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Supplementary Figure S1: HDN vs. HDN*"*for different SNR levels.

a Prediction example for HDN and HDN®"* for 4 different SNR input levels, on the fixed
vimentin-rsEGFP2 dataset. Different SNR have been obtained by letting the sample
bleach over multiple acquisitions. Arrows show structures better recovered by HDNs"* for
low SNR levels. b PSNR and SSIM over the whole test dataset (N = 3 cells, cut in 600x600
images for more statistics). HDN®*"? gives superior performances over HDN for lower SNR
levels 3 and 4 for both metrics.
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Supplementary Figure S2: Fine-tuning of the KL-loss weight Bx.for HDN training

The weight Bx. must be tuned to denoise enough without over smoothing. Here an
example of this fine-tuning is shown for HDN training on the vimentin-rsEGFP2 dataset,
with 3 weight values: too low (Bx. = 0.3), too high (Bx. = 0.7) and the selected value (Bx. =
0.5) which allows the best compromise between denoising and maintaining resolution.
a,c GT, input and predictions results for the 3 B values. Scale bar, 1 pm. b Line profile
showing two close-by filaments in the GT (yellow arrows in a, ¢). Note that Bx. = 0.7 does
not allow to distinguish the two structures. d FRC curves calculated over the whole
training dataset (mean * std, N=20 cells), showing a clear loss of resolution for Bx. = 0.7.
e PSNR and SSIM over the whole training dataset (N=20 cells), showing that Bx. = 0.3 is

too low for optimal SNR restoration.
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Supplementary Figure S3: PSNR and SSIM for all denoising methods

PSNR and SSIM metrics for all denoising methods, calculated over the test dataset only
(N =3 cells, cutin 600 x 600 images for more statistics).
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Supplementary Figure S4: Prolonged imaging OMP-rseGFP2 in U20S

MoNaLISA + HDN allows to image mitochondria in U20S cells for 130 frames, ~ 4 times
more than regular MoNaLISA. Frame rate: 6 s. a Full FOV examples of raw and denoised
for frame #1, #65 and #130. Scale bar, 5 pm. b Zoom-in over ROI1, showing first a
mitochondria fission, followed by 2 back-and-forth contacts before definite separation
happening (t =5’24” -t =8’06"), and another quick contact of 2 mitochondria between (t
=10’30”-t=10’54"). Pink arrows highlight the movement of the mitochondria. Scale bar,
1pm. ¢ Zoom-in over ROI2, showing one mitochondrion first quickly extending, then later
splitting into 2, and contacting again before definite fission. Scale bar, 1 pm. d
Normalized fluorescence intensity over the 130 frames (on raw data, mean = std, N =4
cells).
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Supplementary Figure S5: ON-switching, bleaching and SNR on vimentin-rseGFP2.

a Experimentally obtained ON-switching curve. The ON-switching levels chosen for
bleaching measurements are indicated with circles. b Bleaching rate depending on the
ON-switching (mean = std, N = 5 cells for each ON-switching level). ¢ Measured SNR for
each ON-switching level, on live-cells, on the first frame of the timelapse. Mean = std is
indicated at the top of each box. SNR measurements are done from line profiles (see
supplementary Figure 6), using N = 25 - 30 filaments per ON-switching level. d Measured
SNR on the fixed cells dataset, where the different signal levels (High, Medium, Low) have
been obtained by letting the sample bleach, using N = 20 filaments per signal level.



High Signal Medium Signal Low Signal

gl SNR:11.06 2007 Ped snr: 968 1007 Pdl SNR: 5.20
o] i N I
. ! 100- N 207
5> iy o il TR P S
I S ‘c: .i ----.-:',, | 0 : v :t ..'._e-
4 *a oo 6 T 0 ®°%»#4 - )
B s s i R O AN
T T * T — * =501+ — —
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
x (um) x (um) X (um)

Supplementary Figure S6: Example of SNR calculation.

We calculate SNR as a ratio between the signal and the std of the background. For that,
we use the line profiles of filaments. The signal is taken as the peak value of the fitted
gaussian, and values outside of gaussian are considered as background. Here we show
an example of such line profiles on the fixed vimentin-rsEGFP2 dataset for the 3 different
signal levels, giving SNR values of 11.06 (High), 9.68 (Medium), and 5.20 (Low).
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Supplementary Figure S7: Sub-sampling strategies and randomized downsampling

a In a parallelized system, we use a Raster Scan in between 2 emitting PSFs. A Nyquist
sampling corresponds to a scan step of pnvq, i.€ half of the expected resolution, in both
XY direction. Doubling the scan step to 2pnvqin both directions will remove 75 % of the
information, creating an image sampled at only 25 % (S = 0.25). By skipping only a quarter
or half of the scans steps, we can have intermediate sub-sampling images: 75 %
sampling (S = 0.75) and 50 % sampling (S = 0.5). b Randomized downsampling strategy
for S= 0.25, S = 0.5 and S = 0.75. From a Nyquist sampled GT, we first create 4
downsampled images, each one corresponding to a doubled pixel size, but with a
different subset of pixel. From this stack of 4 channels, we can select 1,2, or 3depending
on the desired sampling ratio S. For a given S, the channel selection is randomized.
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Supplementary Figure S8: Random vs deterministic pixel selection.

With a deterministic pixel selection during the training, the pixels in the input are always
coming from the same positions from the GT. Therefore, it is easy for the network to learn
that it should keep those exact pixels value to minimize the loss between prediction and
GT. The GT’s noise present in those pixels will thus be kept in the prediction. The other
pixels that the network have to learn how to predict, however, will be necessarily more
smoothed (the network cannot predict noise), creating this patterned noise effect. On the
contrary, if the downsampling process does arandom pixel selection, the network cannot
know from where the input pixels are coming from. It must then converge towards a
smooth output for all pixels.
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Supplementary Figure S9: Multi-Frame Training and Results on Mitochondria

a A multi-frames training pair is obtained by downsampling a fully-sampled timelapse
with a sampling ratio of S = 0.25. The sub-sampled timelapse is feeded into the CNN,
which is trained to predict the fully-sampled middle timepoint, To. b Representative
examples of the improvement of Multi-Frames training (with N=5 frames) over the Single-
Frame (N =1 frame). White arrows with a solid line points to vesicles better resolved with
the Multi-Frames approach. Arrows with a dotted line shows small vesicles that
disappear in the Single-Frame prediction (considered as noise by the network), but
accurately kept by the Multi-Frames.c,d PSNR and SSIM results for different number of
frames N in the input timelapse, over the whole test dataset. We chose N = 5 frames for
all following Multi-Frames training. e FRC measurements over the whole test dataset for
Single-Frame and Multi-Frames, confirming that the Multi-Frame gives a slight edge in
contrast for higher frequencies (mean * std).



Supplementary Figure S10: Mitochondria fast protrusions observed with Fast-
MoNaLISA

a 6 examples of fast and small mitochondria protrusion, elongating and retracting in 0.5
—2”. b Example of 2 protrusions in a row. c,d Examples of longer, slower protrusions. All
scale bars are 500 nm. Frame rate is 2 Hz.



Supplementary Figure S11: MDV-mitochondria interactions examples

Multiple examples of Mitochondria Derived Vesicles (MDVs) budding out, fusing in, or
touching multiple times mitochondria. Dotted circles shows the MDVs of interest,
numbered when there are multiple ones in the same ROIl. White arrows highlight the
movement of the mitochondria. a, b, ¢ Scale bar 1 pm, d scale bar 500 nm.
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Supplementary Figure S12: Upsampling predictions for different sampling and SNR
levels (Single-Frame training)

a From left to right: 25 % sampling input, Bicubic Interpolation, UNet prediction, UNet-
RCAN prediction, GT, and line profile comparison showing UNet-RCAN superior ability to
resolve close-by filaments. b Prediction examples for 3 different SNR levels and 3
different sampling. Scale bar, 1 ym. ¢ Relative FRC with GT for all SNR and sampling
levels (N = 3 cells). d PSNR and SSIM calculation for all SNR and sampling levels. (N =3
cells).



BKL

. Patch # Learning
Task Dataset Figure Network size | Patches Rate Epochs (when
relevant)
CARE 128 | 1813 | 1x10% | 200 -
5467
UNet- -4
RCAN 64 1x10 200 -
4x10*
Main Fig.1,2 N2V 256 2419 200 -
Vimentin S1,S2,S3, 2x10%
s12 SN2N 128 7074 200 -
g 1x10%
;z, HDN 64 | 5467 X 100 5x10"
o
] 1x10%
o HDNswP 64 5467 100 1x102
1x10%
Actin Main Fig.2 HDN svP 64 9953 200 1x103
1x10%
Mitochondria S4 HDN 64 6918 50 2x10"
Vimentin
. Main Fig. 3 UNet- 4
(Single- S8 RCAN 64 5467 1x10 100 -
o0 Frame)
£
°
£
3
@ . .
=) M'tc(’;hcl’t?_d”a Main Fig.4 | UNet- % | 5922 | _ oo | oo ]
. $9,10,11 RCAN
Frames)

Supplementary Table 1: Training parameters




Legend of supplementary movies
Video 1: Prolonged mitochondrial imaging

Timelapse of 130 frames, 6sec frame rate, denoised with HDN (unsupervised), of U20S
cells expressing OMP-rsEGFP2. Zoomed in region shows multiple fissions and multiple
“back-and-forth contacts”, highlighted by white arrows.

Video 2: Timelapse of actin meshwork dynamics

Timelapse of 50 frames, 5sec frame rate, denoised with HDN®*®? of U20S cells expressing
LifeAct-rsEGFP2. Zoomed in region shows that we can follow the actin meshwork
dynamics for ~50 frames.

Video 3: Mitochondria motion artefacts example in regular MoNaLISA

Timelapse acquired with regular MoNaLISA, on a reduced FOV to achieve 1Hz frame rate,
in U20S cells expressing OMP-rsEGFP2. Motion artefacts are highlighted by white circles.

Video 4: Mitochondria fast dynamics observed with 2D Fast-MoNaLISA

Fast-MoNaLISA timelapse (2Hz, full FOV) of U20S cells expressing OMP-rsEGFP2. First
zoomed-in region highlights very small and fast protrusions elongating and retracting.
Second zoomed-in region shows other varieties of events observed.

Video 5: Fast volumetric imaging and MDV budding-out and budding-in

Volumetric rendering of a Fast-MoNaLISA volumetric acquisition of U20S cells
expressing OMP-rsEGFP2. Zoom-in region shows 2 Mitochondria Derived Vesicles
(MDVs) budding-out and fusing with another mitochondrion.



