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Materials and Methods

Materials: Nickel nitrate hexahydrate (Ni(NO3)2:6H20, 99.999%), chlorobenzene (CB,
99.8%), anhydrous dimethyl sulfoxide (DMSO, 99.8%), and N,N-dimethylformamide
(DMF, 99.8%) were purchased from Sigma-Aldrich. Lead iodide (Pblz), cesium iodide
(Csl), methylammonium iodide (MAI), lead bromide (PbBr2), bathocuproine (BCP),
and methylamine hydrochloride (MACI) were purchased from Xi’an Yuri Solar Co. Ltd.
Phenethylammonium bromide (PEABr), formamidine iodide (FAI) were purchased
from Greatcell Solar Materials. Lithium hydroxide (LiOH, 99.99%), sodium hydroxide
(NaOH, 99.9%), and potassium hydroxide (KOH, 99.99%) were purchased from
Aladdin. [4-(3,6-dimethyl-9H-carbazol-9yl)butyl]phosphonic acid (Me-4PACz), [2-
(9H-carbazol-9yl)ethyl] phosphonic acid (2PACz), and [4-(3,6-dimethoxy-9H-
carbazol-9-yl)butyl]phosphonic acid (MeO-4PACz) were obtained from TCI America.

Materials Synthesis: Nickel oxide nanoparticles (NiOx-NPs) were synthesized
according to a previous literature !. 1.7 M Cso.0sMAo.0sF Ao oPbls perovskite precursors
were prepared by dissolving 0.085 mmol Csl, 0.085 mmol MAI, 1.53 mmol FAI, and
1.7 mmol Pbl; in DMF: DMSO (4:1 volume ratio, v: v), 5% MAPDbCI; excess were
added to improve the quality of perovskite films. The precursor solutions were stirred
at 60 °C for 1 h and then filtered using a 0.22 um polytetrafluoroethylene membrane
before use.

Inverted (p-i-n) Solar Cell Fabrication: ITO glasses were continuously washed
in an ultrasonic bath for 15 min in detergent-deionized water solution, acetone and
ethanol, respectively. The ITO glasses were dried with N> and then treated with UV-
ozone for 7 min to increase hydrophilicity. NiOx-NPs (20 mg ml™' in H,O) was
deposited on ITO at 2000 rpm for 30 s and then heated at 100 °C for 10 min. The coated
ITO was then moved to a glove box. The LiOH-reacted Me-4PACz were fabricated by
spin-coating the Me-4PACz (0.3 mg mL™' in C,HsOH) and LiOH (molar ratio=1:0,
1:0.25, 1:0.5, 1:1, 1:2) on NiOx-NPs substrates at 4000 rpm for 30 s, followed by
thermal annealing at 100 °C for 10 min. After that, the substrates needed to be washed
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with ethanol through spin-coating at 4000 rpm for 30 s, then annealing at 100 °C for 5
min. The perovskite solution was spin coated on the Me-4PACz or LiOH-reacted Me-
4PACz according to procedure that was increased from 1000 rpm for 10 s to 5000 rpm
for 30 s, dropping 150 pL chlorobenzene antisolvent for 10 s before the end of the
procedure. Then heated at 110 °C for 10 min to obtain the bright perovskite film. PEABr
with concentration of 1 mg/ml in IPA and DMSO solution (volume ratio 200:1) was
dynamically spin-coated on top (4000 rpm, 30 s) and annealed at 100 °C for 5 min.
After that, the PCBM and Cgo mixed solution (25 mg mL™!, 4/1, w/w, ImL CB) was
spin-coated on the PEABr at speed of 3000 rpm for 30 s. Next, BCP (0.5 mg mL ' in
[PA) was spin coated on it at 5000 rpm for 30 s. Finally, fabrication of the devices was
accomplished by thermally evaporating Ag (100 nm) electrodes (0.0535 cm? mask area).
A 100-nm thick magnesium fluoride layer was deposited on the back of ITO substrate
for transmittance enhancement.

Solar Cell Characterization: The SEM images of perovskite films and cross-
sectional devices were obtained using Tescan MAIA3. GIXRD patterns of the
perovskite films were gained by using Rigaku SmartLab 9kW. The crystallization of
the perovskite film was characterized via grazing-incidence wide-angle X-ray
scattering (GIWAXS, BL14B1 beamline of the Shanghai Synchrotron Radiation
Facility (SSRF) using X-ray with a wavelength of 0.6887 A). XPS and UPS
measurements were obtained on a Thermo Fisher Scientific Nexsa. The J-V curves of
PSCs were recorded under AM 1.5 G (100 mW cm?) solar illumination from a
Elitetech solar simulator, and the scan rate corresponding to the curve was 0.02 Vs !
EQE spectra of the PSCs were obtained from ZOLIX Optoelectronic Device Quantum
Efficiency Measurement. FT-IR spectra were measured on a Jasco FT-IR-6100 in a
wavelength range of 4000 to 650 cm™!. Admittance spectroscopy (AS) was conducted
using an impedance analyzer (ZAHNER Stat.). Mott-Schottky analysis was carried out
on an electrochemical workstation (Chenhua 760) and was measured in the 0-1.5 V

voltage range and 1000 Hz frequency under dark. KPFM and AFM were conducted



with an Asylum Research AFM (OXFORD). TOF-SIMS of films were analyzed using
a TOF-SIMS5-100 with the sputter ion of 5 k eV Cs" cluster. The PL spectra of
perovskite samples were obtained via spectrometer (FLS980) at an emission laser of
510 nm. The TRPL measurements were carried out via the PicoQuant FluoQuant 300.
TPV and TPC measurements were done on a home-made system. A white light bias on
the sample was generated from an array of diodes. Red light pulse diodes (0.05s square
pulse width, 100 ns rise and fall time) controlled by a fast solid-state switch were used
as the perturbation source. The transient photocurrent was measured using 20-ohm
external series resistance to operate the device in short circuit. Similarly, transient
photovoltage was measured using 1 M Q external series resistance to operate the device
in open circuit. The voltage dynamics on the resistors were recorded on a digital
oscilloscope (Tektronix MD03032). The perturbation red light source was set to a
suitably low level to the white diodes array with light intensity equivalent to 100 mW
cm 2 of a standard solar simulator.

Stability Test: The complete PSCs could be encapsulated in a N> glove box with
a cover glass and UV adhesive. The operational stability of the encapsulated cells was
measured at 65 °C/85 °C under a white light emitting diode lamp with sixteen-channel
thin film photovoltaic maximum power point tracking test system (YH-VMPP-16). To
improve the stability of the device, we replaced the Ag electrode with a Cr/Au electrode
and used Ceo as electron transport layer. The thermal stability of the non-encapsulated
solar cells was implemented under 85°C thermal pressure and in a N> glove box. The
PCEs of the devices were periodically obtained under AM 1.5 G simulated sun light

illumination in ambient air.

Density Functional Theory (DFT) Calculations: The dipole moments, HOMO,
LUMO, and electrostatic potential were performed using the ORCA 6.0.0 at the
B3LYP-D3(BJ)/def2-TZVP level 2. The surface adsorption behaviors of SAM
molecules (Me-4PACz and Me-4PACz-Li) on NiO surface were analyzed using a plane
wave (PW) basis and the projector-augmented wave (PAW) pseudopotentials, as
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implemented in the Vienna Ab initio Simulation Package (VASP) °. The adsorption
structures of SAM molecules on the crystal surface were constructed following the
methods as described in Ref. *. The generalized gradient approximation (GGA) with
Perdew-Burke-Ernzerhof (PBE) functional was employed for the exchange-correlation
potential, and long-range dispersion interactions were corrected using DFT-D3 method
5. The energy cutoff was set at 520 eV for the wave functions, with convergence
thresholds for energy and atomic force were set to 1x107° eV and 0.02 eV/A,
respectively. Following Ref.*, Hubbard corrections for Ni were set as U= 8 eV and J =
0.95 eV. The slab structures of NiO were built by a 3x3 lateral periodicity, exposing the
(100) surface to ~25 A of vacuum to prevent interactions between slab replicas. The
binding energy between SAM molecule and NiO slab was calculated as Epinding = Esystem
— Esams — Estab, Where Esysiem 15 the energy of the whole system upon adsorption of SAM
molecules, Esams and Esiab are the energies of isolated SAM molecule and the NiO slab
structure, respectively.

Molecular Dynamics (MD) Simulations: The dispersion behavior of Me-
4PACz-Li molecules on the NiO substrate was investigated using classical MD
simulations in LAMMPS ¢, following the methods outlined in Ref.”8. The NiO substrate
was generated by the 24x24x3 supercell of NiO, producing a slab model with
dimensions of approximately 100x100x12.6 A®. The SAM layers, with a thickness of
18 A, were constructed by randomly placing the Me-4PACz and Me-4PACz-Li
molecules above the substrate using the Packmol software °. The distance between
SAM layer and the NiO substrate was maintained at 4.8 A. The simulation models were
created with 6 different fractions of Me-4PACz-Li (i.e., Me-4PACz: Me-4PACz-Li =
1:0, 0.9:0.1, 0.75:0.25, 0.5:0.5, 0.25:0.75, and 0:1), while the total number of SAM
molecules was kept at 200. The interactions within SAM molecules were described
using the OPLS-AA force field !°, which has been widely used in simulating the
aggregation of SAM molecules. The atomic charges of the SAM molecules were

determined using the restrained electrostatic potential charges computed from ORCA



6.0.0 at the B3LYP-D3(BJ)/def2-TZVP level 2. The interactions within NiO substrate
were described using the INTERFACE potential !, which has shown good promise in
reproducing the molecular adsorption behavior on various metal oxides. The
interactions between SAM molecules and NiO substrate were described by Lennard-
Jones potential using the geometric mixing rule. Long-range Coulombic interactions
were calculated using the Particle-Particle Particle-Mesh (PPPM) method with an
accuracy of 10”. The simulation models were dynamically equilibrated at 300 K in the
canonical ensemble (NVT) for 1 ns. The motion of atoms was described using the
velocity Verlet integration with a time step of 1 fs, and periodic boundary condition was
applied in all directions. The surface coverage of SAM molecules on the substrate was
quantified by constructing a surface mesh using the method implemented in the Ovito
software 2, which was also used for visualizing the simulated structures. The interfacial
interactions between SAM molecules and NiO substrate were estimated by calculating
the adsorption energy as Einter = Eiotal — Esams — Enio, where Eionl, Esams, and Enio are
the potential energy of the whole system, SAM molecules, and NiO substrate,
respectively. The calculated Einer is normalized by the number of SAM molecules (200).
Supplementary Note 1

The surface coverage of SAM was calculated using the formula

_ AW
T 1000&(A)

)
where I"is the surface coverage (mol cm™2), 4(1) is the absorbance of the SAM and 1)
is the molar extinction coefficient of SAM molecule 3. The &A1) value of 5.53 x 10°
M em™! for Me-4PACz and LiOH-reacted Me-4PACz at their absorption maximum
in DMF.
Supplementary Note 2

CV measurements were conducted using a three-electrode configuration. The
working electrodes were prepared using a spin coating method on an ITO electrode.
The exposed area of the working electrode to the electrolyte measures 15 mm x 12 mm.
A platinum plate and an Ag/AgCl electrode (in a 3.0 M KCI solution) were employed
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as the counter and reference electrodes, respectively. The measurements were
performed in an Ar-saturated solution of 1,2-dichlorobenzene (0o-DCB) with 0.1 M
tetrabutylammonium hexafluorophosphate (TBA'PFs") serving as the supporting
electrolyte. All potentials are referenced against the ferrocene redox couple, serving as
an internal standard. The effective coverage of the SAMs on the ITO surface is
measured by the slope of a linear dependency of the oxidative peak intensity against

the scan rate as follows:

i, = Ay @)

PO T 4RTN4

ino 1s the oxidative peak current, v is the voltage scan rate, » is the number of electrons
transferred, F is the Faraday constant (96485.33 C mol™!), R is the universal gas
constant (8.314 J K™! mol™), T is the temperature, Na is the Avogadro constant, 4 is

the electrode area, and 7™ 1s the areal density.

Supplementary Note 3

Change the ¢ (where ¢ is the angle of the diffraction vector with respect to the
sample’s normal direction) from 10° to 50° to get the relationship between the
interplanar distance di and Sin’o. The residual stress in the perovskite film is estimated
based on the slope of the dn-Sin’¢ fitting curve given by:

)[Gw! (3)

E

Or = (1+v

where or is the residual stress of the film; E is the Young's modulus of the perovskite

film (15 GPa); v is the Poisson's ratio (0.3); m is the slope of the straight line after linear

fitting; dn is the intercept of the straight line after linear fitting.'* «

Supplementary Note 4

We fabricated hole-only devices (ITO/NiOx-NPs/Me-4PACz or LiOH-reacted Me-
4PACz/perovskite film /PTAA /Ag) and evaluated the effect of LiOH-reacted Me-
4PACz on defect state density and carrier mobility using the space charge limited
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current (SCLC) method. The low-bias region is the ohmic region, the middle-bias
region is the defect filling limit region, and the high-bias region is the SCLC region.
The defect filling limit voltage (V7r1) is determined at the junction of the low and

middle bias regions, and the defect density (V;) is obtained using Eq. 4:"°

2eg0VTFL
N, = st )

where & and ¢ are the vacuum and relative permittivity, e is the electron charge, and L
is the film thickness.
According to the Mott-Gurney law in Eq. 5, the carrier mobility (x) can be

calculated from the Child region:'®

=Sy 5)

Supplementary Note 5

The hysteresis factor (HF) is quantified as:

HF = PCEreverse_PCEforward (6)

PCEreverse

Supplementary Note 6

The carrier recombination mechanism was determined by studying the

dependence of Voc of PSCs on the incident light intensity (/) using Eq. 7:

nkgT
q

In(l) (7)

Voc =

where 7 is the ideality factor, kg is the Boltzmann constant, and 7 is the temperature.

Supplementary Note 7

Admittance spectroscopy (AS) !’

AS is an effective technique for estimating both the energy level of trap states and
the distribution of trap state density, which has been extensively applied to many
photovoltaic systems, such as organic solar cells, CuzZnSnSs4 solar cells, and PSCs. As
the literature reported, for a p-type perovskite semiconductor, the defect activation

energy (Ea) is approximately the depth of the trap state energy level (Et) relative to the



valence band maximum (VBM) energy level (Evem) of perovskite (Ea= Er — Evsm). Ea

and the characteristic transition angular frequency (wo) can be expressed in the relation

wo = BT? exp( — kiTaT) , where B is a a temperature dependent parameter, T is the

temperature and k3 is the Boltzmann’s constant. The wo is determined by the derivative

of the capacitance—frequency spectrum. According to this equation, the Arrhenius plot

(In(2) =Inp — i), and the value of Ea can be obtained from the slope of the
T2 kgT

Arrhenius plot line. The distribution of trap state density can be derived from the

Vi d€ @

eQuation, NT(Ew) == qW dw kgT

, E, = kBTln(%) , Where V3 is the built-in

potential, W is the depletion width, q is the elementary charge, C is the capacitance, and
o is the applied angular frequency. V' and W can be extracted from the Mott—Schottky

analysis through the capacitance-voltage measurement. According to the depletion

approximation, the C, Vs;, and W at the junction can be expressed in the relation, % =

ggN

= /Z(qVEEO 7 where A is active area, € is the static permittivity of perovskite, €o is
bi—

the permittivity of free space, N is the apparent doping profile in the depleted layer, and

_ 2(Vpi—V)

2
V' is the applied bias. A Mott-Schottky plot (% o
0

) describes a straight line
where the intersection on the bias axis determines V5; and the slope gives the impurity
2eg9Vpi

doping density N. Then, the depletion width W = q—Ncorresponding to the zero

bias can be calculated.
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Supplementary Fig. 1 | The XRD pattern of NiOx-NPs.
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Supplementary Fig. 2 | Structures and dipole moments of SAM molecules.
Molecular structures and calculated dipole moments (u) of (a) Me-4PACz, (b) Me-
4PACz-Li, (¢) Me-4PACz-Na, and (d) Me-4PACz-K.
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Supplementary Fig. 3 | Calculated electrostatic potential of SAMs. Electrostatic
potential (ESP) distribution of Me-4PACz, Me-4PACz-Li, Me-4PACz-Na, and Me-
4PACz-K molecules from DFT calculations, where the blue and red clouds represent
the electron-rich and electron-poor regions, respectively.
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Supplementary Fig. 4 | Calculated energy levels of SAM molecules. Calculated
LUMO and HOMO of (a) Me-4PACz, (b) Me-4PACz-Li, (¢c) Me-4PACz-Na, and (d)
Me-4PACz-K. (e) Energy alignment of SAMs based on the calculated HOMO and
LUMO levels.
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Supplementary Fig. 5| Potential energy curves between SAM molecule and NiO
substrate. The change in potential energy (APE) for the two systems as a function of
the distance in the z-direction between SAM molecule and NiO substrate. The distance
is represented by the height of P atom relative to the NiO surface.
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Supplementary Fig. 6 | Interactions between two SAM molecules as a function of
the intermolecular distance, defined as the separation between two P atoms. (a)
Schematic representation of the two SAM molecules. (b) Potential energy (APE), and
(c—d) the contributions from (c¢) Lennard-Jones and (d) Coulomb interactions.
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Supplementary Fig. 7 | Calculated potential energy of Me-4PACz™ on a NiO (100)
surface with different distances. Change of potential energy along the binding path
for Me-4PACz™ on the NiO (100) surface, obtained at GGA/PBE+U level with long-
range dispersion interactions.
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Supplementary Fig. 8 | FTIR characterization. FTIR spectra of NiOx-NPs, Me-
4PACz, Me-4PACz+NiOx-NPs, Me-4PACz-Li, and Me-4PACz-Li+NiOx-NPs films.
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Supplementary Fig. 9 | XPS characterization. XPS spectra of Ni 2p for NiOx-NPs;
NiOx-NPs/Me-4PACz, and NiOx-NPs/Me-4PACz-Li films.
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Supplementary Fig. 10 | Simulation of the coverage of different SAM molecules on
NiO surfaces. Surface coverage of different SAM layers, including (a) pure Me-4PACz,
(b) 90% Me-4PACz and 10% Me-4PACz-Li, (¢) 75% Me-4PACz and 25% Me-4PACz-
Li, (d) 50% Me-4PACz and 50% Me-4PACz-Li, (e) 25% Me-4PACz and 75% Me-
4PACz-Li, and (f) pure Me-4PACz-Li on the NiO (100) substrate after 1 ns MD
simulation (The size of the slab model is 10 nm x10 nm).

20



-0.2

_ —0
< ——10%
-0.3-
s —25%
> ——50%
o _ .
: 0.4- e
o 0
S 5. 100%
S
g |
S -0.6-
wn
2 J
-0.7 -
08—
00 02 04 06 08 10

Time (ns)

Supplementary Fig. 11 | Calculated adsorption energies of LiOH-reacted SAM
molecules with different reaction ratios on NiO (100) surface over simulation time.
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Supplementary Fig. 12 | The binding energies between H/alkali metal atoms and
O atoms in the phosphate groups. Structures and corresponding binding energies
between H/alkali metal atoms and O atoms in the phosphate groups of (a) Me-4PACz,
(b) Me-4PACz-Li, (¢) Me-4PACz-Na, and (d) Me-4PACz-K.
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Supplementary Fig. 13 | Diffusion behavior of Li" and P within Me-4PACz-Li.
Mean squared displacement of Li" and P at different temperatures: (a) 300 K, (b) 500
K, and (¢) 700 K. (d) Displacement coefficient C(7) between Li" and P as a function of
temperatures. A value of C(¢)=1 indicates that Li and P move in the same direction, C(?)
= -1 indicates motion in opposite directions, and C(#)=0 corresponds to the absence of

correlation.
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Supplementary Fig. 14 | The distribution of distances between neighboring SAM
molecules to identify the compactness. The number of neighboring molecules with
various distances within SAM layers adsorbed on NiO substrates after a 1 ns MD
simulation. Li-Me shows the largest number of neighboring molecules with small
distance, indicating the highest compactness of the SAM layer.
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Supplementary Fig. 15 | SEM characterization of SAM layers coated on NiOx-
NPs films. Top-view SEM images of (a) Me-4PACz and (b) Li-Me on NiOx-NPs
films.
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a [

Supplementary Fig. 16 | Elemental mapping of SAM layers coated on NiOx-NPs
films under SEM. Elemental mapping of Ni and P for (a) Me-4PACz and (b) Li-Me
modified NiOx-NPs. The while circles indicate the areas with low density of P.
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Supplementary Fig. 17 | Element distribution characterized by TOF-SIMS. (a-b)
ToF-SIMS depth profiles of PSC devices based on Me-4PACz/NiOx-NPs and Li-
Me/NiOx-NPs. TOF-SIMS signal mapping of (¢-d) Li~ of the device based on Me-
4PACz and Li-Me (the range is 50x50 pm).
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Supplementary Fig. 18 | AFM morphology images and highly statistical distribution
of NiO (RMS: root mean square).
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Supplementary Fig. 19 | AFM characterization of SAM layers coated on NiOx-NPs

films. AFM morphology images and highly statistical distribution of (a) Me-4PACz
and (b) Li-Me on NiOx-NPs (RMS: root mean square).
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Supplementary Fig. 20 | Cyclic voltammetry (CV) characterization of SAM layers
coated on NiOx-NPs films. Cyclic voltammograms of (a) ITO/NiOx-NPs/Me-4PACz,
(¢) ITO/NiOx-NPs/Me-4PACz:LiOH=1:0.25, (e) ITO/NiOx-NPs/Me-
4PACz:LiOH=1:0.5, (g) ITO/NiOx-NPs/Me-4PACz:LiOH=1:0.75, and (i) ITO/NiOx-
NPs/Me-4PACz:LiOH=1:1 as the working electrode measured in Ar-saturated o-DCB
solution under different voltage scan rates. The relationship between the oxidative peak
current and the voltage scan rate for (b) ITO/NiOx-NPs/Me-4PACz, (d) ITO/NiOx-
NPs/Me-4PACz:LiOH=1:0.25, (f) ITO/NiOx-NPs/Me-4PACz:LiOH=1:0.5, (h)
ITO/NiOx-NPs/Me-4PACz:LiOH=1:0.75, and ) ITO/NiOx-NPs/Me-
4PACz:LiOH=1:1 samples. The dashed line represents a linear fit to the raw data.
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Supplementary Fig. 21 | Binding energy between SAM and DMF molecules.
Optimized structure and the calculated bind energy (AEbinding) for (a) DMF/Me-4PACz,
(b) DMF/Me-4PACz-Li, and (¢) DMF/Me-4PACz .
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Supplementary Fig. 22 | Changes in the surface coverages of SAMs after DMF
washing. (a-e) Top: UV-Vis absorption spectra of different SAMs on NiOx-NPs films
after annealing and then being washed with different amounts of DMF. The absorbance
of NiOx-NPs was subtracted by using a similar NiOx-NPs substrate. Bottom: SAM
density on NiOx-NPs as a function of DMF washing volume. (f) UV-visible absorption
spectra of SAMs (Me-4PACz and Me-4PACz-Li) dissolved in DMF with a
concentration of 107> M.
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Supplementary Fig. 23 | Distribution of SAMs characterized by TOF-SIMS. (a-b)
Cross-sectional TOF-SIMS mapping of Me-4PACz (PO ) in initial and aged PSCs
(300 h at 85 °C), respectively. (e-d) Cross-sectional TOF-SIMS mapping of Li-Me
(PO ) in initial and aged PSCs (300 h at 85 °C), respectively (the range is 50 um).
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Supplementary Fig. 24 | Changes in the surface coverages of SAMs after DMF
washing. (a-e) Top: UV-Vis absorption spectra of SAMs on NiOx-NPs without
annealing and being washed with different amounts of DMF. Bottom: Variation in SAM
densities on NiOx-NPs as a function of DMF washing volume.
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Supplementary Fig. 25 | KPFM characterization of SAM layers. KPFM images of

(a) NiOx-NPs/Me-4PACz and (b) NiOx-NPs/Li-Me. (¢) Potential statistical distribution
in KPEM.
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Supplementary Fig. 26 | The characterization of energy levels of SAMs. (a) Tauc-
plot curves of Me-4PACz and Li-Me ethanol solutions. UPS data of (b) NiOx-NPs/Me-
4PACz and (¢) NiOx-NPs/Li-Me. (d) d(EQE)/dE versus wavelength confirming the
bandgap. (e) UPS data of perovskite film. (f) Functional layer band structure (Evac,
vacuum level; CB, conduction band; VB, valence band).
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Supplementary Fig. 27 | The contact angle of a perovskite precursor on different
SAM surfaces. (a) Me-4PACz/NiOx-NPs and (¢) Li-Me/NiOx-NPs. Statistical analysis
of contact angles on the surfaces of (b) Me-4PACz/NiOx-NPs and (d) Li-Me/NiOx-NPs.
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Supplementary Fig. 28 | Statistical distribution of perovskite grain sizes. Histogram

distribution of (a-b) surface and (c-d) bottom perovskite films on Me-4PACz/NiOx-
NPs and Li-Me/NiOx-NPs layers.
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Supplementary Fig. 29 | Cross-sectional SEM. (a-b) Cross-sectional views of devices
on two different SAMs. The scales in all images are 1 um.
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Supplementary Fig. 30 | Crystal orientation analysis of perovskite films. (a)
Circular average diffraction pattern of perovskite films deposited on Me-4PACz/NiOx-
NPs and Li-Me/NiOx-NPs. (b) The full width at half maximum (FWHM) of the (100)

peak. (¢) Radially integrated intensity plots along the ring at ¢ = 10 nm™!, assigned to
the (100) plane of the perovskite films on Me-4PACz/NiOx-NPs and Li-Me/NiOx-NPs.

The crystallinity of perovskite films was evaluated by GIWAXS. The diffraction
ring in GIWAXS at q values of 10 nm™' corresponds to (100) plane of perovskite. The
half-peak width of the (100) plane of the Li-Me based perovskite film is narrower than
that of the Me-4PACz based film, indicating enhanced perovskite crystallinity
(Supplementary Fig. 30a-b). Moreover, The Debye-Scherrer rings of the (100) plane
of Li-Me based perovskite film shows sharper diffraction signals, suggesting that the
crystal packing 1is better oriented with a dominant out-of-plane orientation
(Supplementary Fig. 30c)
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Supplementary Fig. 31 | GIXRD characterization of perovskite films. GIXRD with
different ¢ angles (10°-50°) for perovskite films deposited on (a) Me-4PACz/NiOx-NPs
and (b) Li-Me/NiOx-NPs.
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42



a 12
1.20 4 -—:‘3)_'J o.lo
3
s a)?
5 1.18 1.20£0.011.20+0.01
::8 1.20+0.01 : s
1.1840.01
1.16 -
00
1.17+0.01
1141 — . , . .
0 1:025 1.05 11 1:2
Molar ratio
C 88
e
]
84 &” 86.2+0.4
—_ s
R ) >
u:_ 82 84.4:0.8 . 9:1 i o
& e300 910 [%]
80 s
81.7+1.2
78
76— . i . .
0 1:025 1:.05 11 1:2
Molar ratio

Supplementary Fig. 33 | Statistics of photovoltaic parameters of PSCs. (a-d)
Photovoltaic parameters distribution of Voc, Jsc, FF, and PCE obtained from 20 devices

27
26 ?
26.2+0.1
< 26.0£0.2 335
S 25 125640.3 25.6:0.3 73
25.3+0.3
5244
R
23
22— . , . .
0 1:025 1.05 1:1 1.2
Molar ratio
28
26+ 27.0+0.3
£ 26.1:0.5 .
w 2
824254105 s
25.0+0.6
22 24.00.7,
0 1025 105 11 12
Molar ratio

with various molar ratio of LiOH-reacted Me-4PACz.

43



30_‘ 21.2% —L3p
—~ e geseey
£ 20 256 % ——}20
z | _
£ 10- F10 &
2 ——Li-Me @ 1.07 V - <
c 01 ——Me4PACz@1.05V 0 Q
© 1 L w
*5 -10 --10
3 -20- --20
=t=8=8=8=8=3¢8=3=3=8=8=$ﬂ=3=8:3=ﬁ
-30 : : : F-30
0 50 100 150 200
Time (s)

Supplementary Fig. 34 | Steady-state power output (SPO) of PSCs.
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Supplementary Fig. 35 | Certification of the photovoltaic performance of a PSC.
The best-performing target device certified by Tianjin Institute of Metrological
Supervision and Testing, showing an average steady-state efficiency of 27.32%.
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Supplementary Fig. 36 [Photovoltaic performance of PSCs prepared on different
SAMs. (a) J-V curves of a device based on NiOx-NPs/MeO-4PACz HTL. (b) J-V
curves of a device based on a HTL of NiOx-NPs/MeO-4PACz:LiOH=1:0.5. (¢) J-V
curves of a device based on a HTL of NiOx-NPs/2PACz. (d) J-V curves of a device
based on a HTL of NiOx-NPs/2PACz:LiOH=1:0.5.
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Supplementary Fig. 37 | Statistics of photovoltaic parameters of PSCs. (a-d) The
distribution of photovoltaic parameters (Voc, Jsc, FF, and PCE) obtained from 20
devices with various molar ratios of MeO-4PACz : LiOH.
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Supplementary Fig. 38 | Statistics of photovoltaic parameters of PSCs. (a-d) The
distribution of photovoltaic parameters (Voc, Jsc, FF, and PCE) obtained from 20
devices with various molar ratios of 2PACz : LiOH.
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Supplementary Fig. 39 | Changes in the photovoltaic performance induced by
other alkali treatments for Me-4PACz. (a) J-J curves of a device based on a HTL of
NiOx-NPs/Me-4PACz:NaOH=1:0.5. (b) J-V curves of a device based on a HTL of
NiOx-NPs/Me-4PACz:KOH=1:0.5.
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Supplementary Fig. 40 | Statistics of photovoltaic parameters of PSCs. (a-d)
Photovoltaic parameters (Voc, Jsc, FF, and PCE) obtained from 20 devices with various
molar ratios of Me-4PACz : NaOH.
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Supplementary Fig. 41 | Statistics of photovoltaic parameters of PSCs. (a-d)
Photovoltaic parameters (Voc, Jsc, FF, and PCE) obtained from 20 devices with various
molar ratios of Me-4PACz : KOH.
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Supplementary Fig. 42 | C-AFM images of SAM layers on NiOx-NPs/ITO surfaces.
C-AFM imaging of (a) 50% Me-4PACz-Na and (b) 50% Me-4PACz-K under a bias
voltage of +500 mV. (¢) Current statistical distribution in C-AFM.
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Supplementary Fig. 43 | KPFM characterization of SAM layers. KPFM images of
(a) NiOx-NPs/Me-4PACz, (b) NiOx-NPs/50% Me-4PACz-Na, and (¢) NiOx-NPs/50%
Me-4PACz-K. (d) Potential statistical distribution in KPEM.
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Supplementary Fig. 44 | Variation of Voc in PSCs with changing light intensity.
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Supplementary Fig. 45 | Dark J-V curves of PSCs based on different SAM layers.
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Supplementary Fig. 46 | The comparison of J-V curves between theoretical
simulation and experimental measurement. Theoretically fitted J-J curves by
modified detailed balance model and experimentally measured J-V characteristics for
the PSCs based on (a) Me-4PACz/NiOx-NPs and (b) Li-Me/NiOx-NPs.

In order to understand the loss mechanism and qualify loss proportions (loss factors) of FF, the

revised detailed balance model is used

4 _]Rs
J= Ren +Jn(V —JRs) + J-(V — JRy) _]p

where Vis the applied voltage, J, is the photocurrent, J- and J, are the current loss due to the radiative
bimolecular emission and the nonradiative defect-induced recombination, respectively. R; is the
series resistance, which describes the ohmic loss by the contacts, carrier transport layers, and the
hetero-junction interfaces between the perovskite and carrier transport layers. The defects, pinholes
and voids induced current leakage is represented by the shunt resistance Rgh.

The photocurrent is given by

o r(aa
ho=al; a(/l,L)}(l—Czdl

where ¢ is the speed of light in air, I is the AM 1.5 G spectrum of Sun, A is the wavelength and ¢
is the elementary charge. The absorptivity « is the ratio of power absorbed by the perovskite active
layer over the power of incident Sunlight. It can be obtained by numerically solving Maxwell
equation. The refractive indices of materials can be obtained by ellipsometer measurement.

The radiative current is written as

Jr(V—=JRs) =]y [exp <%) - 1]
where kg is the Boltzmann constant and 7' is the Kelvin temperature. Here, the radiative saturation
current J§ is of the form
Jb = qfo a(A,L)%fO)AdA

It is proportional to the spectral overlap integral between the absorptivity « and black-body (thermal)
emission spectrum I'y at room temperature (7=300 K).

For perovskite solar cells, the dominant nonradiative recombination is the defect-induced

recombination. Thus, the nonradiative current reads

n CI(V _]Rs) n
In(V —JRs) =]Ji exp 2T )’ Jo = quiypL + qniys = qniy
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where 7 and y; are the bulk nonradiative recombination rate and surface one, respectively, L is the

perovskite active layer thickness, and #; is the intrinsic carrier density of the perovskite material.
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Supplementary Fig. 47 | Thermal stability of the PSCs based on Me-4PACz/NiOx-NPs

and Li-Me/NiOx-NPs at 85 °C (the average PCE is obtained from 10 devices of each
type of device, and the error bars represent the standard deviation of the devices).
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Supplementary Fig. 48 | The light spectra of the LED lamp used for MPP tracking
stability tests.
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Supplementary Fig. 49 | Changes of perovskite bottom surface morphology with
heating time. Morphology of the perovskite bottom on (a) Me-4PACz/NiOx-NPs and
(b) Li-Me/NiOx-NPs before and after aging at 85 °C for different periods of time (the
scale is 1 um and the dashed area represents the amorphous region).
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Supplementary Fig. 50 | lon migration of perovskite films after degradation. (a-b)
TOF-SIMS depth profiles of PSC devices based Me-4PACz and Li-Me before and after
thermal aging at 85°C for 300 hours in N, atmosphere. I and CN™ (FA", MA") are
selected for following the evolution of the perovskite film.
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Supplementary Fig. 51 | Defect density versus aging time. Trap density of (a) NiOx-
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Supplementary Table 1. The fitting parameters for the TRPL curves of perovskite

films coated on Me-4PACz and Li-Me.

Sample T1 [us] Ay T2 [us] A Tave [US]
Me-4PACz 0.31 0.28 1.65 0.41 1.50
Li-Me 0.24 0.36 2.78 0.31 2.55

AT2 + Ayt
T = —-—---
we Aty + A1,
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Supplementary Table 2. Surface densities of SAM molecules and resultant PCEs of

PSCs.
. Control After modification Surface density Certified
Materials/Methods (molecules/cm?) (molecules/cm?) variation PCE PCE Year/Ref.
4PATTI-C3/
9.00x10'? 9.63x10'2 7.00% 21.7% N.A. 202418
4PATTI-C4
3PATAT-C3/
1.60x10"3 1.00x10"3 -37.5% 23.0% N.A. 20231
MeO-2PACz
CbzNaph
. 2.48x10"3 3.84x10"3 54.84% 24.98% N.A. 2023%
solution
2PACz+3-MPA 2.3x103 3.9x10"3 69.57% 25.3% 24.8% 20237
Py3/2PACz 3.39x10"3 3.31x10% -2.36% 26.1% 25.7% 2024%!
Li-Me/Me- This
7.25x10"3 8.50x10"3 17.24% 27.3% 27.3%
4PACz Work
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Supplementary Table 3. Comparison of the operational stability of PSCs.

. Champion PCE . . .. PCEy/PCEy
Device structure (certified PCE) Light source Ageing condition « Reference
3 1 0, 0
ITO/perOVskllt;:é}lj)/l\:chA/PCBM/ 25.9% (25.4%) White LED Air, 50 1/00 (I){g{}; 25°C, 96.6% I;Ig%r;cz,
I;g@iﬁygéodg ggfg 25.6% (25.6%)  White LED N2, 65°C, 1200 h 90% Szc(l);‘;‘;?’
Nat.
FTI?,/ Ph-4PACz 25.2% (244%)  White LED N, 85% RH, 600 h 100% Photonics,
/perovskite/C60/BCP/Ag 202424
/ ITOk/, ?/I/ec_ggg% A 245%(N.A.)  White LED  Na, 40-45°C, 1200 h 91% Natz'OEz‘;iﬁgy’
perovskite g
. . Nat.
ITO/2PACz/perovskite/COO/BCP/ 55 19, 0470)  White LED  Alb 60£10% RH, 2555 500, Commun.,
Cu °C, 1000 h o024}
024
/pemvsgt% lgiﬁ(lz\g/SZnO/Au 24.8% (24.6%)  Xenon lamp 85°C, 1200 h 98.2% 52653122”
ITO/ Py3/perovskite/ OAmI/LiF/C6 26.1% (25.7%) White LED 55°C, 600 h 999, Naturzei,
0/BCP/Ag 2024
}gggs‘gté %zgggggﬁ 26.2% (26.1%)  Whitt LED N, 50+10°C,3000h  95.09% zjgglfzy
ITO/NiOx/Me-4PACz . Science,
Jperovskite/PCBM/SnOo/ITO/Cu 20270 (23:2%)  White LED 50°C,1000 h 85.4% 20232
[TO/2PACZ+Me-4PACz , . Air, 50% RH, 65 °C, . Science,
/perovskite/C60/SnO2/Ag 269 (26.2%) White LED 1200 h 93% 2024%°
. Angew.
- 0, 0,
/pemglgﬁ}éé&‘?gép Ag 255% (N.A)  White LED AP 30i15()/(°) é{}?’ 2°C 9175%  Chem. Int.
Ed., 2024
ITO/NiOJ/perovskite/C60/BCP/Ag  26.7 (26.1%) White LED 1000 h 80% Adzv Ol\z/lﬁer"
[TO/Me-4PACZ+MeO-2PAC7
/perovskite/CPMAC/ALD- Na, 65°C, 2100 h 97.6%  guionce. 2025
SnOy/Ag 26.1% (N.A.) N.A. e
ITo/ PTAAL/pD‘iré’Zgi}tz; CPMAC/A N2, 85 °C, 1500 h 95.0%
1o/ iﬁ;ﬁ%}’ggéﬁg gg/%f/ 8% 246%(N.A)  White LED N2,90°C, 3670 h 9730, ~ Seience, 2025
ITo/ PTAA/CI\gg/S];g’gOA‘gk“e/ MoS2 9629 (25.9%) N.A. Air, 85 °C, 1200 h oy, Science, 2023
ITO/PTANpﬁ(())\;f:I@/C@/SﬂOz/I 23.1% (N.A.) Me}jl;iashde N2, 85°C, 622 h 99% Sc1enc3e5, 2025
ITO/MPA-CPA , , . Air, 50% RH, 65 °C, . Nature, 2025
Jperovskite/Nd@Cs2/C60/BCP/Ag  20-8%0 (26.3%)  White LED 2500 h 82% 3%
Air, 50% RH, 65 °C, "y
ITO/NiOy/Li- . . . 2000 h o .
Me/perovskite/C60/BCP/Cr/Au 21370 (27:3%)  White LED 3 5000 R, 85 oC, . This work
10001, 93.3%

[*] PCEo and PCE; are the efficiencies of devices before and after stability tests.
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