Source Data Code Documentation

This vignette describes the computational methods associated with the manuscript. The code is available
on GitHub (https://github.com/HaaselLab).

Functions used in the notebooks

buildTranscriptomes.R

Functions needed for the buildTranscriptomes.R script:
GenomicRanges, txdbmaker, Rsamtools, BSgenome, dplyr, IRanges, Biostrings and the
BSgenome package for the used genome

Function to create sequences with gene information and 2000 N (or custom buffer
length) mask between genes
create_sequences <- function(gr, genome, nameCol = 'gene_name", output_dir,
buffer_length = 2000) {

start_time <- Sys.time()

message('"Function 'create_sequences' started at:

, start_time)

if (!(nameCol %in% colnames(mcols(gr)))) {
stop('nameCol '", nameCol, "' not found in metadata; available: ",
paste(colnames(mcols(gr)), collapse =", "))

}
buffer <— strrep("N", buffer_length)

Group by chromosome and gene_name, then sort
gr_by_chr <- split(gr, seqnames(gr))
gr_by_chr <= lapply(gr_by_chr, function(chr_gr) {
chr_gr_by_gene <- split(chr_gr, mcols(chr_gr)[[nameColl]l])
chr_gr_by_gene <- chr_gr_by genelorder(sapply(chr_gr_by_gene, function(x)
start(x)[1]))]
return(chr_gr_by_gene)

})

sequences <- list()
for (chr in names(gr_by_chr)) {
chr_seq <- buffer # Start each chromosome with buffer
for (gene in names(gr_by_chr[[chr]])) {
gene_ranges <- gr_by chr[[chr]l][[genell
seq <- "
for (i in seq_along(gene_ranges)) {
range <- gene_ranges[i]
coord <- paste@(as.character(seqnames(range)),

, start(range), "-",
end(range))
seq <- paste@(seq, as.character(getSeq(genome, GRanges(coord))))
b
chr_seq <- paste@(chr_seq, seq, buffer)
sequences[[genel] <- list(gene_name = gene, sequence = seq, original_coords
= gene_ranges)

sequences [[paste@(''chr_", chr)]] <- chr_seq

}

mid_time <- Sys.time()

https://github.com/HaaseLab

message("Function 'create_sequences' (without saving it as FASTA) at: ", mid_time)
message('"Execution time without saving it as FASTA: ",
difftime(mid_time, start_time, units = "auto"))

Get chromosome entries
chr_sequences <- sequences[grep("~chr_", names(sequences))]
chr_sequences <- lapply(chr_sequences, function(seq) {
names(seq) <- sub("~chr_", "$chr_", names(seq))
seq

})

Convert to DNAStringSet, set names and write to FASTA file
fasta_sequences <- DNAStringSet(unlist(chr_sequences))

names (fasta_sequences) <- sub("chr_", ™", names(chr_sequences))
fasta_file <- paste@(output_dir, "piCtranscriptome.fasta")
writeXStringSet(fasta_sequences, fasta_file)
indexFa(fasta_file)

message("FASTA file has been saved as ", fasta_file)

Print some information

message('"'Number of genes processed: ", length(fasta_sequences) -
length(grep("~chr_", names(fasta_sequences))))

message(''Number of chromosomes represented: ", length(grep("~chr_",
names (fasta_sequences))))

message('Total sequence length:

, sum(width(fasta_sequences)))

end_time <- Sys.time()
message('"Function 'create_sequences' ended at: ", end_time)
message("Total execution time: ", difftime(end_time, start_time, units = "auto"))

return(sequences)

Create GTF
create_gtf <- function(gr, sequences, nameCol = "gene_name", output_dir, buffer_length =
2000) {

start_time <- Sys.time()

message("Function 'create_gtf' started at: ", start_time)

gtf_data <- data.frame()

Reconstruct gr_by_chr to get the genes in order(first by chr, then by start
position)
gr_by_chr <- split(gr, seqgnames(gr))
gr_by_chr <- lapply(gr_by_chr, function(chr_gr) {
chr_gr_by_gene <- split(chr_gr, mcols(chr_gr)[[nameCol]])
chr_gr_by_gene <- chr_gr_by_genelorder(sapply(chr_gr_by_gene, function(x)
start(x)[1]1))]
return(chr_gr_by_gene)

})
for (chr in names(gr_by_chr)) {
chr_name <- chr

current_pos <- buffer_length + 1 # Start position in the custom transcriptome
for this chromosome

chr_genes <- gr_by_chr[[chr_namel]

for (gene in names(chr_genes)) {

gene_info <- sequences[[gene]]
gene_ranges <- gene_info$original_coords

gene_length <- nchar(gene_info$sequence)
gene_start <- current_pos # Start after the initial buffer
gene_end <- gene_start + gene_length - 1

Gene entry
gtf_data <- rbind(gtf_data, data.frame(
segname = chr_name,
source = "custom",
feature = "gene",
start = gene_start,
end = gene_end,

score = ".",
strand = as.character(strand(gene_ranges([1])),
frame = ".",

attribute = paste@('gene_id "', gene, I
'gene_name "', gene, '"; ',
'transcriptome_start "', gene_start, '"; ',

"transcriptome_end "', gene_end, HE.

'original_chr ,
as.character(seqgnames(gene_ranges[1]1)), '"; ',

'original_start "', min(start(gene_ranges)), '"; ',

'original_end "', max(end(gene_ranges)), '";"')

))

Feature entries (by type: CDS, 5UTR, 3UTR) or just exon (default)
exon_cumulative_start <- gene_start
for (i in seq_along(gene_ranges)) {

range <- gene_ranges [i]

range_length <- width(range)
feature_start <- exon_cumulative_start
feature_end <- exon_cumulative_start + range_length - 1

Use "exon" as default feature type since type column is missing
feature_type <- if("type" %in% colnames(mcols(range))) {
as.character(range$type)
} else {
"exon"

i

gtf_data <- rbind(gtf_data, data.frame(
segname = chr_name,

source = "custom",

feature = feature_type,

start = feature_start,

end = feature_end,

score = ".",
strand = as.character(strand(range)),
frame = ".",
attribute = paste@('gene_id "', gene, '"; ',
'gene_name "', gene, '"; ',
'transcript_id "', gene, '_transcript"; ',

'original_chr "', as.character(segnames(range)), ;

'original_start "', start(range), HE

'original_end "', end(range), HE
'original_strand "', strand(range), '";"')

))

Update the cumulative start position
exon_cumulative_start <- feature_end + 1

by

current_pos <- gene_end + buffer_length + 1 # Add buffer length for the
next gene
}
I
mid_time <- Sys.time()
message("Function 'create_gtf' (without saving it as GTF) at:

message('"Execution time without saving it as GTF: ",
difftime(mid_time, start_time, units = "auto"))

, mid_time)

Save GTF file

gtf_file <- paste@(output_dir, "piCtranscriptome.gtf")
rtracklayer::export(gtf_data, gtf_file, format = "gtf")
message("GTF file has been saved as", gtf_file)

end_time <- Sys.time()
message('"Function 'create_gtf' ended at: ", end_time)

message('"Total execution time: ",
difftime(end_time, start_time, units = "auto"))

return(gtf_data)
}

get_piC_transcriptome <- function(piCs_gr, genome, column_name_to_sort_by, output_dir,
buffer_length = 2000) {

Sort the GRanges object

sorted_piCs_gr <- sort(piCs_gr)

Access the metadata columns
metadata_columns <- mcols(sorted_piCs_gr)

Check if the column exists
if (!column_name_to_sort_by %in% colnames(metadata_columns)) {
stop("Column", column_name_to_sort_by, "not found in metadata.')

}

Sort by the specified column using variable name
sort_order <- order(metadata_columns[[column_name_to_sort_byll)
sorted_piCs_gr <- sorted_piCs_grlsort_order]

Get the sorted metadata for creating gene names
sorted_metadata <- mcols(sorted_piCs_gr)

Create a new column that is the rank of the piC
mcols(sorted_piCs_gr)$gene_name <- paste@("rank_ ",
sorted_metadatal[column_name_to_sort_byll)

Create sequences

message(" sx Creating sequences with buffer length of ", buffer_length, " Ns *xx'")

sequences <- create_sequences(sorted_piCs_gr, genome, nameCol, output_dir,
buffer_length = buffer_length)

Check if sequences is empty or NULL
if (is.null(sequences) || length(sequences) == 0) {
stop("Error: No sequences were created. Please check the input data and the4

create_sequences function.")

}

Create and write GTF file

message(" sk Creating GTF file *x")

gtf_data <- create_gtf(sorted_piCs_gr, sequences, output_dir, buffer_length =
buffer_length)

message(" sk Transcriptome has been created and saved in ", output_dir, " *x")

b
getGeneTranscriptome <- function(genes, genome, nameCol = "gene_name", output_dir,
buffer_length = 2000, includes = "PCGonly") {
genes
if (class(genes) == "GRanges") {
genes_gr <- genes
} else if (class(genes) == "character") {

message('Loading gtf-file from provided directory.")
genes_gr <- rtracklayer::import(genes)
} else {
stop("Error: genes is not a GRanges object or gtf-directory.")

}

#filter genes by 'includes' (all genes or just protein-coding genes)
if (includes == "PCGonly") { # PCG: protein-coding genes only
message("Only protein-coding genes will be included in the transcriptome'")
Filter by protein-coding genes
genes_gr<-genes_gr[genes_gr$gene_id %in% unique(genes_grlgenes_gr$type %in%
"CDS"]$gene_id)]
genes_gr<-genes_gr[genes_gr$transcript_id %in% unique(genes_grlgenes_gr$type
%in% '"'CDS"]$transcript_id)] #since some transcripts do not contain all PCG annotation
features (CDS etc)

#remove predicted subset (XM_x or XR_x)
genes_gr <- genes_gr[!grepl("~XM_|~XR_", genes_gr$transcript_id)]
message('"Predicted transcripts (XM_x or XR_x) removed.")
message('"Number of remaining genes: ",
length(as.list(unique(genes_gr$gene_id))))
message('"Number of remaining transcripts: ",
length(as.list(unique(genes_gr$transcript_id))))
} else if (includes == "totalGenes_PCG_nonPCG") {
message("All genes (PCG and non-PCG) will be included in the transcriptome")
message('"Total genes and total transcripts: ",
length(as.list(unique(genes_gr$gene_id))), " and ",
length(as.list(unique(genes_gr$transcript_id))))
} else {
stop("Invalid option for includes. Please choose 'PCGonly' or
'totalGenes_PCG_nonPCG'")

}

Assign stop_codon to CDS
genes_grs$typelgenes_gr$type == "stop_codon"] <- "CDS"
check if UTRs are annotated in GRanges, if not create them
if (all(!c("3UTR", "5UTR") %in% unique(genes_gr$type))) {
if (class(genes) == "character") {
message("UTR annotations not present. Trying to load gtf with
makeTxDbFromGFF() if 'genes' variable was a directory")
genes_txdb <- makeTxDbFromGFF (genes)

transcript_to_gene_name <- setNames(mcols(genes_gr) [[nameColl],
genes_gr$transcript_id)

transcript_to_gene <- setNames(mcols(genes_gr) [[nameCol]],
genes_gr$transcript_id)

transcript_to_gene <- transcript_to_gene[!is.na(names(transcript_to_gene))]

get 5'UTR

fiveUTRs_gr <- unlist(fiveUTRsByTranscript(genes_txdb, use.names = TRUE),
use.names = TRUE)

fiveUTRs_gr$transcript_id <- names(fiveUTRs_gr)

fiveUTRs_gr$gene_id <- transcript_to_gene[fiveUTRs_gr$transcript_id]

fiveUTRs_gr$gene_name <- transcript_to_gene_name[fiveUTRs_grs$transcript_id]

fiveUTRs_gr$type <- "5UTR"

names (fiveUTRs_gr) <— NULL

get 3'UTR

threeUTRs_gr <- unlist(threeUTRsByTranscript(genes_txdb, use.names = TRUE),
use.names = TRUE)

threeUTRs_gr$transcript_id <- names(threeUTRs_gr)

threeUTRs_gr$gene_id <- transcript_to_genel[threeUTRs_gr$transcript_id]

threeUTRs_gr$gene_name <-
transcript_to_gene_name[threeUTRs_gr$transcript_id]

threeUTRs_gr$type <- "3UTR"

names (threeUTRs_gr) <- NULL

genes_gr <- c(genes_gr, fiveUTRs_gr, threeUTRs_gr)
genes_gr <- sort(genes_gr)
#save GRanges with UTRs
gtf_newFile <- sub("\\.[~./]x$", "", sub(".x/", "", genes))
gtf_file <- paste@(output_dir, gtf_newFile, "wUTRs.gtf")
rtracklayer::export(genes_gr, gtf_file, format = "gtf")
message('"GTF file with UTRs has been saved as ", gtf_file)

} else {
stop("Error: UTRs not present in GRanges object, either include them or run

this function with the directory of your gtf-file")
I
b

Create a list to store the reduced GRanges for each gene
reduced_genes_list <- list()

Sort the GRanges object
genes_gr <- sort(genes_gr)

Get unique gene_ids/gene_names
unique_genes <- unique(mcols(genes_gr) [[nameColl])

Collapse each gene with annotation hierarchy CDS > 3°UTR > 5°UTR
for (gene in unique_genes) {

Subset data for the current gene

gene_data <- genes_grimcols(genes_gr)[[nameCol]] == genel

Reduce all regions first

cds_reduced <- reduce(gene_datalgene_data$type == "CDS"])
utr5_reduced <- reduce(gene_datalgene_data$type == "5UTR"])
utr3_reduced <- reduce(gene_datalgene_data$type == "3UTR"])

Remove CDS regions from UTRs

if (length(cds_reduced) > 0) {
utr5_reduced <- GenomicRanges::setdiff(utr5_reduced, cds_reduced)
utr3_reduced <- GenomicRanges::setdiff(utr3_reduced, cds_reduced)

by

Handle overlapping 5'UTR and 3'UTR regions
overlap <- GenomicRanges::intersect(utr5_reduced, utr3_reduced)
if (length(overlap) > 0) {
utr5_reduced <- GenomicRanges::setdiff(utr5_reduced, overlap)
utr3_reduced <- GenomicRanges::union(utr3_reduced, overlap)

¥

Combine all regions
gene_regions <- c(cds_reduced, utr5_reduced, utr3_reduced)

Sort the combined regions
gene_regions <- sort(gene_regions)

Remove duplicates
gene_regions <- unique(gene_regions)

Assign region types

region_types <- rep("", length(gene_regions))
region_types[gene_regions %over% cds_reduced] <- "CDS"
region_types[gene_regions %over% utr5_reduced] <- "5UTR"
region_types[gene_regions %over% utr3_reduced] <- "3UTR"

Add metadata
mcols(gene_regions)$type <- region_types
mcols(gene_regions) [[nameCol]] <- rep(gene, length(gene_regions))

Add to the list if there are any regions
if (length(gene_regions) > 0) {
reduced_genes_list[[gene]] <- gene_regions
}
I

Combine all reduced GRanges into a single GRanges object
reduced_genes <- unlist(GRangesList(reduced_genes_1list))

Remove any potential duplicates in the final GRanges object
reduced_genes <- unique(reduced_genes)

Sort the final GRanges object
reduced_genes <- sort(reduced_genes)

if (nameCol == "gene_name") {
reduced_genes$gene_id <- mcols(reduced_genes) [[nameCol]]
} else if (nameCol == "gene_id") {

reduced_genes$gene_name <- mcols(reduced_genes) [[nameCol]]

}

message('"Number of ranges in the reduced GRanges: ", length(reduced_genes))

message('"Number of unique genes in the reduced GRanges: ",
length(unique(reduced_genes$gene_id)))

Save the reduced _genes object to an RData file
save(reduced_genes, file = paste@(output_dir,
"collapsed_prioritizedCDS3UTR5UTR.RData"))

Write the GTF file
gtf_file <- paste@(output_dir, "collapsed_prioritizedCDS3UTR5UTR.gtf")
rtracklayer::export(reduced_genes, gtf_file, format = "gtf")

message('"Collapsed, prioritized gene file has been saved as ", gtf_file)

Create sequences

message(" sx Creating sequences with buffer length of ", buffer_length, " Ns *xx'")

sequences <- create_sequences(reduced_genes, genome, nameCol = nameCol, output_dir,
buffer_length = buffer_length)

Check if sequences is empty or NULL
if (is.null(sequences) || length(sequences) == 0) {
stop("Error: No sequences were created. Please check the input data and the
create_sequences function.")

}

Create and write GTF file

message(" sxx Creating GTF file *x'")

gtf_data <- create_gtf(reduced_genes, sequences, nameCol = nameCol, output_dir,
buffer_length = buffer_length)

message(" sx Transcriptome has been created and saved in ", output_dir, " *x")

plotLogo.R

Logo from positions 1 to 15 and optional 3' end extension
logoPlot <- function(myAlignments_subset, sampleName, ylim = c(@, 2), genome = NULL){
Validate input
if (!inherits(myAlignments_subset, "GRanges")) {
stop("myAlignments_subset needs to be a GRanges object (e.g. select for primary
or unique piRNAs).")
2
if (!"seq" %in% colnames(mcols(myAlignments_subset))) {
stop('"myAlignments_subset needs to have a seq column. Get through PICBload with
parameter GET.ORIGINAL.SEQUENCE = TRUE.")
I

Main 5' logo (positions 1..15, or fewer if shorter)
main_width <- min(length(myAlignments_subset$seq)-2, 15)
label_pos <- c(1, 5, 10, 15)
main_seqs <- chartr('ATGC', 'AUGC', substr(as.character(myAlignments_subset$seq),
start = 1, stop = main_width))
p_logo <- ggseqlogo(main_seqs, seq_type = 'rna') +
scale_y_continuous(limits = ylim, breaks = seq(0, 2, 0.5)) +
ggtitle(sampleName) +
scale_x_continuous(breaks = label_pos, labels = label_pos[label_pos <=
main_width]) +
theme(axis.ticks.y = element_line(),
axis.ticks.x = element_line(),
axis.line.x = element_line(),
axis.line.y = element_line())

Attempt to build 3' extension logo if a BSgenome is provided/available
ext_logo <- NULL
if (!is.null(genome)) {

Resolve BSgenome object

bs_obj <- NULL

if (inherits(genome, "BSgenome")) {

print("Using provided BSgenome object to build 3' extension logo.")
bs_obj <- genome
} else if (is.character(genome) && length(genome) == 1) {
bs_obj <- tryCatch(BSgenome::getBSgenome(genome), error = function(e) NULL)
print("Using provided BSgenome name to build 3' extension logo.")
} else {
stop("Invalid BSgenome object or name provided. Make sure to load the
BSgenome package beforehand or place it in quotes.")

by

if (!is.null(bs_obj)) {
Compute windows around the 3' end per read
+ strand: 3' end = end(); take [-2,-1] and [+1,+2,+3]
— strand: 3' end = start(); take [-2,-1] —> [start+1, start+2] and
[+1..+3] —> [start-3, start-1]
three_prime_regions <- IRanges/(
start = ifelse(strand(myAlignments_subset) == "+"
end(myAlignments_subset) - 2,
start(myAlignments_subset) - 2),
end = ifelse(strand(myAlignments_subset) == "+"
end(myAlignments_subset) + 2,
start(myAlignments_subset) + 2)
)

Get the sequences
three_prime_seqs <- BSgenome::getSeq/(
BSgenome.Mmusculus.UCSC.mm10,
GRanges (seqnames (myAlignments_subset),
IRanges(three_prime_regions),
strand(myAlignments_subset)

)

three_prime_seqs <- chartr('ATGC', 'AUGC',
substr(as.character(three_prime_seqs), start = 1, stop = 5))
if (length(three_prime_seqs) > 0) {
ext_logo <- ggseqlogo(three_prime_seqs, seq_type = 'rna') +
scale_y_continuous(limits = ylim, breaks = NULL) +
Separator line at the left edge of the extension logo
scale_x_continuous(breaks = 3, labels = "3'end") +
theme(axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
axis.ticks.x = element_line(),
axis.line.x = element_line(),
axis.line.y = element_line())

¥

Return either the base logo or the combined logo with extension
if (!is.null(ext_logo)) {
Place extension to the right; relative widths reflect number of positions
return(p_logo + ext_logo + patchwork::plot_layout(widths = c(main_width, 5)))
} else {
return(p_Llogo)
I

plotCoverage.R

Comprehensive function to plot coverage tracks for GRanges of alignments (e.g. loaded
with PICBload), piRNA clusters and GTF files
coverageTracks <- function(fgr, fgr2, piRNAs_from_Bam=c(), chromosome, IRangesCoord,
tilesWidth=100, xWidth=10000, yRange=c(), normalize = "rpm", scaleWidthkB =
ifelse(end(IRangesCoord) - start(IRangesCoord) > 1000, 1, 0.2)) {
find total number of reads in library
if ("MULT" %in% names(mcols(piRNAs_from_Bam))) {
Total_reads<-sum(piRNAs_from_Bam$MULT)
} else {
Total_reads<-length(piRNAs_from_Bam)
b

Make tiles (100nt default) from GRanges
fgr.tiles<-unlist(tile(x = fgr, width = tilesWidth)) #minus strand
fgr.tiles2<-unlist(tile(x = fgr2, width = tilesWidth)) #plus strand

Limit GRanges to selected coordinates

piRNAs_selected_minus<-subsetByOverlaps(piRNAs_from_Bam, fgr, type = "within")
#minus strand

piRNAs_selected_plus<-subsetByOverlaps(piRNAs_from_Bam, fgr2, type
strand

"within") #plus

For minus strand: find reads coverage (rcov) (using the uncollapsed GRanges)
if ("MULT" %in% names(mcols(piRNAs_selected_minus))) {
GRcov<-coverage(piRNAs_selected_minus, weight = piRNAs_selected_minus$MULT)
#minus strand
} else {
GRcov<-coverage(piRNAs_selected_minus) #minus strand

¥

For plus strand: find reads coverage (rcov) (using the uncollapsed GRanges)
if ("MULT" %in% names(mcols(piRNAs_selected_plus))) {
GRcov2<-coverage(piRNAs_selected_plus, weight = piRNAs_selected_plus$MULT) #plus

strand
} else {
GRcov2<-coverage(piRNAs_selected_plus) #plus strand
b

Ensure coverage objects have same seqlevels as tiles (problem if you hand-currate
some regions beforehand)

GRcov_filtered <- GRcov[seqlevels(fgr.tiles)] #minus strand

GRcov2_filtered <- GRcov2[seqlevels(fgr.tiles2)] #plus strand

average the coverage in each tile (fgr.tiles) (ie. average coverage within each
tile) and normalize to the size of the library (rpm) —> new column under the name "ncov"
if (normalize == "rpm") {
message('"'Normalizing to RPM")
fgr.tiles2.ncov<-binnedAverage(bins = fgr.tiles, numvar =
(GRcov_filteredx1000000) /Total_reads, varname = 'ncov") #minus strand
fgr.tiles2.ncov2<-binnedAverage(bins = fgr.tiles2, numvar =
(GRcov2_filtered*1000000)/Total_reads, varname = "ncov") #plus strand
} else if (normalize == "region") {
message(''Normalizing to region")
devides by the total number of reads in the region (minus and plus strand
combined). Sum of ncov is therefore the average piRNA length since the coverage

considers each piRNA for its entire length 10

fgr.tiles2.ncov<-binnedAverage(bins = fgr.tiles, numvar =
GRcov_Tfiltered/length(c(piRNAs_selected_minus, piRNAs_selected_plus))*xtilesWidth,
varname = "ncov") #minus strand

fgr.tiles2.ncov2<-binnedAverage(bins = fgr.tiles2, numvar =
GRcov2_filtered/length(c(piRNAs_selected_minus, piRNAs_selected_plus))x*tilesWidth,
varname = "ncov") #plus strand

} else if (normalize == "none") {

message(''Not normalizing")

fgr.tiles2.ncov<-binnedAverage(bins = fgr.tiles, numvar = GRcov_filtered,
varname = '"'ncov") #minus strand

fgr.tiles2.ncov2<-binnedAverage(bins = fgr.tiles2, numvar = GRcov2_filtered,
varname = "ncov") #plus strand

}

####AH#HE Minus strand #H######H
fgr.tiles.ncov3<-as.data.frame(fgr.tiles2.ncov)
fgr.tiles.ncov3$ncov<--fgr.tiles.ncov3$ncov # make minus strand negative

#H#AR#HAHE Plus strand ########
fgr.tiles.ncov3_2<-as.data.frame(fgr.tiles2.ncov2)

axisLinesDist <- max(fgr.tiles.ncov3$end) - min(fgr.tiles.ncov3$start) / 8

yAxisPrep <- max(abs(min(fgr.tiles.ncov3$ncov)), abs(max(fgr.tiles.ncov3_2%$ncov)),
1)

Determine rounding for y-axis breaks

roundBy <- 0

if (yAxisPrep <= 1) {
yAxisBreaks <- 0.1
roundBy <- 2

} else if (yAxisPrep <= 10) {
yAxisBreaks <- 1
roundBy <- 0

} else if (yAxisPrep <= 100) {
yAxisBreaks <- 10
roundBy <- -1

} else if (yAxisPrep <= 1000) {
yAxisBreaks <- 100
roundBy <- -2

} else if (yAxisPrep <= 10000) {
yAxisBreaks <- 1000
roundBy <- -3

} else if (yAxisPrep > 10000) {
yAxisBreaks <- 10000
roundBy <- -4

}

###RHHAHE Coverage Track ####H###H
pltCvrg <- ggplot() + theme_classic() +
geom_line(data = fgr.tiles.ncov3, aes(x = start, y = ncov),
color="blue") +
#geom_area(data = fgr.tiles.ncov3, aes(x = start, y = ncov),
color="navyblue", fill="blue") + # can be uncommented to fill the area under the curve
geom_line(data = fgr.tiles.ncov3_2, aes(x = start, y = ncov),
color="red") +
#geom_area(data = fgr.tiles.ncov3_2, aes(x = start, y = ncov),
color="tomato4", fill="tomatol") + # can be uncommented to fill the area under the curve
scale_x_continuous(breaks = seq(min(fgr.tiles.ncov3$start),

max(fgr.tiles.ncov3$end), by = xWidth)) + y

theme(aspect.ratio = 0.4,
axis.line.y = element_blank(),
panel.grid.minor = element_blank()) +
coord_cartesian(xlim = c(start(IRangesCoord), end(IRangesCoord))) + #,
ylim = c(min(fgr.tiles.ncov3$ncov, -1.1), max(1l.1, fgr.tiles.ncov3_2%ncov))
xlab(paste@(chromosome, " (", tilesWidth, "nt tiles)"))+
ylab("ncov (rpm)")

add scale bar
pltCvrg <- pltCvrg +
Add the horizontal bar
annotate("segment",
X = (start(IRangesCoord) + 2),
xend = (start(IRangesCoord) + 2) + scaleWidthKB x 1000,
y = max(fgr.tiles.ncov3_2%$ncov) * 0.9,
yend = max(fgr.tiles.ncov3_2%ncov) * 0.9,
color = "black",
linewidth = 0.5) +
Add the text label
annotate("text",
x = (start(IRangesCoord) +2) + (scaleWidthKB*1000/2),
y = max(fgr.tiles.ncov3_2$ncov) * 0.95,
label = paste@(scalewWidthkB, " kb"),
size = 2.5)

adapt to defined yRange
if (length(yRange) == 0) {
pltCvrg <- pltCvrg + scale_y_continuous(breaks =
seq(round(min(fgr.tiles.ncov3$ncov, -1),roundBy), round(max(fgr.tiles.ncov3_2%ncov,
1), roundBy), by = yAxisBreaks))
} else {
pltCvrg <- pltCvrg + scale_y_continuous(breaks = seq(round(yRange[1], roundBy),
round(yRange[2], roundBy), by = yRange[3])) + coord_cartesian(ylim = c(yRange[1],
yRange([2]))
¥
return(list(pltCvrg = pltCvrg, fgr.tiles.ncov3 = fgr.tiles.ncov3, fgr.tiles.ncov3_2
= fgr.tiles.ncov3_2))

}

#GTF files for cluster can be filtered by its rank when in metacolumn a 'rank' column is
present.

#For transposable elements the family grouping is based on the column 'family_id'.

#For gene the height of the track is based on the column 'type' (CDS, UTR, exon, etc.)

#standarized function for coverage tracks, cluster and TE
allTracksPlotted <- function(piRNAs_from_Bam=c(),

chromosome, IRangesCoord,

gtfFiles=c(),

minRank = INF,

tilesWidth=100, xWidth=10000,

yRange=c(), #vector with min y-coordinate, max y-coordinate
and y-axis-breaks: c(y-min, y-max, breaks)

normalize = "rpm",

your_color_scale = NULL,

scaleWidthKB = ifelse(end(IRangesCoord) -
start(IRangesCoord) > 1000, 1, 0.2) # scale of the coverage track

) |
12

set fgr
fgr<-GRanges(seqnames = chromosome, ranges = IRangesCoord, strand = "-")
fgr2<-GRanges(seqnames = chromosome, ranges = IRangesCoord, strand = "+")

#perform coverage plot if bam file is given
if (length(piRNAs_from_Bam) != 0) {
cvrg <- coverageTracks(fgr, fgr2, piRNAs_from_Bam, chromosome, IRangesCoord,
tilesWidth, xWidth, yRange, normalize = normalize, scaleWidthkKB = scaleWidthKB)
} else {
cvrg <- NULL
I

#retrieve cluster/TE/.. (from gtf) tracks
if (length(gtfFiles) !'= 0) {
#remove x—-axis scale on coverage plot since it will be shown by piCs below (or
whichever gtf it is associated with)
pltCvrg <- cvrg$pltCvrg + theme(axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
axis.line.x = element_blank(),
axis.title.x = element_blank()) # Remove x-axis
label completely

#HHHHHHHE Tracks From GTF ######H#H

#define standard settings for gtf tracks
clusterTracksStandard <- ggplot() + theme_classic() +
coord_cartesian(xlim = c(start(IRangesCoord),
end(IRangesCoord))) +
scale_x_continuous(breaks = seq(start(fgr), max(end(fgr)),
by = xWidth)) +
theme(aspect.ratio = 0.05,
axis.line.y = element_blank(),
axis.text.y = element_blank(),
element_blank(),

axis.ticks.y =
axis.title.y = element_text(angle = 0, vjust = 0.5),
plot.title = element_text(hjust = 0.5),

panel.grid.major.y = element_blank(),

panel.grid.minor = element_blank(),

axis.text.x = element_blank(),

axis.ticks.x = element_blank(),

axis.line.x = element_blank()) + # Remove x-axis label
completely

xlab(NULL)

#go through each given gtf file
gtfNames <- names(gtfFiles)
trackTotal <- list()
gtfIt <- 0
for (gtf in gtfFiles) {

gtfIt <- gtfIt + 1

#add TE-color code if applicable
if ('class_id' %in% names(mcols(gtf))) {
clusterTracksStandard <- clusterTracksStandard +
scale_colour_manual(values = your_color_scale)

by

has_gene_name <- 'gene_name' %in% names(mcols(gtf))
has_gene_id <- 'gene_id' %in% names(mcols(gtf))

13

#MINUS
ovrlps_gtfl_minus <- findOverlaps(gtf, fgr)
ovrlpsFeat_gtfl_minus <- as.data.frame(gtf[queryHits(ovrlps_gtfl_minus)])

#Prep for clusters (include rank in metadata in gtf so
if ('rank' %in% names(ovrlpsFeat_gtfl_minus)) {
ovrlpsFeat_gtfl_minus$rank <- as.integer(ovrlpsFeat_gtfl_minus$rank)
ovrlpsFeat_gtfl_minus <-
ovrlpsFeat_gtfl_minus[ovrlpsFeat_gtfl_minus$rank <= minRank,]

by

#Prep for RMSK
if ('class_id' %in% names(ovrlpsFeat_gtfl_minus)) {
TEtotalWidth <- sum(ovrlpsFeat_gtfl_minus$width)
sum_widths_by_familyMinus <- ovrlpsFeat_gtfl_minus %>%
group_by(class_id) %>%
summarise(total_width =
sum(width) /width(fgr))
b
cl_minus <- clusterTracksStandard + ylab(paste@("", gtfNames[gtfIt], "
(=)")

if ('class_id' %in% names(ovrlpsFeat_gtfl_minus)) {
#use segments for TE
cl_minus <- cl_minus +
geom_segment (data=ovrilpsFeat_gtfl_minus, aes(x =
start, xend = end, y = 3.05, yend = 3.05, colour = class_id), linewidth = 5)

} else {
Draw rectangles (fallback to non-CDS/UTR height if 'type' 1is
missing)
if ('type' %in% names(ovrlpsFeat_gtfl_minus)) {
cl_minus <- cl_minus +
geom_rect(data=ovrlpsFeat_gtfl_minus[!grepl("CDS|UTR",
ovrlpsFeat_gtfl_minus$type),], aes(xmin = start, xmax = end, ymin = 4.9, ymax = 5.1),
fill="blue", col="black", linetype=1l) +
geom_rect(data=ovrlpsFeat_gtfl_minus[grepl("exon",
ovrlpsFeat_gtfl_minus$type),], aes(xmin = start, xmax = end, ymin = 4, ymax = 6),
fill="blue", col="black", linetype=1l) +
geom_rect(data=ovrlpsFeat_gtfl_minus[grepl("CDS",
ovrlpsFeat_gtfl_minus$type),], aes(xmin = start, xmax = end, ymin = 3, ymax = 7),
fill="blue", col="black", linetype=1l) +
geom_rect(data=ovrlpsFeat_gtfl_minus[grepl("UTR",
ovrlpsFeat_gtfl_minus$type),], aes(xmin = start, xmax = end, ymin = 4, ymax
fill="blue", col="black", linetype=1)
} else {
cl_minus <= cl_minus +
geom_rect(data=ovrlpsFeat_gtfl_minus, aes(xmin = start, xmax
= end, ymin = 4.9, ymax = 5.1), fill="blue", col="black", linetype=1)
b

6),

Prepare and draw labels: prefer gene_name, fallback to gene_id; if
neither, skip
if (has_gene_name || has_gene_id) {
label_raw_minus <- if (has_gene_name)
ovrlpsFeat_gtfl_minus$gene_name else ovrlpsFeat_gtfl_minus$gene_id
label_clean_minus <- ifelse(grepl("rank_", label_raw_minus),
sub(".xrank_", "piC-", label_raw_minus), label_raw_minus)

labels_minus_df <- ovrlpsFeat_gtfl_minus %>% 4

mutate(.label = label_clean_minus) %>%
filter(!is.na(.label) & .label != "")
group_by(.label) %>%
summarise (

start_min = if (all(is.na(start))) NA_real_ else

[)
>

min(start, na.rm = TRUE),

end_max = if (all(is.na(end))) NA_real_ else max(end,
na.rm = TRUE),
.groups = '"drop"
%>%

filter(!is.na(start_min) & !is.na(end_max)) %>%

mutate(x = (pmax(start_min, start(IRangesCoord)) +
pmin(end_max, end(IRangesCoord))) / 2)

cl_minus <= cl_minus +

geom_text(data=labels_minus_df, aes(x = x, y =5, label =

.label), color="black", size=2.5)
¥

cl_minus <- cl_minus + xlab(NULL)

ks

#PLUS
ovrlps_gtfl_plus <- findOverlaps(gtf, fgr2)
ovrlpsFeat_gtfl_plus <- as.data.frame(gtf[queryHits(ovrlps_gtfl_plus)])
#Prep for clusters (include rank in metadata in gtf so
if ('rank' %in% names(ovrlpsFeat_gtfl_plus)) {
ovrlpsFeat_gtfl_plus$rank <— as.integer(ovrlpsFeat_gtfl_plus$rank)
ovrlpsFeat_gtfl_plus <-
ovrlpsFeat_gtfl_plus[ovrlpsFeat_gtfl_plus$rank <= minRank,]
¥
#Prep for RMSK
if ('class_id' %in% names(ovrlpsFeat_gtfl_plus)) {
TEtotalWidth <- sum(ovrlpsFeat_gtfl_plus$width)
sum_widths_by_familyPlus <- ovrlpsFeat_gtfl_plus %>%
group_by(class_id) %>%
summarise(total_width =
sum(width) /width(fgr))
¥

cl_plus <- clusterTracksStandard + ylab(paste@("", gtfNames[gtfIt], "
(+)"))

if ('family_id' %in% names(ovrlpsFeat_gtfl_plus)) {
#use segments for TE
cl_plus <-= cl_plus +
geom_segment (data=ovrlpsFeat_gtfl_plus, aes(x =
start, xend = end, y = 3.05, yend = 3.05, colour = class_id), linewidth = 5)

} else {
Draw rectangles (fallback to non-CDS/UTR height if 'type' is
missing)
if ('type' %in% names(ovrlpsFeat_gtfl_plus)) {
cl_plus <= cl_plus +
geom_rect(data=ovrlpsFeat_gtfl_plus[!grepl("CDS|UTR",
ovrlpsFeat_gtfl_plus$type),], aes(xmin = start, xmax = end, ymin = 1.4, ymax = 1.6),
fill="red", col="black", linetype=1) +
geom_rect(data=ovrlpsFeat_gtfl_plus[grepl("exon",
ovrlpsFeat_gtfl_plus$type),], aes(xmin = start, xmax = end, ymin = 1, ymax = 2),
fill="red", col="black", linetype=1) +
geom_rect(data=ovrlpsFeat_gtfl_plus[grepl("CDS",

ovrlpsFeat_gtfl_plus$type),], aes(xmin = start, xmax = end, ymin = @, ymax = 3), 5

fill="red", col="black", linetype=1) +

geom_rect(data=ovrlpsFeat_gtfl_plus[grepl("UTR",
ovrlpsFeat_gtfl_plus$type),], aes(xmin = start, xmax = end, ymin = 1, ymax = 2),
fill="red", col="black", linetype=1)

} else {
cl_plus <= cl_plus +

geom_rect(data=ovrlpsFeat_gtfl_plus, aes(xmin = start,

xmax = end, ymin = 1.4, ymax = 1.6), fill="red", col="black", linetype=1)

}

Prepare and draw labels: prefer gene_name, fallback to
gene_id; if neither, skip
if (has_gene_name || has_gene_id) {
label_raw_plus <- if (has_gene_name)
ovrlpsFeat_gtfl_plus$gene_name else ovrlpsFeat_gtfl_plus$gene_id
label_clean_plus <- ifelse(grepl("rank_", label_raw_plus),
sub(".xrank_", "piC-", label_raw_plus), label_raw_plus)
labels_plus_df <- ovrlpsFeat_gtfl_plus %>%
mutate(.label = label_clean_plus) %>%
filter(!is.na(.label) & .label !'= "")
group_by(.label) %>%
summarise(
start_min = if (all(is.na(start))) NA_real_ else

%>%

min(start, na.rm = TRUE),
end_max = if (all(is.na(end))) NA_real_ else
max(end, na.rm = TRUE),

.groups
%>%
filter(!is.na(start_min) & !is.na(end_max)) %>%
mutate(x = (pmax(start_min, start(IRangesCoord)) +
pmin(end_max, end(IRangesCoord))) / 2)
cl_plus <-= cl_plus +
geom_text(data=labels_plus_df, aes(x = x, y = 1.5, label
= .label), color="black", size=2.5)
}
cl_plus <-= cl_plus + xlab(NULL)

Ild ropII

#}

#Include in last provided gtf file's minus track the x-scale with text, ticks
and line
if (gtfIt == length(gtfFiles)) {
cl_minus <- cl_minus + theme(axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
axis.line.x = element_blank()) + xlab(paste@(chromosome, ":",
start(IRangesCoord), "-", end(IRangesCoord)))
¥

#add to total list
trackBoth <- list(trackMinus = cl_minus, trackPlus = cl_plus)
trackTotal <- c(trackTotal, setNames(list(trackBoth), paste@("gtfNum", gtfIt)))

}
b
else {
#if no gtf file provided
trackTotal <- NULL
pltCvrg <- cvrg$pltCvrg
b

return(list(plotCoverageTrack = pltCvrg, trackAll = trackTotal, covg_plus = 6

cvrg$fgr.tiles.ncov3_2, covg_minus

cvrg$fgr.tiles.ncov3))

17

Mouse Pachytene piRNA Gene Targeting

Code for: Manuscript Figure 1 and Extended Data Figure 1

Introduction to files

Jupyter Notebook used R/4.4.2 and occasionally Bash.

Sample ID: 161922
GEO:
SRR:

5' Adapter: ACGACTTGGAATTCTCGGGTGCCAAGG
10 UMIs

Abbreviations

PCG: Protein Coding Genes
piC: piRNA Cluster

PG: Pseudogene

In this document, piCs are derived from MILI pachytene piCs published in Konstantinidou, et al. (2024, Cell
Reports) and ranked by PICB column ‘all_reads_primary_alignments_FPM"

piCs were created with the Bioconductor package PICB.

For code purposes (e.g. for relating piRNAs to specific piCs) piRNAs that are not from piCs have rank O.

Spini-targeting
piC-as(Spin1) - MILI pachytene rank: 19, coordinates: chr9:67732316-67772950 (+), used in this document
piC-as(Spin1) - MIWI pachytene rank: 18, coordinates: chr9:67732666-67760175 (+)

Spin1-Gene coordinates in custom Protein Coding Gene Transcriptome: chr13:1698201-1702841 (+)
Spin1-Gene coordinates in mm10 genome (min and max of all annotated transcripts in RefSeq):
chr13:51097934-51152562 (+)

Ago2-targeting

piC-as(Ago2) - MILI pachytene rank: 56, coordinates: chr4 123830771-123842320 (-), used in this
document

piC-as(Ago2) - MIWI pachytene rank: 53, coordinates: chr4 123830736-123842320 (-)

Ago2-Gene coordinates in custom Protein Coding Gene Transcriptome: chr15:1357924-1365954 (-)
Ago2-Gene coordinates in mm10 genome (min and max of all annotated transcripts in RefSeq):
chr15:73101625-73184947 (-)

Processing small RNA-seq

Mapping small RNA-seq data to mm10 genome

18

https://www.cell.com/cell-reports/fulltext/S2211-1247(24)01128-8
https://www.cell.com/cell-reports/fulltext/S2211-1247(24)01128-8
https://bioconductor.org/packages/release/bioc/html/PICB.html

for entry in “1ls raw_data/*ZL6_S7_R1l.fastq.gz ; do echo "$(basename "$entry")";
sbatch —--mem=150g --cpus-per-task=32 --time=4:00:00
./mmu_pachytene_smallRNA_mapping_labVsUMIs2_wMiRNAout_wStarSeq.sh $(basename "$entry");
done

#!/bin/bash
-e

echo "Running script"

ml fastqc/0.11.9
ml cutadapt/4.4
ml STAR/2.7.10b
ml samtools/1.17

echo "Modules successfully loaded"

file_name=$1

echo "File to be pre-processed is ${file_name}"

file_ID=$(echo "$file_name" | sed 's/\.fastq\.gz$//;s/\.fastq$//")
echo "File ID of this file: ${file ID}"

cutadapt —-a ACGACTTGGAATTCTCGGGTGCCAAGG \
——minimum-length 30 \
-j 4\
-0 prepro_data/"${file_ID}"_trimmed.fastqg.gz \
raw_data/"${file_name}" >
prepro_data/"${file_ID}"_trimmed_RemoveSmallRNA3pAdaptor_Report.txt

echo "Removed Illumina Small RNA 3' Adapter"

gunzip -c prepro_data/"${file_ID}"_trimmed.fastq.gz >
prepro_data/"${file_ID}"_trimmed.fastq

cat prepro_data/"${file_ID}"_trimmed.fastq | awk 'NR%4==2' | sort | unigq -c | awk
"{OFS= "\n"; print ">"NR"-"$1,$2}"' > prepro_data/"${file_ID}"_trimmed_collapsedA.fasta

cutadapt -u 8 -u -2 -0 prepro_data/"${file_ID}"_trimmed_collapsed.fasta
prepro_data/"${file_ID}"_trimmed_collapsedA.fasta >
prepro_data/"${file_ID}"_RemoveUMI_Report.txt

echo "UMIs removed"
echo "Removing structural RNA, index exists"

STAR —--runMode alignReads \

—=runThreadN 16 \
——genomeDir ../mmu_background/background_wmiRNAs/fasta/backgroundDirWstar/ \
—-readFilesIn prepro_data/"${file_ID}"_trimmed_collapsed.fasta \
—-alignEndsType Local \

——outFilterMatchNmin 19 \

——outFilterMultimapNmax 100 \

——outFilterMismatchNmax 1 \
——alignIntronMax 1 \
—-outReadsUnmapped Fastx \

19

——outSAMattributes NH HI NM MD AS nM \
—-outFileNamePrefix prepro_data/structuralRemoval_miRoutwStar_"${file_ID}"_

echo "Mapped to structural RNA"

echo "Continue with those RNAs that did not map to structural RNAs"
cp prepro_data/structuralRemoval_miRoutwStar_"${file_ID}"_Unmapped.out.matel \

prepro_data/"${file_ID}"_trimmed_UMIextracted_lasté6ntRem_lengthFilter_structOut_miRoutwS
.fastq

fastqc -o prepro_data/FASTQC_prepro_data/
prepro_data/"${file_ID}"_trimmed_UMIextracted_lasté6ntRem_lengthFilter_structOut_miRoutwS
. fastq

echo "fastqc of finished prepro created"

cp
prepro_data/"${file_ID}"_trimmed_UMIextracted_lasté6ntRem_lengthFilter_structOut_miRoutwS
.fastg \

cleaned_data/"${file_ID}"_trimmed_UMIextracted_last6ntRem_lengthFilter_structOut_miRoutw
S.fastq

echo "finished prepro — moved to cleaned_data"

echo "Mouse genome is already indexed in ../mmu_referenceGenome/GRCm38.p6.genDir/"
echo "Start ${file_ID} mapping"

STAR --runMode alignReads \

——runThreadN 23 \

—-—genomeDir ../mmu_referenceGenome/GRCm38.p6.genDir/ \

——readFilesIn
cleaned_data/"${file_ID}"_trimmed_UMIextracted_last6ntRem_lengthFilter_structOut_miRoutw
S.fastg \

——alignEndsType EndToEnd \

—-—outSAMattriD butes A1l \

——outSAMtype BAM SortedByCoordinate \

—-1limitBAMsortRAM 40000000000 \

——alignIntronMax 1 \

——alignSoftClipAtReferenceEnds No \

——outFilterMismatchNmax 1 \

——winAnchorMultimapNmax 100 \

——outFilterMultimapNmax 100 \

—-outReadsUnmapped Fastx \

—-outFileNamePrefix
STAROutput/smallRNAs_pach_"${file_ID}"/"${file_ID}"_trimmed_UMIcollapsed_structOut_miRou
twsS

echo "Mapped to mouse genome"

samtools index
STAROutput/smallRNAs_pach_"${file_ID}"/"${file_ID}"_trimmed_UMIcollapsed_structOut_miRou
twS_Aligned.sortedByCoord.out.bam

echo "Indexed STARoutput bam file"

echo "Done."

Preparation: PCG-Transcriptome

20

Protein-coding gene transcriptome creation with ../scripts/buildTranscriptomes.R

Mapping to PCG-transcriptome

Create fasta with all mapped reads including rank and coordinates of mapping

suppressPackageStartupMessages ({
library("GenomicRanges")
library("Biostrings")
library("BSgenome.Mmusculus.UCSC.mm10")
library(PICB)

})

Use PICBload to load piRNAs

bam_file <-
"Mouse_161922/Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMIcollapsed_structOut_mi
RoutwS_Aligned.sortedByCoord.out.bam"

myGenome <- '"BSgenome.Mmusculus.UCSC.mm10@"

alignWT_161922 <- PICBload(
BAMFILE = bam_file,
REFERENCE.GENOME = myGenome,
GET.ORIGINAL.SEQUENCE = TRUE,
VERBOSE = 0,

)

saveRDS(alignWT_161922, file =
"Mouse_161922/Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMIcollapsed_structOut_mi
RoutwS_Aligned.PICBloadWseqs.RDS")

alignWT_161922 <-

readRDS ("Mouse_161922/Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMIcollapsed_stru
ctOut_miRoutwS_Aligned.PICBloadWseqs.RDS")

alignWT_161922_unique_multiPrim <- c(alignWT_161922%unique,
alignWT_161922$multi.primary)

length(alignWT_161922_unique_multiPrim)

70317338

#get cluster coordinates (ranked!) from prev. publication (mouse MILI pachytene,
Konstantinidou et al. (2024) in Cell Reports)
load("../../../0neDrive/General/mmu_piRNA_clusters_byThenia/MILIclusters_pachytene.RData
") #MILI_prepach_regions_overl_genes

MILIclusters_pach <- MILIclusters$clusters

MILIclusters_pach <- MILIclusters_pach[order(-
MILIclusters_pach$all_reads_primary_alignments_FPM), 1]

MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM <- seq_along(MILIclusters_pach)
length(MILIclusters_pach)

4188

21

Find overlaps between piRNAs and piRNA clusters
piRNAs_fromPiC_f0 <- findOverlaps(alignWT_161922_ unique_multiPrim, MILIclusters_pach,
ignore.strand=FALSE)

mcols(alignWT_161922_unique_multiPrim)$corr_piC_rankByAllReadsPrimaryAlignmentsFPM <- @

mcols(alignWT_161922_unique_multiPrim)$corr_piC_rankByAllReadsPrimaryAlignmentsFPM[query
Hits(piRNAs_fromPiC_f0)] <-
mcols(MILIclusters_pach[subjectHits(piRNAs_fromPiC_f0)]1)$rankByAllReadsPrimaryAlignments
FPM

length(alignWT_161922_unique_multiPrim)

70317338

#add to readname rank_chr_startPos_strand

seq <- alignWT_161922_unique_multiPrim$seq

names(seq) <- paste@(names(alignWT_161922_unique_multiPrim), "_rank",
alignWT_161922_unique_multiPrim$corr_piC_rankByAllReadsPrimaryAlignmentsFPM, "_",
segnames (alignWT_161922_unique_multiPrim), "_", start(alignWT_161922_unique_multiPrim),
strand(alignWT_161922_unique_multiPrim), "_NH", alignWT_161922_unique_multiPrim$NH)

save sequences of piRNAs with readname infos in fasta format

writexStringSet(seq,
file="Mouse_161922/Mouse_161922_testes_small_RNAs_ZL6_S7_R1l_trimmed_UMIcollapsed_structO
ut_miRoutwS_Aligned.PICBloadWseqs.primAlignWinfo.fasta")

Mapping to PCG-Exon-Transcriptome

Indexing Transcriptome
Bash

#BASH, generateGenome
STAR --runMode genomeGenerate \

——genomeDir
««/+./../0neDrive/General/mmu_referenceGenome/PCG_transcriptome/transcriptomeDir \

—-genomeSAindexNbases 6 \

—--genomeFastaFiles
«+/+./../0neDrive/General/mmu_referenceGenome/PCG_transcriptome/mml@_PCGtranscriptome_co
1lapsed_prioritizedCDS3UTR5UTR _allgenes.fasta \

—=limitGenomeGenerateRAM 34173092106\

—=runThreadN 23

Mar 21 14:55:36 started STAR run

Mar 21 14:55:36 ... starting to generate Genome files

Mar 21 14:55:37 ... starting to sort Suffix Array. This may take a long time...
Mar 21 14:55:37 ... sorting Suffix Array chunks and saving them to disk...
Mar 21 14:56:24 ... loading chunks from disk, packing SA...

Mar 21 14:56:25 ... finished generating suffix array

Mar 21 14:56:25 ... generating Suffix Array index

Mar 21 14:56:25 ... completed Suffix Array index

Mar 21 14:56:25 ... writing Genome to disk ...

Mar 21 14:56:25 ... writing Suffix Array to disk ...

Mar 21 14:56:25 ... writing SAindex to disk

Mar 21 14:56:25 finished successfully

Mapping to Transcriptome
22

o
Q
%)
>

addFastaChange=""
addMappingChange="clip5pNbasesl_Extend5p0fReadl_minMatch19"

#bash
input_fasta="Mouse_161922/Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMIcollapsed_
structOut_miRoutwS_Aligned.PICBloadWseqs.primAlignWinfo.fasta"

#minimum Match of 19 nt, to restrict soft-clipping
STAR --runMode alignReads \

——runThreadN 20 \

——genomeDir
«+/+:/../0neDrive/General/mmu_referenceGenome/PCG_transcriptome/transcriptomeDir/ \

——readFilesIn $input_fasta \

——clip5pNbases 1 \

——alignEndsType Extend5pOfReadl \

——outSAMattributes All \

—--outSAMtype BAM SortedByCoordinate \

——1imitBAMsortRAM 20000000000 \

——alignIntronMax 1 \

——alignSoftClipAtReferenceEnds No \

——outFilterMismatchNmax 1 \

——outFilterMatchNmin 19 \

—-winAnchorMultimapNmax 100 \

——outFilterMultimapNmax 100 \

——outReadsUnmapped Fastx \

—-outFileNamePrefix
pachTargetingGenes_PCG/Mouse_161922/PCG_Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed
_UMIcollapsed_structOut_miRoutwS_Aligned.PICBloadWseqs.primAlignWinfo.${addFastaChange}.
PCGtranscriptome_${addMappingChange}_

echo "Mapped to PCG_EXON transcriptome"

Mar 24 10:03:10 started STAR run

Mar 24 10:03:10 loading genome

Mar 24 10:03:10 started mapping

Mar 24 10:05:21 started sorting BAM
Mar 24 10:05:24 finished successfully

Mapped to PCG_EXON transcriptome

suppressPackageStartupMessages({library(Rsamtools)})
#indexBam for every Bam in the folder pachTargetingGenes_PCG/Mouse_161922/ in R
for (bam in list.files("pachTargetingGenes_PCG/Mouse_161922", pattern="\\.bams$",
full.names=TRUE)) {

indexBam(bam)

}

Which genes are targeted by pachytene piRNAs?

Prep - Load alignments and gene annotations

suppressPackageStartupMessages ({
library(GenomicRanges)

library(Rsamtools)
23

library(GenomicAlignments)
library(tidyr)
library(dplyr)
library(ggplot2)
library(ggrepel)
library(patchwork)
library(Biostrings)
library(UniProt.ws)
library(scales)
library(SVbyEye)
library(Rsubread)
library(DESeq2)
library(PICB)
library(openxlsx)
library(BSgenome.Mmusculus.UCSC.mm10)
})

source("../scripts/plotCoverage.R")

Load BAM file of piRNAs targeting protein coding genes

bamPCG_dir <-
"../data/bam/mmuToTranscriptome/PCG_Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMI
collapsed_structOut_miRoutwS_Aligned.PICBloadWseqs.primAlignWinfo..PCGtranscriptome_clip
5pNbasesl_Extend5p0OfReadl_minMatch19_Aligned.sortedByCoord.out.bam"

bam <- BamFile(bamPCG_dir)

exclude both secondary alignments and supplementary alignments

fields <- scanBamWhat()

primary_flag <- scanBamFlag(isSecondary = FALSE, isSupplementary = FALSE)

param <- ScanBamParam(flag = primary_flag,
what=c('qname', 'flag', 'rname', 'strand', 'pos', 'qwidth', ‘'cigar', 'seq'),
tag=c('NH', "MD"))

ga_all_alignments <- readGAlignments(bam, param = param)

PCG_total_reads <- length(ga_all_alignments)

ga_alignments <- ga_all_alignments[mcols(ga_all_alignments)$NH == 1] #filter by unique
alignments

PCG_unique_reads <- length(ga_alignments)

gr_alignments <- makeGRangesFromDataFrame(as.data.frame(ga_alignments),
keep.extra.columns=TRUE)

mcols(gr_alignments) <- mcols(gr_alignments)[, !(colnames(mcols(gr_alignments)) %in%
c("njunc", "strandInfo", "rname", "strand.1", "pos", "gwidth.1", "cigar.1", "qual"))]

load annotation of the protein coding genes

geneAnnotation_PCG_EXON_dir <-
"../data/annotations/customTranscriptomes/mml0_PCGtranscriptome_collapsed_prioritizedCDS
3UTR5UTR_allgenes.gtf"

#geneAnnotation_PCG_EXON <— rtracklayer::import(geneAnnotation_PCG_EXON_dir)

Import GTF file without rtracklayer (issues with installation)
read_gtf <- function(file_path) {
Read the GTF file - changed start/end to numeric first, then convert to integer
gtf_data <- read.table(file_path, sep="\t", quote="",
col.names=c("seqname", "source", "feature", "start", "end",
"score", "strand", "frame'", "attribute"),
colClasses=c("character", '"character", "character", "numer%g",

"numeric",
"character", "character", "character", "character"))

Convert coordinates to integer after reading
gtf_data$start <- as.integer(gtf_data$start)
gtf_data$end <- as.integer(gtf_datas$end)

Function to extract attributes

extract_attribute <- function(attr, key) {
val <- sub(paste@(".x", key, "\\s+\"?2([~;\"I+)\"?2.x"), "\\1", attr)
ifelse(val == attr, NA, val)

}

Extract common attributes

gtf_data$gene_id <- extract_attribute(gtf_data$attribute, "gene_id")
gtf_data$transcript_id <- extract_attribute(gtf_data$attribute, "transcript_id")
gtf_data$gene_name <- extract_attribute(gtf_data$attribute, "gene_name")

return(gtf_data)

geneAnnotation_PCG <- read_gtf(geneAnnotation_PCG_EXON_dir)

geneAnnotation_PCG <- makeGRangesFromDataFrame(geneAnnotation_PCG,
keep.extra.columns = TRUE,
seqnames.field = "segname",
start.field = "start",
end.field = "end",
strand.field = "strand")

geneAnnotation_PCG_gene <- geneAnnotation_PCG[geneAnnotation_PCG$feature == 'gene"]

load gene coordinates of collapsed, prioritized (CDS > 3UTR > 5UTR) genes in mml@
genome

genes_dir <- "../data/annotations/mm1@_collapsed_prioritizedCDS3UTR5UTR.gtf"

genes <- rtracklayer::import(genes_dir)

#piRNA cluster coordinates from Konstantinidou et al. (2024) in Cell Reports and rank
load("../data/annotations/MILIclusters_pachytene.RData")
MILIclusters_pach <- MILIclusters$clusters

MILIclusters_pach <- MILIclusters_pach[order(-
MILIclusters_pach$all_reads_primary_alignments_FPM), |
MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM <- seq_along(MILIclusters_pach)
MILIclusters_pach <- keepStandardChromosomes(MILIclusters_pach)

paste@("Number of piRNA clusters in MILI pachytene by PICB: ",
length(MILIclusters_pach))

'Number of piRNA clusters in MILI pachytene by PICB: 4188'

load alignments to mml@ genome
gr_mm1l@ <- PICBload(

BAMFILE =
"../data/bam/Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMIcollapsed_structOut_miR
outwS_Aligned.sortedByCoord.out.bam",

25

REFERENCE.GENOME = "BSgenome.Mmusculus.UCSC.mm10",
GET.ORIGINAL.SEQUENCE = TRUE, VERBOSE = FALSE, WHAT = c("flag", "cigar"))

gr_mml@_prim <- c(gr_mml@$unique, gr_mml@$multi.primary)

genome_total_reads <- length(gr_mm1@_prim)

message ("Number of reads mapped to mml@ (primary alignments): ", genome_total_reads)
gr_mml@_prim <- keepStandardChromosomes(gr_mml@_prim)

gr_mmlQ <- gr_mml@$unique

genome_unique_reads <- length(gr_mm10)

message("Number of reads mapped to mml@ (unique alignments only): ",
genome_unique_reads)

gr_mml0@ <- keepStandardChromosomes(gr_mm1Q)

gr_mmlo$qgname <- names(gr_mml0)

Number of reads mapped to mml@ (primary alignments): 70317338

Number of reads mapped to mml@ (unique alignments only): 64104551

Genes targeted by piRNAs (Fig 1a)

Initialize result dataframe with all genes
topPiCtarget_df <- data.frame(
geneName = geneAnnotation_PCG_gene$gene_name,
topContribPiCrank = "0",
topPercentage = 0,
bypiCtargeting_percentage = 0,
top_piC_percentage = 0,
cisTargeting = FALSE,
stringsAsFactors = FALSE
)

Create function to get top contributing piC and percentage
get_top_piC_info <~ function(overlaps) {
if (length(overlaps) == 0) {
return(c("0", 0, 0, 0))

I
Extract rank information using vectorized operations
ranks <- sub("_|_", "", sub("rank|_", "", regmatches(overlaps$qgname,

regexpr("rank(.*?)_", overlaps$qname))))
rank_table <- table(ranks)
top_rank <- names(which.max(rank_table))
top_percentage <- max(rank_table) / length(overlaps)
Get the percentage of targeting by piC

bypiCtargeting_percentage <- sum(rank_table[names(rank_table) !'= "0"]) /
length(overlaps)
if (top_rank == "0") {

sorted_counts <- sort(rank_table, decreasing = TRUE)
second_largest <- sorted_counts[2]

top_piC_percentage <- second_largest / length(overlaps)
} else {
top_piC_percentage <- top_percentage

if (is.na(top_piC_percentage)) {
top_piC_percentage <- 0

return(c(top_rank, top_percentage, top_piC_percentage, bypiCtargeting_percentag@))

}

Get all overlaps at once
all_overlaps <- findOverlaps(invertStrand(geneAnnotation_PCG_gene), gr_alignments)

Split overlaps by gene
overlaps_by_gene <- split(gr_alignments[subjectHits(all_overlaps)],
queryHits(all_overlaps))

Apply function to each gene's overlaps
results <- lapply(overlaps_by_gene, get_top_piC_info)

Update only the rows that have overlaps

genes_with_overlaps <- as.numeric(names(overlaps_by_gene))
topPiCtarget_df$totalPiRNAcount <- countOverlaps(invertStrand(geneAnnotation_PCG_gene),
gr_alignments)

topPiCtarget_df$topContribPiCrank[genes_with_overlaps] <- sapply(results, "[*, 1)
topPiCtarget_df$topPercentage[genes_with_overlaps] <- as.numeric(sapply(results, ‘[,
2))

topPiCtarget_df$bypiCtargeting_percentage[genes_with_overlaps] <-
as.numeric(sapply(results, "[*, 3))
topPiCtarget_df$top_piC_percentagel[genes_with_overlaps] <- as.numeric(sapply(results,
[, 4))

rownames (topPiCtarget_df) <- topPiCtarget_df$geneName

After updating topContribPiCrank and topPercentage, update cisTargeting
inverted_clusters <- invertStrand(MILIclusters_pach)
topContribPiCrank_numeric <- as.numeric(as.character(topPiCtarget_df$topContribPiCrank))

for (i in seq_len(nrow(topPiCtarget_df))) {
geneNamel <- topPiCtarget_df$geneName[i]
gene_overlaps <- subsetByOverlaps(
inverted_clusters,
genes [genes$gene_id == geneNameI])$rankByAllReadsPrimaryAlignmentsFPM
topPiCtarget_df$cisTargeting[i]l <- topContribPiCrank_numeric[i] %in% gene_overlaps

Filter for non-cis targeted genes and order by totalPiRNAcount
targetingByPiRNAsSbO_sorted_total_tra <- topPiCtarget_df[topPiCtarget_df$cisTargeting ==
FALSE,]

message("Number of genes in antisense orientation to piRNA clusters and therefore
removed: ", nrow(topPiCtarget_df) - nrow(targetingByPiRNAsSbO_sorted_total_tra))
targetingByPiRNAsSbO_sorted_total_tra <-
targetingByPiRNAsSbO_sorted_total_tralorder(targetingByPiRNAsSbO_sorted_total_tra$totalP
iRNAcount, decreasing=TRUE),]

Calculate percentage of targeting piRNAs for each gene

readsTargetingPCGs <- sum(targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount)
targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAperc <-
(targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount/readsTargetingPCGs)*100
targetingByPiRNAsSbO_sorted_total_tra$targetedRank <-
l:nrow(targetingByPiRNAsSb0_sorted_total_tra)

Number of genes in antisense orientation to piRNA clusters and therefore remove
d: 157

27

establish targeting threshold

topPercentageCS <- 0.7

cumsum_totalPiRNAcount <- cumsum(targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount)
cumsum_targetingThreshold <- readsTargetingPCGs*xtopPercentageCS
print(paste@(topPercentageCSx100, "% threshold value: ", cumsum_targetingThreshold))
genes_targetingThreshold <- which(cumsum_totalPiRNAcount >= cumsum_targetingThreshold)
[1]

paste@("", genes_targetingThreshold)

[1] "70% threshold value: 484348.2"
l88l

options(repr.plot.width=12, repr.plot.height=7)
plot_la_full <-
ggplot(targetingByPiRNAsSbO_sorted_total_traltargetingByPiRNAsSbO_sorted_total_tra$total
PiRNAcount != 0,1,
aes(x = targetedRank, y
geom_vline(xintercept =

= logl0(totalPiRNAperc), group = 1)) +
0:genes_targetingThreshold, color = "#ffffff", alpha = 0.3)
+

scale_x_continuous(breaks = seq(1,
nrow(targetingByPiRNAsSbO_sorted_total_tral[targetingByPiRNAsSbO_sorted_total_tra$totalPi
RNAcount !'= 0,]), by = 2000)) +

geom_line(linewidth = 1) +

theme_classic() +

annotation_logticks(base = 10, sides = "1", short = unit(0.02, "cm"), mid =
unit(0.04, "cm"), long = unit(0.06, "cm")) +
theme (

axis.text.x
axis.text.y
axis.title.x
axis.title.y

element_text(angle = 45, hjust = 1, size = 7),
element_text(size = 7),
element_text(size),
element_text(size)

=7
=7
) +

labs (
X

Yy

""Ranked Genes by piRNA Targeting",
"mRNA-targeting piRNA (%, logl0)"

)

plot_la_full

28

mRNA-targeting piRNA. (%, log10)

e%’

N
®
Ranked Genes by piRNA Targeting

options(repr.plot.width=12, repr.plot.height=7)

Get the data for specified genes

highlight_genes <- c('Spinl')

gene_data <- targetingByPiRNAsSbO_sorted_total_tral
targetingByPiRNAsSbO_sorted_total_tra$geneName %in% highlight_genes,]

Create plot with highlighted genes and corrected ranks
plot_lalnset <-
ggplot(targetingByPiRNAsSbO_sorted_total_trall:genes_targetingThreshold,],
aes(x = targetedRank, y = totalPiRNAperc, group = 1)) +
geom_1line(linewidth = 1, color = "black") +
geom_point(color = "#9662A9", size = 1.5) +
scale_x_continuous(breaks = seq(1, nrow(targetingByPiRNAsSbO_sorted_total_tra), by =
20)) +
Add highlighted points with different color/size to make them stand out
geom_point(data = gene_data, color = "#9662A9", size = 1.5) +
Add labels for highlighted genes
geom_text(data = gene_data,
aes(label = sapply(geneName, function(g) {
count <-
targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount [targetingByPiRNAsSbO_sorted_total_
tra$geneName == g]
ppm <- round((count / readsTargetingPCGs) * le6, 1)
paste@(g, " Rank: ",
match(g, targetingByPiRNAsSbO_sorted_total_tra$geneName),

* 1", ppm, " ppm]")
),
color = "#9662A9",
vjust = -0.2, # Single value for single gene
hjust = -0.1, # Single value for single gene

size = 2.5) +
theme_classic() +
theme (
axis.text.x = element_text(size = 7),
29

axis.text.y = element_text(size = 7),

axis.title.x = element_text(size = 7),
axis.title.y = element_text(size = 7)
) +
labs (

x = paste@("Ranked Genes by piRNA Targeting \n(Top ", genes_targetingThreshold,
" genes account for ", topPercentageCSx100, "% of all targeting)"),
y = "piRNA Targeting (%)"
)

plot_lalnset

PIRNA Targeting (%)

1 21 41 61 81
Ranked Genes by piRNA Targeting
(Top 88 genes account for 70% of all targeting)

Scatter plot of mMRNA target length and the log10-transformed percentage of targeting
piRNAs (Fig 1c)

Get Pseudogene Information and associate with piRNA clusters and genes they target

#load pseudogenes, download by UCSC
pseudogenes_dir <- "../data/annotations/mml0_retroGenesV6.gtf"
pseudogenes <- rtracklayer::import(pseudogenes_dir)

prefilter piRNA clusters that are generally targeting PCG genes

maxPiC <=
max(as.integer(targetingByPiRNAsSbO_sorted_total_tral[l:genes_targetingThreshold,]$topCon
tribPiCrank))

message("Only considering top ", maxPiC, " piRNA clusters since top ",
genes_targetingThreshold, " targeted genes only are targeted by that max rank.')
MILIclusters_pachSubset <-
MILIclusters_pach[MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM <= maxPiC]
pseudogenesRGOvrlp <- subsetByOverlaps(pseudogenes,
invertStrand(MILIclusters_pachSubset))

pseudogenesRGOvrip$parent_transcript <- sub(™\\..x", , pseudogenesRGOvrlps$gene_id)
unique_transcripts <- unique(pseudogenesRGOvrlp$parent_transcript)

30

Only considering top 127 piRNA clusters since top 88 targeted genes only are tar
geted by that max rank.

Extract gene names from parent_transcripts of pseudogenes (so they can be matched with
our gene annotations)

load UniProt.ws for mouse

mmuUp <- UniProt.ws(10090)

mmuUp

Get gene_name for a parent_transcript
columns = c('gene_primary")
getGeneName <- function(transcript) {
if (grepl("~NM", transcript)){
keytype = c("RefSeq_Nucleotide")
} else {
keytype

c("EMBL-GenBank-DDBJ")
¥

result <- select(mmuUp, keys = transcript, keytype = keytype, columns = columns)

if (nrow(result) > 0) {
return(result$Gene.Names..primary. [1])
} else {
return(NA)
I
b

Create a mapping of parent_transcript to gene_name
transcript_to_gene <- sapply(unique_transcripts, getGeneName)

Update parent_id in pseudogenes
pseudogenesRGOvrilp$parent_id <- transcript_to_gene[pseudogenesRGOvrip$parent_transcript]

Error in curl::curl_fetch_memory(url, handle = handle): Could not resolve hostna
me [rest.uniprot.org]:

Could not resolve host: rest.uniprot.org

Traceback:

1. queryUniProt(query = paste@("taxonomy_id:", taxId), fields = c("accession",
"organism_name"), n = 25, pageSize = 25)
2. .uniprotPages(FUN = .searchPaged, query = query, fields = fields,
collapse = collapse, n = n, pageSize = pageSize)
3. FUN(url = url, ..., pageSize = pageSize)
4. httpcache::GET(url = url, query = list(query = paste(query, collapse = collap
se),
fields = paste(fields, collapse = ","), format = "tsv'", size = pageSize))
httr::GET(url, ...)
request_perform(req, hu$handle$handle)
request_fetch(req$output, req$url, handle)
request_fetch.write_memory(req$output, req$url, handle)
curl::curl_fetch_memory(url, handle = handle)
0. raise_libcurl_error(6L, "Could not resolve hostname", "Could not resolve hos
rest.uniprot.org",
"https://rest.uniprot.org/uniprotkb/search?query=taxonomy_id%3A10090&fie
lds=accession%2Corganism_name&format=tsv&size=25",
. NULL)
11. stop(e)

R O0~JO WU

31

#look up NAs in parent_id by hand and replace with actual gene name (of parent from PG)
unique(pseudogenesRGOvrip[is.na(pseudogenesRGOvrip$parent_id)]$parent_transcript)

#replace parent_id of parent_transcripts manually

EseudogenesRGOvrlp[pseudogenesRGOvr1p$parent_transcript == "AK209531"]1$parent_id <-

EéggggﬁenesRGOvrlp[pseudogenesRGOvrlp$parent_transcript == "NR_027488"1$parent_id <-
Ei:BSiﬁenesRGOvrlp[pseudogenesRGOvrlp$parent_transcript == "BC006068"]$parent_id <-

pEEE%?genesRGOvrlp[pseudogenesRGOvr1p$parent_transcript == "AK076357"]$parent_id <-

"Ddx11"

'AK209531" - 'NR_027488" - 'BCO06068' - '"AK076357'

Find overlaps
overlaps <- findOverlaps(pseudogenesRGOvrlp, invertStrand(MILIclusters_pachSubset))

Extract ranks based on overlaps

ranks <- rep(NA, length(pseudogenesRGOvrlip))

ranks [queryHits(overlaps)] <-
MILIclusters_pachSubset$rankByAllReadsPrimaryAlignmentsFPM[subjectHits(overlaps)]

Add rank to pseudogenesRGOvrip
pseudogenesRGOvrlp$rankByAllReadsPrimaryAlignmentsFPM <- ranks

Get unique pairs
unique_pairs <- unique(data.frame(
parent_id = mcols(pseudogenesRGOvrlp)$parent_id,

rank = mcols(pseudogenesRGOvrlp)$rankByAllReadsPrimaryAlignmentsFPM
))

Sort by cluster_rank if desired
unique_pairs <- unique_pairs[order(unique_pairs$rank),]

unique_pairs$geneTop250targeted <- unique_pairs$parent_id %in% topPiCtarget_df$geneName

Add Uncll9b row (unannotated Pseudogene)
unique_pairs <- rbind(
unique_pairs,
data. frame(
parent_id = "Unc119b",
rank =
targetingByPiRNAsSbO_sorted_total_traltargetingByPiRNAsSbO_sorted_total_tra$geneName ==
"Unc119b", 1$topContribPiCrank,
geneTop250targeted = TRUE,
stringsAsFactors = FALSE

A data.frame: 17 x 3
parent_id rank geneTop250targeted

<chr> <chr> <lgl>

207 lpmk 6 TRUE
32

parent_id rank geneTop250targeted

<chr> <chr> <lgl>

354 Spin1 19 TRUE
385 Crxos 23 TRUE
421 Pphin1 25 TRUE
361 Rpl10 28 TRUE
419 Slc25a4 41 TRUE
43 Arhgap20 42 TRUE
305 Senp2 43 TRUE
1 Ago?2 56 TRUE

9 Arpch 56 TRUE
435 Mark?2 65 TRUE
156 Stambp 67 TRUE
374 Ddx11 70 TRUE
35 Arpch 110 TRUE
403 Rpl7a 13 TRUE
328 Senp2 120 TRUE
1" Unc119b 46 TRUE

Initialize PGasToTopPiC, check if gene is targeted by a piC that contains 1its
Pseudogene

targetingByPiRNAsSbO_sorted_total_tra$PGasToTopPiC <- FALSE
targetingByPiRNAsSbO_sorted_total_tra$PGasToTopPiC[targetingByPiRNAsSb0O_sorted_total_tra
$topContribPiCrank == 0] <- NA

for (gene in targetingByPiRNAsSbO_sorted_total_tra$geneName) {
if (gene %in% unique(unique_pairs$parent_id)) {

assRank <- na.omit(unique_pairs[unique_pairs$parent_id == gene, "rank"])
for (rank in assRank) {
if

(targetingByPiRNAsSbO_sorted_total_tral[targetingByPiRNAsSbO_sorted_total_tra$geneName ==
gene,]$topContribPiCrank == rank) {

targetingByPiRNAsSbO_sorted_total_tra[targetingByPiRNAsSbO_sorted_total_tra$geneName ==
gene,]$PGasToTopPiC <- TRUE
}
}

#get total coverage of targeting of gene
gr_alignments_red <- reduce(gr_alignments)

Calculate overlap widths for matches

overlapsPiRNAsRedGenes <- findOverlaps(gr_alignments_red, 3

invertStrand(geneAnnotation_PCG_gene))
overlap_widths <-
tapply(width(pintersect(gr_alignments_red[queryHits(overlapsPiRNAsRedGenes)],

invertStrand(geneAnnotation_PCG_gene[subjectHits(overlapsPiRNAsRedGenes)]))),
subjectHits(overlapsPiRNAsRedGenes), sum)

Create a vector of length equal to number of genes in geneAnnotation_PCG_gene
full_overlap_widths <- numeric(length(geneAnnotation_PCG_gene))

Fill in the actual overlap values where they exist
full_overlap_widths[as.numeric(names(overlap_widths))] <- overlap_widths

Create dataframe with all genes and their coverage
all_genes <- geneAnnotation_PCG_gene$gene_name
percentageCoverage_df <- data.frame(

geneName = all_genes,

targetingCoverage_bp = full_overlap_widths

)

Merge with targeting dataframe
targetingByPiRNAsSbO_sorted_total_tra <- merge(
targetingByPiRNAsSbO_sorted_total_tra,

percentageCoverage_df,
by = "geneName"
)

targetingByPiRNAsSbO_sorted_total_tra <-
targetingByPiRNAsSbO_sorted_total_tralorder(targetingByPiRNAsSbQO_sorted_total_tra$totalP
iRNAcount, decreasing=TRUE),]

plot_targetingCoverage <-
ggplot(targetingByPiRNAsSbO_sorted_total_trall:genes_targetingThreshold,], aes(x =
targetingCoverage_bp/1000, y = logl@(totalPiRNAperc))) +
geom_point(color = "#9764aa", alpha = 1, size = 1) +
geom_text_repel(aes(label = geneName),
size = 2.5,
box.padding = 0.5,
max.overlaps = 10) +
annotation_logticks(base = 10, sides = "1", short = unit(0.02, "cm"), mid = unit(0.04,
"cm"), long = unit(0.06, "cm")) +
theme_classic() +

labs (
x = "mRNA target-sequence (kb)",
y = "piRNA Targeting (%, logl0)"
) +
theme (
plot.title element_text(size 7, face = "bold"),

axis.title = element_text(size = 7),
axis.text = element_text(size = 7),
legend.position = "none"

)

plot_targetingCoverage

Warning message:
"ggrepel: 46 unlabeled data points (too many overlaps). Consider increasing max.
overlaps"

34

Spint
/

Rah13
05 Unc119b
Ptchd3
Aot \
Cds2 ‘pmk/
DdeO\

Cer2
0

o
/

Pphint 2(p280b
Vpst6—s , s ;5929 /P"”“g o Agu2/

\ .
AI182371
AN
Pegto §__——Gms544

*~spin2c /Mems
.

Y /Ddxﬁ

PIRNA Targeting (%, log10)

vmn272*

/IlgaA
& Tex16
Fnlpz\/. %,

TpdS2 Tex24
Fbxw7 Gm5114

Dock4 /
>"m\wmm Cldn34c1 Pl
Pmp22 . Pmp
-051 . P4
oo

Ube2j2
“ .

- Nufipt
%% * LF
o 2610524H06RK" _ Pplat o SHint4
o, . /

° Ceng Psg16
2Zfp4ass

/ 7 \ Cd209c

Pate2 Pdesa Fam227a

0 1 2 3
mRNA target-sequence (kb)

piRNA Cluster origins of targeting piRNAs (Fig. 1e, Extended Data Fig. 1d)

Fraction of piRNAs derived from their most targeting piRNA cluster

options(repr.plot.width=8, repr.plot.height=8)

only label dots that rank 15 or higher in targeting
temp_targetingByPiRNAsSbO_sorted_total_tra <- targetingByPiRNAsSbO_sorted_total_tra %>%
mutate(label = if_else(targetedRank < 15, geneName, NA_character_))

plot fraction of targeting piRNAs from its top targeting piRNA cluster
plot_scTopPer <-
ggplot(temp_targetingByPiRNAsSbO_sorted_total_tral[l:genes_targetingThreshold,], aes(x =
targetedRank, y = top_piC_percentagex100)) +
geom_point(color = "#ed1c24", alpha = 0.5, size = 1) +
geom_text_repel(aes(label = label),
size = 2.5,
box.padding = 0.5,
max.overlaps = 10,
na.rm = TRUE) +
scale_color_identity() +
theme_classic() +
labs(y = "Fraction of targeting piRNAs from its top targeting piC", x = "Ranked
targeted genes (1-88)") +
ylim(0, 100)

plot_scTopPer

35

Acox1 Ddx60 Stambp
100 S
{ 3
Ipmk Vps16

Unctisb |
Cds2

Rdh13 -

N
Ptchd3

. Spint ‘ Ago2
Cchi

N
2(p2800

50

Fraction of targeting piRNAs from its top targeting piC

Gne

0 25 50 75
Ranked targeted genes (1-88)

Fraction of gene-targeting piRNAs that originate from piRNA clusters that are not directly
overlapping with the specific gene (in trans)

put alignments to PCG transcriptome into context with the genes they target

match read names, which include (among other things) information about the piC they
came from (rank) and their original read name (when mapped to mml@)

PCG_as_name_df <- as.data.frame(findOverlaps(gr_alignments,
invertStrand(geneAnnotation_PCG_gene)))

PCG_as_name_df$gene_name <-
geneAnnotation_PCG_gene[as.numeric(PCG_as_name_df$subjectHits),]$gene_id
PCG_as_name_df$read_name <- sub("_.x", "",
gr_alignments[as.numeric(PCG_as_name_df$queryHits), 1$qgname)
PCG_as_name_df$read_nameWInfo <-
gr_alignments[as.numeric(PCG_as_name_df$queryHits), 1$gname

PCG_as_name_df$rankOrigin <- sub("_|_", "", sub("rank|_", "",
regmatches(gr_alignments[as.numeric(PCG_as_name_df$queryHits), 1$gname,
regexpr("rank(.*?)_", gr_alignments[as.numeric(PCG_as_name_df$queryHits),]1$qgname))))

Precompute read—gene pairs from a single overlap against invertStrand(genes)

inv_genes <- invertStrand(genes)

hits <- findOverlaps(gr_mml@_prim, inv_genes)

get read name - gene pairs that are antisense to eachother in mml@

mm10_as_pair <- unique(paste@(names(gr_mml@_prim) [as.integer(queryHits(hits))1, "\r",
inv_geness$gene_id[as.integer(subjectHits(hits))]1))

Mark cis if (read_name, gene_name) observed in the precomputed pairs

36

PCG_as_pair <- paste@(PCG_as_name_df$read_name, "\r'", PCG_as_name_df$gene_name)
PCG_as_name_df$cis_piRNA <- PCG_as_pair %in% mml@_as_pair

all genes

targeting in trans

nrow(PCG_as_name_df [!PCG_as_name_df$cis_piRNA, 1) /nrow(PCG_as_name_df)

targeting in trans and from piRNA cluster

nrow(PCG_as_name_df [(!PCG_as_name_df$cis_piRNA) & (PCG_as_name_df$rankOrigin !=
0),]1)/nrow(PCG_as_name_df[!PCG_as_name_df$cis_piRNA,])

0.810230904999606
0.823757422229409

top targeted genes (88)
PCG_as_name_df_topTargetedGenes <- PCG_as_name_df [PCG_as_name_df$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tra$geneName[l:genes_targetingThreshold],]

targeting in trans
nrow(PCG_as_name_df_topTargetedGenes[!PCG_as_name_df_topTargetedGenes$cis_piRNA,])/nrow(
PCG_as_name_df_topTargetedGenes)

targeting in trans and from piRNA cluster
nrow(PCG_as_name_df_topTargetedGenes[(!PCG_as_name_df_topTargetedGenes$cis_piRNA) &
(PCG_as_name_df_topTargetedGenes$rankOrigin !=
0),])/nrow(PCG_as_name_df_topTargetedGenes[!PCG_as_name_df_topTargetedGenes$cis_piRNA,])

0.964916661851023
0.859357521287267

for top-targeted genes, fraction targeted by piRNAs from piRNA cluster (given that
they are trans targeting)
PCG_as_name_df_topTargetedGenes <- PCG_as_name_df[PCG_as_name_df$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tra$geneName[l:genes_targetingThreshold], |
transTargetingPiCpiRNAs <-
nrow(PCG_as_name_df_topTargetedGenes[(!PCG_as_name_df_topTargetedGenes$cis_piRNA) &
(PCG_as_name_df_topTargetedGenes$rankOrigin !=
0),1)/nrow(PCG_as_name_df_topTargetedGenes[!PCG_as_name_df_topTargetedGenes$cis_piRNA,])
transTargetingPiCpiRNAs
Create a data frame with this value
data <- data.frame(

category = c("transTargetingPiCpiRNAs", "Other"),

value = c(transTargetingPiCpiRNAs, 1-transTargetingPiCpiRNAs)
)

Create the pie chart
options(repr.plot.width=4, repr.plot.height=4)
plot_byPiCTarg <- ggplot(data, aes(x = "", y = value, fill = category)) +
geom_bar(stat = "identity", width = 1, alpha=0.5) +
coord_polar(theta = "y") +
scale_fill_manual(values = c("lightgrey", "#ed1c24")) +
theme_void() +
theme(legend.position = "none")

plot_byPiCTarg

0.859357521287267

37

Contribution of individual piRNA clusters to targeting (by their top, second, and third most
contributing piC, other piCs and non-piC regions)

filter custom PCG transcriptome coordinates of top targeted genes

subset_tra_gr <- geneAnnotation_PCG_gene[geneAnnotation_PCG_gene$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tral[l:genes_targetingThreshold,]$geneName]

add totalPiRNAcounts and targetedRank to GRange object
mcols(subset_tra_gr)$totalPiRNAcount <-
targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount [match(mcols(subset_tra_gr)$gene_na
me, targetingByPiRNAsSbO_sorted_total_tra$geneName)]

mcols(subset_tra_gr)$targetedRank <-
targetingByPiRNAsSbO_sorted_total_tra$targetedRank[match(mcols(subset_tra_gr)$gene_name,
targetingByPiRNAsSbO_sorted_total_tra$geneName)]

get table with piC-rank targeting contributions per gene
rank_piC_info <- function(overlaps) {
if (length(overlaps) == 0) {
return(c("0", 0, 0))

}
Extract rank information using vectorized operations
ranks <- sub("_|_", "", sub("rank|_", "", regmatches(overlaps$gname,

regexpr("rank(.x?)_", overlaps$gname))))
rank_table <- table(ranks)

return(rank_table)

}

Get all targeting piRNAs in relation to the gene they target
overlap_hits <- findOverlaps(invertStrand(subset_tra_gr), gr_alignments)

Split targeting piRNAs by gene
alignments_by_gene <- split(gr_alignments[subjectHits(overlap_hits)],
queryHits(overlap_hits))

For each gene run rank_piC_info for table with piC-rank targeting contributions
piC_rank_summaries <- lapply(alignments_by_gene, rank_piC_info)

Retrieve top contributing piC and percentage
Separate piRNAs not from piCs and those from piCs that contribute < 5%
process_rank_contributions <- function(rank_table, total_count) {

Convert gene's piC_rank_summaries table to named vector and calc fractions sg

contributions <- as.vector(rank_table) / total _count
names (contributions) <- names(rank_table)

Separate category 0 (if it exists)
cat_@ <- if("0" %in% names(contributions)) contributions["0"] else 0
other_contributions <- contributions[names(contributions) != "0"]

Sort other contributions in descending order
sorted_contributions <- sort(other_contributions, decreasing = TRUE)

Identify contributions >= 5%
major_contributions <- sorted_contributions[sorted_contributions >= 0.05]
minor_contributions <- sorted_contributions[sorted_contributions < 0.05]

Create result vector
result <- c()
result["rankContr-0"] <- cat_@

Add major contributions

for(i in seqg_along(major_contributions)) {
result[paste@("rankContr-", i)] <- major_contributions[i]

+

Sum minor contributions if any exist
if(length(minor_contributions) > 0) {
result["rankContr-rest"] <= sum(minor_contributions)

¥

return(result)

Apply to each gene and create new columns

contribution_results <- lapply(seq_along(alignments_by_gene), function(i) {
rank_table <- piC_rank_summaries[[i]]
total_count <- subset_tra_gr$totalPiRNAcount[i]
process_rank_contributions(rank_table, total_count)

})

Find all unique column names across all results
all_columns <- unique(unlist(lapply(contribution_results, names)))

Ensure each result has all columns, filling missing ones with @
contribution_results_normalized <- lapply(contribution_results, function(x) {
missing_cols <- setdiff(all_columns, names(x))
if(length(missing_cols) > 0) {
x[missing_cols] <- 0@
b
return(x[all_columns])
})
convert to one data frame
contribution_df <- do.call(rbind, contribution_results_normalized)
colnames(contribution_df) <- all_columns

Add contribution_df to the subset_tra_gr in df format
subset_tra <- cbind(as.data.frame(subset_tra_gr), contribution_df)

39

Reshape to long format
data_long <- subset_tra %>%

mutate(gene = rownames(subset_tra)) %>%

gather(key = "rank", value = "value",

starts_with("rankContr")) %>%
mutate(rank = factor(rank,
levels = c("rankContr-0", "rankContr-rest", "rankContr-4",

"rankContr-3", "rankContr-2", "rankContr-1")))

Create the stacked column chart
options(repr.plot.width=12, repr.plot.height=5)
plot_piCcontr <- ggplot(data_long, aes(x = targetedRank, y = value, fill = rank)) +
geom_col(width = 0.85) +
scale_y_continuous(breaks = c(@, 1), labels = c("0", "1")) +
scale_x_continuous(breaks = seq(1l, nrow(subset_tra), by = 20)) +
scale_fill_manual(values = c("#F1F2F2", "#b3dee2", "#eaf2d7", "#efcfe3",
"#ea9ab2'", "#e27396")) +
theme_classic() +
theme (
axis.text = element_text(size = 7),
axis.title = element_text(size = 7),
) +
labs (x
y

""Ranked Genes by piRNA Targeting",
"Origin of targeting piRNAs (%)")

plot_piCcontr

i rank
rankContr-0
rankContr-rest
rankContr-3
rankContr-2

= “ | | . rankContr-1
Ih ‘ 1 A
0 - ! L |
1 21 41 61 81

Ranked Genes by piRNA Targeting

Origin of targeting piRNAS (%)

Targeting of gene features (Extended Data Fig. 1a)

filter by top-targeted genes

geneAnnotation_PCG_gene_subset <-
geneAnnotation_PCG_gene[geneAnnotation_PCG_gene$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tra$geneName[l:genes_targetingThreshold]]
selected_genes <- geneAnnotation_PCG_gene_subset$gene_name

unique(geneAnnotation_PCG$feature)

'‘gene' - 'SUTR' - 'CDS' - '5UTR' 40

subset geneAnnotation_PCG by genes (top targeted)

and features (removing 'gene' annotation which includes all collapsed exons, not
seperated by features)

feature_list <- c("5UTR", "CDS", "3UTR")

gene_features <- geneAnnotation_PCG[geneAnnotation_PCG$gene_name %in% selected_genes &
geneAnnotation_PCG$feature %in% feature_list]

#pre-select alignments to only include alignments targeting selected genes
gr_alignments_main <- subsetByOverlaps(gr_alignments,
invertStrand(geneAnnotation_PCG_gene_subset))

mcols(gr_alignments_main) <- NULL

make GRanges that have the starting position for each targeting piRNA

For positive strand, make end = start

end(gr_alignments_main) [as.character(strand(gr_alignments_main)) == "+"] <-
start(gr_alignments_main) [as.character(strand(gr_alignments_main)) == "+"]

For negative strand, make start = end
start(gr_alignments_main) [as.character(strand(gr_alignments_main)) == "-"] <-
end(gr_alignments_main) [as.character(strand(gr_alignments_main)) == "-"]

all_tiles <- NULL
iterate through each gene
for (gene in unique(gene_features$gene_id)) {
get all piRNAs targeting that gene
piRNA_startsAsToGene <- subsetByOverlaps(gr_alignments_main,
invertStrand(gene_features[gene_features$gene_id == genel))

get gene coordinates in custom PCG transcriptome
gene_ranges <- gene_features[gene_features$gene_id == gene]

iterate through each feature
for (feature in feature_list) {

Subset to gene's feature
temp_gr <- gene_ranges[gene_ranges$feature == featurel
if (length(temp_gr) == 0) {

skip if gene does not have 5'UTR or 3'UTR

next

¥

Merge overlapping or adjacent ranges
merged_gr <- reduce(temp_gr)
total_length <- sum(width(merged_gr))

if (total_length < 20) {
cat(" Feature ", feature, " for gene
Skipping.\n")
next

, gene, " too short (<20 nt total).

by

Figure out which direction to tile
gene_strand <- unique(as.character(strand(temp_gr)))

merged_gr <- sort(merged_gr)
41

Determine exact tile sizes so that each tile is ~5%
base_tile_size <- floor(total_length / 20)

leftover <- total_length %% 20

tile_sizes <- rep(base_tile_size, 20)

Distribute the remainder (leftover) among the first tiles
if (leftover > 0) {

if (gene_strand == "+") {
tile_sizes[seq_len(leftover)] <- tile_sizes[seq_len(leftover)] + 1
} else {

tile_sizes[21-seq_len(leftover)] <- tile_sizes[21-seq_len(leftover)] + 1
}
¥

Build the 20 tiles by walking through merged_gr
tile_list <- vector("list", 20)
current_tile_index <- 1

target_tile_len <- tile_sizes[current_tile_index]
cum_len_in_tile <=0

current_ranges <- IRanges()

Helper to finalize a tile and reset
finalize_tile <- function() {
tile_list[[current_tile_index]] <<- GRanges(

seqgnames = seqnames(merged_gr) [1],
ranges = current_ranges,

strand = gene_strand,

gene_id = gene,

feature = feature,

tile_index = current_tile_index

)

current_tile_index <<- current_tile_index + 1
if (current_tile_index <= 20) {
target_tile_len <<- tile_sizes[current_tile_index]
}
cum_len_in_tile <<- 0
current_ranges <<- IRanges()

for (seg in seq_along(merged_gr)) {
seg_start <- start(merged_grlsegl)
seg_end <- end(merged_grlsegl)
seg_width <- width(merged_grlseg])

bases_used_in_seg <- 0

Iterate base by base in principle, but slice big chunks if possible
while (bases_used_in_seg < seg_width && current_tile_index <= 20) {

Still need 'remaining_in_tile' bases to complete the current tile
needed_for_tile <- target_tile_len - cum_len_in_tile

The maximum we can take from the current segment is what's left in it
left_in_segment <- seg_width - bases_used_in_seg

The actual chunk we’ll consume from this segment

chunk_size <- min(needed_for_tile, left_in_segment)

if (chunk_size == 0) {

tile is exactly filled 4

etc)

}
}

finalize_tile()
if (current_tile_index > 20) break
next

chunk_start <- seg_start + bases_used_in_seg
chunk_end <- chunk_start + chunk_size - 1

Add IRanges chunk

current_ranges <- c(

current_ranges,

IRanges(start = chunk_start, end = chunk_end)

)

Update counters
bases_used_in_seg <- bases_used_in_seg + chunk_size
cum_len_in_tile <- cum_len_in_tile + chunk_size

If tile is filled, finalize
if (cum_len_in_tile == target_tile_len) {
finalize_tile()
if (current_tile_index > 20) break
¥
b
if (current_tile_index > 20) break

by

If something left in the last tile
if (current_tile_index <= 20 && cum_len_in_tile > 0) {
finalize_tile()

}
final_tiles <- do.call(c, tile_list) # a GRanges of length 20
#handle minus strand by just reversing the column tile_index (20 to 1, 19 to 2,
if (gene_strand == "-") {
final_tiles$tile_index <- 20 - final_tiles$tile_index + 1
I
Count overlaps for each tile and add these counts to metacolumn of final_tiles
overlap_counts <- countOverlaps(final_tiles, invertStrand(gr_alignments_main))

mcols(final_tiles)$read_counts <- overlap_counts

#combine to all_tiles
all_tiles <- c(all_tiles, final_tiles)

all_tiles <- do.call(c, all_tiles)

Feature 5UTR for gene Zc3havll too short (<20 nt total). Skipping.
Feature 5UTR for gene Rdh8 too short (<20 nt total). Skipping.
Feature 5UTR for gene Tex1l6 too short (<20 nt total). Skipping.

Calc percentages of targeting piRNAs for each gene
all_tiles_df <- as.data.frame(all_tiles) %>%
group_by(gene_id) %>%

43

mutate(total_counts = sum(read_counts),
percentage = (read_counts / total_counts) * 100)

all _tiles _df$feature <- factor(all_tiles_df$feature, levels = c("5UTR", "CDS", "3UTR"))

options(repr.plot.width=12, repr.plot.height=6)

to plot them next to each other
all_tiles_df <- all_tiles_df %>%

mutate(
Adjusted_Bin = case_when(
feature == "S5UTR" ~ tile_index - 0.5,
feature == "CDS" ~ tile_index + 19.5,
feature == "3UTR" ~ tile_index + 39.5

)
)

Calculate averages for the average plot
all_tiles_df_avg <- all_tiles_df %>%
group_by(feature, Adjusted_Bin) %>%
summarise(avg_percentage = mean(percentage, na.rm = TRUE), .groups = "drop")

Averaged piRNA targeting across all genes with segmented x-axis
featureTargetingPlotTotal <- ggplot(all_tiles_df_avg, aes(x = Adjusted_Bin, y =
avg_percentage, color = feature)) +

geom_line(linewidth = 1.5) +

geom_vline(xintercept = c(20, 40), linetype = "dashed", color = "black") +
labs (
x = "Feature Segments (5' UTR, CDS, 3' UTR)",
y = "Average Percentage of piRNAs Targeting the Gene"
) +
theme_classic() +
theme (
legend.position = "bottom"

featureTargetingPlotTotal

8

o

IS

N

Average Percentage of piRNAs Targeting the Gene

| N M

0 20 40 60
Feature Segments (5' UTR, CDS, 3' UTR)

feature === SUTR === CDS == 3UTR

Coverage Plots (Fig. 1b, Extended Data Fig. 1b,e,f) »

Gene-targeting (shown in Custom Protein Coding Gene Transcriptome)

SPIN1 - Figure 1b

options(repr.plot.width=12, repr.plot.height=6)

chr <= "chri3"

start <- 1698200

end <- 1700200

coord <- IRanges(start, end)

geneAnnotation_PCG$type <- geneAnnotation_PCG$feature

SPIN1targeting<- allTracksPlotted(piRNAs_from_Bam = gr_alignments, chromosome = chr,
IRangesCoord=coord, gtfFiles=1ist(SPIN1 = geneAnnotation_PCG), tilesWidth=1,
scaleWidthKB = 0.5)

SPINltargetingFull <- SPINltargeting$plotCoverageTrack /
SPINltargeting$trackAll$gtfNuml$trackPlus / SPINltargeting$trackAll$gtfNuml$trackMinus
SPINltargetingFull

Normalizing to RPM

0. . W

-1000-

ncov (rpm)

-2000- U
SPINT (+) lIIIIIIIIIII*II

SPIN1 (-)

chr13:1698200-1700200

AGO2 - Fig Extended Data 1b

chr <= "chri15"

start <- 1357924

end <- 1365954

coord <- IRanges(start, end)

geneAnnotation_PCG$type <- geneAnnotation_PCG$feature

showing only targeting piRNAs (disregard therefore normalization, not shown in
manuscript)

AGO2targeting<- allTracksPlotted(piRNAs_from_Bam = gr_alignments[strand(gr_alignments)
== "+"], chromosome = chr, IRangesCoord=coord, gtfFiles=1ist(AGO2 = geneAnnotation_PCG),
tilesWidth=1, scaleWidthKB = 0.5)

AGO2targetingFull <- AGO2targeting$plotCoverageTrack /
AGO2targeting$trackAll$gtfNuml$trackPlus / AGO2targeting$trackAll$gtfNuml$trackMinus
AGO2targetingFull

Normalizing to RPM

45

0.5kb

=

S

S
v

ncov (rpm)

. J'\uh Lol

AGO2 (+)

o = A {[ITTIT T

chr15:1357924-1365954

Gene-targeting (shown in mm10 genome)

Retrieve and save genomic sequence of Spin1 and Ago2

load gene coordinates in mml@ genome, uncollapsed genes
genesRefSeq_dir <- "../data/annotations/mml0@.ncbiRefSeq.gtf"
genesRefSeq <- rtracklayer::import(genesRefSeq_dir)

Extract Spinl gene annotations, excluding predicted annotations
geneAnnotation_PCG_Spinl <- genesRefSeqlgenesRefSeq$gene_id == "Spinl",]
geneAnnotation_PCG_Spinl <- geneAnnotation_PCG_Spinl[!grepl("~X",
geneAnnotation_PCG_Spinl$transcript_id)]

Spinl region in mml@ genome

chr <- segnames(geneAnnotation_PCG_Spin1[1])

start <- min(start(geneAnnotation_PCG_Spinl)) - 50

end <- max(end(geneAnnotation_PCG_Spinl)) + 50
message(start, "-", end)

Get sequence and create fasta

genome <- BSgenome.Mmusculus.UCSC.mm1@

sequence <- DNAStringSet(getSeq(genome, chr, start, end))
names (sequence) <- chr

writeXStringSet(sequence,
filepath=paste@("../data/others/FM_Spinlregion_mm1@/regionSpinl_", chr,
II_II’ s.tart’ II_II' end’ ".fa"))

51100830-51152612

Extract Ago2 gene annotations, excluding predicted annotations
geneAnnotation_PCG_Ago2 <- genesRefSeql[genesRefSeq$gene_id == "Ago2",]
geneAnnotation_PCG_Ago2 <- geneAnnotation_PCG_Ago2[!grepl("~X",
geneAnnotation_PCG_Ago2$transcript_id)]

Ago2 region in mml@ genome

chr <- segnames(geneAnnotation_PCG_Ago2[1]) 46

start <- min(start(geneAnnotation_PCG_Ago2)) - 50
end <- max(end(geneAnnotation_PCG_Ago2)) + 50

Get sequence and create fasta

genome <- BSgenome.Mmusculus.UCSC.mm10@

sequence <- DNAStringSet(getSeq(genome, chr, start, end))
names (sequence) <- chr

writeXStringSet(sequence,
filepath=paste@("../data/others/FM_Ago2region_mm1@/regionAgo2_", chr,
II_II’ start, II_II' end’ Il.fall))

Map to genomic sequence of Spin1 and Ago2

BASH

Index the FASTA file for STAR
STAR --runMode genomeGenerate \
——genomeDir
../data/others/FM_Spinlregion_mm1@/regionSpinl_chrl3_51100830_51152612_dir \
--genomeFastaFiles
../data/others/FM_Spinlregion_mm1@/regionSpinl_chrl3_51100830_51152612.fa \
—-—genomeSAindexNbases 7

Oct 30 12:57:24 started STAR run

Oct 30 12:57:24 ... starting to generate Genome files

Oct 30 12:57:24 ... starting to sort Suffix Array. This may take a long time...
Oct 30 12:57:24 ... sorting Suffix Array chunks and saving them to disk...
Oct 30 12:57:24 ... loading chunks from disk, packing SA...

Oct 30 12:57:24 ... finished generating suffix array

Oct 30 12:57:24 ... generating Suffix Array index

Oct 30 12:57:24 ... completed Suffix Array index

Oct 30 12:57:24 ... writing Genome to disk ...

Oct 30 12:57:24 ... writing Suffix Array to disk ...

Oct 30 12:57:24 ... writing SAindex to disk

Oct 30 12:57:24 finished successfully

#bash
input_fasta="../data/annotations/customTranscriptomes/Mouse_161922_testes_small_RNAs_ZL6
_S7_R1_trimmed_UMIcollapsed_structOut_miRoutwS_Aligned.PICBloadWseqs.primAlignWinfo. fast
aII
addFastaChange=""
addMappingChange="clip5pNbasesl_Extend5p0fReadl_minMatch19"

#minimum Match of 19 nt, to restrict soft-clipping
STAR --runMode alignReads \
——runThreadN 20 \
——genomeDir
../data/others/FM_Spinlregion_mm1@/regionSpinl_chrl3_51100830_51152612_dir \
——readFilesIn $input_fasta \
——clip5pNbases 1 \
——alignEndsType Extend5p0fReadl \
——outSAMattributes All \
——outSAMtype BAM SortedByCoordinate \
——1imitBAMsortRAM 20000000000 \
——alignIntronMax 1 \
——alignSoftClipAtReferenceEnds No \
——-outFilterMismatchNmax 1 \

--outFilterMatchNmin 19 \ 47

——winAnchorMultimapNmax 100 \

—--outFilterMultimapNmax 100 \

——outReadsUnmapped Fastx \

——outFileNamePrefix
../data/others/FM_Spinlregion_mm1@0/SpinlRegionOnlyWIntrons_PCG_Mouse_161922.Aligned.PICB
loadWseqs.primAlignWinfo.${addFastaChange}.Spinl_chr13_51100830_51152612_${addMappingCha
nge}_

echo "Mapped to Spinl region (in mml1@ genome)"

Oct 30 12:57:35 started STAR run

Oct 30 12:57:35 loading genome

Oct 30 12:57:35 started mapping

Oct 30 13:00:19 started sorting BAM
Oct 30 13:00:19 finished successfully

Mapped to Spinl region (in mm1@ genome)

Index the FASTA file for STAR
STAR --runMode genomeGenerate \
——genomeDir
../data/others/FM_Ago2region_mm1@/regionAgo2_chrl5_73101575_73184997_dir \
--genomeFastaFiles
../data/others/FM_Ago2region_mm1@/regionAgo2_chrl5_73101575_73184997.fa \
—-—genomeSAindexNbases 7

Oct 30 11:28:18 started STAR run

Oct 30 11:28:18 ... starting to generate Genome files

Oct 30 11:28:18 ... starting to sort Suffix Array. This may take a long time...
Oct 30 11:28:18 ... sorting Suffix Array chunks and saving them to disk...
Oct 30 11:28:18 ... loading chunks from disk, packing SA...

Oct 30 11:28:18 ... finished generating suffix array

Oct 30 11:28:18 ... generating Suffix Array index

Oct 30 11:28:18 ... completed Suffix Array index

Oct 30 11:28:18 ... writing Genome to disk ...

Oct 30 11:28:18 ... writing Suffix Array to disk ...

Oct 30 11:28:18 ... writing SAindex to disk

Oct 30 11:28:18 finished successfully

#bash
input_fasta="../data/annotations/customTranscriptomes/Mouse_161922_testes_small_RNAs_ZL6
_S7_R1_trimmed_UMIcollapsed_structOut_miRoutwS_Aligned.PICBloadWseqs.primAlignWinfo. fast
aII
addFastaChange=""
addMappingChange="clip5pNbasesl_Extend5p0fReadl_minMatch19"

#minimum Match of 19 nt, to restrict soft-clipping
STAR --runMode alignReads \
——runThreadN 20 \
——genomeDir ../data/others/FM_Ago2region_mm1l@/regionAgo2_chrl5_73101575_73184997_dir

——readFilesIn $input_fasta \
——clip5pNbases 1 \

—-alignEndsType Extend5p0fReadl \
—-—outSAMattributes All \

——outSAMtype BAM SortedByCoordinate \
——1imitBAMsortRAM 20000000000 \
——alignIntronMax 1 \
——alignSoftClipAtReferenceEnds No \

——outFilterMismatchNmax 1 \
48

——outFilterMatchNmin 19 \

——winAnchorMultimapNmax 100 \

——outFilterMultimapNmax 100 \

——outReadsUnmapped Fastx \

——outFileNamePrefix
../data/others/FM_Ago2region_mm10/Ago2RegionOnlyWIntrons_PCG_Mouse_161922_Aligned.PICBlo
adWseqs.primAlignWinfo.${addFastaChange}.Ago2_chrl5_73101575_73184997_%${addMappingChange
b

echo "Mapped to Ago2 region (in mml1l@ genome)"

Oct 30 11:39:07 started STAR run

Oct 30 11:39:08 loading genome

Oct 30 11:39:08 started mapping

Oct 30 11:42:18 started sorting BAM
Oct 30 11:42:18 finished successfully

Mapped to Ago2 region (in mm1@ genome)
Build coverage plots for alignments in Spin1 and Ago2 genomic regions (Fig S1e and S1f)

R - Rerun 'Prep'-section of code first

load gene coordinates in mml@ genome, uncollapsed genes
genesRefSeq_dir <= "../data/annotations/mml0.ncbiRefSeq.gtf"
genesRefSeq <- rtracklayer::import(genesRefSeq_dir)

Load bam file and keep only unique alignments that map uniquely both to Spinl and also
mml10

bamSpinl_dir <-
"../data/others/FM_Spinlregion_mm1@/SpinlRegionOnlyWIntrons_PCG_Mouse_161922.Aligned.PIC
BloadWseqs.primAlignWinfo..Spinl_chr13_51100830_51152612_clip5pNbasesl_Extend5p0fReadl_m
inMatch19_Aligned.sortedByCoord.out.bam"

bam <- BamFile(bamSpinl_dir)

fields <- scanBamWhat()

primary_flag <- scanBamFlag(isSecondary = FALSE, isSupplementary = FALSE)

param <- ScanBamParam(flag = primary_flag,
what=c('qname', 'flag', 'rname', 'strand', 'pos’', 'qwidth', 'cigar', 'seq'),
tag=c('NH"))

ga_Spinl_alignments <- readGAlignments(bam, param = param)
ga_Spinl_alignments <- ga_Spinl_alignments[mcols(ga_Spinl_alignments)$NH == 1]

gr_Spinl_alignments <- makeGRangesFromDataFrame(as.data.frame(ga_Spinl_alignments),
keep.extra.columns=TRUE)

mcols(gr_Spinl_alignments) <- mcols(gr_Spinl_alignments)[, !
(colnames(mcols(gr_Spinl_alignments)) %in% c(''njunc", "strandInfo", "rname", "strand.l1l",
"pos", "gwidth.1", "cigar.1", "qual"))]

consider only reads mapped uniquely to mml@
gr_Spinl_alignments <- gr_Spinl_alignments[grepl("_NH1$",
mcols(gr_Spinl_alignments)$qname)]

get Spinl info, exclude predicted annotations and shift to match Spinl transcriptome
geneAnnotation_PCG_Spinl <- genesRefSeqlgenesRefSeq$gene_id == "Spinl",]
geneAnnotation_PCG_Spinl <- geneAnnotation_PCG_Spinl[!grepl("~X",

geneAnnotation_PCG_Spinls$transcript_id)] 40

geneAnnotation_PCG_Spinl_shift <- GenomicRanges::shift(geneAnnotation_PCG_Spinl, shift =
-(min(start(geneAnnotation_PCG_Spinl)) - 50))

Create coverage plot with custom function allTracksPlotted

chr <- as.character(seqnames(genes[genes$gene_id == "Spinl1"][1]))
start <=1
end <- (max(end(genes[genes$gene_id == "Spinl"])) + 50) - (min(start(genes[genes$gene_id

== "Spinl"])) - 50)
coord <- IRanges(start, end)

Spinl annotations in region
geneAnnotation_PCG_Spinl_shift <- subsetByOverlaps/(
geneAnnotation_PCG_Spinl_shift[geneAnnotation_PCG_Spinl_shift$type %in% c("CDS",
"5UTR", "3UTR")I,
GRanges(segnames = chr, ranges = coord))

Build coverage track of full region

options(repr.plot.width=8, repr.plot.height=5)

SpinltargetingWintrons <- allTracksPlotted(piRNAs_from_Bam = gr_Spinl_alignments,
chromosome = chr, IRangesCoord=coord, gtfFiles=1ist(Spinl =
geneAnnotation_PCG_Spinl_shift), tilesWidth=50, scaleWidthkKB = 5)
SpinltargetingWintronsFull <- SpinltargetingWintrons$plotCoverageTrack /
SpinltargetingWintrons$trackAll$gtfNuml$trackPlus /
SpinltargetingWintrons$trackAll$gtfNuml$trackMinus

SpinltargetingWintronsFull

Normalizing to RPM

20000~

—Skb
10000 -
0- 1 1 |
' B w T 1 ‘
‘E -10000-
=
= -20000-
>
8
£ -30000-
-40000 -
-50000 -
-60000 -
Spin1 (+)] ‘ Spin | I I h
Spin1 (-)

chr13:1-54728

Load bam file and keep only unique alignments that map uniquely both to Ago2 and also
mm10

bamAgo2_dir <-
"../data/others/FM_Ago2region_mm1@/Ago2RegionOnlyWIntrons_PCG_Mouse_161922_Aligned.PICBl
oadWseqs.primAlignWinfo..Ago2_chrl5_73101575_73184997_clip5pNbasesl_Extend5p0fReadl_minM
atch19_Aligned.sortedByCoord.out.bam"

bam <- BamFile(bamAgo2_dir)

fields <- scanBamWhat()
primary_flag <- scanBamFlag(isSecondary = FALSE, isSupplementary = FALSE)
param <- ScanBamParam(flag = primary_flag, 50

what=c('qname', 'flag', 'rname', 'strand', 'pos', 'qwidth', 'cigar', 'seq'),
tag=c('NH"))

ga_Ago2_alignments <- readGAlignments(bam, param = param)
ga_Ago2_alignments <- ga_Ago2_alignments[mcols(ga_Ago2_alignments)$NH == 1]

gr_Ago2_alignments <- makeGRangesFromDataFrame(as.data.frame(ga_Ago2_alignments),
keep.extra.columns=TRUE)

mcols(gr_Ago2_alignments) <- mcols(gr_Ago2_alignments)[, !
(colnames(mcols(gr_Ago2_alignments)) %in% c("njunc", "strandInfo", "rname", "strand.1l",
"pos", "gwidth.1", "cigar.1", "qual"))]

consider only reads mapped uniquely to mml0
gr_Ago2_alignments <- gr_Ago2_alignments[grepl("_NH1$",
mcols(gr_Ago2_alignments)$qgname)]

get Ago2 info, exclude predicted annotations and shift to match Ago2 transcriptome
geneAnnotation_PCG_Ago2 <- genesRefSeql[genesRefSeq$gene_id == "Ago2",]
geneAnnotation_PCG_Ago2 <- geneAnnotation_PCG_Ago2[!grepl("~X",
geneAnnotation_PCG_Ago2$transcript_id)]

geneAnnotation_PCG_Ago2_shift <- GenomicRanges::shift(geneAnnotation_PCG_Ago2, shift = -
(min(start(geneAnnotation_PCG_Ago2)) - 50))

Create coverage plot with custom function allTracksPlotted

chr <- as.character(seqnames(genes[genes$gene_id == "Ago2"][1]))

start <=1

end <- (max(end(geneAnnotation_PCG_Ago2)) + 50) - (min(start(geneAnnotation_PCG_Ago2)) -
50)

coord <- IRanges(start, end)

Ago2 annotations in region
geneAnnotation_PCG_Ago2_shift <- subsetByOverlaps(
geneAnnotation_PCG_Ago2_shift[geneAnnotation_PCG_Ago2_shift$type %in% c("CDS",
"5UTR", "3UTR")I],
GRanges(segnames = chr, ranges = coord))

Build coverage track of full region

Ago2targetingWintrons <- allTracksPlotted(piRNAs_from_Bam = gr_Ago2_alignments,
chromosome = chr, IRangesCoord=coord, gtfFiles=list(Ago2 =
geneAnnotation_PCG_Ago2_shift), tilesWidth=50, scaleWidthKB = 5)
Ago2targetingWintronsFull <- Ago2targetingWintrons$plotCoverageTrack /
Ago2targetingWintrons$trackAll$gtfNuml$trackPlus /
Ago2targetingWintrons$trackAll$gtfNuml$trackMinus

Ago2targetingWintronsFull

Normalizing to RPM

51

10000 -

ncov (rpm)
o
-
=

S—

—

—
4

-10000 -

Ago2 (+)

Ago2 (-

-

| (]I] e

chr15:1-83422

piRNA Cluster (piC) region as the origin of gene targeting
Spin1 (Fig 1f)

Spinl - full gene region
message("Full piC-as(Spinl) region: ", as.character(seqnames(MILIclusters_pach[19])[1]),
":", start(MILIclusters_pach[19]), "-", end(MILIclusters_pach[19]))

slight zoom in to focus on Pseudogene-region

chr <= seqnames (MILIclusters_pach[19]) [1]

start <- 67732000

end <- 67760000

coord <- IRanges(start, end)

PG_Spinl <- subsetByOverlaps(pseudogenesRGOvrlp, invertStrand(MILIclusters_pach[19]))

PG_Spinl$gene_name <- PG_Spinl$parent_id
MILIclusters_pach$gene_name <- paste@('"rank_ ",
MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM)

SpinloriginPiCzoomOut <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,
gtfFiles=list(piCs = MILIclusters_pach, PG = PG_Spinl), tilesWidth=50, scaleWidthKB = 1)

SpinloriginPiCzoomQutFull <= SpinloriginPiCzoomOut$plotCoverageTrack +

geom_vline(xintercept = min(start(PG_Spinl[PG_Spinl$parent_id == "Spinl"])),
linetype = "dashed", color = "black") +
geom_vline(xintercept = max(end(PG_Spinl[PG_Spinl$parent_id == "Spinl"])),

linetype = "dashed", color = "black")

tlp <- SpinloriginPiCzoomOQut$trackAll$gtfNuml$trackPlus +

geom_vline(xintercept = min(start(PG_Spinl[PG_Spinl$parent_id == "Spinl"])),
linetype = "dashed", color = "black") +
geom_vline(xintercept = max(end(PG_Spinl[PG_Spinl$parent_id == "Spinl"])),

linetype = "dashed", color = "black")

52

tlm <- SpinloriginPiCzoomOut$trackAll$gtfNuml$trackMinus +

geom_vline(xintercept = min(start(PG_Spinl[PG_Spinl$parent_id == "Spinl"])),
linetype = "dashed", color = "black") +
geom_vline(xintercept = max(end(PG_Spinl[PG_Spinl$parent_id == "Spini"])),

linetype = "dashed", color = "black")

t2p <- SpinloriginPiCzoomOut$trackAll$gtfNum2$trackPlus +

geom_vline(xintercept = min(start(PG_Spinl[PG_Spinl$parent_id == "Spinl"])),
linetype = "dashed", color = "black") +
geom_vline(xintercept = max(end(PG_Spinl[PG_Spinl$parent_id == "Spinl"])),

linetype = "dashed", color = "black")

t2m <- SpinloriginPiCzoomOut$trackAll$gtfNum2$trackMinus +

geom_vline(xintercept = min(start(PG_Spinl[PG_Spinl$parent_id == "Spinl"])),
linetype = "dashed", color = "black") +
geom_vline(xintercept = max(end(PG_Spinl[PG_Spinl$parent_id == "Spinl"])),

linetype = "dashed", color = "black")

Full piC-as(Spinl) region: chr9:67732316-67772950

Spinl zoom in
message("Spinl-PG region: ", as.character(segnames(PG_Spinl[PG_Spinl$parent_id ==

"Spini1"]1) [1]), ":", min(start(PG_Spinl[PG_Spinl$parent_id == "Spini"])), "-",
max (end (PG_Spin1[PG_Spinl$parent_id == "Spinl"1)))

chr <= "chro"

start <- min(start(PG_Spinl[PG_Spinl$parent_id == "Spinl"1)) - 100

end <- max(end(PG_Spinl1[PG_Spinl$parent_id == "Spinl"])) + 100

coord <- IRanges(start, end)

add dashed lines to plot to indicate pseudogene region

SpinloriginPiCzoomIn <- allTracksPlotted(piRNAs_from_Bam = gr_mml1@, chromosome = chr,
IRangesCoord=coord, gtfFiles=1ist(PG = PG_Spinl), tilesWidth=1, scaleWidthkKB = 0.2)
SpinloriginPiCzoomInFull <- SpinloriginPiCzoomIn$plotCoverageTrack +

geom_vline(xintercept = min(start(PG_Spinl[PG_Spinl$parent_id == "Spini"])),
linetype = "dashed", color = "black") +
geom_vline(xintercept = max(end(PG_Spinl[PG_Spinl$parent_id == "Spinl"])),

linetype = "dashed", color = "black")

SpinloriginPiCFull <- tlp / t1m / t2p / t2m / SpinloriginPiCzoomInFull /
SpinloriginPiCzoomIn$trackAll$gtfNuml$trackPlus /

SpinloriginPiCzoomIn$trackAll$gtfNuml$trackMinus /
SpinloriginPiCzoomIn$trackAll$gtfNum2$trackPlus /

SpinloriginPiCzoomIn$trackAll$gtfNum2$trackMinus

SpinloriginPiCFull

Spinl-PG region: chr9:67747306-67748766

Normalizing to RPM

53

piCs (+)

corc I | | =

PG (+) ! '

1 1
PG (-)
chr9:67732000-67760000
i i
03k !
— 1
| |
1 1
1 1
1 1
- 1 1
£ 100~ 1 1
E. 1 1
~ 1 1
3 : !
o
(=4 1 1
1 1
1 1
1 1
1 1
1 1
1 1
ﬂ rﬂ r/\ .l
0-
1 1
PG (+)

0 [

chr9:67747206-67748866

Ago2 (Fig 19)

Ago2 - full gene region

chr <- segnames(MILIclusters_pach[56]) [1]

start <- start(MILIclusters_pach[56]) - 50

end <- end(MILIclusters_pach[56]) + 50

coord <- IRanges(start, end)

PG_Ago2 <- subsetByOverlaps(pseudogenesRGOvrlp, invertStrand(MILIclusters_pach[56]))

PG_Ago2$gene_name <- PG_Ago2$parent_id
MILIclusters_pach$gene_name <- paste@("rank_ ",
MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM)

Ago2originPiCzoomOut <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,
gtfFiles=1list(piCs = MILIclusters_pach[56], PG = PG_Ago2[PG_Ago2$parent_id == "Ago2"]),
tilesWidth=50, scaleWidthKB = 1)

Ago2originPiCzoomOutFull <- Ago2originPiCzoomQut$plotCoverageTrack +

geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])),
linetype = "dashed", color = "black") +
geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), linetype

= "dashed", color = "black")

Ago2_1pOut <- Ago2originPiCzoomOut$trackAll$gtfNuml$trackPlus +

geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])),
linetype = "dashed", color = "black") +
geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), linetype

= "dashed", color = "black")
Ago2_1mOut <- Ago2originPiCzoomOut$trackAll$gtfNuml$trackMinus +

geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])),
linetype = "dashed", color = "black") +
geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"1)), linetype

= "dashed", color = "black")
Ago2_2p0Out <- Ago2originPiCzoomQut$trackAll$gtfNum2$trackPlus +

geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"1l)),
linetype = "dashed", color = "black") +

geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), lingtype

= "dashed", color = "black")
Ago2_2mOut <- Ago2originPiCzoomOut$trackAll$gtfNum2$trackMinus +

geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])),
linetype = "dashed", color = "black") +
geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), linetype

= "dashed", color = "black")

Ago2 zoom in to Pseudogene region (+/—- 50 bp)

message('"Ago2-PG region: ", seqnames(PG_Ago2[PG_Ago2$parent_id == "Ago2"])[1], ":",
min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), "-", max(end(PG_Ago2[PG_Ago2$parent_id
== "Ago2"1)))

chr <- seqnames(PG_Ago2[PG_Ago2$parent_id == "Ago2"]) [1]

start <- min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])) - 50

end <- max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])) + 50

coord <- IRanges(start, end)

Ago2originPiCzoomIn <- allTracksPlotted(piRNAs_from_Bam = gr_mml@, chromosome = chr,
IRangesCoord=coord, gtfFiles=1ist(PG = PG_Ago2[PG_Ago2$parent_id == "Ago2"]),
tilesWidth=1, scaleWidthKB = 0.2)

add dashed lines to plot to indicate pseudogene region
Ago2originPiCzoomInFull <- Ago2originPiCzoomIn$plotCoverageTrack +

geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])),
linetype = "dashed", color = "black") +
geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"1)), linetype

= "dashed", color = "black")

Ago2_1pIn <- Ago2originPiCzoomIn$trackAll$gtfNuml$trackPlus +

geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"1)),
linetype = "dashed", color = "black") +
geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), linetype

= "dashed", color = "black")

Ago2_1mIn <- Ago2originPiCzoomIn$trackAll$gtfNuml$trackMinus +

geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"1)),
linetype = "dashed", color = "black") +
geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), linetype

= "dashed", color = "black")

Ago2originPiCFull <- Ago2_1pOut / Ago2_1mQut / Ago2_2pOut / Ago2_2mOut /
Ago2originPiCzoomInFull / Ago2_1pIn / Ago2_1mIn

Ago2originPiCFull

Ago2-PG region: chr4:123838102-123839732

Normalizing to RPM

55

piCs (+) | 1

piCs (-)

e THT

PG (-) '
'
chr4:123830721-123842370

f

1

I

'

i

l

l

i

1

1

l

l

1

1

l

i

i

l

i

l

l

\) K;

e

o [
i i

PG (-)

-20-

-30-

ncov (rpm)

-40-

.50~

chr4:123838052-123839782

Pseudogene-Gene Sequence Identity

SPIN1 Pseudogene to Gene Comparison

Pseudogene Spinl

message("Spinl-PG region: ", as.character(segnames(PG_Spinl)[1]), ":",
min(start(PG_Spinl)), "-", max(end(PG_Spinl)))

chr <- seqgnames(PG_Spinl) [1]

start <- min(start(PG_Spinl))

end <- max(end(PG_Spinl))

Get sequence and save as fasta

genome <- BSgenome.Mmusculus.UCSC.mm1@

Spinl_PG_seq <- DNAStringSet(getSeq(genome, chr, start, end))

names (Spinl_PG_seq) <- "Spinl_PG"

writeXStringSet(Spinl_PG_seq,
"../data/annotations/GeneVsPGcomparison/Spinl_Pseudogene_region. fasta")
Spinl_PG_seq

Spinl-PG region: chr9:67747306-67748766

DNAStringSet object of length 1:
width seq names
[1] 1461 TTTTTTTCAGATTTCTCAACAGT. ..CCACACTGGTCCAATGTTTTTCG Spinl_PG

Gene Spinl

get all alignments that are antisense to the Spinl gene in the custom Protein Coding
Gene Transcriptome

Spinl_targeting_gr <- subsetByOverlaps(gr_alignments,
invertStrand(geneAnnotation_PCG_gene[geneAnnotation_PCG_gene$gene_id == "Spinl"]))

then filter from those alignments all that origin from piC-as(Spinl) (in MILI
pachytene: rank 19)

Spinl_targetingFromPG_gr <- Spinl_targeting_gr([sub("_|_", "", sub("rank|_", "",
regmatches(Spinl_targeting_gr$qgname, regexpr("rank(.x?)_", Spinl_targeting_gr$qname))))
== 19,]

56

Retrieve DNA sequence from region where these alignments map to

PCG_fasta <-
"../data/annotations/customTranscriptomes/mm1@_PCGtranscriptome_collapsed_prioritizedCDS
3UTR5UTR_allgenes. fasta"

PCG_seq <- readDNAStringSet(PCG_fasta)

target_region <- GRanges(

segnames = seqnames(Spinl_targetingFromPG_gr([1]),

ranges = IRanges(start = min(start(Spinl_targetingFromPG_gr))-3, end =
max (end(Spinl_targetingFromPG_gr))+32)
)

message("Spinl-gene region: ",target_region)

Spinl_GENE_seq <- reverseComplement(PCG_seqltarget_region])

names (Spinl_GENE_seq) <- "Spinl_GENE"

writeXStringSet(Spinl_GENE_seq,
"../data/annotations/GeneVsPGcomparison/Spinl_targeting_region_revcomp.fasta")
Spinl_GENE_seq

Spinl-gene region: chrl3:1698750-1700210

DNAStringSet object of length 1:
width seq names
[1] 1461 TTTTACCCAGATTTCTCAACAGT...CCACACTGGTCCGATGTTTTCTG Spinl_GENE

export sequences, run mulitple sequence alignments

Spinl_features <- sort(subsetByOverlaps(geneAnnotation_PCG[geneAnnotation_PCG$gene_id ==
"Spinl" & geneAnnotation_PCG$feature != "gene"], target_region))

Spinl_CDS3_seq <- reverseComplement (PCG_seq[Spinl_features[2]]) #I1 would be the 3
nucleotides upstream from CDS3 but they don't match CDS2

Spinl_CDS4_seq <- reverseComplement(PCG_seq[Spinl_features[3]1)

Spinl_CDS5_seq <- reverseComplement(PCG_seq[Spinl_features[4]])

Spinl_3UTR_seq <- reverseComplement(PCG_seq[Spinl_features[5]1])

Spinl_all_seq <- c(Spinl_GENE_seq, Spinl_PG_seq, Spinl_3UTR_seq, Spinl_CDS5_seq,
Spinl_CDS4_seq, Spinl_CDS3_seq)

names(Spinl_all_seq) <- c("Spinl_GENE", "Spinl_PG", "Spinl_3UTR", "Spinl_CDS5",
"Spin1_CDS4", "Spinl_CDS3")

writeXStringSet(Spinl_all_seq,
"../data/annotations/GeneVsPGcomparison/Spinl_geneVsPG_all_regions.fasta")

Feature annotations from UCSC Genome Browser
Spinl_GENE_coord <- GRanges (
seqnames = rep("Spinl_GENE", 4),
ranges = IRanges(
start = c(1, 771, 971, 1205),
end = c(770, 970, 1204, 1458)
),
feature_type = c("3' UTR", "Exon 5", "Exon 4", "Exon 3"),
organism = rep("Spinl_GENE", 4)
)

Spinl_PG_coord <- GenomicRanges::shift(PG_Spinl, (-min(start(PG_Spinl))+1))
Spinl_PG_coord <- renameSeqlevels(Spinl_PG_coord, c("chr9" = "Spinl_PG", "chrl3" =
"Spinl_GENE"))
Spinl_PG_coord$organism <- rep("Spinl_PG", length(Spinl_PG_coord))
Spinl_GENE_PG_coord <- c(Spinl_GENE_coord, Spinl_PG_coord)

57

save(Spinl_GENE_PG_coord, file =
"../data/annotations/GeneVsPGcomparison/Spinl_GENE_PG_coord.RData")

BASH

minimap2 -x asml@ -c -eqx -secondary=no \
../data/annotations/GeneVsPGcomparison/Spinl_targeting_region_revcomp.fasta \
../data/annotations/GeneVsPGcomparison/Spinl_Pseudogene_region.fasta \
> ../data/annotations/GeneVsPGcomparison/SpinlvsSpinlPG.paf

R

In case you switched your kernel, rerun the Prep-section of this notebook first

options(repr.plot.width=15, repr.plot.height=3)

read paf file (output of minimap2), using SVbyEye package

paf.table <- readPaf(
paf.file = "../data/annotations/GeneVsPGcomparison/SpinlvsSpinlPG.paf",
include.paf.tags = TRUE#, restrict.paf.tags = "cg"

)

Read feature annotations (PG: prediction)
annot.gr <-
get(load("../data/annotations/GeneVsPGcomparison/Spinl_GENE_PG_coord.RData"))

Plot identity for Spinl annotation
plt_fullPiC <- plotAVA(

paf.table = paf.table,

color.by = "identity",

binsize = 10, perc.identity.breaks = c(80, 90, 95)
)

Add feature annotations to plot
plt_fullPiCwAnn <- addAnnotation(
ggplot.obj = plt_fullPiC,

annot.gr = annot.gr,
coordinate.space = "self",
shape = "rectangle",
y.label.id = "organism",
annotation. level = 0

)

plt_fullPiCwAnn

58

[readPaf] Loading PAF file: ../data/annotations/GeneVsPGcomparison/SpinlvsSpinlP

G.paf
vua 0s
[pafToBins] Binning PAF alignments, binsize=10bp
. 0.08s
pnT_PG e I 1 I | 1 -
Identity

ENE | I I I =
T T

Genomic position {bp)

Ago2 Pseudogene to Gene Comparison

Get Ago2 pseudogene sequence and annotation prediction

PG_Ago2 <- pseudogenesRGOvrlp[pseudogenesRGOvrip$parent_id == "Ago2"]

PG_Ago2_seq <- DNAStringSet(getSeq(BSgenome.Mmusculus.UCSC.mm1@, GRanges(segnames =
seqnames (PG_Ago2[1]), ranges = IRanges(start = min(start(PG_Ago2))-tailing_len, end =
max (end (PG_Ago2))+tailing_len))))

names (PG_Ago2_seq) <- "Ago2_PG"

PG_Ago2_seq

Biostrings::writeXStringSet(PG_Ago2_seq,
"../data/annotations/GeneVsPGcomparison/Ago2_Pseudogene_region.fasta", format = "fasta")

Ago2_PG_NULL <- PG_Ago?2
Ago2_PG_NULL$organism <- "Ago2_PG"

Ago2_PG_NULL <- renameSeqlevels(Ago2_PG_NULL, c("chr4" = "Ago2_PG"))
start(Ago2_PG_NULL) <- start(Ago2_PG_NULL) - min(start(PG_Ago2)) + 1
end (Ago2_PG_NULL) <- end(Ago2_PG_NULL) - min(start(PG_Ago2)) + 1

Error: object 'pseudogenesRGOvrlp' not found
Traceback:

get Ago2 gene

gene_Ago2 <- sort(genes[genes$gene_id == "Ago2", 1, decreasing = TRUE)

chr <- as.character(seqgnames(gene_Ago2[1]))

+1 indexing for exons, bc 1st exon is annotated as feature 5UTR and (DS separately
ex <- function(i) gene_Ago2[i + 1] # your object uses +1 indexing for exons

CDS exons 11-18
get_exon_seq <- function(i) {
s <- DNAStringSet(
reverseComplement (
getSeq(BSgenome.Mmusculus.UCSC.mm10,
GRanges(seqnames = chr,
ranges = IRanges(start
end

start(ex(i)),
end(ex(i)))))

)
)
names(s) <- paste@("exon_ ", i)
s

b
exon_seqs <- do.call(c, lapply(11:18, get_exon_seq))

Intron between exonl8 and exonl9 5

intronl8_seq <- DNAStringSet(
reverseComplement (
getSeq(BSgenome.Mmusculus.UCSC.mm10,
GRanges(segnames = chr,
ranges = IRanges(start
end

end(ex(19)) + 1,
start(ex(18)) - 1)))

)
)

names(intronl8_seq) <- "intron_18"

exonl9 CDS + beginning of 3'UTR, until 73106583
ex19_start <~ 73106583 # coordinate through BLAT of Ago2 PG to gene in UCSC Genome
Browser
exonl9part_seq <- DNAStringSet (
reverseComplement (
getSeq(BSgenome.Mmusculus.UCSC.mm10,
GRanges(segnames = chr,
ranges = IRanges(start
end

ex19_start,
end(ex(19)))))

)
)
names (exonl9part_seq) <- "exon_19_part"

Combine in transcript order
gene_Ago2_part_seq <- c(exon_seqs, intronl8_seq, exonl9part_seq)

Build the GRanges using the sequence widths
lens <- width(gene_Ago2_part_seq)

offsets <- cumsum(c(@, lens[-length(lens)]))
gene_Ago2NULL <- GRanges (

seqnames = "Ago2_genePartial",
ranges = IRanges(start = offsets + 1, width = lens),
strand = "+",

gene_name = names(gene_Ago2_part_seq)
)
mcols(gene_Ago2NULL)$organism <- "Ago2_genePartial"

Put sequence together and save as fasta

gene_Ago2_partCom_seq <- DNAStringSet(paste@(as.character(gene_Ago2_part_seq), collapse
= "))

names (gene_Ago2_partCom_seq) <- "Ago2_genePartial"

gene_Ago2_partCom_seq

Biostrings::writeXStringSet(gene_Ago2_partCom_seq,
"../data/annotations/GeneVsPGcomparison/Ago2_genePartial.fasta", format = "fasta")

save GRanges object
gene_Ago2NULL <- gene_Ago2NULL [!gene_Ago2NULL$gene_name == "intron_18"]

DNAStringSet object of length 1:
width seq names
[1] 1784 AACAAAGCAATTGCCACCCCTGT...GAACTCTCAGGGCTTTAAAACAC Ago2_genePartial

gr_exonsAgo2 <- c(Ago2_PG_NULL, gene_Ago2NULL)
save(gr_exonsAgo2, file =
"../data/annotations/GeneVsPGcomparison/Ago2_gene_PG_corrd.RData")

Warning message in .merge_two_Seqginfo_objects(x, y):
"The 2 combined objects have no sequence levels in common. (Use
suppressWarnings() to suppress this warning.)"

60

BASH

minimap2 -x asml@® -c -eqx -secondary=no \
../data/annotations/GeneVsPGcomparison/Ago2_genePartial. fasta \
../data/annotations/GeneVsPGcomparison/Ago2_Pseudogene_region.fasta \
> ../data/annotations/GeneVsPGcomparison/Ago2vsAgo2PG.paf

R

In case you switched your kernel, rerun the Prep-section of this notebook first

options(repr.plot.width=15, repr.plot.height=3)

read paf file (output of minimap2), using SVbyEye package

paf.table <- readPaf(
paf.file = "../data/annotations/GeneVsPGcomparison/Ago2vsAgo2PG.paf",
include.paf.tags = TRUE#, restrict.paf.tags = "cg"

)

Read exon annotations (PG: prediction)

annot.gr <- get(load("../data/annotations/GeneVsPGcomparison/Ago2_gene_PG_corrd.RData"))

Plot identity for Ago2 annotation
plt_fullPiC <- plotAVA(

paf.table = paf.table,

color.by = "identity",

binsize = 10

)

plt_fullPiCwAnn <- addAnnotation(
ggplot.obj = plt_fullPiC,
annot.gr = annot.gr,
coordinate.space = "self",
shape = "rectangle",
y.label.id = "organism",
annotation.level = 0

)

plt_fullPiCwAnn

[readPaf] Loading PAF file: EvoComparison/AG02PG/Ago2vsAgo2PG.paf
. 0s

[pafToBins] Binning PAF alignments, binsize=10bp
. 0.12s

Ago2_PG o 1 I I I L 1 | Identity
<90

80:85
9599
99905
995906
996897
997498
99B999

0Pl —e— I 1 1 | 1 1 1 } >99

Genomic position (b;::)”:
ECDF (Fig 1d, Extended Data Fig. 1c)

options(repr.plot.width=9, repr.plot.height=6)

Generic func to get featureCounts and DESeq2 results

calcECDF <~ function(bam_files, ann_dir, sample_name) { o

Run featureCounts for gene counts

counts <- featureCounts(
files = bam_files,
annot.ext = ann_dir,
isGTFAnnotationFile = TRUE,
GTF.featureType = "exon",
GTF.attrType = "gene_id",
useMetaFeatures = TRUE,
nthreads = 8,
isPairedEnd = FALSE

)

shorter sample names (drop trailing mapping suffixes)

sample_ids <- sub("\\.fastq.x$", "", basename(colnames(counts$counts))) # e.qg.
MIWI_HET1_SRR610421

colnames (counts$counts) <- sample_ids

derive condition (HET/KO) and replicate from sample names

condition <- factor(sub(".x_(HET|KO) [@0-9]+_.x", "\\1", sample_ids))
message("Condition: ", condition)

condition <- relevel(condition, ref = "HET") # HET as control/reference
replicate <- as.integer(sub(".*_(?:HET|KO)([0-9]+)_.%", "\\1", sample_ids))

sample info

coldata <- data.frame(
sample = sample_ids,
condition condition,
replicate replicate,
row.names = sample_ids,
check.names = FALSE

)

DESeq2 pipeline

dds <- DESeqgDataSetFromMatrix(
countData = counts$counts,
colData = coldata,

design = ~ condition

)

dds <- DESeq(dds)

pick the correct coefficient name
coef_name <- grep("~condition_.*K0.*_ vs_.*HET$", resultsNames(dds), value = TRUE)
stopifnot(length(coef_name) == 1)

LFC shrinkage and convert to data frame
res <- 1fcShrink(dds, coef = coef_name, type = "apeglm")
res_df <- as.data.frame(res)
gene_ids <- rownames(res_df)
1fc <- data.frame(
gene = gene_ids,
log2FC = res_df$log2FoldChange,
row.names = NULL,
check.names = FALSE
)

return(list(dds, 1fc, res))

62

top_targeted <-
targetingByPiRNAsSbO_sorted_total_tral[l:genes_targetingThreshold,]$geneName
length(top_targeted)
Filter rows where totalPiRNAcount is greater than 0 and exclude rows 1 to 88
(genes_targetingThreshold)
mid_targeted <- targetingByPiRNAsSbO_sorted_total_tral
(targetingByPiRNAsSb0O_sorted_total_tra$totalPiRNAcount > 0) &
! (seq_len(nrow(targetingByPiRNAsSbO_sorted_total_tra)) %in%
1l:genes_targetingThreshold),
]$geneName
length(mid_targeted)
not_targeted <-
targetingByPiRNAsSbO_sorted_total_traltargetingByPiRNAsSbO_sorted_total_tra$totalPiRNAco
unt == 0, 1$geneName
length(not_targeted)

88
9622
11799

Sample: Late SPC, get bam files

bam_files_lateSPC <- c(
"MIWI_0/lateSPC/MIWI_HET1_SRR610673.fastq.gz.mapped.Aligned.sortedByCoord.out.bam",
"MIWI_0/lateSPC/MIWI_HET2_SRR610674.fastq.gz.mapped.Aligned.sortedByCoord.out.bam",
"MIWI_0/lateSPC/MIWI_HET3_SRR610675.fastq.gz.mapped.Aligned.sortedByCoord.out.bam",
"MIWI_0/lateSPC/MIWI_KO1_SRR610676.fastq.gz.mapped.Aligned.sortedByCoord.out.bam",
"MIWI_0/lateSPC/MIWI_KO02_SRR610677.fastq.gz.mapped.Aligned.sortedByCoord.out.bam",
"MIWI_0/lateSPC/MIWI_KO3_SRR610678.fastq.gz.mapped.Aligned.sortedByCoord.out.bam"

)

ann_dir <-

“"../../../0neDrive/General/mmu_referenceGenome/Mml1l0_refSeq3_copies_annotated3.sorted.gtf

run function above to get featureCounts and DESeq2 results and LFC shrinkage
dds_1fc_lateSPC <- calcECDF(bam_files_lateSPC, ann_dir, "lateSPC")

dds_lateSPC <- dds_1fc_lateSPC[1][[1]]

1fc_lateSPC <- dds_1fc_lateSPC[2][[1]]

res_lateSPC <- dds_1fc_lateSPCI[3]1[[1]]

===== S N N /N N
===== (1) 1= /N L]
==== N N o</ NN

====)N N N) A N I O
========== / \ /| /11 \2\ /_/ _\ /

Rsubread 2.20.0

featureCounts setting

Input files : 6 BAM files

MIWI_HET1_SRR610673.fastq.gz.mapped.Aligned.
MIWI_HET2_SRR610674.fastq.gz.mapped.Aligned.
MIWI_HET3_SRR610675.fastq.gz.mapped.Aligned.
MIWI_KO1_SRR610676.fastq.gz.mapped.Aligned.s ...
MIWI_KO02_SRR610677.fastq.gz.mapped.Aligned.s ...
MIWI_KO03_SRR610678.fastqg.gz.mapped.Aligned.s ...

—— N
———
S ——

63

N ———

Paired-end : no

Count read pairs : no
Annotation :

Dir for temp files : .
Threads : 8

Level :

Multimapping reads :
Multi-overlapping reads :
Min overlapping bases : 1

counted

Mm10_refSeq3_copies_annotated3.sorted.gtf (GTF)

meta-feature level

not counted

Features : 1366783
Meta-features : 49605
Chromosomes/contigs : 21

Single-end reads are included.
Total alignments : 134379273

Running time : 0.50 minutes

Single-end reads are included.
Total alignments : 111409874

Running time : 0.38 minutes

Single-end reads are included.
Total alignments : 152438457

Running time : ©.51 minutes

Process BAM file MIWI_KO1_SRR610676
Single-end reads are included.
Total alignments : 110503411

Running time : 0.37 minutes

Process BAM file MIWI_KO2_SRR610677
Single-end reads are included.
Total alignments : 151008781

Running time : 0.50 minutes

Process BAM file MIWI_KO3_SRR610678
Single-end reads are included.
Total alignments : 106079594
Running time : 0.35 minutes

Write the final count table.
Write the read assignment summary.

- — N ——
N —

Running

Successfully assigned alignments :

Successfully assigned alignments :

Successfully assigned alignments :

Successfully assigned alignments :

Successfully assigned alignments :

Successfully assigned alignments :

Load annotation file Mm1@_refSeq3_copies_annotated3.sorted.gtf ...

Process BAM file MIWI_HET1_SRR610673.fastq.gz.mapped.Aligned.sortedByC ...

116179920 (86.5%)

Process BAM file MIWI_HET2_SRR610674.fastq.gz.mapped.Aligned.sortedByC ...

96245345 (86.4%)

Process BAM file MIWI_HET3_SRR610675.fastq.gz.mapped.Aligned.sortedByC ...

126889984 (83.2%)

. fastg.gz.mapped.Aligned.sortedByCo ...

92847870 (84.0%)

. fastg.gz.mapped.Aligned.sortedByCo ...

127852629 (84.7%)

. fastqg.gz.mapped.Aligned.sortedByCo ...

88100959 (83.1%)

Condition: HETHETHETKOKOKO
estimating size factors

estimating dispersions

~N———— . v N———
~~—— . N———

gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing

using 'apeglm' for LFC shrinkage. If used in published research, please cite:
Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distributions f
or
sequence count data: removing the noise and preserving large differences.
Bioinformatics. https://doi.org/10.1093/bioinformatics/bty895

Build a long table of log2FC for each group (drop NAs and genes not in lfc)
sets <- list(
"Top targeted”
"Mid targeted”
"Not targeted”
)
ecdf_df <- bind_rows(lapply(names(sets), function(grp) {
tibble(
gene = sets[[grp]]
) %>%
inner_join(as_tibble(1fc_lateSPC), by = "gene") %>%
mutate(group = grp)
})) %>%
filter(!is.na(log2FC)) %>%
mutate(group = factor(group, levels = c("Top targeted","Mid targeted","Not
targeted")))

unique(top_targeted),
unique(mid_targeted),
unique(not_targeted)

#Number of genes per group
table(ecdf_df$group)

ECDF plot
get log2FC (x-axis) and ecdf (y-axis) values for Spinl and Ago2
ecdf_df_tT <- subset(ecdf_df, group == "Top targeted")

ecdf_function <- ecdf(ecdf_df_tT$1log2FC)
highlight_df <- data.frame(
gene = c("Ago2", "Spinl"),

10g2FC = c(
ecdf_df_tT[ecdf_df_tT$gene == "Ago2",]$log2FC,
ecdf_df_tT[ecdf_df_tT$gene == "Spinl",]1$log2FC),

ecdf_y = ecdf_function(c(ecdf_df_tT[ecdf_df_tT$gene == "Ago2",]1$log2FC,
ecdf_df_tT[ecdf_df_tT$gene == "Spinl", 1$log2FC)),

group = "Top targeted"
)
highlight_df

plot ECDF
ECDF_lateSPC <- ggplot(ecdf_df, aes(x = log2FC, colour = group)) +
stat_ecdf(size = 1) +
scale_colour_manual(
values = c(

"Top targeted" = '"#9865aa",
"Mid targeted" = "#7771b3",
"Not targeted" = "#231f20"

65

geom_point(data = highlight_df, aes(x = log2FC, y = ecdf_y), fill = "#9764aa", color =
"pblack", stroke = 0.2, size = 1) +

geom_text(data = highlight_df, aes(x = log2FC, y = ecdf_y, label = gene),

color = "#9764aa", vjust = 1.8, hjust -0.1, size = 3) +

labs(x = "log2 fold-change (MIWI KO vs HET)", y = "ECDF", colour = "Group") +

coord_cartesian(xlim = c(-0.3, 1.8)) +

theme_classic() +

ggtitle("Late SPC") +

theme(axis.title.x = element_text(size = 7),
axis.title.y = element_text(size = 7),
axis.text.x = element_text(size = 7),
axis.text.y = element_text(size = 7),
legend.text = element_text(size = 7),

legend.title = element_text(size = 7))

ECDF_lateSPC

Pairwise Kolmogorov-Smirnov Test
groups <- split(ecdf_df$log2FC, ecdf_df$group)
combn(names(groups), 2, FUN = function(p) {
data. frame(
pair = paste(p, collapse =" vs "),
ks_p = ks.test(groups[[p[1]1]1], groups[[p[2]]1])$p.value
)
}, simplify = FALSE) |> dplyr::bind_rows()

Top targeted Mid targeted Not targeted
86 9288 9497
A data.frame: 2 x 4

gene log2FC ecdf_y group
<chr> <dbl> <dbl> <chr>
Ago2 1.7517264 0.9767442 Top targeted

Spin1 0.6214549 0.8720930 Top targeted

Warning message in ks.test.default(groups[[p[1]11], groups[[p[2111):
"p-value will be approximate in the presence of ties"
Warning message in ks.test.default(groups[[p[1]1]1], groups[[p[2]1]1):
"p-value will be approximate in the presence of ties"
Warning message in ks.test.default(groups[[p[1]11], groups[[p[2]1]):
"p-value will be approximate in the presence of ties"

A data.frame: 3 x 2

pair ks_p

<chr> <dbl>

Top targeted vs Mid targeted 2.736105e-05
Top targeted vs Not targeted 9.061781e-08

Mid targeted vs Not targeted 3.072089e-48

66

Late SPC

Ago2

Spin1

Group
i == Top targeted
3 0.50

w = Mid targeted

== Not targeted

0.00

00 05 10 15
log2 fold-change (MIWI KO vs HET)

Combine calcECDF-outputs to get a combined dataframe wiht gene name, log2FC, padj
coef_name <- grep("~condition_.*KO0.*_vs_.*HET$", resultsNames(dds_lateSPC), value =
TRUE)

res_full <- results(dds_lateSPC, name = coef_name)

tbl <- as.data.frame(res_lateSPC) %>%
transmute(gene = rownames(res_lateSPC),
log2FC = log2FoldChange) %>%

left_join(
as.data.frame(res_full) %>%
transmute(gene = rownames(res_full),
padj = padj),
by = "gene"

o (+}
%>%

filter(!is.na(log2FC), !'is.na(padj))

create grouping in tbl: top targeted vs all others (mid- and non-targets)
top_targ <- unique(top_targeted)
tbl <- tbl %>%
mutate(group = ifelse(gene %in% top_targ, "Top targeted", "Other"),
is_callout = gene %in% c("Spinl","Ago2"))

#plot volcano
p_volcano <- ggplot(tbl, aes(x = log2FC, y = -logl@(padj))) +
mid and not targeted genes (Other) in grey

geom_point(data = subset(tbl, group == "Other"),
color = "grey75", size = 1) +

top targeted in purple

geom_point(data = subset(tbl, group == "Top targeted" & !is_callout),
color = "#9764aa", size = 1) +

highlight Spinl and Ago2
geom_point(data = subset(tbl, is_callout),
aes(fill = group),
shape = 21, color = "black", stroke = 0.2, size = 1.2, show.legend = FALSE)

scale_fill_manual(values = c("Top targeted" = "#9764aa", "Other" = "grey75")) +
67

geom_text_repel(data = subset(tbl, is_callout),
aes(label = gene),
size = 3, box.padding = 0.25, point.padding = 0.2,
min.segment.length = @, max.overlaps = Inf) +
"log2 fold-change (MIWI -/- vs HET)",
"-logl@(padj)") +
theme_classic() +
theme(axis.title.x element_text(size 7),
axis.title.y element_text(size 7),
axis.text.x = element_text(size = 7),
axis.text.y = element_text(size
legend. text = element_text(size
legend.title = element_text(size =

labs(x

= 7)’
= 7)’
7))
p_volcano

300

200

-og10(pad)

100

. o
9 —gpim

-5.0 -2.5 0.0 25
log2 fold-change (MIWI -/- vs HET)

piC-as(Spin1) and piC-as(Ago2) RNA seq Analysis

Code for Manuscript Figure 2c,d and Extended Data Figure 3f

Introduction to files
R/4.4.3 and Bash used

Samples used for paired-end 50bp RNA seq:

e 161602 piC-as(Spin1) KO
e 161603 piC-as(Spin1) KO
e 161604 piC-as(Spin1) KO
e 1069 piC-as(Ago2) KO

e 1070 piC-as(Ago2) KO

e 1071 piC-as(Ago2) KO

e 161212 WT

e 161213 WT

e 161922 WT

Mapping the fastq files_bash

#!/bin/bash
#STAR mapping and indexing of paired-end sequencing data

input_filel=$1
input_file2=$2

basename=$(basename "$input_filel")
output_prefix="${OUTDIR}/$(basename "$input_filel").mapped."

module load STAR/2.7.10b
module load samtools/1.17

mkdir -p "$OUTDIR"

STAR \
—-readFilesIn "$input_filel" "$input_file2" \
—-readFilesCommand gunzip -c \
——genomeDir "$GENOME_DIR" \
—=runThreadN 12 \
—--genomeLoad LoadAndRemove \
—-1imitBAMsortRAM 20000000000 \
——outFileNamePrefix "$output_prefix" \
—-outSAMtype BAM SortedByCoordinate \
——outReadsUnmapped Fastx \
—--outFilterMultimapNmax 100 \
——outFilterMultimapScoreRange 0 \
——outFilterMismatchNoverLmax 0.05 \
—-sjdbScore 2

69

cd "$OUTDIR"
samtools index -@ 24 -M =b x.bam

#SLURM batch submission
#Each job processes a pair of FASTQ files (_R1_ and _R2_).

for forward_file in ${WORKDIR}/*_R1_001.fastq.gz; do
sample_name=$(basename "$forward_file" "_R1_001.fastq.gz")
reverse_file="${WORKDIR}/${sample_name}_R2_001.fastq.gz"
echo "Submitting job for sample: $sample_name"

sbatch —--mem=30g --cpus-per-task=16 —--time=5:00:00 \
./mapping_mml1l@_pipeline.sh "$forward_file" "$reverse_file"
done

FeatureCounts to count gene expression_bash

#!/bin/bash
#FeatureCounts for gene expression

input_filel=$1

basename=$(basename "$input_filel")
output_prefix1="${OUTDIR}/$(basename "$input_filel")_featureCounts"

mkdir -p "$OUTDIR"
module load subread

featureCounts \
_p\
——countReadPairs \
-s 2\
—-a "$ANNOTATION" \
-0 "${output_prefixl}.txt" \
$input_filel;

#SLURM batch submission
#Each BAM file will be submitted as a separate SLURM job

for file in ${WORKDIR}/*.bam; do
sample_name=$(basename "$file")
echo "Submitting featureCounts job for: $sample_name"
sbatch —--mem=10g --cpus—-per-task=8 \
./featureCounts_refseq.sh "$file"
done

FeatureCounts to count TE expression_bash

#!/bin/bash
#FeatureCounts for TE expression

input_filel=$1

basename=$ (basename "$input_filel")
output_prefix1="${OUTDIR}/$(basename "$input_filel")_featureCounts_TE"

mkdir -p "$OUTDIR"
module load subread

featureCounts \
_p\
——countReadPairs \
-s 2\
-g gene_id \
M\
-0\
—-—fraction \
-a "$ANNOTATION_TE" \
-0 "${output_prefixl}.txt" \
$input_filel;

#SLURM batch submission
#Each BAM file will be submitted as a separate SLURM job

for file in ${WORKDIR}/*.bam; do
sample_name=$(basename "$file")
echo "Submitting featureCounts job for: $sample_name"
sbatch —--mem=10g --cpus-per-task=8 \
./featureCounts_TE.sh "¢$file"
done

Analyze gene expression in piC-as(Ago2) vs WT mice_Fig. 2¢

Suppress warnings globally

options(warn = -1)

suppressPackageStartupMessages ({
library(DESeq2)
library(GenomicFeatures)
library(ggplot2)
library(writex1)

})

S R e e R e e R s R e R e e R R R s R R e

Title: Differential Expression Analysis of RefSeq Genes in pic-as(Ago2) Knockout
Testes

Description: This script performs DESeq2 analysis of RefSeq-annotated RNA-seq

data from WT and pic-as(Ago2) knockout mouse testes and generates a
volcano plot of differential expression results.

D e e e R e e e e R e R e e R e

Input files

base_dir <- "/Users/loubalovaz2/Documents/Lab/Pachytene piRNA
project/Library_prep/240220_Spinl, Ago2, WT - RNAseq_whole

testis/Long_RNA_libraries/Proper_50_PE_seq/featureCountes_refseq"
output_dir <- "/Users/loubalovaz2/Documents/Lab/Writing/Pachytene_clusters
paper/Code_results"

count_files <- c(
file.path(base_dir,"161212_Zuzana-
7repeat_S2_L008_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts.txt")

’

file.path(base_dir,"161213_s08_S6_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_f
eatureCounts.txt"),

file.path(base_dir,"161922_s09_S7_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_f
eatureCounts.txt"),

file.path(base_dir,"1069_s04_S3_R1_001.fastqg.gz.mapped.Aligned.sortedByCoord.out.bam_fea
tureCounts.txt"),

file.path(base_dir,"1070_s05_S4_R1_001.fastqg.gz.mapped.Aligned.sortedByCoord.out.bam_fea
tureCounts.txt"),

file.path(base_dir,"1071_s06_S5_R1_001.fastqg.gz.mapped.Aligned.sortedByCoord.out.bam_fea
tureCounts.txt")

)

Load and format counts

count_list <- lapply(count_files, function(file) {
read.table(file, header = TRUE, row.names = 1)

})

Combine into one matrix and select count columns
count_matrix_all <- do.call(cbind, count_list)
count_matrix <- count_matrix_alll, c(6, 12, 18, 24, 30, 36)]

Rename columns
colnames(count_matrix) <- c("wT_1", "WT_2", "WT_3", "Ago2_1", "Ago2_2", "Ago2_3")

Define sample metadata

sample_metadata <- data.frame(

row.names = colnames(count_matrix),

Genotype = c("WT", "WT", "WT", "Ago2_KO0", "Ago2_KO0", "Ago2_KO0")
)

Verify that sample names match between counts and metadata
stopifnot(all(colnames(count_matrix) %in% rownames(sample_metadata)))
stopifnot(all(colnames(count_matrix) == rownames(sample_metadata)))

DESeq2 analysis

dds <- DESegDataSetFromMatrix(
countData = count_matrix,

colData = sample_metadata, 7

design = ~ Genotype

)

Prefilter low-count genes
dds <- dds[rowSums(counts(dds)) >= 10, 1

Set reference level
dds$Genotype <- relevel(dds$Genotype, ref = "WT")

Run DESeq2

dds <- DESeq(dds)

res <- results(dds)

res_df <- as.data.frame(res)

Add gene length filter as the RNA isolation was prepared wth >200bp cut off
txdb <-

makeTxDbFromGFF (" /Users/loubalovaz2/Documents/Genomes/Mouse/Annotation/mm10_refGene.gtf"
, format = "gtf")

gene_gr <- genes(txdb)

gene_length <- data.frame(gene_id = names(gene_gr), length = width(gene_gr))

Merge DE results with gene lengths
res_df$gene_id <- rownames(res_df)
res_df <- merge(res_df, gene_length, by = "gene_id")

Filter: keep genes >200 bp as the RNA isolation method used columns with 200bp cut off
keep_counts <- rowSums(counts(dds) > 10) == ncol(dds)
res_df <- subset(res_df, keep_counts & length > 200)

Save results to Excel
write_xlsx(res_df, file.path(output_dir,
"Ago2_Refseq_DESeq2_results_10reads_200nt.x1sx"))

Volcano plot

res_df$color <- "#484545"
res_df$color[res_df$padj < 0.05 & res_df$log2FoldChange > 0] <- "#f80000"
res_df$color[res_df$padj < 0.05 & res_df$log2FoldChange < 0] <- "#aeaefc"

volcano_plot_Ago2 <- ggplot(res_df, aes(x = log2FoldChange, y = -logl@(padj), color =
color)) +
geom_point(alpha = 0.6, size = 2.5) +
geom_vline(xintercept = 0, linetype = "dashed", color = "#343333") +
scale_color_identity() +

labs (

x = "Log2 Fold Change",

y = "-logl@(padj)",

title = "pic-as(Ago2)_KO vs WT (RefSeq genes)"
) +

theme_minimal(base_size = 14)

ggsave(file.path(output_dir,"Ago2_refseq_volcano_10reads_200nt.svg"), plot
volcano_plot_Ago2, bg = "white", width = 6, height = 5)
ggsave(file.path(output_dir,"Ago2_refseq_volcano_10reads_200nt.png"), plot
volcano_plot_Ago2, bg = "white", width = 6, height = 5)

73

print(volcano_plot_Ago2)

pic-as(Ago2) KO vs WT (RefSeq genes)

-log10(padj)

(]
0 00...‘.—-~ ®

-5.0 2.5 0.0 2.5
Log2 Fold Change

Analyze TE expression in pic-as(Ago2)_Fig. 2c

B e e e e e e e e e e e

Title: Differential Expression Analysis of TEs in pic-as(Ago2) Knockout Testes

Description: This script performs DESeq2 analysis of transposable elements in RNA-seq
data from WT and pic-as(Ago2) knockout mouse testes and generates a

volcano plot of differential expression results

B L e e e e e e e e e

Load count matrices

base_dir <~ "/Users/loubalovaz2/Documents/Lab/Pachytene piRNA
project/Library_prep/240220_Spinl, Ago2, WT - RNAseq_whole
testis/Long_RNA_libraries/Proper_50_PE_seq/featureCounts_TE"

count_files <- c(

file.path(base_dir, "161212_Zuzana-
7repeat_S2_L008_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.tx
t"),

file.path(base_dir,
"161213_s08_S6_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt
II),

file.path(base_dir,
"161922_s09_S7_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt
II)'

file.path(base_dir,
"1069_504_53_R1_®01.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE%Ext")

’

file.path(base_dir,
"1070_s05_S4_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt")

file.path(base_dir,
"1071_s06_S5_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt")

)

Read in and combine count files
count_list <- lapply(count_files, function(file) {
read.table(file, header = TRUE, row.names = 1)

})

count_matrix_all <- do.call(cbind, count_list)

Select count columns

count_matrix <- count_matrix_alll, c(6, 12, 18, 24, 30, 36)]
colnames(count_matrix) <- c("wWT_1", "WT_2", "WT_3", "Ago2_1", "Ago2_2", "Ago2_3")

Convert fractional read counts to whole numbers
count_matrix <- round(count_matrix)

Sample metadata

sample_metadata <- data.frame(
row.names = colnames(count_matrix),
Genotype = c("WT", "wT", "WT", "Ago2_KO0", "Ago2_KO0", "Ago2_KO")

Verify that sample names match between counts and metadata
stopifnot(all(colnames(count_matrix) %in% rownames(sample_metadata)))
stopifnot(all(colnames(count_matrix) == rownames(sample_metadata)))

DeSeq2 analysis

dds <- DESeqgDataSetFromMatrix(
countData = count_matrix,
colData = sample_metadata,
design = ~ Genotype

)

Set reference level
dds$Genotype <- relevel(dds$Genotype, ref = "WT")

Run DESeq2

dds <- DESeq(dds)
res <- results(dds)

Save results

res$gene_id <- rownames(res) o

res_df <- as.data.frame(res)

write_xlsx(res_df, file.path(output_dir, "Ago2_TE_DESeq2_results.xlsx"))

Volcano plot

res_df$color <- "#484545"
res_df$color[res_df$padj < 0.05 & res_df$log2FoldChange > 0] <- "#f80000"
res_df$color[res_df$padj < 0.05 & res_df$log2FoldChange < 0] <- "#aeaefc"

volcano_plot_Ago2_TE <- ggplot(res_df, aes(x = log2FoldChange, y = -logl@(padj), color
color)) +
geom_point(alpha = 0.6, size = 2.5) +
geom_vline(xintercept = @, linetype = "dashed", color = "#343333") +
scale_color_identity() +

labs (

x = "Log2 Fold Change",

y = "-logl@(padj)",

title = "piC-as(Ago2_KO0) vs WT (Transposable Elements)"
) +

theme_minimal(base_size = 14)

ggsave(file.path(output_dir, "Ago2_TE_volcano.svg"), plot
"white", width = 6, height = 5)
ggsave(file.path(output_dir, "Ago2_TE_volcano.png"), plot
"white", width = 6, height = 5)

volcano_plot_Ago2_TE, bg

volcano_plot_Ago2_TE, bg

print(volcano_plot_Ago2_TE)

piC-as(Ago2_KO) vs WT (Transposable Elements)

=
©
=
(=]
e
o))
o
]
® °
1
° @
® b
o
©
[
0 o ® O O®e OO # ¢ 6 8 @)
i
-2 0 2

Log2 Fold Change

Check if there are any deregulated TEs in piC-as(Spin1)_Extended Fig. 3f 76

T S S S S R R

Title: Differential Expression Analysis of TEs in pic-as(Spinl) Knockout Testes

Description: This script performs DESeq2 analysis of transposable elements in RNA-seq
data from WT and pic-as(Spinl) knockout mouse testes and generates a

volcano plot of differential expression results
T S S S S

Load count matrices

base_dir <- "/Users/loubalovaz2/Documents/Lab/Pachytene piRNA
project/Library_prep/240220_Spinl, Ago2, WT - RNAseq_whole
testis/Long_RNA_libraries/Proper_50_PE_seq/featureCounts_TE"

count_files TE <- c(

file.path(base_dir, "161212_Zuzana-
7repeat_S2_L008_R1_001.fastqg.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.tx
t"),

file.path(base_dir,
"161213_s08_S6_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt
||)'

file.path(base_dir,
"161922_s509_S7_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt
II),

file.path(base_dir, "161602_Zuzana-
lrepeat_S1_L008_R1_001.fastqg.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.tx
t"),

file.path(base_dir,
"161603_s02_S1_R1_001.fastqg.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE. txt
II)'

file.path(base_dir,
"161604_s03_S2_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt
II)
)

Read and combine count files into a single count matrix

count_matrix_list_TE <- lapply(count_files_TE, function(file) {
read.table(file, header = TRUE, row.names = 1)

})

count_matrix_full <- do.call(cbind, count_matrix_1list TE)

Select count columns

count_matrix <- count_matrix_fulll, c(6, 12, 18, 24, 30, 36)]

Rename columns
colnames(count_matrix) <- c("wWT_1", "WT_2", "WT_3", "Spinl_1", "Spinl_2", "Spinl_3")

Sample metadata

sample_metadata <- data.frame(
row.names = c("wr_1", "WT_2", "WT_3", "Spinl_1", "Spinl_2", "Spinl_3"),
Genotype = c("WT", "WT", "WT", "Spinl_KO0", "Spinl_KO0", "Spinl_KO0")

) 77

Verify that sample names match between counts and metadata
stopifnot(all(colnames(count_matrix) %in% rownames(sample_metadata)))
stopifnot(all(colnames(count_matrix) == rownames(sample_metadata)))

Convert fractional counts to whole numbers
count_matrix <- round(count_matrix)

DeSeq2 analysis

Create DESeq2? dataset

dds <- DESegDataSetFromMatrix(
countData = count_matrix,
colData = sample_metadata,
design = ~ Genotype

)

Set WT as the reference level
dds$Genotype <- relevel(dds$Genotype, ref = "WT")

Run DESeq2
dds <- DESeq(dds)
res <- results(dds)

Save results

res$gene_id <- rownames(res)
res.df <- as.data.frame(res)

write_xlsx(res.df, file.path(output_dir, "Spinl_TE_DESeq2_results.x1lsx"))

Volcano plot

Prepare data for volcano plot

res.df$color <- "#484545"

res.df$color[res.df$padj < 0.05 & res.df$log2FoldChange > 0] <- "#f80000"
res.df$color[res.df$padj < 0.05 & res.df$log2FoldChange < 0] <- "#aeaefc"

Spinl_TE_volcano <- ggplot(res.df, aes(x = log2FoldChange, y = -logl@(padj), color =
color)) +
geom_point(alpha = 0.6, size = 2.5) +
geom_vline(xintercept = @, color = "#343333", linetype
scale_color_identity() +
labs(x = "Log2 Fold Change", y = "-logl0(padj)", title
as(Spinl)_KO_vs_WT_Transposable Elements") +
theme_minimal()

"dashed", linewidth = 1) +

1 pic_

Save plots
ggsave(file.path(output_dir, "Spinl_TE_volcano.svg"), bg

"white", plot

Spinl_TE_volcano, device = "svg")
ggsave(file.path(output_dir, "Spinl_TE_volcano.png"), bg = "white", plot =
Spinl_TE_volcano, device = "png")

78

print(Spinl_TE_volcano)

piC-as(Spin1)_KO_vs_WT_Transposable Elements

30

n
o

-log10(padij)

(] L]
0 e e e OB O WD GG ® ¢ O ® e @

|
-4 -2 0 2 4
Log2 Fold Change

Check if the deletion of pic-as(Ago2) promoter affected expression of any other piRNA
precursor_Fig. 2d

PiRNA precursors

#Load library

library(readxl)

#Create gtf file with 90th percentile of top productive MIWI piRNA clusters
(Konstantinidou, Loubalova, et al., Cell Reports, 2024)

#load MIWI_clusters from Cell Reports publication

MIWI_clusters_xslx <- read_x1lsx("/Users/loubalovaz2/Documents/Lab/Pachytene piRNA
project/Library_prep/240220_Spinl, Ago2, WT - RNAseq_whole
testis/Long_RNA_libraries/0ld_Seq/Run_Samples_2,3,4,5,6,8,9,/240423_Miwi-PICB_pachytene-
short.xlsx")

#save as data frame

MIWI_clusters <- as.data.frame(MIWI_clusters_xslx)

#arrange by all reads explained=forced mapping for productivity
MIWI_clusters_ordered <-
MIWI_clusters[order(MIWI_clusters$Cl1l_rank_by_all_reads_explained), 1

#take top 64 that the publication defined as 90th percentile
MIWI_clusters_90thpercentile <- MIWI_clusters_ordered[1:64,]

#give them names (numbers) based on productivity
MIWI_clusters_9@0thpercentile$gene_id <-
MIWI_clusters_9@0thpercentile$C1l1_rank_by_all_reads_explained
MIWI_clusters_9@0thpercentile$transcript_id <- MIWI_clusters_90thpercentile$gene_id
MIWI_clusters_9@0thpercentile$chromosome <- MIWI_clusters_9@0thpercentile$seqgnames
MIWI_clusters_90thpercentile$feature_type <- '"gene"

79

Generate GTF file

Function to convert data frame to GTF format
convert_to_gtf <- function(df) {
gtf <- paste(

df$chromosome,

""source",

df$feature_type,

df$start,

df$end,

df$strand,
paste('gene_id", df$gene_id, sep =" "),
paste("transcript_id", df$transcript_id, sep =" "),
Sep - Il\tll
)
return(gtf)
b

Convert data frame to GTF format
gtf_MIWI_clusters_90thpercentile <- convert_to_gtf(MIWI_clusters_90thpercentile)

Save GTF file

Write GTF content to a file and use it for FeatureCounts
writeLines(gtf_MIWI_clusters_90thpercentile, file.path(output_dir,
"gtf_MIWI_clusters_90thpercentile.gtf"))

BASH - Use FeatureCounts to define the coverage of MIWI piRNA precursors in RNA seq of
piC-as(Ago2) and WT mice using the gtf_MIWI_clusters_90thpercentile GTF file

#!/bin/bash
#FeatureCounts for piRNA precursor expression

module load subread

for run in 161212_Zuzana-7repeat_S2_L008_R1_001 161213_s08_S6_R1_001
161922_s09_S7_R1_001 1069 _s04_S3_R1_001 1070_s05_S4_R1_001 1071_s06_S5_R1_001 ; do
input_filel="${run}.fastq.gz.mapped.Aligned.sortedByCoord.out.bam"
output_prefix1="${run}_featureCount_whole_testis_RNA_allMIWI_clusters"

featureCounts \

_p\

——countReadPairs \

-s 2\

=M\

-—fraction \

-t gene \

-a /path/gtf_MIWI_clusters_90thpercentile.gtf \

-0 /path/FeatureCounts_90thpercentile_MIWI_clusters/"${output_prefix1}.txt"
$input_filel;

echo " v Finished ${run}"
done

80

e e e e e e e e e e e e

Title: Differential Expression Analysis of piRNA precursors in pic-as(Ago2) Knockout
Testes

Description: This script performs DESeq2 analysis of piRNA precursors (90th percentile
of top productive MIWI piRNA precursors)

in RNA-seq data from WT and pic-as(Ago2) knockout mouse testes and
generates a
volcano plot of differential expression results

e e o

Load count matrices

base_dir_WT <- "/Users/loubalovaz2/Documents/Lab/Writing/Pachytene_clusters
paper/statistics/piRNA/whole_testis/FeatureCounts_90thpercentile_MIWI_clusters"
base_dir_KO <- "/Users/loubalovaz2/Documents/Lab/Writing/Pachytene_clusters
paper/250922/Ago2/featureCounts_MIWIcl_90th_percentile_RNA_coverage"

count_files_Ago2_whole_testis_90th <- c(
file.path(base_dir_WT, "161212_Zuzana-
7repeat_S2_L008_R1_001_featureCount_whole_testis_RNA_allMIWI_clusters.txt"),
file.path(base_dir_WT,
"161213_s08_S6_R1_001_featureCount_whole_testis_RNA_allMIWI_clusters.txt"),
file.path(base_dir_WT,
"161922_s09_S7_R1_001_featureCount_whole_testis_RNA_allMIWI_clusters.txt"),
file.path(base_dir_KO,
"1069_s04_S3_R1_001_featureCount_whole_testis_RNA_allMIWI_clusters.txt"),
file.path(base_dir_KO,
"1070_s05_S4_R1_001_featureCount_whole_testis_RNA_allMIWI_clusters.txt"),
file.path(base_dir_KO,
"1071_s06_S5_R1_001_featureCount_whole_testis_RNA_allMIWI_clusters.txt")
)

Read in and combine count files
count_matrix_list_Ago2_whole_testis_90th <- lapply(count_files_Ago2_whole_testis_90th,
function(file) {

count_data <- read.table(file, header = TRUE, row.names = 1)

return(count_data)
})

Combine the count matrices into a single matrix
count_matrix1_Ago2_whole_testis_90th <- do.call(cbind,
count_matrix_list_Ago2_whole_testis_90th)

Select count columns

count_matrix1_Ago2_whole_testis_90th <- count_matrix1l_Ago2_whole_testis_90th[, c(6, 12,
18, 24, 30, 36)]

new_column_names_Ago2_whole_testis_90th <- c("WT_1", "WT_2", "WT_3", "Ago2_1", "Ago2_2",
"A902_3")

colnames(count_matrix1l_Ago2_whole_testis_90th) <-
new_column_names_Ago2_whole_testis_90th

Convert fractional read counts to whole numbers
count_matrix1l_Ago2_whole_testis_90th <- round(count_matrix1_Ago2_whole_testis_90th)

81

Sample metadata

Create a sample metadata data frame
sample_metadata_Ago2_whole_testis_90th <- data.frame(

row.names = c("wWT_1", "WT_2", "WT_3", "Ago2_1", "Ago2_2", "Ago2_3"), Genotype =
C("WT", "WT", "WT“,“AgOZ_KO", "AgOZ_KO", “AgOZ_KOII))

Verify that sample names match between counts and metadata
stopifnot(all(colnames(count_matrix1l_Ago2_whole_testis_90th) %in%
rownames (sample_metadata_Ago2_whole_testis_90th)))
stopifnot(all(colnames(count_matrixl_Ago2_whole_testis_90th) ==
rownames (sample_metadata_Ago2_whole_testis_90th)))

DeSeq2 analysis

Create a DESeqDataSet
dds_Ago2_whole_testis_90th <- DESegDataSetFromMatrix(countData =
count_matrix1_Ago2_whole_testis_90th,

colData =
sample_metadata_Ago2_whole_testis_90th,

design = ~ Genotype)

Set reference level
dds_Ago2_whole_testis_90th$Genotype <- relevel(dds_Ago2_whole_testis_90th$Genotype, ref
= ||WT||)

Run DESeq2
dds_Ago2_whole_testis_90th <- DESeq(dds_Ago2_whole_testis_90th)
res_Ago2_whole_testis_90th <- results(dds_Ago2_whole_testis_90th)

Save results

res_Ago2_whole_testis.df_90th <- as.data.frame(res_Ago2_whole_testis_90th)
class(res_Ago2_whole_testis_90th)

res.df.1_Ago2_whole_testis_90th <- res_Ago2_whole_testis.df_90th
res.df.1_Ago2_whole_testis_90th$gene_id <- rownames(res.df.1_Ago2_whole_testis_90th)
write_xlsx(res.df.1_Ago2_whole_testis_90th, file.path(output_dir,
"Ago2_R_seq_90thMIWIclusters_coveraege_VolcanoPlot.x1sx"))

Volcano plot

res.df.1_Ago2_whole_testis_90th$color <- "#484545"
res.df.1_Ago2_whole_testis_90th$color[res.df.1_Ago2_whole_testis_90th$padj < 0.05 &
res.df.1_Ago2_whole_testis_90th$log2FoldChange > 1] <- "#f80000"
res.df.1_Ago2_whole_testis_90th$color[res.df.1_Ago2_whole_testis_90th$padj < 0.05 &
res.df.1_Ago2_whole_testis_90th$log2FoldChange < -1] <- "#0404ef"

Ago2_R_seq_90thMIWIcl_volcano <- ggplot(res.df.1_Ago2_whole_testis_90th, aes(x =

log2FoldChange, y = -logl@(padj), color = color)) + 82

geom_point(alpha = 0.6, size = 2.5) +
geom_vline(xintercept = 0,
color = "#343333",
linetype = "dashed",
linewidth = 1) +
scale_color_identity() +
labs(x = "Log2 Fold Change", y = "-logl@(padj)", title = "piC-
as(Ago2)_KO/WT_R_seq_coverage_90thMIWIcl") +
theme_minimal()

ggsave(file.path(output_dir, "Ago2_R_seq_90thMIWIcl_volcano_lfc>1.svg"), bg = "white",
plot = Ago2_R_seq_90thMIWIcl_volcano, device = "svg")
ggsave(file.path(output_dir, "Ago2_R_seq_90thMIWIcl_volcano_lfc>1.png"), bg = "white",

plot = Ago2_R_seq_90thMIWIcl_volcano, device = "png")

print(Ago2_R_seq_90thMIWIc1l_volcano)

piC-as(Ago2) KO/WT_R_seq_coverage_90thMIWiIcl

100

50

-log10(padj)

25

-1
Log2 Fold Change

Check if the deletion of piC-as(Ago2) promoter affected production of piRNAs from any
other cluster_Fig. 2d

BASH - Use FeatureCounts to define the coverage of MIWI piRNA clusters in smallRNA seq
of piC-as(Ago2) and WT mice using the gtf_MIWI_clusters_90thpercentile GTF file

— PROCESSING AND MAPPING OF SMALL RNA SEQ DATA IS REPORTED IN CODE FOR MOUSE_FIGUREI
#!/bin/bash

module load subread

for run in NonStructural_Mouse_161212_testes_small_RNAs_ZL5_S6

NonStructural_Mouse_161922_ testes_small_RNAs_ZL6_S7
83

NonStructural Mouse_1069_ testes_small_RNAs_ZL3 S4

NonStructural _Mouse_1070_testes_small_RNAs_ZL4 S5; do
input_filel="${run}_R1_trimmed_collapsed_noUMI_nomiRNA_mm1@Aligned-
STAR_sortedByCoord.bam"

output_prefix1="${run}_featureCount"

featureCounts \

-s 1\

-M \

-0\

—--fraction \

-t gene \

-a /path/gtf_MIWI_clusters_90thpercentile.gtf \

-0 /path/FeatureCounts_90thpercentile/"${output_prefix1}.txt" \
$input_filel;

echo " v Finished ${run}"
done

e e s e e L e e e e e e b e e s b e e

Title: Differential Expression Analysis of piRNA clusters in pic-as(Ago2) Knockout
Testes

Description: This script performs DESeq2 analysis of piRNAs (90th percentile of top
productive MIWI piRNA clusters)

in small RNA-seq data from WT and pic-as(Ago2) knockout mouse testes and
generates a
volcano plot of differential expression results

e e o

Load count matrices

List of count files

base_dir_WT <- "/Users/loubalovaz2/Documents/Lab/Writing/Pachytene_clusters
paper/statistics/piRNA/FeatureCounts_90thpercentile"

base_dir_KO <- "/Users/loubalovaz2/Documents/Lab/Writing/Pachytene_clusters
paper/250922/Ago2/featureCounts_MIWI_90th_percentile"

count_files_Ago2_small_90th <- c(
file.path(base_dir_WT,

"NonStructural Mouse 161212 testes_small _RNAs_ZL5 S6_featureCount.txt"),
file.path(base_dir_WT,

"NonStructural Mouse 161922 testes_small RNAs ZL6_S7 featureCount.txt"),
file.path(base_dir_KO,

"NonStructural_Mouse_1069_testes_small_RNAs_ZL3_S4_ featureCount.txt"),
file.path(base_dir_KO,

"NonStructural_Mouse_1070_testes_small_RNAs_ZL4_S5_featureCount.txt")

)

Read in and combine count files into a single count matrix
count_matrix_list_Ago2_small_90th <- lapply(count_files_Ago2_small_90th, function(file)
{

count_data <- read.table(file, header = TRUE, row.names = 1)

return(count_data)

})

Combine the count matrices into a single matrix
count_matrix1l_Ago2_small_90th <- do.call(cbind, count_matrix_list_Ago2_small_90th)

84

Select count columns

#choose only columns with gene count for given sample
count_matrix_Ago2_small_90th <- count_matrix1l_Ago2_small_90th[, c(6, 12, 18, 24)]
new_column_names_Ago2_small_90th <- c("WT_1", "WT_2", "Ago2_1", "Ago2_2")
colnames (count_matrix_Ago2_small_90th) <- new_column_names_Ago2_small_90th

Convert fractional read counts to whole numbers
count_matrix_Ago2_small_90th <- round(count_matrix_Ago2_small_90th)

Sample metadata

Create a sample metadata data frame
sample_metadata_Ago2_small_90th <- data.frame(

row.names = c("WT_1", "WT_2", "Ago2_1", "Ago2_2"), Genotype = c("WT", "WT", "Ago2_KO0",
"Ago2_K0"))

Verify that sample names match between counts and metadata
stopifnot(all(colnames(count_matrix_Ago2_small_90th) %in%
rownames (sample_metadata_Ago2_small_90th)))
stopifnot(all(colnames(count_matrix_Ago2_small_90th) ==
rownames (sample_metadata_Ago2_small_90th)))

DeSeq2 analysis

Create a DESeqDataSet

dds_Ago2_small_90th <- DESeqDataSetFromMatrix(countData = count_matrix_Ago2_small_90th,
colData = sample_metadata_Ago2_small_90th,
design = ~ Genotype)

Set the factor level
dds_Ago2_small_90th$Genotype <- relevel(dds_Ago2_small_90th$Genotype, ref = "WT")

#Run DESeq2
dds_Ago2_small_90th <- DESeq(dds_Ago2_small_90th)
res_Ago2_small_90th <- results(dds_Ago2_small_90th)

Save results

#save results as data.frame
res_Ago2_small.df_90th <- as.data.frame(res_Ago2_small_90th)
class(res_Ago2_small.df_90th)

res.df.1_Ago2_small_90th <- res_Ago2_small.df_90th
res.df.1_Ago2_small_90th$gene_id <- rownames(res.df.1_Ago2_small_90th)

write_xlsx(res.df.1_Ago2_small_90th,
file.path(output_dir,"Ago2_piRNA_90thMIWIclusters_coveraege_VolcanoPlot.x1sx"))

Volcano plot

85

res.df.1_Ago2_small_90th$color <- "#484545"
res.df.1_Ago2_small_90th$color[res.df.1_Ago2_small_90th$padj < 0.05 &
res.df.1_Ago2_small_90th$log2FoldChange > 1] <- "#f80000"
res.df.1_Ago2_small_90th$color[res.df.1_Ago2_small_90th$padj < 0.05 &
res.df.1_Ago2_small_90th$log2FoldChange < -1] <- "#0404ef"

Ago2_piRNA_90thMIWIcl_volcano <- ggplot(res.df.1_Ago2_small_90th, aes(x =
log2FoldChange, y = -logl@(padj), color = color)) +
geom_point(alpha = 0.6, size = 2.5) +
geom_vline(xintercept = 0,
color = "#343333",
linetype = "dashed",
linewidth = 1) +
scale_color_identity() +
labs(x = "Log2 Fold Change", y = "-logl0(padj)", title = "piC-
as(Ago2)_KO/WT_piRNA_coverage_90thMIWIcl") +
theme_minimal()

ggsave(file.path(output_dir, "Ago2_piRNA_90thMIWIc1l_volcano.svg"), bg = "white", plot
Ago2_piRNA_90thMIWIcl_volcano, device = '"svg")
ggsave(file.path(output_dir, "Ago2_piRNA_90thMIWIc1l_volcano.png"), bg
Ago2_piRNA_90thMIWIc1_volcano, device = "png")

"white", plot

print(Ago2_piRNA_90thMIWIc1_volcano)

piC-as(Ago2) KO/WT_piRNA_coverage_90thMIWiIcl

300 e

200

-log10(padj)

100

- ‘ SUPNG SNy S g W) B

-5 -4 -3 2 -1
Log2 Fold Change

Sequence logo for piC-as(Ago2)-derived piRNAs

suppressPackageStartupMessages({
library(GenomicRanges)
library(PICB)
library(BSgenome.Mmusculus.UCSC.mm10)
86

library
library
library
library

GenomicAlignments)
ggplot2)
ggseqlogo)
patchwork)

—~ e~~~

})
source("../scripts/plotLogo.R")

options(repr.plot.width=10, repr.plot.height=5)

#piRNA cluster coordinates from Konstantinidou et al. (2024) in Cell Reports and rank
load("../data/annotations/MILIclusters_pachytene.RData")
MILIclusters_pach <- MILIclusters$clusters

MILIclusters_pach <- MILIclusters_pach[order(-
MILIclusters_pach$all_reads_primary_alignments_FPM),]
MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM <- seq_along(MILIclusters_pach)
MILIclusters_pach <- keepStandardChromosomes(MILIclusters_pach)

paste@("Number of piRNA clusters in MILI pachytene by PICB: ",
length(MILIclusters_pach))

'Number of piRNA clusters in MILI pachytene by PICB: 4188

load alignments to mml@ genome
gr_mml0@ <- PICBload(

BAMFILE =
"../data/bam/Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMIcollapsed_structOut_miR
outwS_Aligned.sortedByCoord.out.bam",

REFERENCE.GENOME = '"BSgenome.Mmusculus.UCSC.mm10",

GET.ORIGINAL.SEQUENCE = TRUE, VERBOSE = FALSE, WHAT = c("flag", "cigar"))

gr_mmlo <- gr_mml@$unique
gr_mml@ <- keepStandardChromosomes(gr_mm10)

Load BAM file of piRNAs targeting protein coding genes (in custom transcriptome)
bamPCG_dir <-
"../data/bam/mmuToTranscriptome/PCG_Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMI
collapsed_structOut_miRoutwS_Aligned.PICBloadWseqs.primAlignWinfo..PCGtranscriptome_clip
5pNbasesl_Extend5p0OfReadl_minMatch19_Aligned.sortedByCoord.out.bam"

bam <- BamFile(bamPCG_dir)

exclude both secondary alignments and supplementary alignments

fields <- scanBamWhat()

primary_flag <- scanBamFlag(isSecondary = FALSE, isSupplementary = FALSE)

param <- ScanBamParam(flag = primary_flag,
what=c('qname', 'flag', 'rname', 'strand', 'pos', 'qwidth', 'cigar', 'seq'),
tag=c('NH', "MD"))

ga_all_alignments <- readGAlignments(bam, param = param)

PCG_total_reads <- length(ga_all_alignments)

ga_alignments <- ga_all_alignments[mcols(ga_all_alignments)$NH == 1] #filter by unique
alignments

PCG_unique_reads <- length(ga_alignments)

gr_alignments <- makeGRangesFromDataFrame(as.data.frame(ga_alignments),
keep.extra.columns=TRUE)

mcols(gr_alignments) <- mcols(gr_alignments)[, !'(colnames(mcols(gr_alignments)) %in%
c("njunc", "strandInfo", "rname", "strand.1", "pos", "qwidth.1", 'cigar.1", "qual"%}]

Sequence logo of piC-as(Ago2)-derived piRNAs: total piRNAs - Fig e
piCasAgo2_logo <- logoPlot(subsetByOverlaps(gr_mm1l@, MILIclusters_pach[56]), "piC-
as(Ago2)", genome = BSgenome.Mmusculus.UCSC.mm10Q)

piCasAgo2_logo

Scale for x is already present.
Adding another scale for x, which will replace the existing scale.
[1] "Using provided BSgenome object to build 3' extension logo."

Scale for x is already present.
Adding another scale for x, which will replace the existing scale.

piC-as(Ago2)

2.0 1

1.5 1

Bits

1.0 1

0.5 1

0.0 1 e

10 15 3'end

Sequence logo of piC-as(Ago2)-derived piRNAs: piRNAs targeting Ago2 — Extended Data
Fig 2d

Get all the readnames of piRNAs targeting Ago2 (coordinates in PCG transcriptome:
chrl5:1357924-1365954:-)

Ago2as_piRNAs <- gr_mml1@[names(gr_mml@) %in% sub("_.x", "",
subsetByOverlaps(gr_alignments, invertStrand(GRanges('"chr15:1357924-1365954:—
")))$gname)]

Subset by piC-as(Ago2)

Ago2as_piRNAsFromPiCasAgo2 <- subsetByOverlaps(Ago2as_piRNAs, MILIclusters_pach[56])
Sequence logo

Ago2as_piRNAsFromPiCasAgo2_logo <- logoPlot(Ago2as_piRNAsFromPiCasAgo2, "Ago2as piRNAs
from piC-as(Ago2)", genome = BSgenome.Mmusculus.UCSC.mm10)
Ago2as_piRNAsFromPiCasAgo2_logo

Scale for x is already present.
Adding another scale for x, which will replace the existing scale.
[1] "Using provided BSgenome object to build 3' extension logo."

Scale for x is already present.
Adding another scale for x, which will replace the existing scale.

88

Bits

2.0 7

1.5 1

1.0 1

0.5 1

0.0 1

Ago2as piRNAs from piC-as(Ago2)

PN = L S =] E—= P = = T b

oA

3'end

89

Human Adult piRNA Gene Targeting and their
Conservation across Mammals

Code for: Manuscript Figure 4 and Extended Data Figure 4

Introduction to file

Jupyter Notebook used R/4.3 and occasionally Bash.

Human adult sample from SRR8575350 published in Ozata, et al. (2020, Nat Ecol Evol).

In this document, piCs and their corresponding rank are derived from adult piCs published in

Konstantinidou, et al. (2024, Cell Reports). piCs were created with the Bioconductor package PICB.
For code purposes (e.g. for relating piRNAs to specific piCs) piRNAs that are not from piCs have rank 0.

GOLGA2-targeting
piC-as(GOLGAZ2) - rank: 1, chr15:62207201-62280100 (+)

Processing small RNA-seq

Preparation: PCG-Transcriptome

Protein-coding gene transcriptome creation with ../scripts/buildTranscriptomes.R

Mapping all piRNAs to PCG-transcriptome

Create fasta with all mapped reads including rank, coordinates of mapping and human
piRNA group

suppressPackageStartupMessages ({
library("GenomicRanges")
library("Biostrings")

})

align_69yo <-
readRDS("../../../0neDrive/3_hsa_detection_prepach_adult/Code/STAROutput/oxSmallRNASeq/s
mallRNA_hsa_69y_A@1_SRR8575350/smallRNA_hsa_69y_A01_SRR8575350_cleaned_trimmed_snoMiTRou
t_20to40nt_Aligned.PICBloadWithSeq. rds")

align_69yo_allPrimary <- c(align_69yo$unique, align_69yo$multi.primary)
length(align_69yo_allPrimary)

39486612

#get cluster coordinates (ranked!) from Cell Reports publication (human 69 yo)
clusters_69yo <-
readRDS("../../../0neDrive/3_hsa_detection_prepach_adult/Code/STAROutput/oxSmallRNASeq/s
mallRNA_hsa_69y_A@1_SRR8575350/clusters.ranked.smallRNA_hsa_69y_A@1_SRR8575350_cleaned_t
rimmed_snoMiTRout_20to40nt_Aligned.sortedByCoord.ForceMapped.RDS")

90

https://doi.org/10.1038/s41559-019-1065-1
https://www.cell.com/cell-reports/fulltext/S2211-1247(24)01128-8
https://bioconductor.org/packages/release/bioc/html/PICB.html

clusters_69yo <- clusters_69yo[order(clusters_69yo$rank_readsExplained),]
clusters_69yo$rank_readsExplained <- seq_along(clusters_69yo)
length(clusters_69yo)

13098

load disentanglement_piCs_A01_69yo_SRR8575350_FM_90thPercentile_v2.RDS from
STAROutput/oxSmallRNASeq/smallRNA_hsa_69y_A01_SRR8575350/

piCs_A01_69yo_disentangled <-
readRDS("../../../0neDrive/3_hsa_detection_prepach_adult/Code/disentangledCluster/hsa_di
sentanglement_piCs_A@1_69yo_SRR8575350_FM_90thPercentile_v2.RDS")

#add to readname rank_chr_startPos_strand_NH_piCgroup

#piCs_A01_69yo_disentangled is in three groups: unique69yo, commonShort, commonLong, add
this information (unique69yo="UN", commonSSC="C(CS", commonDynamic="CD") to another column
in clusters_69yo based on their shared column rank_readsExplained. If
rank_readsExplained is not listed in piCs_A01_69yo_disentangled, add "NA".
clusters_69yo$piCgroup <- "NA"

clusters_69yo$piCgroup[clusters_69yo$rank_readsExplained %in%
piCs_A01_69yo_disentangled$unique69yo$rank_readsExplained] <- "UN"
clusters_69yo$piCgroup[clusters_69yo$rank_readsExplained %in%
piCs_A01_69yo_disentangled$commonShort$rank_readsExplained] <- "(CS"
clusters_69yo$piCgroup[clusters_69yo$rank_readsExplained %in%
piCs_A01_69yo_disentangled$commonLong$rank_readsExplained] <- "CD"

Find overlaps between gr_reads and gr_cl
piRNAs_hsa_fromPiC_f0 <- findOverlaps(align_69yo_allPrimary, clusters_69yo,
ignore.strand=FALSE)

mcols(align_69yo_allPrimary)$corr_piC_rankByReadsExplained <- 0

mcols(align_69yo_allPrimary)$corr_piC_rankByReadsExplained[queryHits(piRNAs_hsa_fromPiC_
f0)] <- mcols(clusters_69yo[subjectHits(piRNAs_hsa_fromPiC_f0)]1)$rank_readsExplained
length(align_69yo_allPrimary)

mcols(align_69yo_allPrimary)$piCgroup <- "NA"
mcols(align_69yo_allPrimary)$piCgroup [queryHits(piRNAs_hsa_fromPiC_f0)] <-
mcols(clusters_69yo[subjectHits(piRNAs_hsa_fromPiC_f0)])$piCgroup
length(align_69yo_allPrimary)

39486612
39486612

#check if all piRNA clusters present in align_69yo_allPrimary
setdiff(clusters_69yo$rank_readsExplained,
unique(align_69yo_allPrimary$corr_piC_rankByReadsExplained))

#add to readname rank_chr_startPos_strand_NH_piCgroup
seq <- align_69yo_allPrimary$seq
names(seq) <- paste@(names(align_69yo_allPrimary), "_rank",
align_69yo_allPrimary$corr_piC_rankByReadsExplained, "_",
segnames(align_69yo_allPrimary), "_", start(align_69yo_allPrimary),
strand(align_69yo_allPrimary), "_NH", align_69yo_allPrimary$NH, "_piCgroup",

91

align_69yo_allPrimary$piCgroup)

writeXStringSet(seq,
file="../../../0neDrive/3_hsa_detection_prepach_adult/Code/STAROQutput/oxSmallRNASeq/smal
1RNA_hsa_69y_A@1_SRR8575350/smallRNA_hsa_69y_A01_SRR8575350_cleaned_trimmed_snoMiTRout_2
0to40nt_Aligned.PICBloadWithSeq.SeqsWithLocation. fasta")

Fasta just keeping nucleotides 2 to 20

align_69yo <-
readRDS("../../../0neDrive/3_hsa_detection_prepach_adult/Code/STAROutput/oxSmallRNASeq/s
mallRNA_hsa_69y_A@1_SRR8575350/smallRNA_hsa_69y_A01_SRR8575350_cleaned_trimmed_snoMiTRou
t_20to40nt_Aligned.PICBloadWithSeq. rds")

align_69yo_allPrimary <- c(align_69yo$unique, align_69yo$multi.primary)
length(align_69yo_allPrimary)

39486612

#get cluster coordinates (ranked!) from Cell Reports publication (human 69 yo)
clusters_69yo <-
readRDS("../../../0neDrive/3_hsa_detection_prepach_adult/Code/STAROutput/oxSmallRNASeq/s
mallRNA_hsa_69y_A@1_SRR8575350/clusters.ranked.smallRNA_hsa_69y_A0@1_SRR8575350_cleaned_t
rimmed_snoMiTRout_20to04@nt_Aligned.sortedByCoord.ForceMapped.RDS")

clusters_69yo <- clusters_69yo[order(clusters_69yo$rank_readsExplained),]
clusters_69yo$rank_readsExplained <- seq_along(clusters_69yo)
length(clusters_69yo)

13098

load disentanglement_piCs_A01_69yo_SRR8575350_FM_90thPercentile_v2.RDS from
STAROutput/oxSmallRNASeq/smallRNA_hsa_69y_A01_SRR8575350/

piCs_A01_69yo_disentangled <-
readRDS("../../../0neDrive/3_hsa_detection_prepach_adult/Code/disentangledCluster/hsa_di
sentanglement_piCs_A@1_69yo_SRR8575350_FM_90thPercentile_v2.RDS")

#add to readname rank_chr_startPos_strand_NH_piCgroup

#piCs_A01_69yo_disentangled is in three groups: unique69yo, commonShort, commonLong, add
this information (unique69yo="UN", commonSSC="C(CS", commonDynamic="CD") to another column
in clusters_69yo based on their shared column rank_readsExplained. If
rank_readsExplained is not listed in piCs_A01_69yo_disentangled, add "NA".
clusters_69yo$piCgroup <- "NA"

clusters_69yo$piCgroup[clusters_69yo$rank_readsExplained %in%
piCs_A0@1_69yo_disentangled$unique69yo$rank_readsExplained] <- "UN"
clusters_69yo$piCgroup[clusters_69yo$rank_readsExplained %in%
piCs_A01_69yo_disentangled$commonShort$rank_readsExplained] <- "(CS"
clusters_69yo$piCgroup[clusters_69yo$rank_readsExplained %in%
piCs_A01_69yo_disentangled$commonLong$rank_readsExplained] <- "CD"

Find overlaps between gr_reads and gr_cl
piRNAs_hsa_fromPiC_f0 <- findOverlaps(align_69yo_allPrimary, clusters_69yo,
ignore.strand=FALSE)

mcols(align_69yo_allPrimary)$corr_piC_rankByReadsExplained <- 0 o

mcols(align_69yo_allPrimary)$corr_piC_rankByReadsExplained[queryHits(piRNAs_hsa_fromPiC_
f0)] <- mcols(clusters_69yo[subjectHits(piRNAs_hsa_fromPiC_f0)])$rank_readsExplained
length(align_69yo_allPrimary)

mcols(align_69yo_allPrimary)$piCgroup <- "NA"
mcols(align_69yo_allPrimary)$piCgroup[queryHits (piRNAs_hsa_fromPiC_f0)] <-
mcols(clusters_69yo[subjectHits(piRNAs_hsa_fromPiC_f0)1)$piCgroup
length(align_69yo_allPrimary)

39486612
39486612

#check if all piRNA clusters present in align_69yo_allPrimary
setdiff(clusters_69yo$rank_readsExplained,
unique(align_69yo_allPrimary$corr_piC_rankByReadsExplained))

#add to readname rank_chr_startPos_strand_NH_piCgroup

seq <- DNAStringSet(substring((align_69yo_allPrimary$seq), 2, 20))
names(seq) <- paste@(names(align_69yo_allPrimary), "_rank",
align_69yo_allPrimary$corr_piC_rankByReadsExplained, "_",

seqnames (align_69yo_allPrimary), "_", start(align_69yo_allPrimary),
strand(align_69yo_allPrimary), "_NH", align_69yo_allPrimary$NH, "_piCgroup",

align_69yo_allPrimary$piCgroup)

writexStringSet(seq,
file="../../../0neDrive/3_hsa_detection_prepach_adult/Code/STAROQutput/oxSmallRNASeq/smal
1RNA_hsa_69y_A@1_SRR8575350/smallRNA_hsa_69y_A01_SRR8575350_cleaned_trimmed_snoMiTRout_2
0tod40nt_Aligned.PICBloadWithSeq.SeqsWithLocation.2to20@only.fasta")

Mapping to PCG-Exon-Transcriptome

Indexing Transcriptome (Only once)
Bash

#BASH, generateGenome
STAR —--runMode genomeGenerate \

——genomeDir
«+/+./../0neDrive/General/hsa_referenceGenome/PCG_transcriptome/transcriptomeDir/ \

--genomeSAindexNbases 6 \

—-—genomeFastaFiles
«+/+./../0neDrive/General/hsa_referenceGenome/PCG_transcriptome/hg38_PCGtranscriptome_co
llapsed_prioritizedCDS3UTR5UTR allgenes.fasta \

——limitGenomeGenerateRAM 34173092106\

——runThreadN 23

Jan 04 08:43:54 started STAR run

Jan 04 08:43:54 ... starting to generate Genome files

Jan 04 08:43:56 ... starting to sort Suffix Array. This may take a long time...
Jan 04 08:43:56 ... sorting Suffix Array chunks and saving them to disk...

Jan 04 08:44:59 ... loading chunks from disk, packing SA...

Jan 04 08:45:00 ... finished generating suffix array

Jan 04 08:45:00 ... generating Suffix Array index

Jan 04 08:45:00 ... completed Suffix Array index

Jan 04 08:45:00 ... writing Genome to disk ...

93

Jan 04 08:45:00 ... writing Suffix Array to disk ...

Jan 04 08:45:00 ... writing SAindex to disk
Jan 04 08:45:00 finished successfully
Mapping to Transcriptome
Bash
addFastaChange=""

addMappingChange="clip5pNbasesl_Extend5p0fReadl_minMatch19"

input_fasta="../../../0neDrive/3_hsa_detection_prepach_adult/Code/STAROutput/oxSmallRNAS
eq/smallRNA_hsa_69y_A@1_SRR8575350/smallRNA_hsa_69y_A@1_SRR8575350_cleaned_trimmed_snoMi
TRout_20to4@0nt_Aligned.PICBloadWithSeq.SeqsWithLocation${addFastaChange}.fasta"

#minimum Match of 19 nt, to restrict soft-clipping
STAR --runMode alignReads \

—=runThreadN 16 \

——genomeDir
«+/+./../0neDrive/General/hsa_referenceGenome/PCG_transcriptome/transcriptomeDir/ \

——readFilesIn $input_fasta \

——clip5pNbases 1 \

——alignEndsType Extend5p0fReadl \

——outSAMattributes All \

——outSAMtype BAM SortedByCoordinate \

——1imitBAMsortRAM 20000000000 \

——alignIntronMax 1 \

—-—alignSoftClipAtReferenceEnds No \

——outFilterMismatchNmax 1 \

——outFilterMatchNmin 19 \

——winAnchorMultimapNmax 100 \

——outFilterMultimapNmax 100 \

—-outReadsUnmapped Fastx \

——outFileNamePrefix
pachTargetingGenes_PCG/hsa_69yo/PCG_smallRNA_hsa_69y_A@1_SRR8575350_cleaned_trimmed_snoM
iTRout_20to40nt_Aligned.PICBloadWithSeq.SeqsWithLocation.${addFastaChange}.PCGtranscript
ome_${addMappingChange}_

echo "Mapped to PCG_EXON transcriptome"

suppressPackageStartupMessages({library(Rsamtools)})
#indexBam for every Bam in the folder pachTargetingGenes_PCG/hsa_69yo/ in R
for (bam in list.files("pachTargetingGenes_PCG/hsa_69yo", pattern="\\.bam$",
full.names=TRUE)) {

indexBam(bam)

}

Which genes are targeted by pachytene piRNAs?

Prep - Load alignments and gene annotations

suppressPackageStartupMessages ({
library(Rsamtools)
library(GenomicAlignments)

library(GenomicRanges)
94

library(PICB)
library(BSgenome.Hsapiens.UCSC.hg38)
library(tidyr)
library(dplyr)
library(ggplot2)
library(ggrepel)
library(patchwork)
library(SVbyEye)
})

source("../scripts/plotCoverage.R")

Load BAM file of piRNAs targeting protein coding genes

bamPCG_dir <-
"../data/bam/hsaToTranscriptome/PCG_smallRNA_hsa_69y_A@1_SRR8575350_cleaned_trimmed_snoM
iTRout_20to40nt_Aligned.PICBloadWithSeq.SeqsWithLocation..PCGtranscriptome_clip5pNbasesl
_Extend5p0fReadl_minMatch19_Aligned.sortedByCoord.out.bam"

bam <- BamFile(bamPCG_dir)

Exclude both secondary alignments and supplementary alignments

fields <- scanBamWhat()

primary_flag <- scanBamFlag(isSecondary = FALSE, isSupplementary = FALSE)

param <- ScanBamParam(flag = primary_flag,
what=c('qname', 'flag', 'rname', 'strand', 'pos’', 'qwidth', 'cigar', 'seq'),
tag=c('NH"))

ga_all_alignments <- readGAlignments(bam, param = param)

PCG_total_reads <- length(ga_all_alignments)

message("Number of reads mapped to PCG-transcriptome: ", PCG_total_reads)

ga_alignments <- ga_all_alignments[mcols(ga_all_alignments)$NH == 1] #UNIQUE ALIGNMENTS
ONLY!

PCG_unique_reads <- length(ga_alignments)

message("Number of reads mapped to PCG-transcriptome (unique alignments only): ",
PCG_unique_reads)

gr_alignments <- makeGRangesFromDataFrame(as.data.frame(ga_alignments),
keep.extra.columns=TRUE)

mcols(gr_alignments) <- mcols(gr_alignments)[, !'(colnames(mcols(gr_alignments)) %in%
c("njunc", "strandInfo", "rname", "strand.1", "pos", "qwidth.1", "cigar.1", "qual"))]

Number of reads mapped to PCG-transcriptome: 8995527

Number of reads mapped to PCG-transcriptome (unique alignments only): 7632221

geneAnnotation_PCG_EXON_dir <-
"../data/annotations/customTranscriptomes/hg38_PCGtranscriptome_collapsed_prioritizedCDS
3UTR5UTR_allgenes.gtf"

geneAnnotation_PCG_EXON <- rtracklayer::import(geneAnnotation_PCG_EXON_dir)

Import GTF file without rtracklayer (issues with installation)
read_gtf <- function(file_path) {
Read the GTF file - changed start/end to numeric first, then convert to integer
gtf_data <- read.table(file_path, sep="\t", quote="",
col.names=c("seqname", "source", "feature", "start", "end",
"score", "strand", "frame'", "attribute"),
colClasses=c("character", "character", "character", "numeric",

95

"numeric",
"character", "character", "character", "character"))

Convert coordinates to integer after reading
gtf_data$start <- as.integer(gtf_data$start)
gtf_data$end <- as.integer(gtf_datas$end)

Function to extract attributes

extract_attribute <- function(attr, key) {
val <- sub(paste@(".x", key, "\\s+\"?2([~;\"I+)\"?2.x"), "\\1", attr)
ifelse(val == attr, NA, val)

}

Extract common attributes

gtf_data$gene_id <- extract_attribute(gtf_data$attribute, "gene_id")
gtf_data$transcript_id <- extract_attribute(gtf_data$attribute, "transcript_id")
gtf_data$gene_name <- extract_attribute(gtf_data$attribute, "gene_name")

return(gtf_data)
b

geneAnnotation_PCG <- read_gtf(geneAnnotation_PCG_EXON_dir)

geneAnnotation_PCG <- makeGRangesFromDataFrame(geneAnnotation_PCG,
keep.extra.columns = TRUE,
segnames.field = "segname",
start.field = "start",
end.field = "end",
strand.field = "strand")

geneAnnotation_PCG_gene <- geneAnnotation_PCG[geneAnnotation_PCG$feature == 'gene"]

load genes gencode.v44.primary_assembly.annotation.gtf in hsa_referenceGenome
genes_dir <- "../data/annotations/gencode.v44.primary_assembly.annotation.gtf"
genes <- rtracklayer::import(genes_dir)

genes<—-genes [genes$gene_name %in% unique(genes[genes$type %in% '"CDS"]$gene_name)]
genes<-genes [genes$transcript_id %in% unique(genes[genes$type %in%
"CDS"]$transcript_id)] #since some transcripts do not contain all PCG annotation
features (CDS etc)

#piRNA cluster coordinates from Konstantinidou et al. (2024) in Cell Reports and ranked
by reads_explained (human 69 yo)

clusters_69yo <-
readRDS("../data/annotations/clusters.ranked.smallRNA_hsa_69y_A@1_SRR8575350_cleaned_tri
mmed_snoMiTRout_20to4@0nt_Aligned.sortedByCoord.ForceMapped.RDS")

clusters_69yo <- clusters_69yolorder(clusters_69yo$rank_readsExplained),]
clusters_69yo$rank_readsExplained <- seq_along(clusters_69yo)
clusters_69yo$gene_name <- paste@("piC-", clusters_69yo$rank_readsExplained)
length(clusters_69yo)

13098

gr_hg38 <- PICBload(
BAMFILE =
"../data/bam/smallRNA_hsa_69y_A@01_SRR8575350_cleaned_trimmed_snoMiTRout_20to40nt_Aligned

.sortedByCoord.out.bam", 96

REFERENCE.GENOME = "BSgenome.Hsapiens.UCSC.hg38",
GET.ORIGINAL.SEQUENCE = TRUE, VERBOSE = FALSE, WHAT = c("flag", "cigar"))

gr_hg38_prim <- c(gr_hg38%$unique, gr_hg38$multi.primary)

genome_total_reads <- length(gr_hg38_prim)

message("Number of reads mapped to hg38 (primary alignments): ", genome_total_reads)
gr_hg38_prim <- keepStandardChromosomes(gr_hg38_prim)

gr_hg38 <- gr_hg38%unique

genome_unique_reads <- length(gr_hg38)

message("Number of reads mapped to hg38 (unique alignments only): ",
genome_unique_reads)

gr_hg38 <- keepStandardChromosomes(gr_hg38)

gr_hg38$qgname <- names(gr_hg38)

Number of reads mapped to hg38 (primary alignments): 39486612

Number of reads mapped to hg38 (unique alignments only): 31897713

Genes targeted by piRNAs (Fig 4a)

Initialize result dataframe with all genes
topPiCtarget_df <- data.frame(
geneName = geneAnnotation_PCG_gene$gene_name,
topContribPiCrank = "0",
topPercentage = 0,
bypiCtargeting_percentage = 0,
top_piC_percentage = 0,
cisTargeting = FALSE,
stringsAsFactors = FALSE
)

Create function to get top contributing piC and percentage
get_top_piC_info <- function(overlaps) {
if (length(overlaps) == 0) {
return(c("0", 0, 0, 0))

}
Extract rank information using vectorized operations
ranks <- sub("_|_", "", sub("rank|_", "", regmatches(overlaps$gname,

regexpr("rank(.*x?)_", overlaps$qgname))))
rank_table <- table(ranks)
top_rank <- names(which.max(rank_table))
top_percentage <- max(rank_table) / length(overlaps)
Get the percentage of targeting by piC

bypiCtargeting_percentage <- sum(rank_table[names(rank_table) != "0"]) /
length(overlaps)
if (top_rank == "0") {

sorted_counts <- sort(rank_table, decreasing = TRUE)
second_largest <- sorted_counts[2]
top_piC_percentage <- second_largest / length(overlaps)
} else {
top_piC_percentage <- top_percentage
¥
if (is.na(top_piC_percentage)) {
top_piC_percentage <- 0
b

97

return(c(top_rank, top_percentage, top_piC_percentage, bypiCtargeting_percentage))

}

Get all overlaps at once
all_overlaps <- findOverlaps(invertStrand(geneAnnotation_PCG_gene), gr_alignments)

Split overlaps by gene
overlaps_by_gene <- split(gr_alignments[subjectHits(all_overlaps)],
queryHits(all_overlaps))

Apply function to each gene's overlaps
results <- lapply(overlaps_by_gene, get_top_piC_info)

Update only the rows that have overlaps

genes_with_overlaps <- as.numeric(names(overlaps_by_gene))
topPiCtarget_df$totalPiRNAcount <- countOverlaps(invertStrand(geneAnnotation_PCG_gene),
gr_alignments)

topPiCtarget_df$topContribPiCrank[genes_with_overlaps] <- sapply(results, “[, 1)
topPiCtarget_df$topPercentage[genes_with_overlaps] <- as.numeric(sapply(results, ‘[,
2))

topPiCtarget_df$bypiCtargeting_percentage[genes_with_overlaps] <-
as.numeric(sapply(results, “[*, 3))
topPiCtarget_df$top_piC_percentage[genes_with_overlaps] <- as.numeric(sapply(results,
[, 4))

rownames (topPiCtarget_df) <- topPiCtarget_df$geneName

After updating topContribPiCrank and topPercentage, update cisTargeting
inverted_clusters <- invertStrand(clusters_69yo)
topContribPiCrank_numeric <- as.numeric(as.character(topPiCtarget_df$topContribPiCrank))

for (i in seq_len(nrow(topPiCtarget_df))) {
geneNamel <- topPiCtarget_df$geneName[i]
gene_overlaps <- subsetByOverlaps(
inverted_clusters,
genes [genes$gene_name == geneNamell)$rank_readsExplained
topPiCtarget_df$cisTargeting[i]l <- topContribPiCrank_numeric[i] %in% gene_overlaps

Filter for non-cis targeted genes and order by totalPiRNAcount
targetingByPiRNAsSbO_sorted_total_tra <- topPiCtarget_df[topPiCtarget_df$cisTargeting ==
FALSE,]

message("Number of genes in antisense orientation to piRNA clusters and therefore
removed: ", nrow(topPiCtarget_df) - nrow(targetingByPiRNAsSbO_sorted_total_tra))
targetingByPiRNAsSbO_sorted_total_tra <-
targetingByPiRNAsSbO_sorted_total_tralorder(targetingByPiRNAsSbO_sorted_total_tra$totalP
iRNAcount, decreasing=TRUE),]

Calculate percentage of targeting piRNAs for each gene

readsTargetingPCGs <- sum(targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount)
targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAperc <-
(targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount/readsTargetingPCGs)*100
targetingByPiRNAsSbO_sorted_total_tra$targetedRank <-
l:nrow(targetingByPiRNAsSbO_sorted_total_tra)

genes_targetingThreshold <- 50

Number of genes in antisense orientation to piRNA clusters and therefore remove
d: 697

98

options(repr.plot.width=12, repr.plot.height=7)
Create plot with highlighted genes and corrected ranks
plot_4a_full <-
ggplot(targetingByPiRNAsSbO_sorted_total_tral[targetingByPiRNAsSbO_sorted_total_tra$total
PiRNAcount '= 0,1,
aes(x = targetedRank, y
geom_vline(xintercept =

= logl0(totalPiRNAperc), group = 1)) +
0:genes_targetingThreshold, color = "#ffffff", alpha = 0.3)
+

scale_x_continuous(breaks = seq(1,
nrow(targetingByPiRNAsSbO_sorted_total_traltargetingByPiRNAsSb0O_sorted_total_tra$totalPi
RNAcount !'= 0,1), by = 2000)) +

geom_line(linewidth = 1) +

theme_classic() +

annotation_logticks(base = 10, sides = "1", short = unit(0.02, "cm"), mid =
unit(0.04, "cm"), long = unit(0.06, "cm")) +
theme (

axis.text.x = element_text(angle = 45, hjust = 1, size = 7),
axis.text.y = element_text(size = 7),
axis.title.x = element_text(size = 7),
axis.title.y = element_text(size = 7)
) +
labs (
x = "Ranked Genes by piRNA Targeting",
y = "mRNA-targeting piRNA (%, logl@)"

)

plot_4a_full

mRNA-targeting piRNA (%, log10)

~

N N N N N N N N
o'
> © & K & & K &

Ranked Genes by piRNA Targeting

options(repr.plot.width=12, repr.plot.height=7)

Get the data for specified genes
genes_targetingThreshold <- 50
highlight_genes <- c('GOLGA2')

gene_data <- targetingByPiRNAsSb0O_sorted_total_tral
99

targetingByPiRNAsSbO_sorted_total_tra$geneName %in% highlight_genes,]

Create plot with highlighted genes and corrected ranks
plot_4alnset <-
ggplot(targetingByPiRNAsSbO_sorted_total_trall:genes_targetingThreshold,],
aes(x = targetedRank, y = totalPiRNAperc, group = 1)) +
geom_1line(linewidth = 1, color = "black") +
geom_point(color = "#9662A9", size = 1.5) +
scale_x_continuous(breaks = seq(1l, nrow(targetingByPiRNAsSbO_sorted_total_tra), by =
20)) +
Add highlighted points with different color/size to make them stand out
geom_point(data = gene_data, color = "#9662A9", size = 1.5) +
Add labels for highlighted genes
geom_text(data = gene_data,
aes(label = sapply(geneName, function(g) {
count <-
targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount [targetingByPiRNAsSbO_sorted_total_
trasgeneName == g]
ppm <- round((count / readsTargetingPCGs) * le6, 1)
paste@(g, " Rank: ",
match(g, targetingByPiRNAsSbO_sorted_total_tra$geneName),

" [", ppm, " ppml")
),
color = "#9662A9",
vjust = -0.2, # Single value for single gene
hjust = -0.1, # Single value for single gene

size = 2.5) +
theme_classic() +
theme (
axis.text.x = element_text(size = 7),
axis.text.y = element_text(size = 7),

axis.title.x = element_text(size = 7),
axis.title.y = element_text(size = 7)
) +
labs (
x = "Ranked Genes by piRNA Targeting",
y = "piRNA Targeting (%)"

)

plot_4alnset

100

PIRNA Targeting (%)

1 21 41
Ranked Genes by piRNA Targeting

Scatter plot of mMRNA target length and the log10-transformed percentage of targeting
piRNAs (Fig 4b)

#load pseudogenes gencode.v47.2wayconspseudos.gtf in hsa_referenceGenome
pseudogenes_dir <- "../data/annotations/gencode.v47.2wayconspseudos.gtf"
pseudogenes <- rtracklayer::import(pseudogenes_dir)

pseudogenes don't contain regular gene_name of parent_id (just Ensembl format)
cleaned_gene_ids_genes <- sub("\\..x", "", mcols(genes)$gene_id)
gene_id_to_name_map <- setNames(mcols(genes)$gene_name, cleaned_gene_ids_genes)

Add the 'geneName' column to 'pseudogenes'

mcols(pseudogenes)$geneName <- ifelse(
mcols(pseudogenes)$parent_id %in% names(gene_id_to_name_map),
gene_id_to_name_map[mcols(pseudogenes)$parent_id],
mcols(pseudogenes)$parent_id

prefilter piRNA clusters that are generally targeting PCG genes

maxPiC <-
max(as.integer(targetingByPiRNAsSbO_sorted_total_tra[1:250,1$topContribPiCrank))
message("Only considering top ", maxPiC, " piRNA clusters since top 250 targeted genes
only are targeted by that max rank.")

clusters_69yo_pachSubset <- clusters_69yo[clusters_69yo$rank_readsExplained <= maxPiC]
pseudogenesRGOvrlp <- subsetByOverlaps(pseudogenes,
invertStrand(clusters_69yo_pachSubset))

Only considering top 8406 piRNA clusters since top 250 targeted genes only are t
argeted by that max rank.

Find overlaps
overlaps <- findOverlaps(pseudogenesRGOvrlp, invertStrand(clusters_69yo_pachSubset))
101

Extract ranks based on overlaps

ranks <— rep(NA, length(pseudogenesRGOvrlp))

ranks [queryHits(overlaps)] <-
clusters_69yo_pachSubset$rank_readsExplained[subjectHits(overlaps)]

Add rank to pseudogenesRGOvrip
pseudogenesRGOvrlp$rank_readsExplained <- ranks

Get unique pairs
unique_pairs <- unique(data.frame(
parentName = mcols(pseudogenesRGOvrlp)$geneName,
rank = mcols(pseudogenesRGOvrlp)$rank_readsExplained
))
Sort by cluster_rank if desired
unique_pairs <- unique_pairs[order(unique_pairs$rank), |

unique_pairs$geneTop250targeted <- unique_pairs$parentName %in% topPiCtarget_df$geneName

Initialize PGasToTopPiC, check if gene is targeted by a piC that contains its
Pseudogene

targetingByPiRNAsSbO_sorted_total_tra$PGasToTopPiC <- "NO"
targetingByPiRNAsSbO_sorted_total_tra$PGasToTopPiC[targetingByPiRNAsSbO_sorted_total_tra
$topContribPiCrank == 0] <- "N.A."

for (gene in targetingByPiRNAsSbO_sorted_total_tra$geneName) {
if (gene %in% unique(unique_pairs$parentName)) {

assRank <- na.omit(unique_pairs[unique_pairs$parentName == gene, "rank"])
for (rank in assRank) {
if

(targetingByPiRNAsSbO_sorted_total_tral[targetingByPiRNAsSbO_sorted_total_tra$geneName ==
gene, 1$topContribPiCrank == rank) {

targetingByPiRNAsSbO_sorted_total_traltargetingByPiRNAsSbO_sorted_total_tra$geneName ==
gene, 1$PGasToTopPiC <- "YES"
¥
b

}

#mark also genes that have unannotated Pseudogenes (GOLGA2 is annotated for piC-ranked 1
in UCSC), by changing the BarColorPseudogene to purple
targetingByPiRNAsSbO_sorted_total_tra$PGasToTopPiC[targetingByPiRNAsSb0O_sorted_total_tra
$geneName == "GOLGA2"] <- "YES"

#get total coverage of targeting of gene
gr_alignments_red <- reduce(gr_alignments)

Calculate overlap widths for matches

overlapsPiRNAsRedGenes <- findOverlaps(gr_alignments_red,
invertStrand(geneAnnotation_PCG_gene))

overlap_widths <-
tapply(width(pintersect(gr_alignments_red[queryHits(overlapsPiRNAsRedGenes)],

invertStrand(geneAnnotation_PCG_gene[subjectHits(overlapsPiRNAsRedGenes)]1))),
102

subjectHits(overlapsPiRNAsRedGenes), sum)

Create a vector of length equal to number of genes in geneAnnotation_PCG_gene
full_overlap_widths <- numeric(length(geneAnnotation_PCG_gene))

Fill in the actual overlap values where they exist
full_overlap_widths[as.numeric(names(overlap_widths))] <- overlap_widths

Create dataframe with all genes and their coverage
all_genes <- geneAnnotation_PCG_gene$gene_name
percentageCoverage_df <- data.frame(

geneName = all_genes,

targetingCoverage_bp = full_overlap_widths

)

Merge with targeting dataframe
targetingByPiRNAsSbO_sorted_total_tra <- merge(
targetingByPiRNAsSb0O_sorted_total_tra,
percentageCoverage_df,

by = "geneName"

)

targetingByPiRNAsSbO_sorted_total_tra <-
targetingByPiRNAsSbO_sorted_total_tralorder(targetingByPiRNAsSbO_sorted_total_tra$totalP
iRNAcount, decreasing=TRUE),]

plot_targetingCoverage <-
ggplot(targetingByPiRNAsSbO_sorted_total_tral[l:genes_targetingThreshold,], aes(x =
targetingCoverage_bp/1000, y = logl@(totalPiRNAperc))) +
geom_point(aes(color = "#7f3f98"), alpha = 1, size = 1) +
geom_text_repel(aes(label = geneName),
size = 2.5,
box.padding = 0.5,
max.overlaps = 10) +
annotation_logticks(base = 10, sides = "1", short = unit(0.02, "cm"), mid = unit(0.04,
"cm"), long = unit(0.06, "cm")) +

scale_color_identity(guide = "legend",
breaks = c("#c353ff","#d3d3d3", "#767676"),
labels = c("PG-as piCs—-derived piRNAs",

"non-piC-derived piRNAs",
"piC-derived piRNAs")) +
theme_classic() +

labs (
x = "mRNA target-sequence (kb)",
y = "piRNA Targeting (%, logl0)"
) +
theme(

plot.title = element_text(size = 7, face = "bold"),
axis.title = element_text(size = 7),

axis.text = element_text(size = 7),

legend.position = "none"

)

plot_targetingCoverage

Warning message:
"ggrepel: 2 unlabeled data points (too many overlaps). Consider increasing max.o
verlaps"

103

!

GOLGA2

s FAM120A0S /
;" g / / AGAP1
£ FANCL USPs
2
= IMPDH1,
&
g /DGKH /MRSZ
4
a ! ’ /MPRIP
0.0+
DNAJC15 BViiie TATDN2
/HHLAZ / /LRRK1
.
ENSG00000275674 FAM186A NPAP1
.
o T™X2
MRPL49/F‘RDM7 vetaar \ /0R5A2
(;w>4A22l CPNZ\ TRIMS ACAD9 NUTM2E
2 .
SERi = SPATA31D1 B4GALNT2
" RPL21 L s LRRC37A3 ' 572 o
TBC1D38 RALBP1 S~ 14 SETMAR \ERVW-1
GPANT - \PGMIS
ABCG8 NREP NAIP
SAMD12 ® 7 P4
/ SPDYE16 - COYL !

TPTE2 SYT158

0 2 4 6
mRNA target-sequence (kb)

piRNA Cluster origins of targeting piRNAs (Fig 4b-Inset, 4c, Extended Data Fig. 4d)

Fraction of piRNAs derived from their most targeting piRNA cluster

options(repr.plot.width=8, repr.plot.height=8)

only label dots that rank 15 or higher in targeting
temp_targetingByPiRNAsSbO_sorted_total_tra <- targetingByPiRNAsSbO_sorted_total_tra %>%
mutate(label = if_else(targetedRank < 15, geneName, NA_character_))

plot fraction of targeting piRNAs from its top targeting piRNA cluster
plot_scTopPer <-
ggplot(temp_targetingByPiRNAsSbO_sorted_total_tral[l:genes_targetingThreshold,], aes(x =
targetedRank, y = top_piC_percentagex100)) +
geom_point(color = "#ed1c24", alpha = 0.5, size = 1) +
geom_text_repel(aes(label = label),
size = 2.5,
box.padding = 0.5,
max.overlaps = 10,
na.rm = TRUE) +
scale_color_identity() +
theme_classic() +
labs(y = "Fraction of targeting piRNAs from its top targeting piC", x = "Ranked
targeted genes (1-88)") +
ylim(0, 100)

plot_scTopPer

104

DGKH kiioRs
100 S 7
AGAP1 \
USP6 7 TATDN2
GOLGAZ)
MRS2 DNAJC15
FAM120A0S
IMPDH1
O
S5 75
o
= MPRIP
© 7
o
2
I}
3
a
<)
8=]
2
=
S
&=
0
< 50
z
x
Q
{2
£
@ 7
% DYNAP
S
T
Be]
b
15}
[
=]
=1
[$)
g2 25
LRRK1
FANCL
7 7
0
0 10 20 30 40 50

Ranked targeted genes (1-88)

Fraction of gene-targeting piRNAs that originate from piRNA clusters that are not directly
overlapping with the specific gene (in trans)

put alignments to PCG transcriptome into context with the genes they target

match read names, which include (among other things) information about the piC they
came from (rank) and their original read name (when mapped to mml@)

PCG_as_name_df <- as.data.frame(findOverlaps(gr_alignments,
invertStrand(geneAnnotation_PCG_gene)))

PCG_as_name_df$gene_name <-
geneAnnotation_PCG_gene[as.numeric(PCG_as_name_df$subjectHits),]$gene_id
PCG_as_name_df$read_name <- sub("_.x", "",
gr_alignments[as.numeric(PCG_as_name_df$queryHits), 1$qgname)
PCG_as_name_df$read_nameWInfo <-
gr_alignments[as.numeric(PCG_as_name_df$queryHits), 1$gname

PCG_as_name_df$rankOrigin <- sub("_|_", "", sub("rank|_", "",
regmatches(gr_alignments[as.numeric(PCG_as_name_df$queryHits), 1$gname,
regexpr("rank(.*?)_", gr_alignments[as.numeric(PCG_as_name_df$queryHits),]1$qgname))))

Precompute read—gene pairs from a single overlap against invertStrand(genes)

inv_genes <- invertStrand(genes)

hits <- findOverlaps(gr_hg38_prim, inv_genes)

get read name - gene pairs that are antisense to eachother in mml@

hg38_as_pair <- unique(paste@(names(gr_hg38_prim) [as.integer(queryHits(hits))1l, "\r",
inv_genes$gene_name[as.integer(subjectHits(hits))]))

Mark cis if (read_name, gene_name) observed in the precomputed pairs

105

PCG_as_pair <- paste@(PCG_as_name_df$read_name, "\r'", PCG_as_name_df$gene_name)
PCG_as_name_df$cis_piRNA <- PCG_as_pair %in% hg38_as_pair

all genes

targeting in trans

nrow(PCG_as_name_df [!PCG_as_name_df$cis_piRNA, 1) /nrow(PCG_as_name_df)

targeting in trans and from piRNA cluster

nrow(PCG_as_name_df [(!PCG_as_name_df$cis_piRNA) & (PCG_as_name_df$rankOrigin !=
0),]1)/nrow(PCG_as_name_df[!PCG_as_name_df$cis_piRNA,])

0.596092665642742
0.646610386344729

top targeted genes (50)
PCG_as_name_df_topTargetedGenes <- PCG_as_name_df [PCG_as_name_df$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tra$geneName[l:genes_targetingThreshold],]

targeting in trans
nrow(PCG_as_name_df_topTargetedGenes[!PCG_as_name_df_topTargetedGenes$cis_piRNA,])/nrow(
PCG_as_name_df_topTargetedGenes)

targeting in trans and from piRNA cluster
nrow(PCG_as_name_df_topTargetedGenes[(!PCG_as_name_df_topTargetedGenes$cis_piRNA) &
(PCG_as_name_df_topTargetedGenes$rankOrigin !=
0),])/nrow(PCG_as_name_df_topTargetedGenes[!PCG_as_name_df_topTargetedGenes$cis_piRNA,])

0.954526083527828
0.817176798012188

for top-targeted genes, fraction targeted by piRNAs from piRNA cluster (given that
they are trans targeting)
PCG_as_name_df_topTargetedGenes <- PCG_as_name_df[PCG_as_name_df$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tra$geneName[l:genes_targetingThreshold], |
transTargetingPiCpiRNAs <-
nrow(PCG_as_name_df_topTargetedGenes[(!PCG_as_name_df_topTargetedGenes$cis_piRNA) &
(PCG_as_name_df_topTargetedGenes$rankOrigin !=
0),1)/nrow(PCG_as_name_df_topTargetedGenes[!PCG_as_name_df_topTargetedGenes$cis_piRNA,])
transTargetingPiCpiRNAs
Create a data frame with this value
data <- data.frame(

category = c("transTargetingPiCpiRNAs", "Other"),

value = c(transTargetingPiCpiRNAs, 1-transTargetingPiCpiRNAs)
)

Create the pie chart
options(repr.plot.width=4, repr.plot.height=4)
plot_byPiCTarg <- ggplot(data, aes(x = "", y = value, fill = category)) +
geom_bar(stat = "identity", width = 1, alpha=0.5) +
coord_polar(theta = "y") +
scale_fill_manual(values = c("lightgrey", "#ed1c24")) +
theme_void() +
theme(legend.position = "none")

plot_byPiCTarg

0.817176798012188

106

Contribution of individual piRNA clusters to targeting (by their top, second, and third most
contributing piC, other piCs and non-piC regions)

filter custom PCG transcriptome coordinates of top targeted genes

subset_tra_gr <- geneAnnotation_PCG_gene[geneAnnotation_PCG_gene$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tral[l:genes_targetingThreshold,]$geneName]

add totalPiRNAcounts and targetedRank to GRange object
mcols(subset_tra_gr)$totalPiRNAcount <-
targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount [match(mcols(subset_tra_gr)$gene_na
me, targetingByPiRNAsSbO_sorted_total_tra$geneName)]

mcols(subset_tra_gr)$targetedRank <-
targetingByPiRNAsSbO_sorted_total_tra$targetedRank[match(mcols(subset_tra_gr)$gene_name,
targetingByPiRNAsSbO_sorted_total_tra$geneName)]

get table with piC-rank targeting contributions per gene
rank_piC_info <- function(overlaps) {
if (length(overlaps) == 0) {
return(c("0", 0, 0))

}
Extract rank information using vectorized operations
ranks <- sub("_|_", "", sub("rank|_", "", regmatches(overlaps$gname,

regexpr("rank(.x?)_", overlaps$gname))))
rank_table <- table(ranks)

return(rank_table)

}

Get all targeting piRNAs in relation to the gene they target
overlap_hits <- findOverlaps(invertStrand(subset_tra_gr), gr_alignments)

Split targeting piRNAs by gene
alignments_by_gene <- split(gr_alignments[subjectHits(overlap_hits)],
queryHits(overlap_hits))

For each gene run rank_piC_info for table with piC-rank targeting contributions
piC_rank_summaries <- lapply(alignments_by_gene, rank_piC_info)

Retrieve top contributing piC and percentage
Separate piRNAs not from piCs and those from piCs that contribute < 5%
process_rank_contributions <- function(rank_table, total_count) {

Convert gene's piC_rank_summaries table to named vector and calc fractions 4o7

contributions <- as.vector(rank_table) / total _count
names (contributions) <- names(rank_table)

Separate category 0 (if it exists)
cat_@ <- if("0" %in% names(contributions)) contributions["0"] else 0
other_contributions <- contributions[names(contributions) != "0"]

Sort other contributions in descending order
sorted_contributions <- sort(other_contributions, decreasing = TRUE)

Identify contributions >= 5%
major_contributions <- sorted_contributions[sorted_contributions >= 0.05]
minor_contributions <- sorted_contributions[sorted_contributions < 0.05]

Create result vector
result <- c()
result["rankContr-0"] <- cat_@

Add major contributions

for(i in seqg_along(major_contributions)) {
result[paste@("rankContr-", i)] <- major_contributions[i]

+

Sum minor contributions if any exist
if(length(minor_contributions) > 0) {
result["rankContr-rest"] <= sum(minor_contributions)

¥

return(result)

Apply to each gene and create new columns

contribution_results <- lapply(seq_along(alignments_by_gene), function(i) {
rank_table <- piC_rank_summaries[[i]]
total_count <- subset_tra_gr$totalPiRNAcount[i]
process_rank_contributions(rank_table, total_count)

})

Find all unique column names across all results
all_columns <- unique(unlist(lapply(contribution_results, names)))

Ensure each result has all columns, filling missing ones with @
contribution_results_normalized <- lapply(contribution_results, function(x) {
missing_cols <- setdiff(all_columns, names(x))
if(length(missing_cols) > 0) {
x[missing_cols] <- 0@
b
return(x[all_columns])
})
convert to one data frame
contribution_df <- do.call(rbind, contribution_results_normalized)
colnames(contribution_df) <- all_columns

Add contribution_df to the subset_tra_gr in df format
subset_tra <- cbind(as.data.frame(subset_tra_gr), contribution_df)

108

Reshape to long format
data_long <- subset_tra %>%
mutate(gene = rownames(subset_tra)) %>%
gather(key = "rank", value = "value",
starts_with("rankContr")) %>%
mutate(rank = factor(rank,

levels = c("rankContr-0", "rankContr-rest", "rankContr-4",
"rankContr-3", "rankContr-2", "rankContr-1")))

Create the stacked column chart
options(repr.plot.width=12, repr.plot.height=5)
plot_piCcontr <- ggplot(data_long, aes(x = targetedRank, y = value, fill = rank)) +
geom_col(width = 0.85) +
scale_y_continuous(breaks = c(@, 1), labels = c("0", "1")) +
scale_x_continuous(breaks = seq(1l, nrow(subset_tra), by = 20)) +
scale_fill_manual(values = c("#F1F2F2", "#b3dee2", "#eaf2d7", "#efcfe3",

"#ea9ab2'", "#e27396")) +
theme_classic() +

theme (

axis.text = element_text(size = 7),
axis.title = element_text(size = 7),

) +

labs(x = "Ranked Genes by piRNA Targeting",

y = "Origin of targeting piRNAs (%)")

plot_piCcontr

rank
rankContr-0
rankContr-rest
rankContr-4
rankContr-3
. rankContr-2
| . rankContr-1

i I I | II
o
1 21 £

Ranked Genes by piRNA Targeting

Origin of targeting piRNAS (%)

Targeting of gene features (Extended Data Fig. 4a)

geneAnnotation_PCG_gene_subset <-

geneAnnotation_PCG_gene[geneAnnotation_PCG_gene$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tra$geneName[1:250]]
selected_genes <- geneAnnotation_PCG_gene_subset$gene_name

unique(geneAnnotation_PCG$feature)

'‘gene' - '6UTR' - 'CDS' - '3BUTR'

109

subset geneAnnotation_PCG by genes (top targeted)

and features (removing 'gene' annotation which includes all collapsed exons, not
seperated by features)

feature_list <- c("5UTR", "CDS", "3UTR")

gene_features <- geneAnnotation_PCG[geneAnnotation_PCG$gene_name %in% selected_genes &
geneAnnotation_PCG$feature %in% feature_list]

#pre-select alignments to only include alignments targeting selected genes
gr_alignments_main <- subsetByOverlaps(gr_alignments,
invertStrand(geneAnnotation_PCG_gene_subset))

mcols(gr_alignments_main) <- NULL

make GRanges that have the starting position for each targeting piRNA

For positive strand, make end = start

end(gr_alignments_main) [as.character(strand(gr_alignments_main)) == "+"] <-
start(gr_alignments_main) [as.character(strand(gr_alignments_main)) == "+"

For negative strand, make start = end
start(gr_alignments_main) [as.character(strand(gr_alignments_main)) == "-"] <-
end(gr_alignments_main) [as.character(strand(gr_alignments_main)) == "-"]

all_tiles <- NULL
iterate through each gene
for (gene in unique(gene_features$gene_id)) {
get all piRNAs targeting that gene
piRNA_startsAsToGene <- subsetByOverlaps(gr_alignments_main,
invertStrand(gene_features[gene_features$gene_id == genel))

get gene coordinates in custom PCG transcriptome
gene_ranges <- gene_features[gene_features$gene_id == gene]

iterate through each feature
for (feature in feature_list) {

Subset to gene's feature
temp_gr <- gene_ranges[gene_ranges$feature == feature]
if (length(temp_gr) == 0) {

skip if gene does not have 5'UTR or 3'UTR

next

}

Merge overlapping or adjacent ranges
merged_gr <- reduce(temp_gr)
total_length <- sum(width(merged_gr))

if (total_length < 20) {
cat(" Feature ", feature, " for gene ", gene, " too short (<20 nt total).
Skipping.\n")
next

by

Figure out which direction to tile
gene_strand <- unique(as.character(strand(temp_gr)))
merged_gr <- sort(merged_gr)

110

Determine exact tile sizes so that each tile is ~5%
base_tile_size <- floor(total_length / 20)

leftover <- total_length %% 20

tile_sizes <- rep(base_tile_size, 20)

Distribute the remainder (leftover) among the first tiles
if (leftover > 0) {

if (gene_strand == "+") {
tile_sizes[seq_len(leftover)] <- tile_sizes[seq_len(leftover)] + 1
} else {

tile_sizes[21-seq_len(leftover)] <- tile_sizes[21-seq_len(leftover)] + 1
¥
¥

Build the 20 tiles by walking through merged_gr
tile_list <- vector("list", 20)
current_tile_index <- 1

target_tile_len <- tile_sizes[current_tile_index]
cum_len_in_tile <=0

current_ranges <- IRanges()

Helper to finalize a tile and reset
finalize_tile <- function() {
tile_list[[current_tile_index]] <<- GRanges(
seqgnames = seqnames(merged_gr) [1],

ranges = current_ranges,
strand = gene_strand,
gene_id = gene,

feature = feature,

tile_index = current_tile_index

)

current_tile_index <<- current_tile_index + 1
if (current_tile_index <= 20) {
target_tile_len <<- tile_sizes[current_tile_index]
}
cum_len_in_tile <<- 0
current_ranges <<- IRanges()

for (seg in seq_along(merged_gr)) {
seg_start <- start(merged_grlsegl)
seg_end <- end(merged_grlseg])
seg_width <- width(merged_grlseg])

bases_used_in_seg <- 0

Iterate base by base in principle, but slice big chunks if possible
while (bases_used_in_seg < seg_width && current_tile_index <= 20) {

Still need 'remaining_in_tile' bases to complete the current tile
needed_for_tile <- target_tile_len - cum_len_in_tile

The maximum we can take from the current segment is what's left in it
left_in_segment <- seg_width - bases_used_in_seg

The actual chunk we’ll consume from this segment

chunk_size <- min(needed_for_tile, left_in_segment)

if (chunk_size == 0) {
tile is exactly filled

finalize_tile() 111

etc)

}
}

if (current_tile_index > 20) break
next

chunk_start <- seg_start + bases_used_in_seg
chunk_end <- chunk_start + chunk_size - 1

Add IRanges chunk

current_ranges <- c(

current_ranges,

IRanges(start = chunk_start, end = chunk_end)

)

Update counters
bases_used_in_seg <- bases_used_in_seg + chunk_size
cum_1len_in_tile <— cum_len_in_tile + chunk_size

If tile is filled, finalize
if (cum_len_in_tile == target_tile_len) {
finalize_tile()
if (current_tile_index > 20) break
¥
¥
if (current_tile_index > 20) break

by

If something left in the last tile
if (current_tile_index <= 20 && cum_len_in_tile > 0) {
finalize_tile()

by

final_tiles <- do.call(c, tile_list) # a GRanges of length 20
#handle minus strand by just reversing the column tile_index (20 to 1, 19 to 2,

if (gene_strand == "-") {
final_tiles$tile_index <- 20 - final_tiles$tile_index + 1

}

Count overlaps for each tile and add these counts to metacolumn of final_tiles
overlap_counts <- countOverlaps(final_tiles, invertStrand(gr_alignments_main))
mcols(final_tiles)$read_counts <- overlap_counts

#combine to all_tiles
all_tiles <- c(all_tiles, final_tiles)

all _tiles <- do.call(c, all_tiles)

Feature 5UTR for gene RPAP2 +too short (<20 nt total). Skipping.
Feature 5UTR for gene KIAA1143 too short (<20 nt total). Skipping.
Feature 3UTR for gene ENSGQ0000281039 too short (<20 nt total). Skipping.

Calc percentages of targeting piRNAs for each gene
all_tiles_df <- as.data.frame(all_tiles) %>%
group_by(gene_id) %>%
mutate(total_counts = sum(read_counts),

112

percentage = (read_counts / total_counts) * 100)

all _tiles _df$feature <- factor(all_tiles_df$feature, levels = c("5UTR", "CDS", "3UTR"))

options(repr.plot.width=12, repr.plot.height=6)

to plot them next to each other
all_tiles_df <- all_tiles_df %>%

mutate(
Adjusted_Bin = case_when(
feature == "S5UTR" ~ tile_index - 0.5,
feature == "CDS" ~ tile_index + 19.5,
feature == "3UTR" ~ tile_index + 39.5

)
)

Calculate averages for the average plot
all_tiles_df_avg <- all_tiles_df %>%
group_by(feature, Adjusted_Bin) %>%
summarise(avg_percentage = mean(percentage, na.rm = TRUE), .groups = "drop")

Averaged piRNA targeting across all genes with segmented x—axis
featureTargetingPlotTotal <- ggplot(all_tiles_df_avg, aes(x = Adjusted_Bin, y =
avg_percentage, color = feature)) +
geom_line(linewidth = 1.5) +
geom_vline(xintercept = c(20, 40), linetype = "dashed", color = "black") +
labs (
title = "top 250 mRNAs targeted by piRNAs derived from PG-as piCs",

x = "Feature Segments (5' UTR, CDS, 3' UTR)",

y = "Average Percentage of piRNAs Targeting the Gene"
) +
theme_classic() +
theme (

legend.position = "bottom"

featureTargetingPlotTotal

top250_wPGgenes <-
(targetingByPiRNAsSbO_sorted_total_tral[(targetingByPiRNAsSbO_sorted_total_tra$PGasToTopP
iC == "YES") & (targetingByPiRNAsSbO_sorted_total_tra$targetedRank <= 250),1)$geneName
mMRNAs targeted by piRNAs derived from Pseudogenes
Calculate averages for the average plot
all_tiles_df_avg_wPG <- all_tiles_dfl[all_tiles_df$gene_id %in% top250_wPGgenes,] %>%
group_by(feature, Adjusted_Bin) %>%
summarise(avg_percentage = mean(percentage, na.rm = TRUE), .groups = "drop")

Averaged piRNA targeting across all genes with segmented x-axis
featureTargetingPlotTotal_wPG <- ggplot(all_tiles_df_avg_wPG, aes(x = Adjusted_Bin, y =
avg_percentage, color = feature)) +

geom_line(linewidth = 1.5) +

geom_vline(xintercept = c(20, 40), linetype = "dashed", color = "black") +

labs (

title = paste@d(length(top250_wPGgenes), " mRNAs targeted by piRNAs derived from

Pseudogenes"),

x = "Feature Segments (5' UTR, CDS, 3' UTR)",
y = "Average Percentage of piRNAs Targeting the Gene"
) +

theme_classic() +

theme (
113

legend.position = "bottom"

featureTargetingPlotTotal_wPG

top 250 mRNAs targeted by piRNAs derived from PG-as piCs

N w ES

Average Percentage of piRNAs Targeting the Gene

1
1
1
1
[
[
1
1
[
1
1
[
1
1
1
1
1
1
1
1
1
1
[
1
1
1
1
1
1
1
1
[
1
{
1
1
1
1
I

0 20 40
Feature Segments (5' UTR, CDS, 3' UTR)

feature === SUTR === CDS == 3UTR

17 mRNAs targeted by piRNAs derived from Pseudogenes

Average Percentage of piRNAs Targeting the Gene

0 R

1
1
1
1
[
1
[
1
1
1
1
1
1
[
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
[
1
1
[
1
1
1

60

0 20 40
Feature Segments (5' UTR, CDS, 3' UTR)

feature === 5UTR === CDS === 3UTR

Coverage Plots (Extended Data Figure 4b,c)

Gene-targeting (shown in Custom Protein Coding Gene Transcriptome)

GOLGA2 - Extended Data Figure 4b
options(repr.plot.width=12, repr.plot.height=6)

chr <= "chr9"

start <- 3848388

end <- 3853143

coord <- IRanges(start, end)

geneAnnotation_PCG$type <- geneAnnotation_PCG$feature

GOLGA2targeting<- allTracksPlotted(piRNAs_from_Bam = gr_alignments, chromosome = chr,
IRangesCoord=coord, gtfFiles=1ist(GOLGA2 = geneAnnotation_PCG), tilesWidth=20)
GOLGA2targetingFull <- GOLGA2targeting$plotCoverageTrack /

114

60

GOLGA2targeting$trackAll$gtfNuml$trackPlus / GOLGA2targeting$trackAll$gtfNuml$trackMinus
GOLGA2targetingFull

Normalizing to RPM

6000 -

5000 -

4000 -

ncov (rpm)
w
[=3
2
8

2000~

1000 -
Ge /LV A A J\J o /\
\4

GOLGA2 (+)

chr9:3848388-3853143

piRNA Cluster (piC) region as the origin of gene targeting

GOLGA2PG_dir <- "../data/annotations/RefSeqFor_chrl5_62207201-62280100.gtf" #download
from UCSC Genome Browser

GOLGA2PG_grF <- rtracklayer::import(GOLGA2PG_dir)

GOLGA2PG_gr <- GOLGA2PG_grF[GOLGA2PG_grF$gene_id %in% c('"NR_169521.2", '"NR_136885.1")]

GOLGA2 - Extended Data Figure 4c

chr <- as.character(segnames(clusters_69yo[1]))
start <- start(clusters_69yo[1]) - 50

end <- end(clusters_69yo[1]) + 50

coord <- IRanges(start, end)

GOLGA20riginPiC <- allTracksPlotted(piRNAs_from_Bam = gr_hg38, chromosome = chr,
IRangesCoord=coord, gtfFiles=list(piC_69yo = clusters_69yo, GOLGA2P11 = GOLGA2PG_gr),
tilesWidth=50, scaleWidthKB = 10)
t <- GOLGA2o0riginPiC$plotCoverageTrack +

geom_vline(xintercept = min(start(GOLGA2PG_gr)), linetype = "dashed", color =
"black") +

geom_vline(xintercept = max(end(GOLGA2PG_gr)), linetype = "dashed", color = "black")

GOLGA20riginPiCFull <= t /
GOLGA20riginPiC$trackAll$gtfNuml$trackPlus /

GOLGA20originPiC$trackAll$gtfNuml$trackMinus /
GOLGA20riginPiC$trackAll$gtfNum2$trackPlus /

GOLGA20riginPiC$trackAll$gtfNum2$trackMinus

GOLGA20riginPiCFull

Normalizing to RPM

115

2000~
10 kb

1000 -

ncov (rpm)

-1000 -

GOLGA2P11 (+)

cotasziy Wi

¢hr15:62207151-62280150

3
-

Evolutionary conserved pachytene piCs (Figure 4d)

Human

GOLGA2

genes_names <- c("C2CD4B", "TLN2")

selRanges <- genes[genes$gene_name %in% genes_names]

chr <- as.character(unique(seqnames(selRanges)))

start <- min(start(selRanges))

end <- min(start(selRanges[selRanges$gene_name == "TLN2"]))+1000
coord <- IRanges(start, end)

GRanges(seqnames = chr, ranges = coord)

options(repr.plot.width=10, repr.plot.height=4)
GOLGA2_hsa <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,

gtfFiles=list(hsa_piCs = clusters_69yo, PG = c(GOLGA2PG_grF, genes)), tilesWidth=100,

scaleWidthKB = 50)
piCsP <- GOLGA2_hsa$trackAll$gtfNuml$trackPlus +

geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "C2CD4B"]1)),

linetype = "dashed", color = "black") +

geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "TLN2"])),

linetype = "dashed", color = "black")
piCsM <- GOLGA2_hsa$trackAll$gtfNuml$trackMinus +

geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "C2CD4B"])),

linetype = "dashed", color = "black") +

geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "TLN2"]1)),

linetype = '"dashed", color = "black")

genesP <- GOLGA2_hsa$trackAll$gtfNum2$trackPlus +

geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "C2CD4B"1)),

linetype = "dashed", color = "black") +

geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "TLN2"])),

linetype = "dashed", color = "black")
genesM <- GOLGA2_hsa$trackAll$gtfNum2$trackMinus +

geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "C2CD4B"]1)),

linetype = "dashed", color = "black") +

geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "TLN2"])),

linetype = "dashed", color = "black")

116

GOLGA2hsaFull <- piCsP / piCsM / genesP / genesM
GOLGA2hsaFull

GRanges object with 1 range and @ metadata columns:
segnames ranges strand
<Rle> <IRanges> <Rle>
[1] chrl5 62163535-62391550 *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

1
o | EE §
1
1

] B

hsa_piCs (-) [}

T

PG (+)

Pot) o T

chr15:62163535-62391550

Rhesus macaque

#RHESUS, chr7:38,755,710-38,974,746

genes_rheMac8 <-
rtracklayer::import("../data/annotations/EvoComparison/rheMac8_GOLGA2PG.gtf") #download
from UCSC Genome Browser

genes_rheMac8$gene_name <- genes_rheMac8$gene_id

genes_rheMac8$type <- "exon"

Published piRNA clusters from Yu et al. (Nat Commun, 2021):
https://doi.org/10.1038/541467-020-20345-3
piCs_rheMac8 <- GRanges (
seqnames = c('"chr7", "chr7"),
ranges = IRanges(c(38798200, 38758449), c(38847100, 38797823)),
strand = c("+", "-"),
type = c("CDS", "CDS"),
gene_name = c("pi_rheMac8_IG_99.1", "pi_rheMac8_PC_C2CD4B.1"))

#XM_015142398.1 until XM_015142404.1 but XM_015142398.1 is the one matching ENSEMBL pred
= (C2CD4B

#XM_001101705.3 = TLNZ2

genes_names <- c("XM_015142398.1", "XM_001101705.3")

selRanges <- genes_rheMac8[genes_rheMac8$gene_id %in% genes_names]

chr <- as.character(unique(segnames(selRanges)))

start <- min(start(selRanges))

end <- min(start(selRanges[selRanges$gene_id == "XM_001101705.3"]))+1000

coord <- IRanges(start, end)

GRanges(seqnames = chr, ranges = coord)

GOLGA2_rheMac8 <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,
gtfFiles=list(piCsRheMac8 = piCs_rheMac8, genes_RheMac8 = genes_rheMac8),
tilesWidth=100, scaleWidthKB = 50)

piCsP <- GOLGA2_rheMac8$trackAll$gtfNuml$trackPlus +
117

geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_015142398.1"1)), linetype = "dashed", color = "black") +

geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"XM_001101705.3"1)), linetype = "dashed", color = "black")

piCsM <- GOLGA2_rheMac8$trackAll$gtfNuml$trackMinus +
geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==

"XM_015142398.1"]1)), linetype = "dashed", color = "black") +
geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==

"XM_001101705.3"]1)), linetype = "dashed", color = "black")

PGsP <- GOLGA2_rheMac8$trackAll$gtfNum2$trackPlus +
geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==

"XM_015142398.1"1)), linetype = "dashed", color = "black") +
geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==

"XM_001101705.3"1)), linetype = "dashed", color = "black")

PGsM <- GOLGA2_rheMac8$trackAll$gtfNum2$trackMinus +
geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==

"XM_015142398.1"1)), linetype = "dashed", color = "black") +
geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==

"XM_001101705.3"1)), linetype = "dashed", color = "black")

GOLGA2_rheMac8Full <~ piCsP / piCsM / PGsP / PGsM
GOLGA2_rheMac8Full

GRanges object with 1 range and @ metadata columns:

segnames ranges strand
<Rle> <IRanges> <Rle>
[1] chr7 38758450-38973162 *

1
1

genes_RheMac8 (+)

1
genes_RheMac8 (-) xm mn I| m_ni;l*mm%wj :
1

chr7:38758450-38973162

XM_005)42408.3

Marmoset

MARMOSET, chrl0:4,546,947-4,698,170

genes_calJac3 <-
rtracklayer::import("../data/annotations/EvoComparison/calJac3_GOLGA2PG.gtf")
genes_calJac3$gene_name <- genes_calJac3$gene_id

piCs_callac3 <- GRanges(
seqnames = c('chrl@", "chrio"),
ranges = IRanges(c(4542921, 4570600), c(4556809, 4639500)),
Strand - C(II_II’ II+II),
type = c("CDS", "CDS"),
118

gene_name = c("pi_calJac3_PC_C2CD4B.1", "pi_calJac3_IG_21.1")

#XM_002753199.3 C2CD4B

#XM_017976635.1 = TLNZ2

genes_names <- c("XM_002753199.3", "XM_017976635.1")

selRanges <- genes_calJac3[genes_calJac3$gene_id %in% genes_names]

chr <- as.character(unique(seqnames(selRanges)))

start <- min(start(selRanges))

end <- min(start(selRanges[selRanges$gene_id == '"XM_017976635.1"]))+1000
coord <- IRanges(start, end)

GRanges(seqnames = chr, ranges = coord)

GOLGA2_calJac3 <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,
gtfFiles=1list(piCsMarmoset = piCs_calJac3, genes_marmoset = genes_calJac3),
tilesWidth=100, scaleWidthKB = 50)
piCsP <- GOLGA2_callac3$trackAll$gtfNuml$trackPlus +
geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_002753199.3"]1)), linetype = "dashed", color = "black") +
geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"XM_017976635.1"1)), linetype = "dashed", color = "black")

piCsM <- GOLGA2_calJac3$trackAll$gtfNuml$trackMinus +
geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==

"XM_002753199.3"1)), linetype = "dashed", color = "black") +
geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==

"XM_017976635.1"1)), linetype = "dashed", color = "black")

genesP <- GOLGA2_calJac3$trackAll$gtfNum2$trackPlus +
geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==

"XM_002753199.3"1)), linetype = "dashed", color = "black") +
geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==

"XM_017976635.1"1)), linetype = "dashed", color = "black")

genesM <- GOLGA2_calJac3$trackAll$gtfNum2$trackMinus +
geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==

"XM_002753199.3"1)), linetype = "dashed", color = "black") +
geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==

"XM_017976635.1"]1)), linetype = "dashed", color = "black")

GOLGA2_calJac3Full <- piCsP / piCsM / genesP / genesM
GOLGA2_calJac3Full

GRanges object with 1 range and @ metadata columns:

seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] chrl@ 4549580-4691440 *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

119

piCsMarmoset (+)

piCsMarmoset (-) -0043.1

genes_marmoset (+)

genes_marmoset (-) XM 00‘3199:{ xwmmom

;

chr10:4549580-4691440

Cow

#COW - bosTau8, chrl0:47,794,442-47,959,240

genes_bosTau8_est <-
rtracklayer::import("../data/annotations/EvoComparison/bosTau8_GOLGA2PG_est.gtf") #
download from UCSC Genome Browser, cow expressed sequence tags (ESTs) in GenBank
genes_bosTau8_refSeq <-
rtracklayer::import("../data/annotations/EvoComparison/bosTau8_GOLGA2PG.gtf") # download
from UCSC Genome Browser, RefSeq

genes_bosTau8 <- c(genes_bosTau8_est, genes_bosTau8_refSeq)

genes_bosTau8$gene_name <- genes_bosTau8%$gene_id

piCs_bosTau8 <- GRanges(
seqnames = c('"chr10", "chrio"),
ranges = IRanges(c(47892700, 47931000), c(47930800, 47947700)),
strand = c("-", "+"),
type = c("CDS", "CDS"),
gene_name = c("pi_bosTau8_IG_3.1", "pi_bosTau8_IG_4.1"))

from genes_bosTau8: C2CD4B = NM_001046307
from genes_bosTau8_est: TLN2 = e.g. EH375118

genes_names <- c("EH375118", "NM_001046307")

selRanges <- genes_bosTau8[genes_bosTau8$gene_id %in% genes_names]
chr <- as.character(unique(seqnames(selRanges)))

start <- max(end(selRanges[selRanges$gene_id == "EH375118"])) - 1000
end <- max(end(selRanges[selRanges$gene_id == "NM_001046307"]1))
coord <- IRanges(start, end)

GOLGA2_bosTau8 <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,
gtfFiles=list(piCsCow = piCs_bosTau8, genes_Cow = genes_bosTau8), tilesWidth=100,
scaleWidthkB = 50)
piCsP <- GOLGA2_bosTau8$trackAll$gtfNuml$trackPlus +

geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "EH375118"1]1)),
linetype = "dashed", color = "black") +

geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"NM_001046307"]1)), linetype = "dashed", color = "black")

piCsM <- GOLGA2_bosTau8$trackAll$gtfNuml$trackMinus +

geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "EH375118"1)),
linetype = "dashed", color = "black") +

geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"NM_001046307"]1)), linetype = "dashed", color = "black")

120

PGsP <- GOLGA2_bosTau8$trackAll$gtfNum2$trackPlus +

geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "EH375118"])),
linetype = "dashed", color = "black") +

geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"NM_001046307"]1)), linetype = "dashed", color = "black")

PGsM <- GOLGA2_bosTau8$trackAll$gtfNum2$trackMinus +

geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "EH375118"])),
linetype = "dashed", color = "black") +

geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"NM_001046307"1)), linetype = "dashed", color = "black")

GOLGA2_bosTau8Full <- piCsP / piCsM / PGsP / PGsM
GOLGA2_bosTau8Full

piCsCow (-)

1 1
1 1
: [repwan | :
1 1
1 1
1
genes_Cow (+) evrdssrs cB1qs3rr Joteshach | nu+o7
1
1
genes_Cow (-) EHHQS DW1|3541 cswissea B«Hem
1

chr10:47795327-47957474

Mouse

MOUSE - chr9:67,555,573-67,763,784

genes_mml0 <-
rtracklayer::import("../data/annotations/mm10_collapsed_prioritizedCDS3UTR5UTR.gtf")
genes_mml@$gene_name <- genes_mml@$gene_id

#piRNA cluster coordinates from Konstantinidou et al. (2024) in Cell Reports and rank
load("../data/annotations/MILIclusters_pachytene.RData")

#MILI prepach_regions_overl_genes

MILIclusters_pach <- MILIclusters$clusters

MILIclusters_pach <- MILIclusters_pach[order(-
MILIclusters_pach$all_reads_primary_alignments_FPM), 1]
MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM <- seq_along(MILIclusters_pach)
MILIclusters_pach$gene_name <- paste@('"piC-",
MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM)

MILIclusters_pach$type <- "CDS"

#load pseudogenes, download by UCSC
pseudogenes_mml@ <- rtracklayer::import("../data/annotations/mm1@_retroGenesV6.gtf")
pseudogenes_mml@$gene_name <- pseudogenes_mml@$gene_id

from genes_mml@: C2cd4b, Tln2
genes_names <- c("C2cd4b"™, "Tln2")
selRanges <- genes_mmlQ[genes_mml@$gene_id %in% genes_names]
chr <- as.character(unique(seqnames(selRanges)))
start <- max(end(selRanges[selRanges$gene_id == "T1ln2"])) - 1000
121

end <- max(end(selRanges[selRanges$gene_id == "C2cd4b"]))
coord <- IRanges(start, end)

Spinlas_mml1l@ <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,
gtfFiles=1ist(piCsMouse = MILIclusters_pach, genes_Mouse = c(pseudogenes_mml0,
genes_mm10)))

Spinlas_mm1l@OM <- Spinlas_mml@$trackAll$gtfNuml$trackMinus +
geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "Tln2"])), linetype
= "dashed", color = "black") +
geom_vline(xintercept = 67759437, linetype = "dashed", color
RefSeq NM_001081314.2

"black") #start of

Spinlas_mml@OP <- Spinlas_mml@$trackAl1$gtfNuml$trackPlus +
geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "T1ln2"])), linetype
= "dashed", color = "black") +
geom_vline(xintercept = 67759437, linetype = "dashed", color = "black") #start of
RefSeq NM_001081314.2

Spinlas_mm1l@PGsP <- Spinlas_mml@$trackAll$gtfNum2$trackPlus +
geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "Tln2"])), linetype
= "dashed", color = "black") +
geom_vline(xintercept = 67759437, linetype = 'dashed", color = "black") #start of
RefSeq NM_001081314.2

Spinlas_mm1l@PGsM <- Spinlas_mml@$trackAll$gtfNum2$trackMinus +
geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "Tln2"])), linetype
= "dashed", color = "black") +
geom_vline(xintercept = 67759437, linetype = "dashed", color = "black") #start of
RefSeq NM_001081314.2

Spinlas_mml@Full <- Spinlas_mml@M / Spinlas_mml@P / Spinlas_mm1l@PGsP / Spinlas_mm1@PGsM
Spinlas_mml@Full

1
1
= O S
| C2cddb l

1
genes_Mouse (-) Tih2 AK16I’8 1-18 :
1

chr9:67633045-67760933

piCsMouse (+)

genes_Mouse (+)

Rat

#RAT - rn6, chr8:73,438,583-73,595,561
genes_rn6 <- rtracklayer::import("../data/annotations/EvoComparison/rn6_SPIN1PG.gtf")
genes_rn6$gene_name <- genes_rn6$gene_id

piCs_rn6 <- GRanges (
seqnames = c("chr8", "chrsg"),
ranges IRanges(c(73533100, 73572400), c(73572100, 73599100)),
Strand C(“_“' II+II)'

122

type = c("CDS", "CDS"),
gene_name = c("pi_rn6_IG_101.1", "pi_rn6_IG_102.1"))

from genes_rn6: C2CD4B = XM_576426.6; TLN2 = e.g. XM_008766404.2
genes_names <- c('"XM_576426.6", "XM_008766404.2")

selRanges <- genes_rn6[genes_rn6$gene_id %in% genes_names]

chr <- as.character(unique(seqnames(selRanges)))

start <- max(end(selRanges[selRanges$gene_id == '"XM_008766404.2"])) - 1000
end <- min(start(selRanges[selRanges$gene_id == "XM_576426.6"]1)) + 1000
coord <- IRanges(start, end)

Spinlas_rn6 <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,
gtfFiles=1list(piCsRat = piCs_rn6, genes_Rat = genes_rn6), tilesWidth=100, scaleWidthKB =
50)
piCsP <- Spinlas_rn6$trackAll$gtfNuml$trackPlus +

geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "XM_576426.6"1)),
linetype = "dashed", color = "black") +

geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_008766404.2"1)), linetype = "dashed", color = "black")

piCsM <- Spinlas_rn6$trackAll$gtfNuml$trackMinus +

geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "XM_576426.6"]1)),
linetype = "dashed", color = "black") +

geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_008766404.2"1)), linetype = "dashed", color = "black")

genesP <- Spinlas_rn6$trackAll1$gtfNum2$trackPlus +

geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "XM_576426.6"1)),
linetype = "dashed", color = "black") +

geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_008766404.2"1)), linetype = "dashed", color = "black")

genesM <- Spinlas_rn6$trackAl1$gtfNum2$trackMinus +

geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "XM_576426.6"])),
linetype = "dashed", color = "black") +

geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_008766404.2"]1)), linetype = "dashed", color = "black")

Spinlas_rn6Full <- piCsP / piCsM / genesP / genesM
Spinlas_rn6Full

1
piCsRat (+) !
1
1 1
1 1
1
= [
1

1
genes_Rat (-) xM_oozfesosa2 NR_1}088 1 :
1

genes_Rat (+)

chr8:73440535-73590848

For the schematic in Fig 4d, only the piRNA cluster, the neighboring genes (TIn2 and C2cd4b) as well as the

Spin1/GOLGA2-Pseudogene are shown. Other gene annotations are removed to keep the schematic simple.
123

Sequence identity across the GOLGA2-associated piRNA locus in primates (Extended Data
Figure 4e)

Load genomes
library(BSgenome.Hsapiens.UCSC.hg38)
library(BSgenome.Mmulatta.UCSC. rheMac8)
library(BSgenome.Cjacchus.UCSC.calJac3)

Human - GOLGA2 GENE, get sequence

hsa_GOLGA2gene <- genes[genes$gene_name %in% c("GOLGA2") & genes$type == "exon"]
hsa_GOLGA2gene_seq <- suppressWarnings(DNAStringSet(getSeq(BSgenome.Hsapiens.UCSC.hg38,
GRanges (seqnames = seqnames (hsa_GOLGA2gene[1]), ranges = IRanges(start =
min(start(hsa_GOLGA2gene)), end = max(end(hsa_GOLGA2gene)))))))

names (hsa_GOLGA2gene_seq) <- '"hg38_GOLGA2"

Human - full piRNA cluster with GOLGA2 PG, get sequence
hsa_piC_seq <- DNAStringSet(getSeq(BSgenome.Hsapiens.UCSC.hg38, clusters_69yo[1]))
names (hsa_piC_seq) <- "hsa_piC1"

Macaque — full annotated piRNA cluster with GOLGA2 PG, get sequence
rheMac8_piC_seq <- DNAStringSet(getSeq(BSgenome.Mmulatta.UCSC.rheMac8, piCs_rheMac8[1]))
names (rheMac8_piC_seq) <- "rheMac8_piC_IG99"

Marmoset — full annotated piRNA cluster with GOLGA2 PG, get sequence
calJac3_piC_seq <- DNAStringSet(getSeq(BSgenome.Cjacchus.UCSC.calJac3, piCs_calJac3[2]))
names(calJac3_piC_seq) <- "calJac3_piC_IG21"

Marmoset - GOLGAZ GENE, get sequence

calJac3_genes <-
rtracklayer::import("../data/annotations/EvoComparison/calJac3_NCBI_RefSeq.gtf")
calJac3_GOLGA2gene <- calJdac3_genes[calJac3_genes$gene_id == "XM_009003501.2" &
calJac3_genes$type == "exon"]

calJac3_GOLGA2gene_seq <- DNAStringSet(getSeq(BSgenome.Cjacchus.UCSC.calJac3,
GRanges (segnames = seqnames(callac3_GOLGA2gene[1]), ranges = IRanges(start =
min(start(callac3_GOLGA2gene)), end = max(end(callac3_GOLGA2gene))))))

names (calJac3_GOLGA2gene_seq) <- "calJac3_GOLGA2"

Combine seqs and save as fasta

all_seqs <- c(hsa_GOLGA2gene_seq, hsa_piC_seq, rheMac8_piC_seq, calJac3_piC_seq,
calJac3_GOLGA2gene_seq)

Biostrings::writeXStringSet(all_seqs,
"../data/annotations/EvoComparison/GOLGA2_HSA_RHEMAC8_CALJAC3.fasta", format = "fasta")

BASH

minimap2, all-versus-all alignment

minimap2 -x asm20 -c —--egx -D -P --dual=no \
../data/annotations/EvoComparison/GOLGA2_HSA_RHEMAC8_CALJAC3.fasta \
../data/annotations/EvoComparison/GOLGA2_HSA_RHEMAC8_CALJAC3.fasta \

124

>
../data/annotations/EvoComparison/GOLGA2_HSA_RHEMAC8_CALJAC3_x_asm20_c_eqgx_D_P_dualNo.pa

f

[M::mm_idx_gen::0.006%1.88] collected minimizers

[M::mm_idx_gen::0.013%2.42] sorted minimizers

[M::main::0.013%2.41] loaded/built the index for 5 target sequence(s)

[M: :mm_mapopt_update::0.014%2.35] mid_occ = 50

[M::mm_idx_stat] kmer size: 19; skip: 10; is_hpc: 0; #seq: 5
[M::mm_idx_stat::0.014%2.30] distinct minimizers: 35632 (88.19% are singletons);
average occurrences: 1.172; average spacing: 5.556; total length: 232053
[M::worker_pipeline::0.454%2.02] mapped 5 sequences

[M::main] Version: 2.30-r1287

[M::main] CMD: ../../«s/+vu/vu/vu/vu/v/v/Documents/minimap2/minimap2 -x asm20 -
¢ —eqx -D -P ——dual=no ../data/annotations/EvoComparison/GOLGA2_HSA_RHEMAC8_CAL
JAC3.fasta ../data/annotations/EvoComparison/GOLGA2_HSA_RHEMAC8_CALJAC3.fasta
[M::main] Real time: 0.456 sec; CPU: 0.919 sec; Peak RSS: 0.763 GB

R

In case you switched your kernel, rerun the Prep-section of this notebook first

options(repr.plot.width=10, repr.plot.height=10)
read paf file (output of minimap2), using SVbyEye package
paf.table <- readPaf(

paf.file =
"../data/annotations/EvoComparison/GOLGA2_HSA_RHEMAC8_CALJAC3_x_asm20_c_eqx_D_P_dualNo.p
af",

include.paf.tags = TRUE
)

Create plot with percent identity as color

plt_fullPiC <- plotAVA(paf.table = paf.table, color.by = "direction", binsize = 100,
perc.identity.breaks = c(70, 80, 90), segnames.order= c('"hg38_GOLGA2",

"hsa_piC1", "rheMac8_piC_IG99", "calJac3_piC_IG21", "calJac3_GOLGA2"))

plt_fullPiC

[readPaf] Loading PAF file: ../data/annotations/EvoComparison/GOLGA2_HSA_RHEMACS8
_CALJAC3_x_asm20_c_eqx_D_P_dualNo.paf
. 0.01s

[pafToBins] Binning PAF alignments, binsize=100bp
. 8.32s

125

hg38_GOLGA2

hsa_piC1

Identity
[<o
| 7080
| 800
.

rheMac8_piC_IG99 =

calJac3_piC_IG21

calJac3_GOLGA2

L) L) L]
20,000 40,000 60,000
Genomic position (bp)

© -

126

