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Abstract 16 

Background 17 

Urban floods slow or sever travel to healthcare facilities, reducing timely access to maternal and child 18 

healthcare in Kampala. We estimated flood-related changes in walking access to all public and private-19 

not-for-profit facilities and to hospitals. 20 

 21 

Methods 22 

We modelled walking travel times at ~10 m resolution using land cover, roads, hydrography, and 23 

elevation, treating water bodies as barriers except at mapped crossings. Speeds reflected adults with 24 

young children, with wet-surface penalties and depth rules. We simulated 15 rainfall scenarios, 20–100 25 

mm over 1, 3, or 6 hours, and computed anisotropic travel time to the nearest facility. Outcomes were 26 

parish-level, population-weighted changes from baseline, stratified by a maternal, child, and 27 

socioeconomic vulnerability index. 28 

 29 

Results 30 

Here we show travel time increased across all scenarios. City-wide means to the nearest facility ranged 31 

from 11.2 minutes at 20 mm over 6 hours to 19.1 minutes at 100 mm over 1 hour. For hospitals, means 32 

ranged from 23.0 to 55.8 minutes. At fixed rainfall, shorter storms produced larger increases than longer 33 

storms with the same depth. Under the 100 mm, 1 hour scenario, variation across vulnerability levels 34 

was modest for all facilities, 23.5 versus 21.8 minutes between highest and lowest quartiles, but 35 

substantial for hospitals, 97.6 versus 43.1 minutes. 36 

 37 

Conclusions 38 

Floods limit walking access in Kampala, with the largest penalties for hospital care and in high-39 

vulnerability parishes. These delays risk undermining timely antenatal and postnatal care, child illness 40 

assessment, and immunisation contacts, routine moments through which supplementation, growth 41 

monitoring, and caregiver counselling are delivered. 42 

 43 

Plain language summary: 44 

Floods can make it harder for caregivers with young children to reach clinics and hospitals. We studied 45 

Kampala, Uganda, to estimate how floods change walking time to healthcare. We combined maps of 46 

land, roads, water, and elevation with realistic walking speeds on wet surfaces and tested fifteen flood 47 

situations, from lighter, longer storms to intense, short ones. Here we show that travel times increased 48 

in every case: up to about 19 minutes to the nearest clinic and 56 minutes to the nearest hospital for the 49 

most intense one-hour storms. Delays were greatest in high-vulnerability neighbourhoods and outer 50 

areas, while central areas changed less. These results can guide service placement.  51 
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Introduction 

Floods are the most common extreme weather event globally and are expected to intensify due to climate 

change 1,2. In low and middle income countries, particularly rapidly urbanising cities, flood risk is 

amplified by unregulated construction, extensive impermeable surfaces, and inadequate drainage 

infrastructure 3–5. These conditions increase the likelihood and severity of urban floods, which in turn 

can cause systemic disruptions across sectors, including transportation, food systems, and healthcare 6–

8. 

Strengthening healthcare accessibility under such conditions is critical for building resilient, 

equitable health systems that are responsive to climate threats and social inequalities 9–11. For maternal, 

newborn and child health (MNCH), these shocks matter not only for direct injuries, infections, or 

childbirth-related emergencies, but also because they interrupt essential primary healthcare and 

nutrition-sensitive delivery pathways. A nutrition-sensitive lens does not measure nutrition outcomes 

directly, such as diet quality or malnutrition rates, but instead examines how another sector, in this case 

healthcare accessibility, affects nutrition-related determinants like maternal and child health services, 

food security, and the capacity to deliver nutrition interventions during climate shocks 12–14. These 

delivery opportunities include antenatal care (ANC), postnatal care (PNC), sick-child consultations, and 

immunisation contacts, where supplementation, growth monitoring, and caregiver counselling occur 

15,16. Moreover, undernutrition and infection form a self-reinforcing cycle 17, and floods raise 

undernutrition risk 18,19, therefore maintaining MNCH access during flood shocks is intrinsically 

nutrition sensitive.  

Access to healthcare during and after floods depends not only on whether facilities remain 

functional but also on geographical accessibility, the time and distance required to reach them. Limited 

geographical accessibility is a critical barrier in health-seeking behaviour and is consistently associated 

with delayed or foregone care 20–22. When floods slow travel or sever links, delays can cascade from first 

contact to referral, shrinking the window for effective treatment of infectious diseases 9. 

In urban settings, floods may obstruct mobility by reducing travel speed and rendering entire 

road segments impassable. In dense urban networks, small capacity losses can produce large travel-time 
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penalties; because congestion is nonlinear, disruptions to a few critical links propagate across 

catchments, forcing long and costly detours that disproportionately burden low-income caregivers 23,24. 

Studies from Jakarta, Accra, and Lagos show that floods disrupt road networks, create disconnected 

urban subregions, and disproportionately affect low-income settlements, increasing travel times and 

reducing geographical access to healthcare 23,25,26.  

Kampala, Uganda’s capital, offers a compelling case study of these risks. Rapid urbanization 

and expansion into flood-prone valleys and wetlands, coupled with incomplete drainage, leave large 

low-lying neighbourhoods exposed to pluvial flooding 3,5,27–31. City risk assessments and flood models 

show that even short-duration rainfall events can generate significant disruptions and increase travel 

times 32. These mobility shocks interact with gendered and socioeconomic constraints: many low-

income caregivers rely on walking or informal paratransit, face safety and cost barriers, and must 

prioritize caregiving and income-earning responsibilities that magnify the impact of even modest 

additional travel time 33–36. 

Although urban flood impacts on mobility are documented in diverse settings, the evidence base 

linking floods to geographical access to nutrition-sensitive delivery platforms in rapidly growing 

African cities remains thin and fragmented 10. Yet few analyses are vulnerability-disaggregated, 

nutrition-sensitive, and intra-urban in focus. For Kampala, prior quantitative work examined hospital 

access under a return-period flood 32, but did not assess non-hospital MNCH service points, did not 

differentiate impacts by maternal or child vulnerability, and did not test multiple short, intense storm 

typologies typical of the city. More broadly, a recent scoping review finds that evidence on extreme 

weather and maternal health in LMICs under-represents urban, access-focused studies and rarely 

quantifies intra-city inequalities 36. This gap constrains planners’ capacity to safeguard the nutrition-

sensitive delivery pathway, ANC, PNC, sick-child care, and immunisation, through which 

supplementation, growth monitoring, and counselling are delivered 12,15,16, underscoring the need for 

spatially resolved evidence to guide resilient service planning. 

This study addresses that gap by quantifying flood-induced changes in geographical 

accessibility to public and private-not-for-profit (PNFP) facilities across Kampala under 15 rainfall–
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duration scenarios, explicitly comparing all facilities with hospitals only. We model walking speeds 

appropriate for caregivers with young children under wet-surface conditions, generate population-

weighted delta travel times per parish, and intersect impacts with a nutrition-sensitive vulnerability 

index derived from WorldPop development indicators 37. We ask: (1) How do floods in Kampala alter 

travel time to healthcare facilities that deliver nutrition-sensitive MNCH services, both across all 

public/PNFP facilities and for hospitals only? and (2) How are these effects distributed across nutrition-

sensitive vulnerability strata?  

We hypothesise that short-duration, high-intensity storms will disproportionately degrade 

access in high-vulnerability parishes and that hospital access losses will exceed losses to all facilities, 

reflecting spatial scarcity. By aligning geospatial accessibility modelling with a nutrition-sensitive lens, 

the study produces spatially targetable evidence for implementing Uganda’s Health National Adaptation 

Plan (2025–2030), the RMNCAH Sharpened Plan II, and Kampala’s Disaster Risk & Climate Resilience 

Strategy 38–41. The findings aim to support the Ministry of Health and the Kampala Capital City Authority 

(KCCA), by translating flood-impact modelling into actionable evidence for health system planning and 

climate adaptation. 

 

Methods 

We designed a geospatial analysis to quantify flood-induced changes in nutrition-sensitive geographical 

healthcare accessibility to public and PNFP healthcare facilities in Kampala. We focused on these 

facilities under the working assumption, consistent with the Lancet’s nutrition-sensitive framing and 

UNICEF’s systems approach, that they are the primary delivery platforms for routine MNCH contacts 

that provide counselling, supplementation, growth monitoring, and immunisation 13,14,42,43. Accordingly, 

we operationalised a nutrition-sensitive lens that prioritises timely contact with delivery platforms rather 

than nutrition status itself. We modelled two tiers: all facilities, the nearest public or PNFP facility at 

any level, indexing access to routine MNCH contacts, and hospitals only, the nearest public or PNFP 

hospital, indexing access to referral and comprehensive care 44.  
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Study area 

Kampala (see Figure 1), the capital and largest city of Uganda, is situated in East Africa and has been 

identified as one of the most vulnerable cities globally to the impacts of climate change due to its rapid 

urbanization, geographical features, and inadequate infrastructure 45. It is also one of the fastest growing 

cities in Africa with an estimated annual population growth rate of 5.6% 46 which has led to considerable 

socio-economic and environmental challenges 29,47–49. Kampala's unique topography, consisting of seven 

hills, valleys, and interspersed wetlands, coupled with its proximity to Lake Victoria, makes it 

particularly susceptible to pluvial floods; floods caused by heavy rainfall rather than river overflow 28. 

Figure 1 | Baseline geography and public healthcare infrastructure in Kampala, Uganda. 

Map displays the study area’s land cover, hydrography, transport network, and locations of public 
healthcare facilities, with a 0–2 km scale bar and a north arrow for orientation. Colors encode land cover 

classes as indicated in the legend, tree cover, shrubland, grassland, cropland, built up, bare or sparse 

vegetation, permanent water bodies, and herbaceous wetland. Linear symbology distinguishes rivers 

from roads. Point symbols distinguish hospitals from health centres. Abbreviations, km kilometers, N 

north.  

 



 

 

 

 

 7

   

The city's infrastructural inadequacies are especially evident in its drainage systems, which are often 

insufficient to manage the heavy rainfall 3,30. 

 Kampala’s rainfall disruptions are frequent under its current climate, daily totals of at least 20 

mm occurred on average 22 times per year during 1993–2015 50. Other metrics, such as the city’s 

intensity–duration–frequency relationships map depths to return periods, for example a 2-hour rainfall 

event of 58.2 mm and 91.7 mm correspond to approximately 2-year and 10-year events, respectively 51. 

Consistent with empirically observed sub-daily extremes, a 1-hour intensity near 75 mm has been 

recorded in Kampala and aligns with the 20-year return level from the historic IDF table 50. News 

catalogue analysis found 41 media-reported floods occurred during 2000–2016, roughly 2.5 events per 

year, clustering around the ~20 mm daily threshold 50.  

 

Geographic accessibility model 

Data sources and pre-processing 

Our analysis was conducted at the parish level, using Kampala's 96 parishes with their 2016 boundaries 

54. Input layers comprised a digital elevation model 55, land cover 56, the road network 57, hydrography 

57,58, public and PNFP health facilities 59, population counts 60, and development indicators 37. A complete 

table summarizing the data, including names and producers, appears in Supplementary Table 1. All 

datasets were projected to UTM Zone 36N. Open Street Map (OSM) highways were restricted to 

motorway, trunk, primary, secondary, tertiary, with link variants collapsed to their parent class. Water 

lines were restricted to rivers, streams, and canals. To ensure consistent spatial support, the 100 m 

WorldPop population surface was disaggregated to 10 m by block averaging, splitting each 100 m cell 

into a 10×10 grid and dividing values by 100, which preserves parish totals. The DEM was resampled 

to the 10 m grid using a bilinear scheme and land cover using nearest neighbour resampling. 

 

AccessMod pipeline and iterative travel time layers 

Accessibility modelling was performed using AccessMod 5 software 61,62, a WHO-supported GIS tool 

that estimates travel time to healthcare facilities based on terrain, land cover, road networks, and 
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transport modes. A baseline merged land-cover, MLC0, was created from land cover, roads, 

hydrography, and DEM, with rivers and lakes treated as barriers except at mapped road crossings. 

Pluvial flood polygons were provided with rainfall intensity, 20, 40, 60, 80, 100 mm, duration, 1, 3, 6 

hours, and water-depth thresholds, 0.10, 0.20, 0.30 m. For each of the 15 rainfall–duration scenarios, 

flood polygons were rasterised to the 10 m grid and overlaid on MLC0 to build a scenario-specific 

merged land cover (see Supplementary Figure 1). Batch execution used an adapted replay workflow of 

AccessMod that loops through multiple merged land-covers to generate scenario-specific travel-time 

rasters (see the forked GitHub project for implementation details 63). 

 

Travel mode and scenario parameterization 

We modelled walking as the primary mode for adults accompanying young children, consistent with 

travel patterns among low-income households and those without access to motorized transport 34. 

Parameter choices were validated in the United Nations Population’s Fund (UNFPA’s) Travel Scenario 

Workshops 64 held in Kampala, 2–6 December 2024. Participants were local experts drawn from the 

Ministry of Health, UNFPA, KCCA, and Ugandan universities, spanning health informatics, geospatial 

analysis, and public health. They had direct operational knowledge of how caregivers and their children 

travel to care in Kampala, including usual modes, costs, speeds, and barriers, which informed 

assumptions on travel speeds, flood-related impediments, and facility functionality. The travel scenario 

workshop elicited expert knowledge as detailed in Molenaar et al. 65. Participants confirmed the walking-

with-children speed provided by Watmough et al. 66 and also the flood-adjusted travel speeds which 

were derived from Makanga et al. 67. Makanga et al. 67 estimate a 20% speed reduction on paved and 

30% reduction on unpaved surfaces during wet conditions. Baseline and flood-phase walking speeds by 

land cover and road class are shown in Table 1. The participants concluded that it was assumed that 10 

cm of floods was traversable like wetlands and have been treated as such. Floods of 20 and 30 cm have 

been deemed barriers to movement, not necessarily because such depths are entirely impassable, but 

because workshop participants signified that local depths may exceed the data’s resolution. 
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Outcome: population-weighted delta travel time & vulnerability stratification 

Travel time, in minutes, was computed via an anisotropic least-cost path algorithm applied to the merged 

land-cover surfaces. The walking speeds (towards the health facilities) are corrected by the slopes 

derived from the DEM, according to the Tobler equation 68. For each flood scenario we produced two 

travel-time rasters, one to the nearest public or PNFP facility of any level, and one to the nearest public 

or PNFP hospital, with baseline rasters using MLC0 and flood rasters using the 15 scenario-specific 

layers with corrections and barriers as specified above. For each parish 𝑝 and scenario ݏ, the primary 

outcome was the population-weighted mean change in travel time relative to baseline over populated 

cells that remained reachable in both conditions (see Supplementary Methods 1 for a detailed step-by-

step calculation): 

 

ܹ݁݅݃ℎ߂ ݀݁ݐ Pܶarish = ∑ ߂) cܶell೔ × Population Countcell೔)௡௜=1 ∑ Population Countcell೔௡௜=1  

 

To examine vulnerability, we constructed a nutrition-sensitive vulnerability index from 

WorldPop developmental indicator that reflect determinants of undernutrition: mothers without 

Table 1. Walking speed, km h⁻¹, by land cover and road class under baseline and flood phases 

Landcover Speed (km/hr.) 

Baseline (walking) Floods phase (walking) 

Trunk road 3.9 3.120 

Primary road 3.9 3.120 

Motorway 3.9 3.120 

Secondary road 3.51 2.808 

Tertiary road 3.51 2.808 

Tree cover 1.17 0.819 

Shrubs 1.17 0.819 

Grassland 2.34 1.638 

Agriculture 2.34 1.638 

Bare1  0.89 0.623 

Urban 1.17 0.936 

Herbaceous wetland 0.89 0.623 

Water bodies 0 0 

Floods 10 cm NA 0.623 

Floods 20 cm NA 0 

Floods 30 cm NA 0 
1Areas identified as ‘Bare Areas’ within the Sentinel-2 LULC 2016 for Uganda were primarily dry riverbed or sandbanks within rivers 

(Watmough et al., (2022)) 
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antenatal care, without postnatal care, without tetanus toxoid before birth, without health insurance, birth 

without a skilled attendant, underweight, vaccination status for DTP1, DTP3, and MCV1, malaria 

incidence, children in the poorest households, mothers without formal education, large households with 

at least nine members, and women’s limited decision-making autonomy. To maximize interpretability 

we used equal weights, following Utazi et al. 37, who demonstrated that principal-component or factor-

analytic weightings produce spatial patterns highly similar to those from simple averaging for WorldPop 

indicators. Each indicator was min–max rescaled to 0–100 and averaged to a continuous cell-level score: 

 

௜ܸ = 1݊ ∑ ௞,௜௡ܫ
௞=1  

 

Where: 

• ௜ܸ = vulnerability score for cell ݅ 
• ݊ = total number of indicators  

 ݅ ௞,௜ = normalized value (scaled 0–100) of indicator ݇ at cellܫ •
 

The ܸ ௜  was classified into quartiles Q1–Q4, with Q4 denoting highest vulnerability. We overlaid quartile 

masks on Δܶ rasters to summarise Δ ‾ܶ௣ by vulnerability strata and to derive bivariate maps that highlight 

parishes experiencing jointly high vulnerability and large losses in geographical access. Full indicator 

definitions appear in Supplementary Methods 2, and Supplementary Figure 2 provides the equal-weight 

vulnerability-index raster and a misclassification comparison with a PCA-based index which we did not 

use in our main analyses. 

 

Use of large language model (LLM).  

ChatGPT (GPT-5, OpenAI) was used solely to support language and structure editing. All scientific 

content, analysis decisions, and interpretations were developed and verified by the authors. 
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Data and code availability 

All datasets used in this study are publicly accessible and fully documented in Supplementary Table 1. 

The minimum dataset required to reproduce the findings is archived on Zenodo under DOI: (URL to be 

added after peer-review). The complete analysis workflow is available on GitHub: (URL to be added 

after peer-review). All data was processed and visualized using R version 4.4.0 69
. 

 

Results 

Baseline geographical healthcare accessibility 

Under baseline conditions, our analyses show spatial disparities in geographical healthcare accessibility 

within Kampala. Accessibility to public and PNFP healthcare facilities varies, travel times are shortest 

in the inner portion of the extent and are substantially longer toward the outer edges of the extent (see 

Figure 2). Panel (a) illustrates baseline accessibility to all public and PNFP healthcare facilities, while 

panel (b) focuses on public and PNFP hospitals only. In panel (a), most parishes fall within the shortest 

travel time ranges, reflecting the wider distribution of both hospitals and lower-level facilities. In 

contrast, panel (b) shows more limited and fragmented coverage of short travel times due to the smaller 

number of hospital locations. In panel (b), travel times increase toward the urban periphery, especially 

in the northern, eastern, southern and south-western regions, where values commonly exceed 120 

minutes (depicted in orange and red). 
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Flood-induced changes in healthcare accessibility, all facilities versus hospitals 

To evaluate flood-induced changes in healthcare accessibility, we simulated 15 distinct pluvial flood 

scenarios derived from a combination of five rainfall intensities (20, 40, 60, 80, 100 mm) and three 

durations (1, 3, 6 hours). The resulting changes are quantified using the population-weighted change in 

travel time at the parish level, expressed as an increase relative to baseline. Summary statistics are 

Figure 2 | Baseline walking travel time to healthcare in Kampala, Uganda. 

Maps depict population surface travel time, walking only, from any location to the nearest healthcare 

service under baseline conditions. Travel time is classified into eight categories, 0–15, 15–30, 30–45, 

45–60, 60–90, 90–120, 120–180, and >180 minutes, encoded with a sequential light to dark palette where 

darker shading indicates longer travel time. Point symbols mark facility locations and distinguish 

hospitals from health centres where applicable. A scale bar, 0–2 km, and a north arrow provide 

orientation. Abbreviations, min minutes, km kilometers, N north. Symbology and class breaks are 

identical across panels to enable visual comparison.  

 

a, Nearest any public healthcare facility. 

Travel time to the nearest facility of any type is shown using the eight class scheme above. Point symbols 

identify hospitals and health centres.  

b, Nearest hospital only. 

Travel time to the nearest hospital is mapped using the same classes and shading as in panel a. Only 

hospitals are shown in the facility layer for this panel. 

a b 
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provided in Table 2, spatial patterns are presented in Figure 3 & 4, and violin distributions visualized in 

Figure 5. 

Across the 15 scenarios, travel time increased city-wide for both tiers, with systematically larger 

penalties for hospitals than for all facilities, see Table 2, Figures 3–5. For all facilities, means ranged 

from 11.2 minutes under 20 mm, 6 hours to 19.1 minutes under 100 mm, 1 hour, medians were 10–12 

minutes, interquartile ranges were compact, and the maximum parish-level increase reached 193 

minutes. For hospitals, means ranged from 23.0 to 55.8 minutes over the same envelope, medians were 

21–42 minutes, distributions were broader, and maxima reached 275 minutes. Duration gradients were 

consistent at fixed intensity, for example at 60 mm the all-facilities mean stepped down from 17.3 to 

14.5 to 12.9 minutes as duration increased from 1 to 3 to 6 hours, and at 40 mm the hospital mean 

stepped down from 44.0 to 34.6 to 31.6 minutes. 

Distributions were right-skewed in both tiers, see Figure 5, with narrower, lower violins for all 

facilities and taller, heavier-tailed violins for hospitals, especially for short, intense events. Spatially, 

Figures 3–4 show the central urban core concentrated in low-delay classes for all facilities, 0–30 

minutes, while peripheral belts accumulate 30–60+ minute increases for hospitals under 60–100 mm, 1 

hour, with deep-purple pockets extending north-east. At 3- and 6-hour durations the same geography 

persists but typically steps down one bin, many peripheral parishes moving from 60+ minutes to 30–60 

minutes, while the core remains predominantly low-delay. 
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Table 2 – Summary of Population-Weighted Changes in Travel Time to Healthcare Facilities 

Under Simulated Flood Scenarios in Kampala, by Rainfall Duration and Intensity 

 All Facilities Hospitals 

Duration Intensit

y 

Mean Min Q25 Media

n 

Q75 Max Mean Min Q25 Median Q75 Max 

1hr 20 12.8 0 6 10 16 77 28.7 0 14 25 38 156 

1hr 40 15.9 0 6 11 19 117 44.0 0 16 33 61 204 

1hr 60 17.3 0 6 11 22 116 47.9 0 16 37 69 206 

1hr 80 18.4 0 7 12 23 120 52.3 0 18 40 74 230 

1hr 100 19.1 0 7 12 24 193 55.8 0 19 42 79 241 

3hr 20 12.1 0 6 10 15 115 27.3 0 13 24 38 135 

3hr 40 13.2 0 6 10 16 116 34.6 0 14 25 46 182 

3hr 60 14.5 0 6 11 17 164 36.9 0 15 27 49 250 

3hr 80 15.3 0 6 11 18 121 40.2 0 15 29 56 251 

3hr 100 15.9 0 6 11 19 117 44.6 0 16 32 64 275 

6hr 20 11.2 0 6 10 14 111 23.0 0 13 21 31 99 

6hr 40 12.7 0 6 10 15 142 31.6 0 13 24 41 177 

6hr 60 12.9 0 6 10 16 147 33.8 0 14 25 45 181 

6hr 80 13.2 0 6 10 16 153 35.5 0 14 25 50 181 

6hr 100 14.0 0 6 10 17 141 37.1 0 15 27 53 183 

NB: Delta travel time values represent the population-weighted change in minutes in accessibility to healthcare 

facilities under simulated flood scenarios, relative to baseline conditions. Intensity refers to total rainfall in millimetres, 

and Duration to the duration of rainfall events. 
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Figure 3 | Population-weighted change in walking travel time to the nearest public healthcare facility across rainfall–
duration flood scenarios in Kampala, Uganda. 

Each panel maps the mean population-weighted increase in travel time relative to baseline, Δ travel time in minutes, to the nearest 
public facility of any type under the indicated rainfall intensity and storm duration. Choropleth shading encodes three classes of 

Δ travel time, 0–30, 30–60, and >60 minutes, with darker shading indicating larger increases. An auxiliary legend classifies total 

population per spatial unit, Population Sum, into 0–10,000, 10,000–30,000, and ≥30,000. Symbology and class breaks are 

identical across panels to enable direct comparison. Abbreviations, mm millimetres, h hours, min minutes, Δ travel time change 

in travel time.  
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Figure 4 | Population-weighted change in walking travel time to the nearest public hospital across rainfall–duration flood 

scenarios in Kampala, Uganda. 

Each panel maps the mean population-weighted increase in travel time relative to baseline, Δ travel time in minutes, to the 
nearest public hospital under the indicated rainfall intensity and storm duration. Choropleth shading encodes three Δ travel time 

classes, 0–30, 30–60, and >60 minutes, with progressively darker shading indicating larger increases. An auxiliary legend 

classifies total population per spatial unit, Population Sum, into 0–10,000, 10,000–30,000, and ≥30,000, with classes displayed 
consistently across panels. Symbology, map projection, and class breaks are identical in all panels to enable direct comparison. 

Abbreviations, mm millimetres, h hours, min minutes, Δ travel time change in travel time. 
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Figure 5 | Change in walking travel time across rainfall–duration scenarios for all facilities and 

hospitals in Kampala, Uganda. 

Violin plots depict sampled pixel-level distributions of the change in travel time, minutes, from baseline 

to the nearest service for each rainfall intensity on the x-axis, 20, 40, 60, 80, 100 mm. Two violins are 

shown per intensity, one for all public facilities and one for hospitals. Violin width reflects kernel 

density. Red points mark the mean and blue crosses mark the median in each distribution. The y-axis 

shows change in travel time in minutes, 0–360 in the figure. Fill colours indicate facility type, All 

facilities and Hospitals, and are held constant across panels. Abbreviations, mm millimetres, min 

minutes, h hours.  
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Nutrition-sensitive access impacts across vulnerability strata 

To examine how flood-related disruptions to healthcare accessibility were distributed across different 

vulnerability subgroups, we assessed the vulnerability composition of those experiencing increased 

travel time. Summary data are in Table 3, spatial patterns in Figures 6–7, and quartile violin distributions 

in Figure 8. 

Across vulnerability quartiles (Q1–Q4), population-weighted mean increases in travel time rose 

with precipitation intensity and were highest for 1-hour events. For all facilities, means ranged from 9.9 

minutes under 20 mm, 6 hours (Q1) to 24.2 minutes under 100 mm, 1 hour (Q3), with compact 

interquartile ranges and maxima of 199.9 minutes. For hospitals, delays were substantially larger and 

more variable, with the highest mean in Q4 under 100 mm, 1 hour (97.6 minutes, median 82.8, Q75 

142.2, max 322.4). At fixed scenarios, both intensity and vulnerability gradients were evident: at 40 

mm, 1 hour, hospital means rose from 38.2 minutes in Q1 to 73.8 minutes in Q4, while all-facility means 

stayed relatively the same, from 19.6 to 19.0 minutes across the same quartiles. The Q4–Q1 contrast at 

100 mm, 1 hour reached 54.5 minutes for hospitals but only 1.7 minutes for all facilities. 

In Figure 8, both tiers display right-skewed distributions, with narrower, lower violins for all 

facilities and broader, heavier-tailed violins for hospitals. Within each vulnerability quartile, 

distributions shift upward with intensity and shorten with duration. Across quartiles, Q3 and Q4 violins 

sit slightly higher than Q1–Q2 for all facilities, while the difference is pronounced for hospitals, 

particularly at 80–100 mm, 1 hour. 

The bivariate maps, Figures 6–7, reveal that most parishes remain in the 0–30 minute class 

across scenarios, but under 80–100 mm, 1 hour, highly vulnerable (Q4) southern and south-eastern 

parishes experience the largest increases. For hospital access, these areas move into the highest 

combined categories of vulnerability and delay (>120 minutes), with additional northern periphery 

pockets also shifting upward. Central parishes remain largely within low-delay classes across durations, 

reflecting proximity to hospitals. 
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Table 3 – Population-Weighted Delta Travel Time to Healthcare Facilities Under Urban Flood Scenarios by Rainfall Intensity, Duration, and Vulnerability Quartile in Kampala 

Duration mm 
Vulnera

bility 

All facilities Hospitals Only 

Mean Min. Q25 Median Q75 Max Mean Min. Q25 Median Q75 Max 

1hr 20 Q1 12.1 0 5.0 8.5 14.4 114.3 22.1 0.0 9.8 16.2 28.1 149.5 

1hr 20 Q2 15.3 0 6.2 10.5 18.3 119.0 32.4 0.0 18.3 29.4 41.0 202.4 

1hr 20 Q3 17.0 0 9.2 15.7 22.6 75.7 39.8 0.6 20.8 33.7 53.0 213.3 

1hr 20 Q4 17.3 0 9.4 15.4 22.2 95.6 43.3 0.5 25.7 41.3 57.3 128.0 

1hr 40 Q1 19.6 0 5.2 9.7 18.6 199.9 38.2 0.0 10.4 19.2 49.0 258.7 

1hr 40 Q2 18.8 0 6.3 11.2 22.2 159.3 45.4 0.0 19.9 33.5 58.3 264.9 

1hr 40 Q3 19.3 0 9.4 16.7 25.6 112.3 56.1 0.6 23.8 43.8 79.3 246.3 

1hr 40 Q4 19.0 0 9.5 16.2 23.9 114.9 73.8 0.5 34.8 66.8 100.4 260.0 

1hr 60 Q1 20.8 0 5.5 10.1 20.1 197.4 40.0 0.0 10.6 20.2 52.2 282.4 

1hr 60 Q2 19.8 0 6.4 11.6 23.2 151.3 48.3 0.0 20.8 35.4 62.8 289.8 

1hr 60 Q3 21.3 0 9.4 17.1 28.2 130.4 63.5 0.6 25.6 53.3 89.6 258.5 

1hr 60 Q4 21.3 0 9.6 16.7 26.7 126.5 80.2 0.5 40.7 71.7 114.0 263.3 

1hr 80 Q1 21.3 0 5.6 10.4 20.6 191.5 41.8 0.0 10.9 21.2 53.8 295.2 

1hr 80 Q2 21.5 0 6.5 12.1 24.0 151.5 52.9 0.0 22.0 38.0 68.2 309.5 

1hr 80 Q3 23.3 0 9.8 17.7 29.1 135.1 69.9 0.6 27.1 57.8 97.6 296.8 

1hr 80 Q4 22.5 0 9.8 17.4 28.1 133.0 89.7 0.5 43.7 77.1 128.0 304.2 

1hr 100 Q1 21.8 0 5.8 10.9 21.3 190.6 43.1 0.0 11.1 22.1 55.6 320.7 

1hr 100 Q2 22.1 0 6.6 12.3 24.6 188.5 55.6 0.0 22.8 40.2 70.4 326.4 

1hr 100 Q3 24.2 0 10.1 18.2 30.2 138.6 75.2 0.6 27.7 60.3 105.3 321.5 

1hr 100 Q4 23.5 0 10.0 18.1 30.3 136.2 97.6 0.5 46.8 82.8 142.2 322.4 

3hr 20 Q1 12.0 0 4.9 8.4 13.6 140.4 21.9 0.0 9.5 15.4 27.6 181.9 

3hr 20 Q2 13.8 0 6.1 10.0 16.7 151.5 33.0 0.0 17.3 28.7 41.5 189.7 

3hr 20 Q3 16.5 0 8.9 15.2 21.3 109.6 36.4 0.6 19.3 31.7 48.7 161.4 

3hr 20 Q4 15.5 0 9.2 14.4 20.1 80.3 40.3 0.5 24.7 39.0 54.3 109.4 

3hr 40 Q1 13.1 0 5.0 8.7 15.3 140.4 25.2 0.0 10.0 17.1 31.1 196.3 

3hr 40 Q2 16.4 0 6.2 10.5 18.5 149.9 38.6 0.0 18.3 30.0 46.2 210.2 

3hr 40 Q3 17.5 0 9.2 15.8 22.5 106.8 45.2 0.6 20.7 34.4 62.5 217.5 

3hr 40 Q4 16.1 0 9.3 14.7 20.6 80.3 55.9 0.5 26.5 46.7 73.6 224.0 

3hr 60 Q1 17.4 0 5.0 9.0 16.0 196.5 30.5 0.0 10.1 17.5 37.1 203.5 

3hr 60 Q2 17.0 0 6.2 10.7 19.6 151.3 39.9 0.0 18.6 30.8 48.0 218.8 

3hr 60 Q3 18.2 0 9.3 16.1 23.8 109.6 48.8 0.6 21.5 36.8 67.0 263.0 

3hr 60 Q4 17.9 0 9.4 15.5 22.7 95.6 59.3 0.5 27.8 49.7 77.3 273.5 

3hr 80 Q1 18.6 0 5.1 9.3 17.6 195.7 35.8 0.0 10.3 18.5 41.3 260.4 

3hr 80 Q2 17.5 0 6.2 10.9 20.8 155.5 41.5 0.0 19.0 31.7 50.9 244.7 



 

 

 

  20   

 

Table 3 – Population-Weighted Delta Travel Time to Healthcare Facilities Under Urban Flood Scenarios by Rainfall Intensity, Duration, and Vulnerability Quartile in Kampala 

Duration mm 
Vulnera

bility 

All facilities Hospitals Only 

Mean Min. Q25 Median Q75 Max Mean Min. Q25 Median Q75 Max 

3hr 80 Q3 18.7 0 9.3 16.4 24.6 148.9 52.2 0.6 22.4 40.1 73.2 263.0 

3hr 80 Q4 18.5 0 9.4 15.6 23.1 105.3 63.0 0.5 31.0 54.3 83.7 274.5 

3hr 100 Q1 19.4 0 5.3 9.7 18.5 192.3 37.4 0.0 10.4 19.0 48.2 260.4 

3hr 100 Q2 19.0 0 6.2 11.1 22.1 158.1 45.8 0.0 19.4 33.5 58.5 264.9 

3hr 100 Q3 19.5 0 9.4 16.7 25.8 148.9 61.0 0.6 23.4 45.8 87.2 296.3 

3hr 100 Q4 18.9 0 9.5 15.8 23.5 105.3 72.6 0.5 35.0 65.2 97.6 308.5 

6hr 20 Q1 9.9 0 4.8 8.1 12.8 138.8 17.5 0.0 9.2 14.4 22.8 121.3 

6hr 20 Q2 12.8 0 6.0 9.7 15.5 149.9 28.4 0.0 16.5 26.4 36.2 131.6 

6hr 20 Q3 15.9 0 8.7 14.8 20.5 108.2 29.3 0.6 18.4 27.9 38.9 106.3 

6hr 20 Q4 15.3 0 9.0 14.0 19.9 72.0 36.0 0.5 23.2 34.2 48.0 89.8 

6hr 40 Q1 12.0 0 4.9 8.4 13.9 140.4 21.9 0.0 9.6 15.5 27.4 181.9 

6hr 40 Q2 15.9 0 6.0 10.0 17.7 151.5 35.3 0.0 17.4 28.8 43.2 207.3 

6hr 40 Q3 16.9 0 9.0 15.4 21.8 106.8 41.0 0.6 19.4 32.2 53.7 208.8 

6hr 40 Q4 15.6 0 9.3 14.4 20.1 80.3 53.0 0.5 25.2 43.6 67.6 222.4 

6hr 60 Q1 12.6 0 5.0 8.6 14.7 140.4 24.5 0.0 9.9 16.4 29.8 188.3 

6hr 60 Q2 16.3 0 6.2 10.5 18.3 149.9 37.8 0.0 18.1 29.9 45.4 208.7 

6hr 60 Q3 17.2 0 9.2 15.7 22.2 109.6 43.3 0.6 20.1 33.7 56.5 211.7 

6hr 60 Q4 15.9 0 9.3 14.6 20.4 72.0 54.9 0.5 25.9 46.2 71.4 224.0 

6hr 80 Q1 13.3 0 5.0 8.7 15.3 140.4 25.2 0.0 10.0 17.2 31.5 194.7 

6hr 80 Q2 16.4 0 6.2 10.6 18.5 149.9 38.8 0.0 18.2 30.1 47.0 208.7 

6hr 80 Q3 17.6 0 9.2 15.8 22.7 109.6 48.0 0.6 21.0 36.5 69.0 217.5 

6hr 80 Q4 16.1 0 9.3 14.7 20.6 72.0 57.3 0.5 27.7 48.8 75.3 224.0 

6hr 100 Q1 16.7 0 5.1 8.9 15.5 190.6 29.7 0.0 10.1 17.4 35.9 197.9 

6hr 100 Q2 16.6 0 6.2 10.6 18.8 156.8 39.4 0.0 18.3 30.4 47.7 213.1 

6hr 100 Q3 17.7 0 9.3 15.9 22.9 150.2 49.3 0.6 21.2 38.1 72.1 217.5 

6hr 100 Q4 16.9 0 9.4 15.2 21.6 95.6 58.9 0.5 28.6 50.6 77.3 228.9 

NB: Disaggregated statistics by vulnerability quartile exclude raster cells with missing values in the vulnerability index, which may occur due to differences in spatial resolution and alignment between 

input layers. As a result, extreme values (such as the maximum delta travel time) may be slightly lower in the disaggregated summaries compared to the overall population-weighted estimates. 
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Figure 6 | Population-weighted mean change in walking travel time to the nearest public healthcare facility by 

vulnerability quartile across rainfall–duration flood scenarios in Kampala, Uganda. 

Each panel summarizes the population-weighted mean Δ travel time, minutes, relative to baseline for four vulnerability 
quartiles, Q1 low to Q4 high, under the specified rainfall intensity and storm duration. Within each panel, the y-axis lists 

vulnerability quartiles and the colour of each bar or tile encodes the corresponding Δ travel time class, 0–30, 30–60, 60–120, 

and >120 minutes, with progressively darker shading indicating larger increases. Symbology and class breaks are identical in 

all panels to enable direct comparison. Abbreviations, mm millimetres, h hours, min minutes, Δ travel time change in travel 
time.  
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Figure 7 | Population-weighted mean change in walking travel time to the nearest public hospital by vulnerability 

quartile across rainfall–duration flood scenarios in Kampala, Uganda. 

Each panel summarizes the population-weighted mean Δ travel time, minutes, relative to baseline for four vulnerability 
quartiles, Q1 low to Q4 high, under the specified rainfall intensity and storm duration. Within each panel, the y-axis lists 

vulnerability quartiles and the fill colour encodes Δ travel time classes, 0–30, 30–60, 60–120, and >120 minutes, with 

progressively darker shading indicating larger increases. Class limits, colour mapping, axes, and projection are identical across 

panels to enable direct comparison. Abbreviations, mm millimetres, h hours, min minutes, Δ travel time change in travel time.  
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Discussion 

To our knowledge, we share the first high-resolution, vulnerability-disaggregated estimates of flood-

induced losses in travel time to public and PNFP care healthcare facilities in Kampala. We introduce a 

reproducible population-weighted delta travel time metric at parish level and a tier-specific analysis that 

reveals structurally larger penalties for hospital access than for all facilities. By explicitly linking these 

delays to nutrition-sensitive indicators for mothers and children, we demonstrate that losses concentrate 

in the most vulnerable parishes. In the most impacted areas, population-weighted travel time to all public 

Figure 8 | Distributions of walking travel-time change by rainfall intensity, storm duration, vulnerability quartile, 

and facility type in Kampala, Uganda. 

Violin plots show sampled pixel-level distributions of the change in travel time from baseline, Δ minutes on the y-axis, 

to the nearest service as rainfall intensity increases on the x-axis, 20, 40, 60, 80, 100 mm. For each intensity, two violins 

are plotted, one for all public facilities and one for hospitals, violin width reflects kernel density. Red points mark the 

mean, blue crosses mark the median, axes and symbology are identical across panels. Abbreviations, mm millimetres, h 

hours, min minutes, Δ change, Q1–Q4 vulnerability quartiles from low to high. Fill colours encode facility type, All 

facilities and Hospitals, and are held constant across panels. 
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and PNFP healthcare facilities increased by up to 199.9 minutes, while access to hospitals deteriorated 

more sharply, maxima exceeded 326 minutes, and vulnerability-quartile means approached 100 minutes 

under the most intense 1-hour events, while the all scenario means remained ≤24 minutes.  

These accessibility losses matter for nutrition because they reduce timely contact with MNCH 

delivery platforms where supplementation, growth monitoring, immunisation, and caregiver counselling 

occur, thereby tightening the infection–undernutrition cycle in high-vulnerability parishes. Modest 

citywide increases to all facilities will erode timeliness and continuity of routine MNCH contacts, later 

ANC and PNC, delayed immunisations, fewer touchpoints for growth monitoring and IYCF counselling, 

with cumulative backlog effects after clustered short, intense events. By contrast, the much larger and 

more volatile hospital delays shift the whole distribution of time to definitive care upward, increasing 

referral abandonment, narrowing treatment windows for intrapartum complications and neonatal sepsis, 

and possibly pushing households toward informal or costly private care, heightening risk of catastrophic 

expenditure. The net effect is regressive, caregivers in high-vulnerability parishes who rely on walking 

bear disproportionate penalties, so relative inequality in timely MNCH and referral care widens even 

when citywide means appear moderate. 

Our findings are consistent with city-scale simulations by Rentschler et al. 32, who estimated 

that mean travel time to hospitals in Kampala rises from 17 to 30 minutes under a 50-year flood. 

However, our analyses show greater increases in travel time. Even moderate increases in travel time can 

have severe consequences in urban poor settings, where mobility is constrained by unsafe walking 

environments, high transport costs, and inflexible work schedules 33. Together, they underscore a double 

burden: marginalized populations are not only more exposed to floods but also experience the steepest 

losses in access to healthcare services. This aligns with climate–health evidence showing that those most 

exposed are typically least able to adapt, with vulnerability concentrated where capacities and health 

systems are weakest 70. 

Crucially, access is not solely determined by spatial distance, as gendered and caregiving roles 

shape mobility. Concurrent caregiving and economic responsibilities often lead to delays or complete 

avoidance of formal care 71. If travel times increase, the opportunity costs of seeking care may become 
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prohibitive, particularly for women managing multiple roles, resulting in postponed treatment or 

reliance on informal providers even in cases of acute need 33,71. However, as evidence from Bangladesh 

shows, lower maternal healthcare utilisation in flood-prone areas often reflects pre-existing 

disadvantages, such as poverty, marginalization, and weak infrastructure, rather than the floods itself 72. 

Similar findings from East and West Africa indicate that poor, remote communities face compounded 

barriers to hospital-based childbirth, with both poverty and distance independently driving exclusion 73. 

In the absence of timely formal care, caregivers turn to informal providers or home remedies, a pattern 

documented in other flood-prone cities like Lagos, Nigeria 25. Such responses, while adaptive, reflect 

deeper systemic failures in health system resilience and continuity. Consistent with this 

multidimensionality, a recent Uganda-wide analysis found no robust association between travel time to 

public facilities and stunting, wasting, or underweight after adjustment, hypothesizing that proximity 

alone is insufficient when quality, affordability, and social constraints are present 74. These barriers are 

compounded by food insecurity and undernutrition, both of which are exacerbated by flood-related 

market and service interruptions 7,8,18,75.  

Similar geographical healthcare losses due to floods have been documented elsewhere. In 

LMICs, Jakarta experienced 5–10 minute increases in hospital travel time during the 2013 flood 23, while 

post-Cyclone Idai floods in Beira saw delays exceeding 50 minutes 76. Another study on Cyclone Idai 

and Kenneth in Mozambique found that travel time to the nearest functional health facility in some 

communities increased from 1.3 to over 63 hours 77. Regional simulations in Southeast Asia showed 

average travel time increases of 38% (from 14 to 19 min.). In HICs, disruptions were more moderate: 

San Francisco saw a 1% drop in hospital coverage within 30 minutes 78, York (UK) experienced up to 

20% loss in ambulance coverage (10-min ambulance threshold) 79, and flood scenarios in Shanghai 

identified that 47% of all districts were unable to be reached within a 30-min threshold 80.  However, 

compared to these contexts, the impact in Kampala was markedly higher. The extensive encroachment 

on wetlands has critically undermined the city’s natural flood attenuation capacity, while unregulated 

expansion of informal settlements into high-risk zones has heightened exposure among already 

vulnerable populations 30. Although a Drainage Master Plan was introduced to address these risks, its 
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implementation has been constrained by declining fiscal commitments, with budgetary allocation for 

flood management falling from 16.6% to 0.3% within a four-year period 31.  It should be noted that our 

estimates are based on a walking-only travel scenario, which are a dominant mode of transport in 

Kampala, whereas most comparator studies modelled motorised transport 32,77,81. This methodological 

distinction likely contributes to the higher delta travel times observed in our analysis. 

Looking forward, Kampala’s flood impacts are likely to intensify. Projections for Lake Victoria, 

which shapes Kampala’s rainfall, show more rain overall by mid and late century and, crucially, heavier 

downpours on wet days. For example, mean rain per wet day rises by about 6 percent by mid-century 

and 16 percent by late century, five-day totals rise by roughly 18 and 29 percent, and the heavy-rainfall 

tail (90th – 99th % precipitation events respectively (28.14; 41.17 mm/day)) widens by about 47 and 22 

percent 82. The record 2019–2020 rise in Lake Victoria levels has already been linked to human-driven 

climate change, which made the event about 1.8 times more likely and would have produced about 7 cm 

less lake-level rise in a pre-industrial climate, with floods documented along shorelines of Kampala 83. 

National assessments for Uganda likewise anticipate more consecutive wet days and more days with 

precipitation greater than 20 mm in both rainy seasons, and report that floods have become more 

frequent largely due to more intense rainfall 84. These projections indicate the need for timely actions to 

mitigate the impacts of urban floods.  

Interpreted through a nutrition-sensitive lens, our results indicate that flood-related travel time 

penalties selectively erode the routine contacts through which nutrition-relevant services are provided. 

In the parishes with the greatest delays, missed or postponed contacts plausibly increase the risk of 

growth faltering and infection by limiting supplementation, vaccination timeliness, and caregiver 

counselling. Thus, protecting geographical access during flood shocks is a necessary, though not 

sufficient, condition for safeguarding child nutrition. 

 

Policy implications   

Our outputs, parish-level accessibility and vulnerability maps, can be directly used by the Ministry of 

Health, KCCA to prioritise infrastructure upgrades and service delivery in flood-prone areas. Our 
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spatially disaggregated results directly support these strategies by identifying the parishes with the 

highest travel time delays under 15 flood scenarios, and by overlaying these disruptions with 

vulnerability data. This enables policymakers to target infrastructure and service investments where 

inequities are most acute. These insights not only advance evidence-based planning but also support the 

operationalization of equitable climate adaptation. 

While strategies such as the Health National Adaptation Plan (HNAP) (2024–2030), the 

Reproductive, Maternal, Newborn, Child, Adolescent and Healthy Aging plan (2022–2028), and the 

Kampala Disaster Risk and Climate Resilience Strategy all emphasize resilience of the health system 

and continuity and equity of service delivery, implementation remains inconsistent 38,40,41. The city 

strategy calls for resilience standards for roads and health infrastructure, including flood-proof design, 

sustainable drainage and urges integration of healthcare expansion with disaster resilience planning 38. 

To reduce crowding at overstretched public facilities during floods, the Ministry of Health and KCCA 

are advised to subsidize maternal and child services at private health facilities, a recommendation echoed 

in both the RMNCH Plan and KCCA planning documents 39,40. Upgrades to flood-resilient pedestrian 

infrastructure should be prioritized in high-vulnerability parishes 8, particularly to improve healthcare 

proximity for women, which remains a key determinant of care-seeking 38. 

 

Strengths and Limitations 

This study presents several methodological strengths. First, raster-based travel time modelling offers 

high spatial resolution and does not rely on complete road network data, making it well-suited for 

heterogeneous urban areas. As Soman et al. 85 note, traditional network-based approaches often fail to 

represent infrastructural inaccessibility within informal settlements, where internal roads may be 

unmapped or inaccessible. Second, travel speeds and transport mode assumptions were validated 

through participatory Travel Scenario Workshops (TSWs), enhancing local relevance and accuracy. 

Third, the study simulates a wide range of realistic flood scenarios (n=15) that reflect Kampala’s flood 

typologies, capturing both high-intensity short-duration and lower-intensity longer-duration rainfall 

events. Fourth, maternal- and child-specific considerations were integrated by applying adjusted 



 

 

 

 

 28

   

walking speeds based on empirical evidence, adding demographic nuance to the accessibility estimates. 

Finally, the alignment of travel time outputs with population-weighted vulnerability indices allows for 

an intersectional analysis of who is most affected and where disruptions are most severe. 

However, some limitations warrant consideration. The modelling uses static, post-flood travel-

time surfaces, it does not capture dynamic flood onset, peak, and recession or intra-event variability, 

which are characteristic of urban flood behaviour and influence access trajectories over hours to days, 

limiting inference on cascading effects or adaptive responses over time 86 (for implementation challenges 

in real-time urban flood modelling, see Piadeh et al. 87; Kumar et al. 88). Moreover, in dense urban 

settings, raster based travel time models do not reflect traffic congestion, signal timing, or routing 

behaviour, so they can under- or over-estimate travel times relative to traffic-aware estimates. Recent 

comparisons show meaningful divergences between modelled travel times and observed or API-derived 

times in African cities, especially during peak periods, suggesting that variability and potential 

underestimation should be acknowledged 81,89–91. Although we compute at high spatial resolution, results 

are summarised at parish level for reporting, which may mask fine-scale disparities in exposure and 

access within parishes. We acknowledge a border effect. Because flood layers were available only inside 

the KCCA boundaries, we did not model allocations to out-of-AOI hospitals. Peripheral estimates, most 

visible in the north for the hospital-only scenario in Figure 2, may therefore be inflated, so inference is 

limited to the AOI. Extending flood layers and facility inventories beyond the boundary is a clear next 

step. Moreover, private-for-profit facilities, which constitute 90% of Kampala’s healthcare system, were 

excluded due to data limitations; while public and PNFP facilities are often preferred maternal and child 

healthcare, this omission may understate available service options or alter accessibility patterns 39. 

Finally, we did not analyse healthcare utilisation during flood periods, so the linkage from modelled 

accessibility to service uptake and health outcomes remains inferential rather than observed. 

 

Conclusion 

Urban floods in Kampala substantially reduces walking access to public and PNFP healthcare facilities, 

with disproportionally larger penalties for hospitals than for all facilities, especially during short, high-
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intensity rainfall events. By modelling caregiver-appropriate speeds and a nutrition-sensitive 

vulnerability index, this study shows that the most vulnerable parishes experience the greatest increase 

in travel time, reinforcing a double burden of exposure and vulnerability. While further research is 

needed to link these accessibility losses to health outcomes, our findings underscore the importance of 

incorporating vulnerability and access metrics into urban and health system planning, to mitigate the 

uneven impacts of future flood events. 
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