Supplementary Information for Deep Subsurface Water Stores Sustain Giant Sequoias

The results in the main text are derived using technical methods including full waveform
inversion (FWI) and geostatistical rock physics inversion. Here we provide mathematical
background, technical details, and benchmarking for these methods. The first several sections
of the supplementary information present more mathematical background, technical details,
and validation of the FWI methods used in this work. The latter subsections provide more
details about the rock physics models and geostatistical inversion algorithms we used. We
intend for these subsections to provide the information needed to make our methods and
processing techniques intelligible and reproducible to the interested reader. Upon Publication
of this work, we will also upload the code and data sets to an online Zenodo repository with a
citable DOI.

Signal Processing Preliminaries

For context, we begin by defining the Fourier transform, F[y(t)]: R = C, and its inverse, F 1,
for real-valued time series
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where the notation fR implies that we integrate over the real numbers because t, ¢ € R. Note
that here we follow common notation by having t and ¢ represent time and frequency
respectively. One assumption implicit to the Fourier transform is stationarity meaning that the
frequency content of the signal is assumed to not change with time. For most active source
seismic data, this assumption is false. In fact, analyzing the changing frequency content of data
with time is often a means of gaining insight into the Earth’s structure and function ¥

For example, it has been common practice to use the Gabor transform (also known as the short
time Fourier transform) given by G (&, 1) = G[y(t)] = th (t — 7)y(t)e 2™t dt to analyze the
changing frequency content of a seismogram. With respect to the Gabor transform, h(t) is a
windowing function that enables time-frequency analysis yet also poses certain trade-offs. For
one, multiplying by h(t) alters the frequency content of the input signal. Secondly, choosing a
windowing function that will result in optimal time-frequency resolution is difficult. While a
more localized time window may enable the elucidation of frequency content changes
occurring over relatively short periods of time, it will also elide low-frequency information.
Alternatively, a less localized time window will account for lower-frequency information, but
may be unable to resolve short-time changes in frequency content 2.

The continuous wavelet transform (CWT) has been employed to better analyze the changing
frequency content of time series data 3. The CWT does not assume that the time series is
stationary and can achieve good time-frequency resolution at low and high frequencies
simultaneously °. The CWT is based on some mother wavelet ¥(t) € C and is defined with



respect to the scale factor s € R*. For each scale factor, we consider a modified form of the
mother wavelet such that it is stretched in time and scaled in amplitude
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(Note the relationship between the scale factor and frequency & = &;/s where & is the
centroid frequency of the mother wavelet). While there are many possible choices of mother
wavelet, in this study, we employ a complex Ricker wavelet which can be computed in the

frequency domain using

Subsequently, we may specify the CWT as a function with the mapping W|[y(t)]: R — C where
y(t) is a real-valued time-series. Note that defining the CWT with this particular mapping
implies that the mother wavelet should be complex-valued. The CWT can be defined using

W] =W, (s,0) = [ y(O)p:(t — 1) dt

where * denotes the complex conjugate. In practice, it is more efficient to compute the CWT in
the frequency domain ° according to

W, (s, &) = 93 ().

Multiple formulations of the inverse CWT exist with the most simplistic theoretically being
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where ¢y, is an admissibility constant equal to
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while R{. } and 7{. } are operators that take the real and imaginary parts of complex numbers
respectively. Note that the presence of the R{.} operator in the inverse CWT enforces the
mapping W‘l[Wy(s, 7)] = y(t): C = R. Another formulation of the inverse CWT can be

derived by using a different mother wavelet to reconstruct the original signal from its CWT 3>,
Using this approach, it is common practice to choose the delta wavelet >° which yields
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where the new admissibility constant becomes
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The latter implementation of the inverse CWT because it provides a more computationally
efficient means of reconstructing the signal °.



The Time-Frequency-Phase Misfit Functional and its Adjoint Source

FWI minimizes some misfit function y € R that can generally be written as
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where (.) indicates integration over time and i, j, k are indices for the source, receiver, and
component numbers respectively. This means that the the subscripts on the variable u;
indicate that it is the kth component of the synthetic wavefield corresponding to the ith source
sampled at the jth receiver position. This is otherwise stated as u;j (t) = e - w;(X,t)6(x — X;)
where X is a coordinate vector, ey, is a unit vector in the direction of the kth component, u; is
the vector-valued wavefield excited by the ith source, and x; is the location of the jth receiver
position. The same goes for the variable d;; which corresponds to observed data. For the sake
of notational simplicity, in the rest of this subsection, we consider the case where Ny = N, =
N. = 1 which allows us to elide the subscripts and summations across components, sources,
and receivers. We also note that in previous work, it has been shown that the the adjoint
source corresponding to y can be given by

dux = (fT)
26-9 This being the case, as an example we may consider the misfit functional from classical
FWI where y is taken the be the L2 norm meaning that E = %(u —-d)? =

1
X2 = Ef (u—d)? dt.

Therefore, one can use the Leibniz integration rule (also known as differentiating under the
integral) to show that the corresponding adjoint source has the form

fiy =u—d.

Here we adapt the misfit functional developed in Fichtner et al. (2008) which employs the
phase difference between the time-frequency representation of the observed and predicted
data. Our slightly altered version of this misfit functional is given by

1
X = R{ff S_zPA¢2 ds dr}.
In the above equation, the phase difference, A¢, can be written as
Ad)(S, T) = ‘7{ln(WuW§)} = ¢u - ¢d
where ¢,, and ¢, are the phase responses of the synthetic and observed data respectively
while P(s, T) is an arbitrary weighting function in the s-t domain. Following Fichtner et al.

(2008) and in preparation of deriving the adjoint source, we evaluate d,,A¢ by applying the
chain rule and invoking the definition of the CWT.

1
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At this point, we may also note the identity
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Now, we differentiate y with respect to the predicted data using the Leibniz integration and
chain rules
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Which in turn yields

Wy
Wy W,
Some concerns may arise from the above the expression for the adjoint source due to
instabilities caused via dividing by the W, W,, term. Hence, one purpose of the weighting
function, P, becomes clear - to stabilize this division via multiplication. Another use of the
weighting function may be to de-noise the phase measurement A¢. Since the phase values of a
signal may be large even when the signals’ amplitude is small, it is advantageous to only take
phase difference measurements where both the observed and synthetic signals are above some
threshold. Fichtner et al. (2008) use a weighting term in a similar manner however, here we use
a use an alternative formulation by setting

(f*):ye{ff —zsizPAqﬂ{ }fw;(t—r) dtdsdr}.
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Note the now the W,/ W, term multiplies to one with the denominator of the adjoint source
while we have the I'(s, T) term mute phase measurements made using low-amplitude signals
by setting
_ 1
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with C(s, ) =l W,W; II/max{ll W;W  II}. One may observe that I is a sigmoid function with
regards to C and we find that effective values for the parameters ¢ and 1 are 101-103 and
0.1-0.25 respectively. Finally, taking the previous expression for the adjoint source, substituting

in our prescribed definition for P, and using the definition of the inverse CWT, we derive the
following expression for the adjoint source
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We remark that v € R is a water-level parameter to avoid division by zero (sensible values for v
range from 1073-10~1 x max{ll W,, 11}).This formulation of the adjoint source is very similar to
that derived in Fichtner et al (2008), albeit with slight differences due to us using the CWT
rather than the Gabor transform and due to our different choice of weighting function.

FWI Overview

Full waveform inversion involves computing numerical solutions to the differential system
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where p(X) is the density field, u(x, t) € R? is the displacement vector field, o(x,t) € R?*? is
the stress tensor field, and f(x, t) € R? is the force vector that excites elastic waves. Note that
here, we solve the elastic wave equation in two spatial dimensions and that the stress tensor

field is given by 0 = C: % (Vu + Vu”), where : represents tensor multiplication and C(x, m) is
the stiffness tensor parameterized by elastic moduli A(x, m) and u(x,m). In turn, we
parameterize the elastic earth model, m(x), using pressure-wave velocity, Vp = /(4 + 2u)/p,
and shear-wave velocity, Vs = \/m Numerous methods for deriving numerical solutions to
(24) exist 1%, and here we utilize the spectral element method and the open-source software

specfem2d because of its ability to accurately model the free surface boundary condition on
irregular topography 2.

Past works such as ®1#13 have shown that in using the adjoint method, the gradient of the misfit
functional with respect to the earth model can be computed using

NS
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where u' is the adjoint wavefield. The same numerical algorithm used to find u(m) can be
used to compute u', albeit with the alterations that the adjoint wavefield is excited by the
adjoint source, fT, and needs to be solved propagating backwards in time 81214, |n using the
adjoint method to compute V,,, ¥, we may iteratively update the earth model using a gradient
descent algorithm via

mtl = ml — aPV, x

where «a is the step length, which can be computed using a backtracking line search *°, and
P(x) is a preconditioner. The preconditioner can be used to improve the convergence of the
gradient descent algorithm and one common choice is to set

Ny
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This formulation of P helps to counterbalance the effects of having higher wavefield
amplitudes in certain parts of the model (e.g., near sources or in low velocity zones) 116,

FWI Workflow

For practical applications of FWI, data preprocessing is usually a crucial step which may include
filtering and muting of the record sections. Here, we followed other work implementing FWI for
CZ study by designing muting windows that would allow the inversion to focus on body waves
1718 'We also employed a Butterworth bandpass filter to implement a classical frequency
continuation multiscale strategy 1°. We sequentially inverted data in frequency bands of 5-20
Hz, 5-35 Hz, 5-50 Hz, and 5-65 Hz which helped improve convergence and avoid local minima. In
order to iteratively update the earth model, we computed gradients of the misfit function with
respect to Vp and Vs using the adjoint method. We did not update density and parameterized



all earth models with a homogeneous p(x) field 2°-22, For inversions at each frequency band,
we smoothed the gradients by convolving them with two-dimensional Gaussian functions
16,:20,23,24 'As we increased the frequency content of the data, we decreased the radii of the
Gaussian kernels, using radii of 20 m, 15 m, 10 m, and 5 m respectively for each of the
frequency bands.

Before inverting the data, we estimated unique STFs at each shot location using the following
equation developed by 2°
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where y is a small real-valued constant to avoid division by zero. Note that the above equation
implies that we estimate the STFs in the frequency domain and use both the horizontal and
vertical components, meaning the N. = 2. In order to simulate the synthetic data used for the
source estimation, we use a 30 Hz first derivative of a Gaussian function. Then, before Fourier
transforming the observed and synthetic data, we applied muting around the first arrivals.
Furthermore, after obtaining the STFs in the frequency domain and applying the inverse Fourier
transform, we multiplied the STFs by a time domain preconditioning function to localize the
energy around the expected shot time.

Synthetic FWI Tests

To verify our FWI approach, we implement a synthetic test using the acquisition geometry of
the hillslope line. The Vp and Vs initial models are the same used for the real-data inversion. For
the synthetic test, we create target models by adding velocity anomalies to the initial models.
The results from the synthetic test show to what extent we are able to recover the known
velocity models. In the upper 30 m of the models, where the data coverage is highest and the
wavelengths are relatively small, we are able to recover the target velocity models and Vp:Vs
ratio model well. Below 30 m, there are more errors in the recovered velocity models which are
exasperated in the recovered Vp:Vs ratio models. Note that our analysis in the main text
focuses on features in the upper 30 m of the subsurface where the velocity models are better
constrained.
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Figure S1: The initial (top row), target (middle row), and recovered (bottom row) Vp models
used for the synthetic FWI test.
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Figure S2: The initial (top row), target (middle row), and recovered (bottom row) Vs models
used for the synthetic FWI test.
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Figure S3: The initial (top row), target (middle row), and recovered (bottom row) Vp:Vs ratio
models used for the synthetic FWI test. Note that the “Inverted” Vp:Vs ratio model is not
directly constrained by the inversion, but instead, is computed after FWI with the final Vp and
Vs models.

FWI Results Data Comparison

Below, we show several example shot gathers of preprocessed (with muting, trace
normalization, and 5-65 Hz bandpass filtering) field and synthetic data. The synthetic data are
generated from the final FWI velocity models (inverted from the field data). We show one
representative shot gather for each component from each seismic profile. For the ridgeline, we
show both a horizontal and vertical component shot gather. For the hillslope and drainage
profiles, we show only vertical component shot gathers because this was the only component
of seismic data collected and inverted. Also note that for all the inversions, we use a maximum
source, receiver offset of 100 m, which is why many of the traces are muted in the ridgeline
profile shot gathers. For the hillslope and drainage lines, fewer traces are muted because the



lines are shorter and have a smaller receiver spacing.

F{!)ig[?eline Synthetic Horizontal Component Shot Gather

1.00
0.05 0.75
0.50
0.10
0.25

0.00

time [s]
o
=
(%]

-0.25
0.20

-0.50

0.25 -0.75

-1.00
0.30

0 100 200 300 400
receiver #

Figure S4:

F})iggeline Observed Horizontal Component Shot Gather
’ 1.00

0.75

0.50

0.25

0.00

—0.25

—0.50

-0.75

-1.00

0 100 200 300 400
receiver #

Figure S5:



. (;R(i)dgeline Synthetic Vertial Component Shot Gather

1.00
0.05 0.75
0.50
0.10
0.25
“
@ 0154 0.00
£
=
—0.25
0.20
—0.50
0.25 -0.75
-1.00
0.30
0 100 200 300 400
receiver #
Figure S6:
Ridgeline Observed Vertial Component Shot Gather
0.00
1.00
0.05 0.75
0.50
0.10
0.25
0
v 0.15 0.00
£
5
-0.25
0.20
-0.50
0.25 -0.75
-1.00
0.30
0 100 200 300 400
receiver #

Figure S7:



Hillslope Line Synthetic Shot Gather

0.00

0.05

0.10

0.15

time [s]

0.20
0.25

0.30
0 100 200 300 400

receiver #

Figure S8:
Hillslope Line Observed Shot Gather

0.10 T

| ol
A

0 100 200 300 400
receiver #

Figure S9:

Drainage Line Synthetic Shot Gather
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Figure S10:
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Rock Physics Model

The rock physics model links geophysical variables p-wave and s-wave velocity to hydrological
variables of porosity, ¢, and water saturation, s,,. The first order control on seismic velocity in
the critical zone is porosity, which can range from ~0.6 is soils to less than 0.01 in unweathered
bedrock %%, For the more weathered soils and saprolite, Dvorkin’s sand model %2 applies well,
while Berryman’s inclusion model applies well to low-porosity bedrock 2° but neither rock
physics model can accommodate the full range of critical zone materials. For this reason, we
rely on an empirical biexponential model that approximates Dvorkin’s at high porosity and
Berryman’s at low porosity. The biexponential model estimates totally unsaturated (meaning
that s, = 0) p-wave and s-wave velocity using

VDunsar = apexp(—bp(p) + ¢, (1 - exp(—bp(p))
VSunsat = asexp(—bsp) + Cs(l - exp(_bs(p))

where ap, bp, ag4, by are empirical constants that can tuned to account for the observed
variation in seismic velocity. The totally unsaturated velocities only depend on porosity and
latter we use Gassman’s equation to account for the effect of variable saturation. The density
of the totally unsaturated material can be computed as a linear function of porosity

Punsat = psolid(l —QO) + Pair®

where pg.1iq IS the density of the solid phase and p,;,- is the density of the gas phase. Using the
totally unsaturated values of density and s-wave velocity, the shear modulus of the material can
be computed

— 2
U= punsatvsunsat '



Note that the shear modulus is only a function of porosity and will not change with saturation,
thus the unsat subscript is not needed here. Given the shear modulus, the bulk modulus for
totally unsaturated material can be calculated using

4
Kunsat = punsatvplzmsat - §,Ll.

Now, using Gassman’s equation® we can compute the bulk moduli of the material given totally
empty pores (filled with neither gas nor liquid)

K. ;:
Kunsat (ﬁld(p +1 + 4 ) - Ksolid

Lr

Kdry -

Ksolid + Kunsat
Kair Ksolid

- 1-9

At this point, we wish to account for the effect of water saturation on the physical properties of
the material. We can compute the effect of saturation on the bulk modulus by using another
formulation of Gassman’s equation3°
K,
(- 22)
solid

@ 1-9¢ Kary
+ +
Kruia  Ksotia = K2

solid

2

Ksar = Kdry +

where the sat subscript indicates some amount of water saturation (0 < s, < 1). In the above
equation, the bulk modulus of the fluid can be computed using the Voigt model

Kfluid = Kysw + Kgir(1—5y,)

where K,, is the bulk modulus of water. In a similar manner, we can compute the density of the
fluid phase using a linear average of the densities of water and air

Pfluida = PwSw T+ pair(l - Sw)
and then use this figure to compute the density of the partially saturated material

Psat = Psolid 1- (,0) + Priuia P-

Finally, using the saturation-adjusted bulk modulus and density, we can compute the p-wave
and s-wave velocity of the partially saturated material with

4
Ksat + §ﬂ
VDsar = T pa
sat
and
u
VSear = F
sat

In the resulting rock physics model, both Vp and Vs will decrease as porosity increases, but Vp
will increase with saturation while Vs will slightly decrease. This behavior reflects previously
published modelled and observed critical zone rock physics relationships 31734,



Vp Rock Physics Model

o
(=1

o
(%)
Saturaion

o
-

5 f 1
0.9
0.8
0.7
0.4
0.3
I 0.2
0.1
i i i A i i
0.5 0.6

0 0.1 0.2 0.3 0.4
Porosity

Figure S12: Behavior of the Vp rock physics model over the assumed range of hydrological
parameters.
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Figure S13: Behavior of the Vs rock physics model over the assumed range of hydrological
parameters.



Geostatistical Rock Physics Inversion

With a rock physics model in hand, we can estimate the most probable saturation and porosity
fields given the FWI-derived seismic velocities. The first step is to discretize the FWI velocity
models (both Vp and Vs) in the form of a large vector

V
v=[17]
Vs
Likewise, we can use the same discretization scheme to represent corresponding saturation and
porosity models
w= 5]
= |s, |

Now, consider the function g(w) = v : (@, s,,) = (Vp, Vs) which implements our rock physics
model. With the discretization scheme, we can utilize the ensemble smoother algorithm to
estimate an optimal w from v 3°. The first step is to generate an ensemble of porosity and

Ne
j=1

ensemble (we use 5,000). We generate the initial ensemble of porosity and saturation models
using the probability field simulation method 3¢ and impose horizontal and lateral smoothing
throughout to enforce spatial regularization. We also mandate that in the initial ensemble,
porosity monotonically decreases while saturation monotonically increases with depth, which
reflects the fact that less weathered and more saturated materials tend to occur deeper in the
critical zone. Once the initial ensemble is created, we can update each ensemble member using
the following update formula®

saturation models, denoted {w; where N, is the number of model realizations in the

witt = wi+ T}, (T}, + a[‘a)_l(v* - v})

where i is the iteration number, 0 < a < 1 is an inflation factor, v]l: = g(WJ‘:) is the predicted
(from the rock physics model) velocity model from the jth member of the current porosity and
saturation ensemble, v*~N (v, I,) is a perturbed velocity model vector with I; being the

assumed covariance of the velocity model, I}, ,, is the cross covariance matrix of the
Ne

Ne i . .
ensembles {w;}; % and {v;};£,, and I, , is the auto covariance matrix of the ensemble of

velocity models ({vj}?’;)-
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