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[bookmark: _Toc188094457][bookmark: _Toc205998052][bookmark: _Toc212940214]S1. Device stack optimization
Systematic optimization of device stacks was conducted with different electrodes and different oxide stacks (Fig. S1). Particularly, we started from investigating a tri-layer oxide stack composed of 1 nm TiOx/2 nm Al2O3/1 nm TiOx sandwiched between bilayer graphene (BLGr) electrodes to form the graphene-insulator-graphene (GIG) stack (Fig. S1a). Unlike previous work of filamentary switching of similar stack, this device exhibited non-filamentary switching, as evidenced by the absence of abrupt current jumps in the I–V characteristics1, 2. However, this stack suffers from ultra-low conductance (>1 GΩ), even in relatively large devices (10 μm × 10 μm), which could complicate peripheral circuitry, slow-down the readouts, and reduce the signal-to-noise ratio, especially with small crossbar array sizes and further-scaled devices3-5. Moreover, though the device can be deterministically potentiated upon the positive biasing region, the on/off ratio is only ~10 at a high read voltage of 1.5 V, and the hysteresis window under negative bias is negligible, which is likely due to the competition between the two TiOx switching layers.
To address the above issues, we fabricated the metal-insulator-graphene1 (MIG1) stack, which comprises a single TiOx switching layer with atomic layer deposition (ALD)-grown Al2O3 on the top, using BLGr as the top electrode and Au bottom electrode (Fig. S1b). Around 30% of the stack exhibits interfacial-switching characteristics, with conductance at MΩ range and an enlarged on/off ratio of over 103, favorable for multiple-state storage with an improved signal-to-noise ratio (SNR). However, the remaining ~70% of MIG showed filamentary switching, with a lower on/off ratio of about 10 and higher conductance of over 100 MΩ to 1 kΩ, unsuitable for large crossbar array sizes due to high sneak path current6. This behavior originates from the porous nature and high oxygen-vacancy concentration of electron-beam–evaporated TiOx, as well as the oxygen-vacancies-populated TiOx /Al2O3 interface, both of which promote oxygen vacancies aggregation and filament formation7. We mitigate this effect through insertion of an ALD-grown TiO2 layer between TiOx and Al2O3, forming the MIG2 stack. It shows stable interfacial switching properties with suitable conductance region and large on/off ratio of around 5,000. Moreover, compared with its metal–insulator–metal (MIM) counterpart, MIG2 exhibits a larger on/off ratio at lower current levels, reflecting higher power efficiency (Fig. S1f). 
Fig. S1 Device optimization and the I-V characteristics of each stack. (a) graphene-insulator-graphene (GIG), (b) metal-insulator-graphene-1 (MIG1), (c) metal-insulator-graphene-2 (MIG2), and (d) metal-insulator-metal (MIM) memristors with all the device area of 10 um × 10 um. (e) I-V characteristics of different device stacks throughout the optimizations. (f) I-V characteristics of MIG2 device and its MIM counterpart as shown in d.a
b
c
d
e
f





[bookmark: _Toc212940215]S2. Additional device properties
Conductance tuning curves with various pulse widths from 5 ms to 50 μs and fixed pulse height of 2.5 V for potentiation and -2.5 V for depression are measured with low initial conductance state. Across all the pulse widths, it shows abrupt depression upon the first depression pulse, which is due to the short lifetime of trap states of shallow traps8, 9.  
[image: ]b
a

Fig. S2. Additional device properties. (a) Conductance tuning curve with low initial conductance and various pulse widths. (b) Retention at room temperature showing 26 distinctive states.










[bookmark: _Toc212940216]S3. Write noise analysis from endurance measurement
Write noise was extracted and analyzed based on endurance measurement (Fig. 1i). It can be observed that throughout the investigated conductance ranges, the device shows a close-to-constant conductance change regardless of initial conductance (Fig. S2a). Particularly, the mean value of absolute conductance change under one potentiation/depression pulse are the same, both are 2.2 ×10-9 S (Fig. S2b and Fig. S2c). This suggested that a good linearity and symmetry of the conductance tuning properties can be maintained throughout the 1,000 cycles of programming.

Fig. S3 Write noise extracted from endurance measurement. (a) Conductance change across different initial conductance. (b) Distribution of the potentiation upon one 100 μs/2.5 V pulse during the endurance measurement, showing the mean value of 2.2 nS upon one write pulse. (c) Distribution of the depression upon one 100 us/-2.5 V pulse during the endurance measurement, showing the mean value of -2.2 nS upon one write pulse.Potentiation
Depression
a
b
c
2.2×10-9
-2.2×10-9

















[bookmark: _Toc212940217]S4. Interfacial MIG Memristor benchmark 
The proposed interfacial MIG memristors shows a good balance between pulse height, pulse width, on/off ratio, as well as retention and endurance as compared to other nonfilamentary memristor stack8-11. Particularly, through using graphene as the top electrode, the device shows ultrahigh on/off ratio with moderate pulse height of 2.5 V, which is suitable for back-end-of-line (BEOL) integration on top of CMOS chip.
Table S1. Device characteristic benchmark against other non-filamentary memristors
	Refereence
	10
	11
	12
	13
	This work

	Device stack
	Au/Al2O3/TiO2/TiOx/Al/Ti
	Pt/Ta2O5/Nb2O5−x/Al2O3-y/Ti
	Au/OD-IGZO/
OR-IGZO/Pt
	Pt/anodized TiOx/Ti
	Au/TiOx/TiO2/Al2O3/Graphene

	Smallest device area
	300 nm × 300 nm
	5 μm × 5 μm
	π × 50 μm
× 50 μm
	5 μm × 5 μm
	3 μm × 5 μm

	Pulse height
	-3.5 V/3 V
	±10 V
	±2 V
	±4.5 V
	±2.5 V

	Pulse width
	5 ms
	1 ms
	25 ms
	100 us
	100 us

	On/Off
	5
	> 8 × 103
	< 3
	< 10
	5 × 103

	Retention
	>7.2 × 103 s
	2 × 105 s
	104 s
	4 × 10-2 s
	> 4 × 108 s

	Endurance
	>108
	105
	5 × 103
	5 × 106
	> 1.2 × 105

























[bookmark: _Toc212940218]S5. X-ray Photoelectron Spectroscopy (XPS) during different steps of oxides deposition 
The occurrence of Ti3+ peak in XPS measurement have been used as an indicator of the appearance of oxygen vacancies in TiO2 and TiOx as a memristive switching materials7, 12. XPS was taken during the three steps of oxides deposition. The TiOx layer, which was deposited through electron beam evaporation of 3 nm Ti and ambient oxidation for 36 hrs, shows Ti3+ peak, indicating the occurrence of oxygen vacancies in TiOx. In contrast, when ALD TiO2 was deposited on top of TiOx, the Ti3+ peak almost completely diminished, indicates that the oxygen vacancies in TiO2 is much less than that of TiOx. Once ALD Al2O3 was deposited on top of TiOx/TiO2, the Ti3+ peak appears again, indicating the high oxygen vacancy concentration at the TiO2/Al2O3 interface.

TiOx
a
TiOx /TiO2
b
TiOx /TiO2/Al2O3
c

Fig. S4 XPS of oxides along fabrication process. (a) 3 nm Ti deposited by electron-beam evaporator and then oxidized in the air for 36 hrs to form TiOx. (b) 3 nm ALD TiO2 on top of the as-deposited TiOx. (c) 3 nm ALD Al2O3 on top of the bilayer TiOx/TiO2. The value of Ti3+ and Ti4+ peaks are aligned with existed results from the literature7, 14.











[bookmark: _Toc212940219]S6. Conduction mechanism and compact modeling
 Fig. S5. Conduction mechanisms of different sweeping ranges and directions.m = 1
m = 2-3
m = 2
2.5→0
m = 1
m = 3-5
0→-2.5
m = 1
m = 5-6
-2.5→0
a
b
c

Conduction mechanisms of three other segments are also investigated (Fig. S5). Two types of conduction mechanisms are included in this model. The first one is the power-law form of space-charge-limited current (SCLC), which describes the charge-trapping and detrapping dynamics, and is expressed generally as:

                                                              (1)

where  and  are fitted parameters. Due to the rich variations of trapping and detrapping mechanisms, multiple sets of  and  are required within each segment, so we need multiple  to accurately depict the I-V characteristics of the MIG device. The second mechanism is Fowler–Nordheim tunneling (FNT), which dominates transport at higher biases across the Schottky barriers at the Au/TiOx interface and the Al2O3 tunnel barrier, and is expressed generally as:

                                                            (2)

where k and m are fitted parameters as well. While a theoretical work suggests that the exponent of V should be 3 for FNT across graphene/insulator junction due to linear dispersion relationship of graphene, we didn’t see a huge increase in the fitting accuracy, therefore we sticked to the usual case15.
Starting from fitting the consecutive I-V for four bias segments, we analyzed different conduction mechanisms in each bias range. We then used the max function to merge these segments into a complete I–V sweep to evaluate the overall fitting accuracy (Eq. 3). However, this relationship represents only the static current–voltage dependence, i.e., , and lacks a temporal component, making it insufficient to capture the evolution of the device state under different biasing schemes over time.    

                                    (3)

Where  to  are usually in the general form of SCLC (Eq. 1) and  is in the form of  (Eq. 2). The number  depends on the variation in trapping and de-trapping dynamics in each bias segment.
To incorporate temporal dynamics into the model, we extracted the fitted parameters as functions of time during voltage sweeping. The parameter evolution was modeled separately for the forward and reverse sweeps to ensure higher fitting precision. This step is crucial because many parameters appear within exponential terms, where even minor distortions can lead to significant deviations in the modeled I–V characteristics. After establishing the time dependence of each parameter, we fitted their temporal evolution using a unified function for all parameters  (Eq. 4).

                                             (4)

Accordingly, four fitted values, i.e., , , , and , were obtained for the slopes and intercepts of different conduction mechanisms in each bias segment. Consequently, the temporal evolution of the current can be expressed as:

                             (5)                                                                                                                      

With this equation, we successfully integrated both time and voltage dependencies into the evolution of current, i.e., conductance, over time. We then employed the partial differential equation (PDE) framework from the Yakopcic model to describe the change in the device state, where the state variable is proportional to the fitted parameter evolution . In this formulation, t does not represent the physical time but rather a control parameter that ensures all model parameters evolve synchronously. This approach is feasible because the conductance change under both positive and negative biases in the consecutive I–V characteristics is monotonic, evolving from the minimum to the maximum conductance state. 
The Yakopcic state function is depicted by two parts, one is , which depicts positive and negative thresholds with tunable exponentials16.
 
                                     (6)
Another part of Yakopcic’s state function is , which is used to model the state evolution once the threshold is exceeded.


                                          (7)

                                 (8)

                                                         (9)
                                                            (10)

The evolution of state function  over time under different voltages is given by the product of  and  as follows:
                                                      (11)

A full list of fitted parameters is listed in Table S2 and Table S3. For the fitted parameters evolution over state in Eq. 4 in different conduction mechanisms inside each segment.

Table S2. Change of slopes and intercepts inside conduction mechanisms function over state
	Segment
	Slopes
/intercepts
	Para.
	SCLC1
	SCLC2
	SCLC3
	FNT

	0→2.5 V
	k
	a
	0.223
	1.234
	2.654
	-5.636

	
	
	b
	-2.853
	-0.065
	-0.032
	-13.196

	
	
	c
	0.079
	0.101
	2.096
	3.535

	
	
	d
	0.650
	1.388
	12.553
	-20.770

	
	m
	a
	-4.197
	-3.028
	-3.503
	2.923

	
	
	b
	-0.073
	-0.095
	-0.053
	-0.211

	
	
	c
	1.147
	1.349
	3.776
	-1.062

	
	
	d
	-4.229
	-3.754
	-17.737
	10.172

	2.5→0 V
	k
	a
	1.068
	0.502
	1.339
	-2.456

	
	
	b
	-0.181
	-0.080
	-0.126
	-0.075

	
	
	c
	-0.048
	-0.242
	-0.367
	0.467

	
	
	d
	1.255
	3.345
	3.693
	-4.382

	
	m
	a
	-2.376
	-1.330
	-2.157
	0.829

	
	
	b
	-0.031
	-0.057
	-0.079
	-0.128

	
	
	c
	-0.071
	0.155
	0.579
	-0.141

	
	
	d
	1.675
	2.716
	-1.085
	5.085

	0→-2.5 V
	k
	a
	2.634
	-1.690
	——
	-5.762

	
	
	b
	-0.045
	-0.204
	——
	-0.021

	
	
	c
	0.935
	0.290
	——
	0.789

	
	
	d
	0.689
	5.513
	——
	3.272

	
	m
	a
	3.964
	1.804
	——
	0.597

	
	
	b
	-0.070
	-0.041
	——
	-3.319 × 107

	
	
	c
	-0.556
	-0.711
	——
	0.695

	
	
	d
	2.172
	5.023
	——
	4.978

	-2.5→0 V
	k
	a
	-104.0
	1.175
	——
	2.806

	
	
	b
	-0.022
	-0.016
	——
	-0.043

	
	
	c
	-37.80
	0.901
	——
	1.816

	
	
	d
	161.0
	1.538
	——
	-1.920

	
	m
	a
	7.255 × 104
	0.790
	——
	1.126

	
	
	b
	0
	-0.022
	——
	-0.046

	
	
	c
	15.99
	-0.819
	——
	0.143

	
	
	d
	-7.258 × 104
	6.330
	——
	6.964



The fitted state function parameters inside the Yakopcic PDE are listed in Table 3.
Table S3. Fitted parameters in Yakopcic state function 
	Parameters
	Value

	
	30

	
	-4

	
	0.83

	
	0.98

	
	10

	
	0.1

	
	2.3

	
	-2.3


















[bookmark: _Toc212940220]S7. Schematic of testbenches in Cadence Virtuoso
[image: ]             [image: ]b
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Fig. S6 (a) I-V characteristics simulation. The simulated result is shown in Fig. 2f. (b) Conductance tunning curve simulation. The simulated result is shown in Fig. S6. The input pulse voltage and pulse trains are the same as the experiments.














[bookmark: _Toc212940221]S8. Conduction tuning curves produced from the compact model
To ensure the accuracy of the compact model, we applied the same pulse train for experimental conductance tuning measurement to the model. The experimental data is with high initial conductance state of around 3.2 × 10-7 S. To match this high initial conductance state, we turned the initial state function value x in the compact model to be 87 (the highest value of x is 100) and managed to replicate the experimental data.


Fig. S7 Conductance tuning curve from experiment and compact model under 64 potentiation pulses (+2.5 V, 100 μs) and 64 depression pulses (-2.5 V, 100 μs) with high initial conductance state experimentally and high state function x in the model.

















[bookmark: _Toc212940222]S9. Linearity analysis of parallel programming with different BL/WL encoded numbers
[image: ]a
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Fig. S8 Conductance change for 17 × 17 different combinations of input signals. (a) Varying WL spike rate leads to highly linear conductance tuning.  (b) Varying BL duty cycle leads to less linear conductance tuning.

A total of 17 × 17 different combinations of BL/WL programming signals were applied to a MIG device and the conductance change before and after the programming are measured and linearity of different BL/WL numbers were analyzed. Interestingly, varying BL duty cycle leads to a slightly larger nonlinearity than varying WL spike rate (Table S5). The number encoding scheme of WL and BL signals is summarized in Table S4 and the nonlinearity of each condition is summarized in Table S5 except the WL/BL encoded number is 0.

Table S4. Number encoding schemes for WL and BL signals
	Encoded number
	WL spike rate (kHz)
	BL duty cycle (%)

	0
	0
	100

	1
	0.5
	93.75

	2
	1
	87.5

	3
	1.5
	81.25

	4
	2
	75

	5
	2.5
	68.75

	6
	3
	62.5

	7
	3.5
	56.25

	8
	4
	50

	9
	4.5
	43.75

	10
	5
	37.5

	11
	5.5
	31.25

	12
	6
	25

	13
	6.5
	18.75

	14
	7
	12.5

	15
	7.5
	6.25

	16
	8
	0




Table S5. Nonlinearity of fixed BL and varied WL signals/fixed WL and varied BL signals

	BL number
	Nonlinearity
	WL number
	Nonlinearity

	1
	0.00252
	1
	0.00874

	2
	0.00400
	2
	0.00671

	3
	0.00669
	3
	0.00533

	4
	0.00167
	4
	0.00841

	5
	0.00173
	5
	0.00942

	6
	0.00052
	6
	0.01028

	7
	0.00041
	7
	0.00891

	8
	0.00146
	8
	0.00862

	9
	0.00461
	9
	0.00870

	10
	0.00346
	10
	0.00942

	11
	0.00309
	11
	0.00999

	12
	0.00291
	12
	0.00716

	13
	0.00479
	13
	0.00814

	14
	0.00473
	14
	0.00828

	15
	0.00490
	15
	0.00673

	16
	0.00440
	16
	0.00736

	Average
	0.00324
	Average
	0.00826











[bookmark: _Toc212940223]S10. As-fabricated conductance map of functional devices inside the 32 × 32 crossbar array
a
b

Fig. S9 (a) Spatial distribution of as-fabricated conductance map of functional devices across different wordlines (WLs) and bitlines (BLs) within the crossbar array at 2.5 V. (b) Distribution of as-fabricated conductance of the crossbar array. Inset is the zoom-in distribution from 0 to 20 nS. The mean conductance of the as-fabricated crossbar array is 26.6 nS at 2.5 V.

















[bookmark: _Toc212940224]S11. Independent programming inside the crossbar array 
To enable accurate parallel programming of each cell, it is important to ensure that programming one cell won’t influence the neighboring cell17. To validate this property in the crossbar array, we conducted parallel programming on a targeted cell while measuring the two adjacent cells with shared WL and BL. The results show good independent programmability of the crossbar array under the proposed programming scheme.c
d
a
b
Programmed device
Held device

Fig. S10 (a) Waveform applied to the crossbar for independent programming measurement for the case of shared WL. The device inside the red dashed rectangle is the device to be programmed while the two neighboring devices sharing the same WL is held. (b) Waveform applied to the crossbar for independent programming measurement for the case of shared BL. The device inside the red dashed rectangle is the device to be programmed while the two neighboring devices sharing the same WL is held. Note that all the voltages are reversed to ensure the same net voltage across top electrode and bottom electrode as in the case of shared WL. (c) Conductance measurement of three cells with shared WL. (d) Conductance measurement of three cells with shared BL.
[bookmark: _Toc212940225]S12. Experimental setup for crossbar array measurement 
[image: ]
Fig. S11 Printed-circuit board (PCB) setup for crossbar array measurement. Specifically, two power supplies (in green box) are used to power the whole setup. The Arduino controller (in yellow box) and the computer were used for all the control. The crossbar array chip (in red box) was wire-bonded to a breakout board and then soldered onto the PCB. 16 INA228 chips were fixed to a breadboard and used to sense the current from the crossbar chip.

















[bookmark: _Toc212940226]S13. Experimental validation of outer product on crossbar array 
Table S6. Outer product benchmark table
	Reference
	18
	17
	19
	20
	This work

	Device type
	Filamentary memristor
	ECRAM 
	MemCapacitor
	Filamentary memristor
	Interfacial memristor

	Cell size in crossbar
	-
	>5 × 104 μm2
	1.2 mm × 1.2 mm
	200 nm × 200 nm
	3 μm × 5 μm

	Cell structure
	1R
	2T
	1C
	1R
	1R

	Demonstrated crossbar size
	3 × 3
	3 × 3
	9 × 9
	4 × 5
	6 × 6



In this work, we conducted experimental validation of outer product update on a 6 × 6 subarray, which is the largest size in memristive crossbar array and the second largest size in all the crossbar array demonstrations, as well as the first demonstration of interfacial memristor for this functionality. 














[bookmark: _Toc212940227]S14. Macro and tile design for both inference and training
Accuracies under three conditions: full-precision fine-tuning, quantized fine-tuning without device noise (ideal-quantized), and quantized fine-tuning with MIG device noise. The device noise is taken from the systematic parallel programming measurement (Fig. 3c). Though the accuracy of MIG training drops by 12% as compared to the case of full precision, it outperforms the ideal-quantized scheme without device noise by 10%. Thus, the reason for no increase in accuracy as the range of weight increase arises from the quantization scheme but not the device itself. The accuracy gap between the ideal-quantized case to standard DoReFa-Net is likely due to the difference in quantization scheme, as our simulation uses ADC-like quantization scheme for the whole activation in the simulation whereas DoReFa-Net employs a tanh weight quantization function21. Achieving full-precision fine-tuning on the edge using in-memory SGD require dedicated mix-signal hardware design and software–hardware co-design, which falls beyond the scope of this work22, 23.
[image: ]
Fig. S12. Accuracy comparisons between full-precision fine-tuning, 4-bit weights during readout with weight ranges from -512 to 512 with, and without MIG device noise. 

[bookmark: _Toc212940228]S15. Macro and tile design for both inference and training
[image: ]b
a

Fig. S13 Dataflow for (a) training and (b) inference on the designed macro and tile.

The proposed macro and tile support both fully-weight-stationary fine-tuning and inference (Fig. S13). At the macro level, activation registers store outputs from the previous layer. During inference, these values are decoded into voltages and applied to the WLs of the MIG crossbar array, while during fine-tuning they are converted into spike trains with variable spike rates by WL neurons and then applied on the WLs. Gradient registers store the gradient calculated from loss during backpropagation, which are decoded by BL neurons into long pulses raised from 0 to  with variable duty cycles for potentiation inside one programming cycle. Multiply-and-accumulation (MAC) registers store the macro’s vector-matrix multiplication (VMM) results during inference. For data converters, 5-bit digital-analog converters (DACs) are connected to WLs and 12-bit ADCs are connected to BLs in a crossbar array. The control unit reconfigures the macro according to the operation mode: in training mode, WL and BL neurons generate spike trains based on the values stored in the activation and gradient registers, whereas in inference mode, the ADCs and DACs are engaged to perform standard VMM operations. At the tile level, two macros are used to separately handle potentiation and depression. When multiplicand and multiplier share the same sign, the signals are routed to the potentiation macro, whereas if multiplicand and multiplier have opposite signs, the signals are directed to the depression macro to potentiate the MIG device. The digital outputs of two macros are then fed to the positive and negative inputs of a digital subtractor. Circuits for integer–floating-point conversion were simulated based on a previous design24. At the bank level, multiple tiles are binding together to match the size of weights between adjacent layers.  Digital adder and look-up-table (LUT)-based activation units are employed to mitigate the precision loss while improving the area efficiency.















[bookmark: _Toc212940229]S16. Dataflow comparison with and without outer product updates 
The inference stages (T0 – T7) are identical for the hardware with and without outer product updates capability inside the crossbar (Fig. S14). The key difference lays on the training phase. For the case without outer product updates capability in memristive crossbar array, the amount of weight update needs to calculate explicitly on some digital cores, then update the weights encoded in the crossbar in a row-wise manner, creating a possible data transport bottleneck19. In contrast, with the outer product update capability, the amount of weight update doesn’t need to be calculated explicitly and can be directly realized through outer product based in-situ training. Moreover, the update speed for the whole crossbar array is much faster than the case of row-wise manner due to the O(1) time complexity, introducing further performance improvement.
[image: ]Fig. S14 Fine-tuning/training pipeline (a) with and (b) without outer-product capability in crossbar array. The case with outer product capability simplifies the training pipeline and saves one timestep25.b
a
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