
Supplementary Information for Deep Subsurface Water Stores Sustain Giant Sequoias 

The results in the main text are derived using technical methods including full waveform 
inversion (FWI) and geostatistical rock physics inversion. Here we provide mathematical 
background, technical details, and benchmarking for these methods. The first several sections 
of the supplementary information present more mathematical background, technical details, 
and validation of the FWI methods used in this work. The latter subsections provide more 
details about the rock physics models and geostatistical inversion algorithms we used. We 
intend for these subsections to provide the information needed to make our methods and 
processing techniques intelligible and reproducible to the interested reader.  Upon Publication 
of this work, we will also upload the code and data sets to an online Zenodo repository with a 
citable DOI.  

Signal Processing Preliminaries 

For context, we begin by defining the Fourier transform, ℱ[𝑦(𝑡)]: ℝ → ℂ, and its inverse, ℱ−1, 
for real-valued time series 

ℱ[𝑦(𝑡)] = 𝑦̂(𝜉) = ∫ 𝑦
ℝ

𝑒−𝑖2𝜋𝜉𝑡 𝑑𝑡 

ℱ−1[𝑦̂(𝜉)] = 𝑦(𝑡) = ∫ 𝑦̂
ℝ

𝑒𝑖2𝜋𝜉𝑡 𝑑𝜉 

where the notation ∫
ℝ

 implies that we integrate over the real numbers because 𝑡, 𝜉 ∈ ℝ. Note 

that here we follow common notation by having 𝑡 and 𝜉 represent time and frequency 
respectively. One assumption implicit to the Fourier transform is stationarity meaning that the 
frequency content of the signal is assumed to not change with time. For most active source 
seismic data, this assumption is false. In fact, analyzing the changing frequency content of data 
with time is often a means of gaining insight into the Earth’s structure and function 1–4 

For example, it has been common practice to use the Gabor transform (also known as the short 

time Fourier transform) given by 𝐺(𝜉, 𝜏) = 𝒢[𝑦(𝑡)] = ∫ ℎ
ℝ

(𝑡 − 𝜏)𝑦(𝑡)𝑒−𝑖2𝜋𝜉𝑡  𝑑𝑡 to analyze the 

changing frequency content of a seismogram. With respect to the Gabor transform, ℎ(𝑡) is a 
windowing function that enables time-frequency analysis yet also poses certain trade-offs. For 
one, multiplying by ℎ(𝑡) alters the frequency content of the input signal. Secondly, choosing a 
windowing function that will result in optimal time-frequency resolution is difficult. While a 
more localized time window may enable the elucidation of frequency content changes 
occurring over relatively short periods of time, it will also elide low-frequency information. 
Alternatively, a less localized time window will account for lower-frequency information, but 
may be unable to resolve short-time changes in frequency content 2. 

The continuous wavelet transform (CWT) has been employed to better analyze the changing 
frequency content of time series data 3,5. The CWT does not assume that the time series is 
stationary and can achieve good time-frequency resolution at low and high frequencies 
simultaneously 5. The CWT is based on some mother wavelet 𝜓(𝑡) ∈ ℂ and is defined with 



respect to the scale factor 𝑠 ∈ ℝ+. For each scale factor, we consider a modified form of the 
mother wavelet such that it is stretched in time and scaled in amplitude 

𝜓𝑠(𝑡) =
1

√𝑠
𝜓 (

𝑡

𝑠
) 

(Note the relationship between the scale factor and frequency 𝜉 = 𝜉0/𝑠 where 𝜉0 is the 
centroid frequency of the mother wavelet). While there are many possible choices of mother 
wavelet, in this study, we employ a complex Ricker wavelet which can be computed in the 
frequency domain using 

𝑤̂(𝜉) =
4𝜉2

√𝜋𝜉0
3

𝑒−𝜉2/𝜉0
2
,     ∀ 𝜉 ≥ 0. 

Subsequently, we may specify the CWT as a function with the mapping 𝒲[𝑦(𝑡)]: ℝ → ℂ where 
𝑦(𝑡) is a real-valued time-series. Note that defining the CWT with this particular mapping 
implies that the mother wavelet should be complex-valued. The CWT can be defined using 

𝒲[𝑦(𝑡)] = 𝑊𝑦(𝑠, 𝜏) = ∫ 𝑦(𝑡)𝜓𝑠
∗(𝑡 − 𝜏) 𝑑𝑡 

where ∗ denotes the complex conjugate. In practice, it is more efficient to compute the CWT in 
the frequency domain 5 according to 

𝑊̂𝑦(𝑠, 𝜉) = 𝑦̂(𝜉)𝜓̂𝑠
∗(𝜉). 

Multiple formulations of the inverse CWT exist with the most simplistic theoretically being 

𝒲−1[𝑊𝑦(𝑠, 𝜏)] = 𝑦(𝑡) = ℛ {
1

𝑐𝜓
∫ ∫ 𝑊𝑦

ℝℝ+

(𝑠, 𝜏)
1

𝑠2
𝜓𝑠(𝑡 − 𝜏) 𝑑𝜏 𝑑𝑠} 

where 𝑐𝜓 is an admissibility constant equal to 

𝑐𝜓 =
1

√2𝜋
∫

|𝜓̂(𝜉)|2

|𝜉|
 𝑑𝜉 < ∞ 

while ℛ{. } and ℐ{. } are operators that take the real and imaginary parts of complex numbers 
respectively. Note that the presence of the ℛ{. } operator in the inverse CWT enforces the 
mapping 𝒲−1[𝑊𝑦(𝑠, 𝜏)] = 𝑦(𝑡): ℂ → ℝ. Another formulation of the inverse CWT can be 

derived by using a different mother wavelet to reconstruct the original signal from its CWT 3,5. 
Using this approach, it is common practice to choose the delta wavelet 3,5 which yields 

𝒲−1[𝑊𝑦(𝑠, 𝜏)] = 𝑦(𝑡) = ℛ {
1

𝑐𝜓,𝛿
∫ 𝑊𝑦

ℝ+

(𝑠, 𝜏)𝑠−1.5 𝑑𝑠} 

where the new admissibility constant becomes 

𝑐𝜓,𝛿 = 2√𝜋∫
𝜓̂∗(𝜉)𝛿(𝜉)

|𝜉|
 𝑑𝜉 < ∞. 

The latter implementation of the inverse CWT because it provides a more computationally 
efficient means of reconstructing the signal 5. 



The Time-Frequency-Phase Misfit Functional and its Adjoint Source 

FWI minimizes some misfit function 𝜒 ∈ ℝ that can generally be written as 

𝜒 = ∑ ∑ ∑⟨

𝑁𝑐

𝑘=1

𝑁𝑟

𝑗=1

𝑁𝑠

𝑖=1

𝐸[𝑢𝑖𝑗𝑘(𝑡), 𝑑𝑖𝑗𝑘(𝑡)]⟩ 

where ⟨. ⟩ indicates integration over time and 𝑖, 𝑗, 𝑘 are indices for the source, receiver, and 
component numbers respectively. This means that the the subscripts on the variable 𝑢𝑖𝑗𝑘 

indicate that it is the 𝑘th component of the synthetic wavefield corresponding to the 𝑖th source 
sampled at the 𝑗th receiver position. This is otherwise stated as 𝑢𝑖𝑗𝑘(𝑡) = 𝐞𝑘 ⋅ 𝐮𝑖(𝐱, 𝑡)𝛿(𝐱 − 𝐱𝑗) 

where 𝐱 is a coordinate vector, 𝐞𝑘  is a unit vector in the direction of the 𝑘th component, 𝐮𝑖 is 
the vector-valued wavefield excited by the 𝑖th source, and 𝐱𝑗 is the location of the 𝑗th receiver 

position. The same goes for the variable 𝑑𝑖𝑗𝑘 which corresponds to observed data. For the sake 

of notational simplicity, in the rest of this subsection, we consider the case where 𝑁𝑠 = 𝑁𝑟 =
𝑁𝑐 = 1 which allows us to elide the subscripts and summations across components, sources, 
and receivers. We also note that in previous work, it has been shown that the the adjoint 
source corresponding to 𝜒 can be given by 

∂𝑢𝜒 = ⟨𝑓†⟩ 

2,6–9. This being the case, as an example we may consider the misfit functional from classical 

FWI where 𝜒 is taken the be the L2 norm meaning that 𝐸 =
1

2
(𝑢 − 𝑑)2 ⟹ 

𝜒𝐿2 =
1

2
∫ (𝑢 − 𝑑)2 𝑑𝑡. 

Therefore, one can use the Leibniz integration rule (also known as differentiating under the 
integral) to show that the corresponding adjoint source has the form 

𝑓𝐿2
† = 𝑢 − 𝑑. 

Here we adapt the misfit functional developed in Fichtner et al. (2008) which employs the 
phase difference between the time-frequency representation of the observed and predicted 
data. Our slightly altered version of this misfit functional is given by 

𝜒 = ℛ {∫ ∫
1

𝑠2
𝑃Δ𝜙2 𝑑𝑠 𝑑𝜏}. 

In the above equation, the phase difference, Δ𝜙, can be written as 

Δ𝜙(𝑠, 𝜏) = ℐ{ln(𝑊𝑢𝑊𝑑
∗)} = 𝜙𝑢 − 𝜙𝑑 

where 𝜙𝑢 and 𝜙𝑑  are the phase responses of the synthetic and observed data respectively 
while 𝑃(𝑠, 𝜏) is an arbitrary weighting function in the 𝑠-𝜏 domain. Following Fichtner et al. 
(2008) and in preparation of deriving the adjoint source, we evaluate ∂𝑢Δ𝜙 by applying the 
chain rule and invoking the definition of the CWT. 

∂𝑢(𝜙𝑢 − 𝜙𝑑) = ∂𝑊𝑢
𝜙𝑢 × ∂𝑢𝑊𝑢 = ℐ {

1

𝑊𝑢
} × ∫ 𝜓𝑠

∗(𝑡 − 𝜏) 𝑑𝑡 



At this point, we may also note the identity 

ℐ {
1

𝑊𝑢
} = ℐ {

𝑊𝑢
∗

𝑊𝑢
∗𝑊𝑢

} = −ℐ {
𝑊𝑢

𝑊𝑢
∗𝑊𝑢

}. 

Now, we differentiate 𝜒 with respect to the predicted data using the Leibniz integration and 
chain rules 

∂𝑢𝜒 = ℛ {∫ ∫ 2
1

𝑠2
𝑃Δ𝜙 × ∂𝑢Δ𝜙 𝑑𝑠 𝑑𝜏} 

Which in turn yields 

⟨𝑓†⟩ = ℛ {∫ ∫ − 2
1

𝑠2
𝑃Δ𝜙ℐ {

𝑊𝑢

𝑊𝑢
∗𝑊𝑢

} ∫ 𝜓𝑠
∗(𝑡 − 𝜏) 𝑑𝑡 𝑑𝑠 𝑑𝜏}. 

Some concerns may arise from the above the expression for the adjoint source due to 
instabilities caused via dividing by the 𝑊𝑢

∗𝑊𝑢 term. Hence, one purpose of the weighting 
function, 𝑃, becomes clear - to stabilize this division via multiplication. Another use of the 
weighting function may be to de-noise the phase measurement Δ𝜙. Since the phase values of a 
signal may be large even when the signals’ amplitude is small, it is advantageous to only take 
phase difference measurements where both the observed and synthetic signals are above some 
threshold. Fichtner et al. (2008) use a weighting term in a similar manner however, here we use 
a use an alternative formulation by setting 

𝑃 : =
1

2𝑐𝜓∗
Γ(𝑠, 𝜏)

𝑊𝑢
∗𝑊𝑢

∥ 𝑊𝑢 ∥ +𝜈
. 

Note the now the 𝑊𝑢
∗𝑊𝑢 term multiplies to one with the denominator of the adjoint source 

while we have the Γ(𝑠, 𝜏) term mute phase measurements made using low-amplitude signals 
by setting 

Γ : =
1

1 + 𝑒−𝜖𝐶+𝜂
 

with 𝐶(𝑠, 𝜏) =∥ 𝑊𝑠𝑊𝑑
∗ ∥/max{∥ 𝑊𝑠𝑊𝑑

∗ ∥}. One may observe that Γ is a sigmoid function with 
regards to 𝐶 and we find that effective values for the parameters 𝜖 and 𝜂 are 101-103 and 
0.1-0.25 respectively. Finally, taking the previous expression for the adjoint source, substituting 
in our prescribed definition for 𝑃, and using the definition of the inverse CWT, we derive the 
following expression for the adjoint source 

𝑓† = −𝒲−1 [ΓΔ𝜙ℐ {
𝑊𝑢

∥ 𝑊𝑢 ∥ +𝜈
}]. 

We remark that 𝜈 ∈ ℝ is a water-level parameter to avoid division by zero (sensible values for 𝜈 
range from 10−3-10−1 × max{∥ 𝑊𝑢 ∥}).This formulation of the adjoint source is very similar to 
that derived in Fichtner et al (2008), albeit with slight differences due to us using the CWT 
rather than the Gabor transform and due to our different choice of weighting function.  

FWI Overview 

Full waveform inversion involves computing numerical solutions to the differential system 



𝜌 ∂𝑡
2𝐮 − ∇ ⋅ 𝛔 = 𝐟 = 𝐋(𝐮, 𝑚) 

where 𝜌(𝐱) is the density field, 𝐮(𝐱, 𝑡) ∈ ℝ2 is the displacement vector field, 𝛔(𝐱, 𝑡) ∈ ℝ2×2 is 
the stress tensor field, and 𝐟(𝐱, 𝑡) ∈ ℝ2 is the force vector that excites elastic waves. Note that 
here, we solve the elastic wave equation in two spatial dimensions and that the stress tensor 

field is given by 𝛔 = 𝐂:
1

2
(∇𝐮 + ∇𝐮𝑇), where : represents tensor multiplication and 𝐂(𝐱, 𝑚) is 

the stiffness tensor parameterized by elastic moduli 𝜆(𝐱, 𝑚) and 𝜇(𝐱, 𝑚). In turn, we 

parameterize the elastic earth model, 𝑚(𝐱), using pressure-wave velocity, 𝑉𝑝 = √(𝜆 + 2𝜇)/𝜌, 

and shear-wave velocity, 𝑉𝑠 = √𝜆/𝜌. Numerous methods for deriving numerical solutions to 

(24) exist 10, and here we utilize the spectral element method and the open-source software 
specfem2d because of its ability to accurately model the free surface boundary condition on 
irregular topography 11. 

Past works such as 6,12,13 have shown that in using the adjoint method, the gradient of the misfit 
functional with respect to the earth model can be computed using 

∇𝑚𝜒 = ∑ ∫

𝑁𝑠

𝑖=1

𝐮𝑖
† ⋅ ∇𝑚𝐋𝑖 𝑑𝑡 

where 𝐮† is the adjoint wavefield. The same numerical algorithm used to find 𝐮(𝑚) can be 

used to compute 𝐮†, albeit with the alterations that the adjoint wavefield is excited by the 

adjoint source, 𝐟†, and needs to be solved propagating backwards in time 6,12,14. In using the 
adjoint method to compute ∇𝑚𝜒, we may iteratively update the earth model using a gradient 
descent algorithm via 

𝑚𝑖+1 = 𝑚𝑖 − 𝛼𝒫∇𝑚𝜒 

where 𝛼 is the step length, which can be computed using a backtracking line search 15, and 
𝒫(𝐱) is a preconditioner. The preconditioner can be used to improve the convergence of the 
gradient descent algorithm and one common choice is to set 

𝒫−1 : = ∑ ∫

𝑁𝑠

𝑖=1

∂𝑡
2𝐮𝑖 ⋅ ∂𝑡

2𝐮𝑖 𝑑𝑡. 

This formulation of 𝒫 helps to counterbalance the effects of having higher wavefield 
amplitudes in certain parts of the model (e.g., near sources or in low velocity zones) 15,16. 

FWI Workflow 

For practical applications of FWI, data preprocessing is usually a crucial step which may include 
filtering and muting of the record sections. Here, we followed other work implementing FWI for 
CZ study by designing muting windows that would allow the inversion to focus on body waves 
17,18. We also employed a Butterworth bandpass filter to implement a classical frequency 
continuation multiscale strategy 19. We sequentially inverted data in frequency bands of 5-20 
Hz, 5-35 Hz, 5-50 Hz, and 5-65 Hz which helped improve convergence and avoid local minima. In 
order to iteratively update the earth model, we computed gradients of the misfit function with 
respect to Vp and Vs using the adjoint method. We did not update density and parameterized 



all earth models with a homogeneous 𝜌(𝐱) field 20–22. For inversions at each frequency band, 
we smoothed the gradients by convolving them with two-dimensional Gaussian functions 
16,20,23,24. As we increased the frequency content of the data, we decreased the radii of the 
Gaussian kernels, using radii of 20 m, 15 m, 10 m, and 5 m respectively for each of the 
frequency bands. 

Before inverting the data, we estimated unique STFs at each shot location using the following 
equation developed by 25 

𝑓𝑖(𝜉) = ∑ ∑
𝑢̂𝑖𝑗𝑘𝑑̂𝑖𝑗𝑘

∗

𝑢̂𝑖𝑗𝑘𝑢̂𝑖𝑗𝑘
∗ + 𝛾

𝑁𝑐

𝑘=1

𝑁𝑟

𝑗=1

 

where 𝛾 is a small real-valued constant to avoid division by zero. Note that the above equation 
implies that we estimate the STFs in the frequency domain and use both the horizontal and 
vertical components, meaning the 𝑁𝑐 = 2. In order to simulate the synthetic data used for the 
source estimation, we use a 30 Hz first derivative of a Gaussian function. Then, before Fourier 
transforming the observed and synthetic data, we applied muting around the first arrivals. 
Furthermore, after obtaining the STFs in the frequency domain and applying the inverse Fourier 
transform, we multiplied the STFs by a time domain preconditioning function to localize the 
energy around the expected shot time. 

Synthetic FWI Tests 

To verify our FWI approach, we implement a synthetic test using the acquisition geometry of 
the hillslope line. The Vp and Vs initial models are the same used for the real-data inversion. For 
the synthetic test, we create target models by adding velocity anomalies to the initial models. 
The results from the synthetic test show to what extent we are able to recover the known 
velocity models. In the upper 30 m of the models, where the data coverage is highest and the 
wavelengths are relatively small, we are able to recover the target velocity models and Vp:Vs 
ratio model well. Below 30 m, there are more errors in the recovered velocity models which are 
exasperated in the recovered Vp:Vs ratio models.  Note that our analysis in the main text 
focuses on features in the upper 30 m of the subsurface where the velocity models are better 
constrained.  



 

Figure S1: The initial (top row), target (middle row), and recovered (bottom row) Vp models 
used for the synthetic FWI test.  

 



 

Figure S2: The initial (top row), target (middle row), and recovered (bottom row) Vs models 
used for the synthetic FWI test. 



 

Figure S3: The initial (top row), target (middle row), and recovered (bottom row) Vp:Vs ratio 
models used for the synthetic FWI test. Note that the “Inverted” Vp:Vs ratio model is not 
directly constrained by the inversion, but instead, is computed after FWI with the final Vp and 
Vs models.  

 

FWI Results Data Comparison  

Below, we show several example shot gathers of preprocessed (with muting, trace 
normalization, and 5-65 Hz bandpass filtering) field and synthetic data. The synthetic data are 
generated from the final FWI velocity models (inverted from the field data). We show one 
representative shot gather for each component from each seismic profile. For the ridgeline, we 
show both a horizontal and vertical component shot gather. For the hillslope and drainage 
profiles, we show only vertical component shot gathers because this was the only component 
of seismic data collected and inverted. Also note that for all the inversions, we use a maximum 
source, receiver offset of 100 m, which is why many of the traces are muted in the ridgeline 
profile shot gathers. For the hillslope and drainage lines, fewer traces are muted because the 



lines are shorter and have a smaller receiver spacing.  

 

Figure S4: 

 

 

Figure S5: 



 

Figure S6: 

 

 

Figure S7: 
 



 

Figure S8: 

 

Figure S9: 

 

  



Figure S10: 

 

Figure S11: 

 

Rock Physics Model 

The rock physics model links geophysical variables p-wave and s-wave velocity to hydrological 
variables of porosity, 𝜑, and water saturation, 𝑠𝑤. The first order control on seismic velocity in 
the critical zone is porosity, which can range from ~0.6 is soils to less than 0.01 in unweathered 
bedrock 26,27. For the more weathered soils and saprolite, Dvorkin’s sand model 28 applies well, 
while Berryman’s inclusion model applies well to low-porosity bedrock 29 but neither rock 
physics model can accommodate the full range of critical zone materials. For this reason, we 
rely on an empirical biexponential model that approximates Dvorkin’s at high porosity and 
Berryman’s at low porosity. The biexponential model estimates totally unsaturated (meaning 
that 𝑠𝑤 = 0) p-wave and s-wave velocity using 

𝑉𝑝𝑢𝑛𝑠𝑎𝑡 = 𝑎𝑝𝑒𝑥𝑝(−𝑏𝑝𝜑) + 𝑐𝑝 (1 − 𝑒𝑥𝑝(−𝑏𝑝𝜑)) 

𝑉𝑠𝑢𝑛𝑠𝑎𝑡 = 𝑎𝑠𝑒𝑥𝑝(−𝑏𝑠𝜑) + 𝑐𝑠(1 − 𝑒𝑥𝑝(−𝑏𝑠𝜑)) 

where 𝑎𝑝, 𝑏𝑝, 𝑎𝑑 , 𝑏𝑑  are empirical constants that can tuned to account for the observed 

variation in seismic velocity. The totally unsaturated velocities only depend on porosity and 
latter we use Gassman’s equation to account for the effect of variable saturation. The density 
of the totally unsaturated material can be computed as a linear function of porosity  

𝜌𝑢𝑛𝑠𝑎𝑡  =  𝜌𝑠𝑜𝑙𝑖𝑑(1 − 𝜑) + 𝜌𝑎𝑖𝑟𝜑 

where 𝜌𝑠𝑜𝑙𝑖𝑑  is the density of the solid phase and 𝜌𝑎𝑖𝑟  is the density of the gas phase. Using the 
totally unsaturated values of density and s-wave velocity, the shear modulus of the material can 
be computed  

𝜇 = 𝜌𝑢𝑛𝑠𝑎𝑡𝑉𝑠𝑢𝑛𝑠𝑎𝑡
2 . 



Note that the shear modulus is only a function of porosity and will not change with saturation, 
thus the unsat subscript is not needed here. Given the shear modulus, the bulk modulus for 
totally unsaturated material can be calculated using  

𝐾𝑢𝑛𝑠𝑎𝑡  =  𝜌𝑢𝑛𝑠𝑎𝑡𝑉𝑝𝑢𝑛𝑠𝑎𝑡
2 −  

4

3
𝜇. 

Now, using Gassman’s equation30 we can compute the bulk moduli of the material given totally 
empty pores (filled with neither gas nor liquid) 

𝐾𝑑𝑟𝑦  =  
𝐾𝑢𝑛𝑠𝑎𝑡 (

𝐾𝑠𝑜𝑙𝑖𝑑
𝐾𝑎𝑖𝑟

𝜑 + 1 +  𝜑 ) − 𝐾𝑠𝑜𝑙𝑖𝑑

𝐾𝑠𝑜𝑙𝑖𝑑
𝐾𝑎𝑖𝑟

 +  
𝐾𝑢𝑛𝑠𝑎𝑡
𝐾𝑠𝑜𝑙𝑖𝑑

 −  1 −  𝜑
. 

At this point, we wish to account for the effect of water saturation on the physical properties of 
the material. We can compute the effect of saturation on the bulk modulus by using another 
formulation of Gassman’s equation30 

𝐾𝑠𝑎𝑡 =  𝐾𝑑𝑟𝑦 +  
(1 − 

𝐾𝑑𝑟𝑦

𝐾𝑠𝑜𝑙𝑖𝑑
)

2

𝜑
𝐾𝑓𝑙𝑢𝑖𝑑

 +  
1 − 𝜑
𝐾𝑠𝑜𝑙𝑖𝑑

 +  
𝐾𝑑𝑟𝑦

𝐾𝑠𝑜𝑙𝑖𝑑
2

 

where the sat subscript indicates some amount of water saturation (0 <  𝑠𝑤 < 1).  In the above 
equation, the bulk modulus of the fluid can be computed using the Voigt model 

𝐾𝑓𝑙𝑢𝑖𝑑 =  𝐾𝑤𝑠𝑤  +  𝐾𝑎𝑖𝑟(1 − 𝑠𝑤) 

where 𝐾𝑤 is the bulk modulus of water. In a similar manner, we can compute the density of the 
fluid phase using a linear average of the densities of water and air  

𝜌𝑓𝑙𝑢𝑖𝑑 =  𝜌𝑤𝑠𝑤  +  𝜌𝑎𝑖𝑟(1 − 𝑠𝑤) 

and then use this figure to compute the density of the partially saturated material  

𝜌𝑠𝑎𝑡 =  𝜌𝑠𝑜𝑙𝑖𝑑(1 − 𝜑) + 𝜌𝑓𝑙𝑢𝑖𝑑𝜑. 

Finally, using the saturation-adjusted bulk modulus and density, we can compute the p-wave 
and s-wave velocity of the partially saturated material with 

𝑉𝑝𝑠𝑎𝑡 =  √
𝐾𝑠𝑎𝑡  +  

4
3 𝜇

𝜌𝑠𝑎𝑡
  

and 

𝑉𝑠𝑠𝑎𝑡  =   √
𝜇

𝜌𝑠𝑎𝑡
. 

In the resulting rock physics model, both Vp and Vs will decrease as porosity increases, but Vp 
will increase with saturation while Vs will slightly decrease. This behavior reflects previously 
published modelled and observed critical zone rock physics relationships 31–34.  



 

Figure S12: Behavior of the Vp rock physics model over the assumed range of hydrological 
parameters.  

 

Figure S13: Behavior of the Vs rock physics model over the assumed range of hydrological 
parameters.  

 

 



Geostatistical Rock Physics Inversion 

With a rock physics model in hand, we can estimate the most probable saturation and porosity 
fields given the FWI-derived seismic velocities. The first step is to discretize the FWI velocity 
models (both Vp and Vs) in the form of a large vector 

𝒗 =  [
𝑽𝒑
𝑽𝒔

]. 

Likewise, we can use the same discretization scheme to represent corresponding saturation and 
porosity models 

𝒘 =  [
𝝋
𝒔𝒘

]. 

Now, consider the function 𝑔(𝒘) = 𝒗 ∶ (𝝋, 𝒔𝒘) → (𝑽𝒑, 𝑽𝒔) which implements our rock physics 
model. With the discretization scheme, we can utilize the ensemble smoother algorithm to 
estimate an optimal 𝒘 from 𝒗 35. The first step is to generate an ensemble of porosity and 

saturation models, denoted {𝒘𝑗}𝑗=1
𝑁𝑒  where 𝑁𝑒  is the number of model realizations in the 

ensemble (we use 5,000). We generate the initial ensemble of porosity and saturation models 
using the probability field simulation method 36 and impose horizontal and lateral smoothing 
throughout to enforce spatial regularization. We also mandate that in the initial ensemble, 
porosity monotonically decreases while saturation monotonically increases with depth, which 
reflects the fact that less weathered and more saturated materials tend to occur deeper in the 
critical zone. Once the initial ensemble is created, we can update each ensemble member using 
the following update formula35 

𝒘𝑗
𝑖+1 =  𝒘𝑗

𝑖 + 𝚪𝑤,𝑣
𝑖 (𝚪𝑣, 𝑣

𝑖 +  𝛼𝚪𝜎)
−1

(𝒗∗ − 𝒗𝑗
𝑖) 

where 𝑖 is the iteration number, 0 <  𝛼 < 1 is an inflation factor, 𝒗𝑗
𝑖 = 𝑔(𝒘𝑗

𝑖) is the predicted 

(from the rock physics model) velocity model from the 𝑗𝑡ℎ member of the current porosity and 
saturation ensemble, 𝒗∗~𝒩(𝒗, 𝚪𝜎) is a perturbed velocity model vector with 𝚪𝜎 being the 

assumed covariance of the velocity model,  𝚪𝑤,𝑣
𝑖  is the cross covariance matrix of the 

ensembles {𝒘𝑗}𝑗=1
𝑁𝑒 and {𝒗𝑗}𝑗=1

𝑁𝑒 , and 𝚪𝑣,𝑣
𝑖  is the auto covariance matrix of the ensemble of 

velocity models ({𝒗𝑗}𝑗=1
𝑁𝑒 ).  
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