) and resistances (MICs)(b) for 8 herbicides by individual strains and SynComs. 
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Figure S3 Overall biomass levels in monocultures and SynComs systems.
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Figure S4 Comparative proteomic analysis of treatment groups. (a) The similarity among samples by principal component analysis (PCA). Closer proximity indicates higher similarity. (b) Pairwise correlation matrix between samples. Each cell represents the correlation coefficient between two samples, with color intensity denoting the strength of correlation. (c) Hierarchical clustering of protein expression patterns. Each column represents a treatment group, and each row represents individual proteins. The color scale reflects relative expression levels of proteins within each group. The left dendrogram shows protein clustering: shorter branches indicate similar expression patterns. The top dendrogram shows sample clustering: shorter branches denote similar proteomic profiles across all proteins.
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Figure S5 Protein GO enrichment analysis of SynCom YKB and monocultures under the exposure of herbicides.
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Figure S6 Protein GO enrichment analysis of SynCom HKB and monocultures under the exposure of herbicides.
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Figure S7 Enriched protein interaction networks in SynComs members exposed to herbicides. (a) Protein-protein interaction (PPI) networks of members exposed to herbicides. Nodes represent enriched proteins, and edges represent protein interactions. Node size scales proportionally to its degree centrality, where larger nodes indicate higher functional importance. (b) Unique node-level topological features of the different networks, specifically the degree, betweenness, and closeness centrality. (c) Differences and similarities in the enriched proteins annotated by strains K1 and B1 in the two SynComs systems.
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Figure S8 Weighted gene co-expression network analysis (WGCNA) of SynComs YKB (a) and HKB (b). Correlation coefficients were calculated using the Spearman method, and the top 30 nodes with the highest connectivity within each module were selected for analysis. Modules significantly positively correlated with herbicide degradation ability were selected for KEGG enrichment analysis.
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Figure S9 Impact of herbicide-degradation genes interference on herbicide degradation efficiencies in SynComs system. YKB and HKB: Control group. Y-R: interference key genes on strain Y1. K-R: interference key genes on strain K1. B-R: interference key genes on strain B1. H-R: interference key genes on strain H1. YKB-R: interference key genes on all members. HKB-R: interference key genes on all members.
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Figure S10 Impact of key metabolic pathways interference on expression levels of key functional genes in SynComs system. YKB and HKB: Control group. Y-R: interference key genes on strain Y1. K-R: interference key genes on strain K1. B-R: interference key genes on strain B1. H-R: interference key genes on strain H1. YKB-R: interference key genes on all members. HKB-R: interference key genes on all members.
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Figure S11 Resilience capacities of exogenous key metabolic on herbicides degradability in SynComs RNAi strains. (a-b) Herbicides degradability resilience in SynCom YKB (a) and HKB (b) systems with the addition of key exogenous metabolites. (c) Meta-analysis of herbicides degradability resilience in SynComs systems with the addition of key exogenous metabolites.
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Figure S12 Reporter-based assessment of biotoxicity dynamics. Quantification of residual biotoxicity during herbicides degradation across treatment groups via measurement of β-galactosidase activity, and higher activity indicates elevated intracellular biotoxicity.
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Figure S13 Metabolomics analysis of key interference systems in SynComs. (a) PCA analysis of wild and interference systems. (b) Significantly different metabolites between interference systems and wild-type systems. Red indicates up-regulated metabolites, and blue indicates down-regulated metabolites. (c) Upset plot showing shared and unique metabolites between different interference systems and wild-type systems.
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Figure S14 KEGG classification and number of differentially metabolites compared with SynCom YKB in different interference systems.
[image: F24]
Figure S15 KEGG classification and number of differentially metabolites compared with SynCom HKB in different interference systems.
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Figure S16 Comparison of KEGG enrichment of down-regulated differentially expressed metabolic pathways in interference systems.
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Figure S17 KEGG enrichment analysis network diagrams in SynCom YKB interference systems. Red represents KEGG pathways, and blue represents metabolites. The size represents the number of metabolites in the pathway.
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Figure S18 KEGG enrichment analysis network diagrams in SynCom HKB interference systems. Red represents KEGG pathways, and blue represents metabolites. The size represents the number of metabolites in the pathway.
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Figure S19 Colonisation status of the synthetic microbial community in black soil after 21 days.
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Figure S20 Enzyme activities in rhizosphere black soil among different treatment groups.
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Figure S21 Differences in the content of key metabolites, succinate, tryptophan and taurine, in soils from different treatment groups.
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Figure S22 Linear regression analysis between β-diversity of taxonomic in metagenomics and environmental factors in maize pot culture. R2 is the coefficient of determination, representing the proportion of variation explained by the regression line. 
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Figure S23 Linear regression analysis between β-diversity of KEGG pathway in metagenomics and environmental factors in maize pot culture. R2 is the coefficient of determination, representing the proportion of variation explained by the regression line. 
[image: F33]
Figure S24 Correlations between environmental factors and metagenomic profiles in different treatment groups. (a) Mantel test analysis of taxonomic composition and environmental factors in different treatment groups. The community distance matrix algorithm was bray-curits. The environmental factor matrix algorithm was euclidean, and the correlation coefficient was Spearman. The network lines represent the correlation between communities and environmental factors, and the heat map represents the correlation between environmental factors. The thickness of the lines indicates the strength of the correlation between the community and environmental factors, calculated using Mantel’s r. Different colors in the heatmap represent positive or negative correlations, with darker colors indicating stronger correlations. The asterisks in the color blocks indicate significance: * 0.01< p ≤ 0.05, ** 0.001< p ≤0.01, *** p ≤ 0.001. (b) The explanatory power of environmental factors on microbial community and functional differences by Variance Partitioning Analysis (VPA). Residuals represent the remaining explanatory power that cannot be explained by the above environmental factors.
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Figure S25 Schematic map of plasmid pUC119 for RNA interference.
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Figure S26 Validation of the expression level of the target gene in 5 generations of interference strains.
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Figure S27 Schematic map of plasmid pLSP kt2lacZ for Reporter gene.
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Figure S28 Schematic map of plasmid pTn7-RFP for Fluorescent labeling.



Table S1 Categories and functions of QS signaling molecules

	Categories
	Source
	Regulatory system
	Regulatory target
	Functionality

	AHLs
	Gram-negative bacteria
	LuxI/LuxR
	LuxR family, Gram-negative bacteria
	Biofilm formation, EPS production, granular sludge formation, microbial metabolic activity, etc.

	AI-2
	Gram-positive bacteria and Gram-negative bacteria
	Pfs/LuxS
	Gram-positive bacteria and Gram-negative bacteria
	Inter-species communication among microorganisms, biofilm formation, metabolic functions, bioluminescence, and swarming behavior, etc.

	AIP
	Gram-positive bacteria
	Two-component control system
	Gram-positive bacteria
	Inter-species communication among microorganisms, virulence, antibacterial properties, etc.

	AI-3
	Gut microbiota
	LuxS
	E.coli
	Transcription activation of E. coli virulence genes, etc.

	PQS
	Pseudomonas sp.
	4Q control system
	Pseudomonas aeruginosa
	Biofilm formation, denitrification process, transport system, etc.



















Table S2 Collection sites information of soil samples for functional strain isolation.

	
	Changtu (CT)
	Kuancheng (KC)
	Acheng (AC)
	Beilin (BL)
	Hailun (HL)
	Beian (BA)

	Longitude E
	123.85
	125.56
	127.04
	126.77
	126.50
	126.49

	Latitude N
	42.71
	42.20
	45.56
	46.64
	47.39
	48.32

	Soil properties (g/kg)
	
	
	
	
	
	

	TC
	13.21
	16.72
	22.48
	28.65
	31.19
	35.67

	DOC
	0.03
	0.06
	0.08
	0.09
	0.09
	0.11

	TN
	1.52
	1.19
	2.35
	2.79
	2.91
	3.26

	DON
	0.03
	0.05
	0.07
	0.13
	0.14
	0.17

	TP
	0.47
	0.51
	0.82
	1.02
	1.24
	1.41

	TK
	22.31
	24.69
	26.20
	19.25
	25.83
	30.27

	Herbicides (mg/L)
	
	
	
	
	
	

	Atrazine
	92.51±4.625
	86.67±4.334
	66.51±3.325
	85.81±4.290
	83.64±4.182
	5.457±0.273

	Acetochlor
	98.82±4.941
	94.18±4.709
	122.9±6.149
	41.23±2.062
	24.32±1.216
	17.17±0.858

	Butachlor
	73.73±3.687
	34.85±1.743
	127.4±6.374
	66.02±3.301
	24.43±1.222
	7.783±0.389

	Metolachlor
	49.81±2.491
	26.07±1.304
	45.67±2.283
	17.32±0.866
	12.66±0.633
	5.013±0.251

	Metribuzin
	19.99±0.999
	76.00±3.800
	26.18±1.309
	4.902±0.245
	7.699±0.385
	8.815±0.441

	Nicosulfuron
	17.49±0.874
	27.21±1.361
	12.83±0.614
	7.441±0.372
	3.803±0.190
	2.438±0.122

	Pyrazosulfuron
	11.25±0.563
	23.70±1.185
	5.575±0.279
	3.960±0.198
	2.083±0.104
	1.825±0.090

	Fomesafen
	0.687±0.344
	0.353±0.018
	4.176±0.209
	13.08±0.654
	41.32±2.066
	84.41±4.220







Table S3 Herbicide degradation capability by single strains and mixed bacterial communities.
	Number
	Species
	Herbicides degradation efficiencies (%)

	
	
	Atrazine
	Acetochlor
	Butachlor
	Metolachlor
	Metribuzin
	Nicosulfuron
	Pyrazosulfuron
	Fomesafen

	B1
	Pseudomonas sp.
	40.4
	53.3
	50.6
	35.9
	31.1
	16.7
	27.3
	6.18

	B2
	Pseudomonas sp.
	12.7
	21.5
	15.8
	19.1
	20.6
	14.2
	18.6
	2.82

	B3
	Pseudomonas sp.
	21.1
	15.9
	27.7
	18.8
	35.1
	17.2
	20.5
	3.16

	B4
	Pseudomonas sp.
	15.5
	18.7
	2.46
	19.5
	37.3
	4.75
	15.4
	2.97

	B5
	Pseudomonas sp.
	36.7
	41.2
	24.8
	39.9
	32.3
	15.8
	13.2
	2.44

	R1
	Ralstonia sp.
	15.7
	10.6
	18.6
	22.5
	15.1
	27.8
	36.4
	0.52

	R2
	Ralstonia sp.
	26.2
	15.7
	22.2
	19.4
	37.7
	11.4
	17.9
	3.45

	R5
	Ralstonia sp.
	30.5
	35.7
	17.6
	51.7
	19.9
	36.1
	14.1
	10.5

	R6
	Ralstonia sp.
	18.3
	12.2
	10.2
	5.66
	18.1
	5.11
	11.7
	0.58

	H1
	Bacillus sp.
	71.6
	13.5
	35.2
	10.7
	50.9
	8.85
	14.6
	4.63

	H3
	Bacillus sp.
	17.9
	12.4
	5.71
	12.9
	11.7
	15.5
	5.25
	1.78

	H4
	Bacillus sp.
	25.4
	3.28
	17.4
	0.53
	17.9
	6.05
	1.42
	19.5

	H6
	Bacillus sp.
	39.1
	32.8
	17.9
	15.2
	22.4
	19.2
	40.5
	13.2

	L3
	Klebsiella sp.
	58.4
	41.4
	27.8
	29.5
	34.8
	19.5
	12.1
	1.55

	L5
	Klebsiella sp.
	14.8
	10.6
	5.88
	14.2
	7.93
	5.88
	1.86
	0.51

	E2
	Enterobacter sp.
	35.5
	30.7
	37.1
	12.2
	10.5
	30.3
	15.7
	2.74

	E3
	Enterobacter sp.
	52.4
	27.3
	15.5
	33.7
	10.6
	25.4
	10.7
	1.23

	E4
	Enterobacter sp.
	10.6
	5.57
	18.7
	5.85
	14.9
	10.9
	11.3
	6.13

	K1
	Acinetobacter sp.
	75.6
	59.8
	45.8
	55.8
	71.5
	66.9
	18.2
	24.6

	K3
	Acinetobacter sp.
	18.7
	12.6
	10.2
	24.4
	18.4
	2.07
	15.9
	5.01

	S2
	Serratia sp.
	23.2
	17.4
	10.2
	15.6
	11.6
	15.5
	2.78
	0.99

	M1
	Massilia sp.
	36.1
	20.1
	30.4
	15.6
	28.5
	36.1
	15.6
	1.55

	M2
	Massilia sp.
	22.3
	11.5
	5.76
	15.2
	7.88
	10.9
	15.2
	1.77

	D1
	Brevundimonas sp.
	19.3
	2.98
	15.6
	16.6
	20.5
	14.4
	13.8
	1.19

	Y1
	Comamonas sp.
	63.6
	43.9
	55.9
	40.6
	66.2
	58.8
	29.1
	9.23

	F2
	Flavobacterium sp.
	20.3
	10.2
	8.62
	15.4
	25.9
	13.7
	5.51
	1.85

	O2
	Bryobacter sp.
	11.5
	5.18
	8.95
	9.79
	12.6
	14.1
	13.6
	1.02

	U1
	Burkholderia sp.
	18.9
	8.06
	20.9
	15.9
	7.03
	4.64
	1.97
	0.53

	C2
	Sphingobium sp.
	24.4
	20.5
	11.5
	17.1
	4.51
	8.28
	1.52
	0.22

	Y1+K1
	/
	85.2
	61.3
	72.5
	60.7
	71.1
	71.3
	54.2
	46.2

	Y1+B1
	/
	96.1
	76.2
	60.3
	65.1
	69.3
	59.6
	63.3
	38.5

	Y1+H1
	/
	62.8
	42.9
	39.1
	20.5
	58.2
	55.1
	30.8
	6.15

	K1+B1
	/
	96.3
	59.4
	65.2
	70.4
	60.9
	65.3
	36.2
	30.8

	K1+H1
	/
	93.2
	85.8
	40.6
	25.4
	55.7
	49.8
	23.6
	23.1

	B1+H1
	/
	55.6
	33.1
	45.8
	19.2
	33.8
	33.9
	28.6
	9.23

	K1+B5
	/
	41.2
	37.5
	25.8
	12.7
	24.2
	30.5
	27.9
	10.1

	K1+L3
	/
	55.1
	27.4
	24.2
	15.8
	25.6
	32.8
	25.5
	13.5

	K1+M1
	/
	37.5
	41.2
	32.6
	19.4
	20.4
	41.5
	22.4
	15.1

	B1+H6
	/
	47.2
	16.3
	33.9
	29.7
	15.6
	26.2
	17.5
	5.48

	H1+M1
	/
	30.7
	46.2
	10.1
	22.1
	10.5
	30.2
	24.3
	4.58

	H1+E3
	/
	35.9
	20.1
	34.9
	19.7
	16.6
	23.1
	12.2
	8.29

	B5+H6
	/
	39.8
	25.3
	17.5
	36.3
	12.9
	39.9
	15.6
	7.28

	B5+E3
	/
	40.2
	10.1
	18.4
	20.4
	30.7
	19.4
	40.3
	19.9

	R6+L3
	/
	20.3
	30.6
	15.4
	40.9
	28.4
	39.7
	21.8
	15.1

	R6+M1
	/
	48.1
	33.2
	19.2
	26.1
	37.3
	10.9
	21.7
	8.94

	H6+E2
	/
	50.5
	21.3
	12.5
	8.53
	18.8
	22.7
	17.8
	10.5

	L3+M1
	/
	23.6
	29.1
	37.6
	41.3
	19.2
	15.4
	7.66
	19.3

	E2+M1
	/
	37.8
	18.7
	22.8
	17.1
	19.2
	24.9
	13.6
	20.7

	Y1+K1+B1
	/
	99.8
	86.5
	91.6
	85.7
	96.8
	94.6
	99.2
	89.3

	Y1+K1+H1
	/
	64.1
	59.2
	70.1
	60.9
	67.2
	63.9
	55.1
	82.1

	Y1+B1+H1
	/
	79.3
	48.3
	75.4
	30.4
	80.2
	44.3
	55.8
	77.3

	K1+B1+H1
	/
	99.9
	92.6
	95.4
	80.2
	91.4
	88.9
	95.2
	92.6

	K1+B5+L3
	/
	63.4
	71.8
	55.3
	41.9
	39.9
	27.3
	29.2
	48.4

	K1+H6+E2
	/
	49.2
	62.9
	37.8
	55.3
	49.1
	58.3
	47.1
	26.4

	B5+H6+E3
	/
	77.2
	32.5
	49.4
	37.8
	21.5
	38.6
	62.3
	35.2

	Y1+K1+B5+L3
	/
	69.8
	61.1
	62.6
	34.4
	58.1
	42.1
	49.4
	60.3

	Y1+K1+B1+L3
	/
	95.5
	73.7
	82.6
	86.6
	90.5
	89.8
	93.3
	71.8

	Y1+B5+H6+E3
	/
	58.6
	59.1
	62.4
	71.6
	36.5
	47.5
	50.1
	59.8

	K1+B5+H6+E3
	/
	53.8
	59.3
	33.6
	45.3
	60.9
	18.5
	44.8
	29.5

	H1+K1+B1+L3
	/
	83.4
	90.4
	91.4
	72.1
	73.5
	79.8
	85.5
	83.6

	Y1+K1+B1+B5+L3
	/
	87.2
	79.7
	83.2
	86.2
	90.7
	92.1
	93.9
	80.6

	Y1+K1+B1+H6+E3
	/
	91.1
	73.9
	85.5
	70.6
	83.3
	81.8
	90.7
	85.2

	H1+K1+B1+B5+H6
	/
	76.6
	88.1
	79.3
	81.7
	71.5
	82.4
	90.3
	78.7

	Other combinations
	< 50




Table S4 The different expression of key proteins between monoculture and co-cultured conditions in SynCom YKB system.
	Protein description
	Log2 FC
	P-adjust
	Function

	YKB+H VS Y1+H
	
	
	

	Zinc ABC transporter substrate-binding protein ZnuA
	7.649
	0.0042
	Inorganic ion transport and metabolism

	Iron uptake system protein EfeO
	2.682
	0.1266
	

	Glucans biosynthesis protein MdoG
	6.416
	0.0514
	Energy production and conversion

	NAD-dependent succinate-semialdehyde dehydrogenase Ssd
	5.834
	0.0319
	

	Sugar PTS system EIIA component Crr
	5.162
	0.0785
	

	Glucose-1-phosphatase Agp
	4.576
	0.0007
	

	Aldose 1-epimerase GalM
	3.099
	0.2380
	

	L-lactate dehydrogenase Ldh
	2.965
	0.0559
	

	Succinyl-CoA synthetase SucDC
	2.539
	0.0083
	

	2-oxoacid ferredoxin oxidoreductase subunit alpha OorA
	-2.615
	0.0116
	

	Succinate dehydrogenase flavoprotein FrdABCD
	5.569
	0.2862
	Biofilm formation

	Putative colanic acid biosynthesis glycosyltransferase WcaI
	5.492
	0.0114
	

	N-acetyl-D-mannosaminouronosyltransferase WecG
	4.313
	0.0186
	

	S-ribosylhomocysteine lyase LuxS
	4.961
	0.4826
	Quorun sensing

	LuxR family transcriptional regulator LuxR
	4.616
	0.0017
	

	Acyl homoserine lactone synthase LuxI
	4.173
	0.0109
	

	LysR family transcriptional regulator OxyR
	4.019
	0.0492
	

	LysR family transcriptional regulator, glycine cleavage system Transcriptional activator GcvA
	3.186
	0.3162
	

	LuxR family transcriptional regulator, csgAB operon transcriptional Regulatory protein CsgD
	2.739
	0.3616
	

	Atrazine chlorohydrolase AtzA
	8.132
	0.1379
	Trazine degradation

	Hydroxydechloroatrazine ethylaminohydrolase AtzB
	4.958
	0.0093
	

	YKB+H VS K1+H
	
	
	

	Atrazine chlorohydrolase AtzA
	7.281
	0.0658
	Trazine degradation

	Hydroxydechloroatrazine ethylaminohydrolase AtzB
	6.416
	0.0435
	

	N-isopropylammelide isopropylaminohydrolase AtzC
	4.817
	0.0272
	

	Atrazine monooxygenase ThcBCD
	3.674
	0.0918
	

	Isopropylmalate isomerase MeaA
	5.834
	0.0009
	Amide degradation

	Isopropylmalate dehydratase MeaB
	4.721
	0.0077
	

	Cytochrome P450 oxygenase system EthBAD
	4.697
	0.0294
	

	Ferredoxin Cnd
	-3.165
	0.0613
	

	2,4-dichlorophenoxyacetate dioxygenase TfdA
	4.295
	0.0204
	Metribuzin degradation

	Manganese ABC transporter MntAD
	3.151
	0.2757
	Sulfonylureas degradation

	Carboxylesterase CarE
	2.863
	0.0098
	

	Cytochrome P450 hydroxylase sytem Box AB
	2.713
	0.0033
	

	Nitroreductase DnrA
	4.359
	0.1301
	Ether degradation

	S-ribosylhomocysteine lyase LuxS
	6.917
	0.0126
	

	Acyl homoserine lactone synthase LuxI
	6.622
	0.0215
	

	AI-2 ABC transporter periplasmic binding protein LsrB
	6.102
	0.0170
	Quorun sensing

	LuxR family transcriptional regulator LuxR
	3.174
	0.0029
	

	YKB+H VS B1+H
	
	
	

	Tryptophan synthase TrpBA
	7.269
	0.0056
	Tryptophan metabolism

	Acetyl-CoA acyltransferase FadA
	6.155
	0.0770
	

	Indolepyruvate decarboxylase IpdC
	4.25
	0.0022
	

	Phosphate acetyltransferase
	4.189
	0.1220
	

	4-hydroxyphenylacetate-3-monooxygenase HpaBA
	3.243
	0.0007
	

	3-oxoadipyl-CoA thiolase IaaA
	-2.719
	0.0166
	

	AI-2 transport system permease protein LsrCD
	6.129
	0.1696
	Quorun sensing

	AI-2 ABC transporter periplasmic binding protein LsrB
	4.302
	0.0170
	

	Acyl homoserine lactone synthase LuxI
	4.295
	0.2596
	

	S-ribosylhomocysteine lyase LuxS
	4.290
	0.0018
	

	Two-component system QseBC
	4.287
	0.0032
	

	Carboxylesterase CarE
	4.11
	0.0584
	Sulfonylureas degradation

	Cytochrome P450 hydroxylase sytem BoxAB
	3.091
	0.0199
	

	Nitroreductase DnrA
	2.988
	0.4480
	Ether degradation



Table S5 The different expression of key proteins between monoculture and co-cultured conditions in SynCom HKB system.
	Protein description
	Log2 FC
	P-adjust
	Function

	HKB+H VS H1+H
	
	
	

	Zinc ABC transporter substrate-binding protein ZnuA
	6.523
	0.0010
	Inorganic ion transport and metabolism

	Fur family transcriptional regulator, zinc uptake regulator Sur
	4.504
	0.0025
	

	Iron uptake system protein EfeO
	4.131
	0.0106
	

	Glucans biosynthesis protein MdoG
	5.387
	0.0001
	Energy production and conversion

	NAD-dependent succinate-semialdehyde dehydrogenase Ssd
	4.192
	0.0030
	

	Sugar PTS system EIIA component Crr
	3.314
	0.0038
	

	Taurine transport system substrate-binding protein TauA
	6.782
	0.0043
	Sulfur metabolism 

	Taurine-pyruvate aminotransferase Tpa
	5.146
	0.0039
	

	Phosphoadenosine phosphosulfate reductase CysH
	4.033
	0.0072
	

	Adenylylsulfate kinase CysC
	3.181
	0.0004
	

	Sulfite reductase (NADPH) flavoprotein alpha-component CysJ
	3.135
	0.0007
	

	Sulfate adenylyltransferase Sat
	2.937
	0.0036
	

	Taurine dioxygenase TauD
	2.546
	0.0047
	

	S-ribosylhomocysteine lyase LuxS
	5.195
	0.0025
	Quorun sensing

	Autoinducer-2 ABC transporter periplasmic binding protein LsrB
	4.181
	0.0033
	

	LuxR family transcriptional regulator LuxR
	4.035
	0.0444
	

	Atrazine chlorohydrolase AtzA
	8.797
	0.0158
	Trazine degradation

	Hydroxydechloroatrazine ethylaminohydrolase AtzB
	5.717
	0.0193
	

	HKB+H VS K1+H
	
	
	

	Taurine-pyruvate aminotransferase Tpa
	7.317
	0.0104
	Sulfur metabolism

	Phosphoadenosine phosphosulfate reductase CysH
	3.589
	0.0207
	

	Adenylylsulfate kinase CysC
	3.247
	0.0011
	

	Taurine dioxygenase TauD
	3.082
	0.0002
	

	Sulfite reductase (NADPH) flavoprotein alpha-component CysJ
	2.893
	0.0015
	

	Sulfate adenylyltransferase Sat
	2.712
	0.0003
	

	Atrazine chlorohydrolase AtzA
	7.664
	0.0084
	Trazine degradation

	Hydroxydechloroatrazine ethylaminohydrolase AtzB
	6.638
	0.0199
	

	N-isopropylammelide isopropylaminohydrolase AtzC
	4.535
	0.0216
	

	Isopropylmalate isomerase MeaA
	5.607
	0.0196
	Amide degradation

	Isopropylmalate dehydratase MeaB
	3.476
	0.0185
	

	Cytochrome P450 oxygenase system EthBAD
	2.409
	0.00256
	

	Carboxylesterase CarE
	5.863
	0.1125
	Sulfonylureas degradation

	Nitroreductase DnrA
	3.359
	0.0012
	Ether degradation

	3-hydroxyacyl-CoA dehydrogenase FadJ
	7.124
	0.0028
	Pyruvate metabolism

	3-hydroxybutyryl-CoA dehydrogenase PaaH
	6.328
	0.0021
	

	Pyruvate-ferredoxin/flavodoxin oxidoreductase Por
	4.085
	0.0020
	

	Long-chain fatty acid transporter FadL
	3.766
	0.0011
	

	Hydroxyphenylacetate 3-monooxygenase, oxygenase component HpaBA
	3.129
	0.0124
	

	AI-2 ABC transporter periplasmic binding protein LsrB
	5.302
	0.0001
	Quorun sensing

	LuxR family transcriptional regulator LuxR
	4.295
	0.0176
	

	Two-component system QseBC
	3.187
	0.0017
	

	HKB+H VS B1+H
	
	
	

	Taurine transport system substrate-binding protein TauA
	3.825
	0.0015
	Sulfur metabolism 

	Taurine dioxygenase TauD
	8.173
	0.0133
	

	Atrazine chlorohydrolase AtzA
	9.127
	0.0195
	Trazine degradation

	Hydroxydechloroatrazine ethylaminohydrolase AtzB
	4.352
	0.0179
	

	N-isopropylammelide isopropylaminohydrolase AtzC
	3.141
	0.0372
	

	Atrazine monooxygenase ThcBCD
	2.753
	0.0048
	

	Isopropylmalate isomerase MeaA
	3.195
	0.0281
	Amide degradation

	Isopropylmalate dehydratase MeaB
	2.537
	0.0400
	

	Cytochrome P450 oxygenase system EthBAD
	2.471
	0.0009
	

	Ferredoxin Cnd
	2.058
	0.0491
	

	2,4-dichlorophenoxyacetate dioxygenase TfdA
	6.174
	0.0017
	Metribuzin degradation

	Carboxylesterase CarE
	4.369
	0.0314
	Sulfonylureas degradation

	Nitroreductase DnrA
	2.833
	0.0283
	Ether degradation

	Pyruvate kinase Pyk
	7.153
	0.0287
	Pyruvate metabolism

	Succinate dehydrogenase subunit C FrdC
	5.114
	0.0170
	

	Malate dehydrogenase MaeA
	3.069
	0.0015
	

	Pyruvate dehydrogenase E2 component PdhC
	2.448
	0.0036
	

	S-ribosylhomocysteine lyase LuxS
	5.395
	0.0268
	Quorun sensing

	Acyl homoserine lactone synthase LuxI
	5.173
	0.0021
	



Table S6 Information on RNAi strains

	RNAi gene name
	Gene Description
	RNAi strain number

	atzAB
	Triazine degradation
	TDR1

	tfdA
	
	TDR2

	meaAB
	Amide degradation
	ADR1

	ethBAD
	
	ADR2

	carE
	Sulfonylureas degradation
	SDR

	dnrA
	Ether degradation
	EDR

	luxS
	Quorum sensing
	QSR1

	luxI
	
	QSR2

	csgD
	Biofilm formation
	BFR1

	frdA
	
	BFR2

	trpBA
	Tryptophan metabolism
	TMR1

	hpaBA
	
	TMR2

	tauD
	Sulfur metabolism
	SMR1

	cysD
	
	SMR2



Table S7 Effect of interference with key herbicide degradation enzymes on the level of herbicides degradation

	
	Atrazine
	Acetochlor
	Butachlor
	Metolachlor
	Metribuzin
	Nicosulfuron
	Pyrazosulfuron
	Fomesafen

	SynCom"YKB"
	97.65±0.52
	82.83±0.41
	88.75±0.66
	82.00±0.72
	93.15±1.24
	89.40±0.83
	97.50±1.13
	85.08±0.75

	YKB-TDR1
	23.69±0.73***
	79.16±1.26
	80.26±1.15
	69.37±0.89
	22.81±1.15***
	66.38±2.11**
	88.53±2.19
	79.34±1.52

	YKB-TDR2
	59.82±1.22***
	70.64±0.82
	82.15±0.33
	72.79±1.12
	39.55±0.99***
	75.13±1.76
	90.13±0.38
	68.82±2.37

	YKB-ADR1
	83.57±1.53
	12.83±1.44***
	20.37±1.91***
	52.83±1.67***
	71.16±1.72**
	80.59±1.08
	75.26±1.64**
	75.63±0.93

	YKB-ADR2
	90.18±0.59
	50.16±2.39***
	44.53±1.24***
	21.69±1.42***
	88.93±1.55
	85.44±2.22
	85.63±1.88
	81.12±0.84

	YKB-SDR
	76.91±0.73**
	63.58±1.71**
	72.18±0.68
	59.83±0.59***
	69.52±1.67**
	12.77±1.96***
	10.24±2.08***
	60.28±1.15**

	YKB-EDR
	91.46±1.06
	69.37±0.63
	60.96±1.54**
	70.22±2.08
	75.34±2.19
	69.66±0.52**
	76.38±1.69**
	20.14±2.64***

	
	Atrazine
	Acetochlor
	Butachlor
	Metolachlor
	Metribuzin
	Nicosulfuron
	Pyrazosulfuron
	Fomesafen

	SynCom"HKB"
	97.98±2.26
	88.98±1.16
	92.00±2.28
	77.00±2.11
	89.58±2.15
	84.98±2.31
	91.25±2.647
	88.65±2.07

	HKB-TDR1
	15.59±1.19***
	60.51±2.23**
	85.51±1.18
	60.28±0.93
	33.75±0.67***
	71.24±1.17
	83.39±1.51
	72.25±1.52

	HKB-TDR2
	68.24±2.17**
	73.26±0.93
	62.37±0.36**
	63.34±1.17
	50.18±1.93***
	66.59±1.52
	75.82±3.09
	80.13±0.96

	HKB-ADR1
	73.79±2.09**
	20.83±1.14***
	30.89±1.94***
	30.69±1.80***
	80.63±0.54
	80.16±0.64
	81.19±2.83
	82.92±2.31

	HKB-ADR2
	85.68±0.93
	33.66±1.65***
	19.83±0.26***
	17.76±2.25***
	77.19±1.66
	73.45±1.91
	80.66±1.72
	75.66±1.19

	HKB-SDR
	67.15±1.66**
	79.25±2.27
	90.05±3.37
	70.23±1.34
	85.24±2.81
	8.92±2.83***
	10.25±2.11***
	59.37±1.58***

	HKB-EDR
	79.83±1.74
	81.87±1.88
	81.22±1.15
	65.88±0.86
	73.32±1.77
	74.33±3.15
	63.57±0.99**
	10.06±0.74***
















Table S8 Effect of interference with key functional enzymes on the level of herbicides degradation and metabolites accumulation
	
	Herbicides degradation efficiency (%)
	Biofilm concentration (A595)
	ATP concentration (mg/g protein)
	NADH concentration (mg/g protein)
	Succinate concentration (mg/L)
	Tryptophan  concentration (mg/mL)
	Taurine concentration (mg/mL)

	SynCom"YKB"
	100±1.2
	10.1±0.9
	3.1±0.02
	8.9±0.5
	1.6±0.2
	23.7±1.1
	8.6±1.2

	YKB-QSR1
	53.2±0.9***
	2.9±0.1***
	0.8±0.01***
	1.5±0.1***
	1.1±0.1**
	15.6±0.5**
	3.4±0.5***

	YKB-QSR2
	41.9±1.5***
	5.7±0.3***
	1.1±0.01***
	0.8±0.2***
	0.9±0.05***
	8.8±0.9***
	1.9±0.1***

	YKB-BFR1
	72.8±2.1
	0.8±0.01***
	2.7±0.03
	5.5±0.3**
	0.5±0.04***
	18.9±1.3**
	5.6±0.3**

	YKB-BFR2
	69.2±1.1**
	1.5±0.05***
	2.5±0.04
	6.7±0.1
	0.8±0.02***
	20.1±2.5
	7.1±0.5

	YKB-TMR1
	32.8±0.3***
	6.7±0.5**
	0.3±0.01***
	0.6±0.05***
	1.2±0.1**
	2.5±0.2***
	6.8±0.2

	YKB-TMR2
	44.5±0.9***
	8.2±0.7
	0.1±0.02***
	3.3±0.1***
	1.3±0.05
	3.8±0.4***
	7.5±0.6

	YKB-SMR1
	79.3±1.4
	6.2±0.8**
	0.9±0.03***
	2.6±0.2***
	0.1±0.04***
	8.9±0.9***
	1.3±0.1***

	YKB-SMR2
	61.6±1.7**
	5.3±0.2***
	1.7±0.04**
	2.2±0.1***
	0.4±0.01***
	17.6±1.2
	2.2±0.05***

	
	Herbicides degradation efficiency (%)
	Biofilm concentration (A595)
	ATP concentration (mg/g protein)
	NADH concentration (mg/g protein)
	Succinate concentration (mg/L)
	Tryptophan  concentration (mg/mL)
	Taurine concentration (mg/mL)

	SynCom"HKB"
	100±2.4
	4.1±0.2
	2.5±0.1
	14.2±1.1
	0.9±0.05
	16.1±1.5
	14.3±1.5

	HKB-QSR1
	22.9±1.1***
	2.8±0.1**
	0.2±0.02***
	5.6±0.2***
	0.1±0.01***
	12.5±2.2**
	0.4±0.2***

	HKB-QSR2
	46.5±1.3***
	1.9±0.05***
	0.7±0.03***
	2.7±0.1***
	0.4±0.02***
	8.1±0.9***
	2.4±0.2***

	HKB-BFR1
	85.9±2.7
	0.2±0.01***
	1.5±0.2***
	10.5±1.3**
	0.7±0.01
	14.2±1.6
	8.5±1.3***

	HKB-BFR2
	94.3±2.5
	0.6±0.03***
	1.7±0.1**
	12.7±2.5
	0.6±0.02
	13.9±1.4
	6.7±0.8***

	HKB-TMR1
	71.6±1.6
	3.3±0.2
	0.4±0.05***
	3.2±0.3***
	0.6±0.02
	0.5±0.05***
	10.9±1.2**

	HKB-TMR2
	65.2±1.0**
	2.7±0.1**
	0.3±0.01***
	1.9±0.1***
	0.7±0.03
	1.6±0.2***
	12.2±1.5

	HKB-SMR1
	39.9±0.9***
	1.1±0.01***
	0.2±0.01***
	2.6±0.5***
	0.2±0.01***
	8.7±1.1***
	3.4±0.1***

	HKB-SMR2
	42.1±0.5***
	1.5±0.02***
	0.6±0.03***
	4.3±0.3***
	0.1±0.01***
	13.5±0.9
	0.7±0.1***



















Table S9 Primers and RNA interference sequences designed in this study.
	Primer
	Sequence (5’-3’) 
	Description      

	27 F
	AGAGTTTGATCCTGGCTCAG
	For strain Verification

	1492R
	GGTTACCTTGTTACGACTT
	

	Y1-16S F
	GCAGCAGTGGGGAATTTTGG
	For biomass analysis

	Y1-16S R
	TTAGCCCCAGGCTTTTCGTT
	

	K1-16S F
	ATCTGGCCTAACACTGACGC
	

	K1-16S R
	CTAAAGCCTCAAAGGCCCCA
	

	B1-16S F
	AATACAGAGGGTGCAAGCGT
	

	B1-16S R
	TGGATGCAGTTCCCAGGTTG
	

	H1-16S F
	ACCTAACCAGAAAGCCACGG
	

	H1-16S R
	ACTTAAGAAACCGCCTGCGA
	

	Tac promoter
	TGACAATTAATCATCGGCTCGTATAATGT

	For RNAi analysis

	Y1: TDR1
	Tac + TACGGAACGAAAAGCCTGGG
	

	K1: TDR1
	Tac + CAGCTCGTGTCGTGAGATGT
	

	B1: TDR1
	Tac + TTGCGCTATCAGATGAGCCT
	

	H1: TDR1
	Tac + TTGCTCCCTGATGTTAGCGG
	

	Y1: TDR2
	Tac + AATACGTAGGGTGCAAGCGT
	

	K1: TDR2
	Tac + CCAGCGAGTAATGTCGGGAA
	

	B1: TDR2
	Tac + CAAGGCGACGATCCGTAACT
	

	H1: TDR2
	Tac + TAACACGTGGGTAACCTGCC
	

	Y1: ADR1
	Tac + CGGCTGATGGCAGATTAGGT
	

	K1: ADR1
	Tac + GCAACGCGAAGAACCTTACC
	

	B1: ADR1
	Tac + GGAATCTGCCTGGTAGTGGG
	

	H1: ADR1
	Tac + GTGAGCCGTTACCTCACCAA
	

	Y1: ADR2
	Tac + CCCTCGGGTTGTAAACTGCT
	

	K1: ADR2
	Tac + GGTGCCTTCGGGAACTTACA
	

	B1: ADR2
	Tac + GAGAAAGCAGGGGACCTTCG
	

	H1: ADR2
	Tac + GGAGCTTGCTCCCTGATGTT
	

	Y1: SDR
	Tac + CGGAACGTGCCTAGTAGTGG
	

	K1: SDR
	Tac + CAGGGGATCTTCGGACCTTG
	

	B1: SDR
	Tac + ACTGAGAGATGGTCCAGACT
	

	H1: SDR
	Tac + TGAGCCGTTACCTCACCAAC
	

	Y1: EDR
	Tac + ATACGTAGGGTGCAAGCGTT
	

	K1: EDR
	Tac + TTCGATGCAACGCGAAGAAC
	

	B1: EDR
	Tac + TAATGGCTCACCAAGGCGAC
	

	H1: EDR
	Tac + TTGGTGAGGTAACGGCTCAC
	

	Y1: QSR1
	Tac + AACGAAAAGCCTGGGGCTAA
	

	K1: QSR1
	Tac + CGAAAGCATGGGGAGCAAAC
	

	B1: QSR1
	Tac + CTGGAACTTAGTCACGGTCC
	

	H1: QSR1
	Tac + TTCAAATAGGGCGGCACCTT
	

	Y1: QSR2
	Tac + ATGAAAGCAGGGGACCTTCG
	

	K1: QSR2
	Tac + AGATGGATTGGTGCCTTCGG
	

	B1: QSR2
	Tac + CCGCGGTAATACAGAGGGTG
	

	H1: QSR2
	Tac + GACGAAAGTCTGACGGAGCA
	

	Y1: BFR1
	Tac + GAACGTGCCTAGTAGTGGGG
	

	K1: BFR1
	Tac + ACGCGAAGAACCTTACCTGG
	

	B1: BFR1
	Tac + GGAGAAAGCAGGGGACCTTC
	

	H1: BFR1
	Tac + TAACACGTGGGTAACCTGCC
	

	Y1: BFR2
	Tac + TCTTCGGATGCTGACGAGTG
	

	K1: BFR2
	Tac + AGCGGGTCTGAGAGGATGAT
	

	B1: BFR2
	Tac + CTGAGACACGGTCCAGACTC
	

	H1: BFR2
	Tac + GTGAGGTAACGGCTCACCAA
	

	Y1: TMR1
	Tac + GTGGCGAACGGGTGAGTAAT
	

	K1: TMR1
	Tac + CGAAAGCATGGGGAGCAAAC
	

	B1: TMR1
	Tac + AACGCTTGCACCCTCTGTAT
	

	H1: TMR1
	Tac + TTGCTCCCTGATGTTAGCGG
	

	Y1: TMR2
	Tac + AGGCAGCAGTGGGGAATTTT
	

	K1: TMR2
	Tac + ACGCGAAGAACCTTACCTGG
	

	B1: TMR2
	Tac + CACTGGAACTGAGACACGGT
	

	H1: TMR2
	Tac + CTGCACTCAAGTTCCCCAGT
	

	Y1: SMR1
	Tac + AAGCCTGCGATCTGTAGCTG
	

	K1: SMR1
	Tac + ATCTGGCCTAACACTGACGC
	

	B1: SMR1
	Tac + TGGATGCAGTTCCCAGGTTG
	

	H1: SMR1
	Tac + TGAACCGCATGGTTCAGACA
	

	Y1: SMR2
	Tac + CGGCTGATGGCAGATTAGGT
	

	K1: SMR2
	Tac + TGGTGCCTTCGGGAACTTAC
	

	B1: SMR2
	Tac + CCGGTGCTTATTCTGTCGGT
	

	H1: SMR2
	Tac + CGAGCCCTTTACGCCCAATA
	




















Table S10 Basic information on herbicides used in this study
	Herbicide
	Chemical formula
	Molecular weight
	Herbicide species
	Semi-lethal dose (LD50-rat)

	Atrazine
	C8H14ClN5
	215.68
	Triazine herbicides
	3000 mg/kg

	Acetochlor
	C14H20ClNO2
	269.77
	Amide herbicides
	763 mg/kg

	Butachlor
	C17H26ClNO2
	311.85
	Amide herbicides
	2000 mg/kg

	Metolachlor
	C15H22ClNO2
	283.80 
	Amide herbicides
	2780 mg/kg

	Metribuzin
	C7H14N4OS
	214.29
	Triazine herbicides
	2200 mg/kg

	Nicosulfuron
	C15H18N6O6S
	410.41
	Sulfonylureas       herbicides
	1000 mg/kg

	Pyrazosulfuron
	C14H18N6O7S
	414.4
	Sulfonylureas      herbicides
	5000 mg/kg

	Fomesafen
	C15H10ClF3N2O6S
	438.76
	Ether herbicides
	3160 mg/kg


























Table S11 Soil sample information for the pot experiment.
	Geographical attributes
	Soil properties (g/kg)

	Longitude E
	Latitude N
	TC
	DOC
	TN
	DON
	TP
	TK

	126.82
	45.86
	26.83
	0.08
	2.77
	0.09
	0.96
	23.37

	Herbicides (mg/L)

	Atrazine
	Acetochlor
	Butachlor
	Metolachlor
	Metribuzin
	Nicosulfuron
	Pyrazosulfuron
	Fomesafen

	70.19±4.86
	109.5±5.14
	77.95±3.52
	30.69±4.33
	17.62±1.64
	6.72±0.89
	5.93±1.07
	11.27±1.34
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