
buildTranscriptomes.R

Functions needed for the buildTranscriptomes.R script:
GenomicRanges, txdbmaker, Rsamtools, BSgenome, dplyr, IRanges, Biostrings and the
BSgenome package for the used genome

Function to create sequences with gene information and 2000 N (or custom buffer
length) mask between genes
create_sequences <- function(gr, genome, nameCol = "gene_name", output_dir,
buffer_length = 2000) {
 start_time <- Sys.time()
 message("Function 'create_sequences' started at: ", start_time)

 if (!(nameCol %in% colnames(mcols(gr)))) {
stop("nameCol '", nameCol, "' not found in metadata; available: ",
paste(colnames(mcols(gr)), collapse = ", "))

 }

 buffer <- strrep("N", buffer_length)

 # Group by chromosome and gene_name, then sort
 gr_by_chr <- split(gr, seqnames(gr))
 gr_by_chr <- lapply(gr_by_chr, function(chr_gr) {

chr_gr_by_gene <- split(chr_gr, mcols(chr_gr)[[nameCol]])
chr_gr_by_gene <- chr_gr_by_gene[order(sapply(chr_gr_by_gene, function(x)

start(x)[1]))]
return(chr_gr_by_gene)

 })

 sequences <- list()
 for (chr in names(gr_by_chr)) {

chr_seq <- buffer # Start each chromosome with buffer
for (gene in names(gr_by_chr[[chr]])) {

gene_ranges <- gr_by_chr[[chr]][[gene]]
seq <- ""
for (i in seq_along(gene_ranges)) {

range <- gene_ranges[i]
coord <- paste0(as.character(seqnames(range)), ":", start(range), "-",

end(range))
seq <- paste0(seq, as.character(getSeq(genome, GRanges(coord))))

}
chr_seq <- paste0(chr_seq, seq, buffer)
sequences[[gene]] <- list(gene_name = gene, sequence = seq, original_coords

= gene_ranges)
}

 sequences[[paste0("chr_", chr)]] <- chr_seq
 }
 mid_time <- Sys.time()

1

Source Data Code Documentation

https://github.com/HaaseLab

 message("Function 'create_sequences' (without saving it as FASTA) at: ", mid_time)
 message("Execution time without saving it as FASTA: ",
 difftime(mid_time, start_time, units = "auto"))

 # Get chromosome entries
 chr_sequences <- sequences[grep("^chr_", names(sequences))]
 chr_sequences <- lapply(chr_sequences, function(seq) {
 names(seq) <- sub("^chr_", "$chr_", names(seq))
 seq
 })

 # Convert to DNAStringSet, set names and write to FASTA file
 fasta_sequences <- DNAStringSet(unlist(chr_sequences))
 names(fasta_sequences) <- sub("chr_", "", names(chr_sequences))
 fasta_file <- paste0(output_dir, "piCtranscriptome.fasta")
 writeXStringSet(fasta_sequences, fasta_file)
 indexFa(fasta_file)
 message("FASTA file has been saved as ", fasta_file)

 # Print some information
 message("Number of genes processed: ", length(fasta_sequences) -
length(grep("^chr_", names(fasta_sequences))))
 message("Number of chromosomes represented: ", length(grep("^chr_",
names(fasta_sequences))))
 message("Total sequence length: ", sum(width(fasta_sequences)))

 end_time <- Sys.time()
 message("Function 'create_sequences' ended at: ", end_time)
 message("Total execution time: ", difftime(end_time, start_time, units = "auto"))

 return(sequences)
}

Create GTF
create_gtf <- function(gr, sequences, nameCol = "gene_name", output_dir, buffer_length =
2000) {
 start_time <- Sys.time()
 message("Function 'create_gtf' started at: ", start_time)

 gtf_data <- data.frame()

 # Reconstruct gr_by_chr to get the genes in order(first by chr, then by start
position)
 gr_by_chr <- split(gr, seqnames(gr))
 gr_by_chr <- lapply(gr_by_chr, function(chr_gr) {
 chr_gr_by_gene <- split(chr_gr, mcols(chr_gr)[[nameCol]])
 chr_gr_by_gene <- chr_gr_by_gene[order(sapply(chr_gr_by_gene, function(x)
start(x)[1]))]
 return(chr_gr_by_gene)
 })

 for (chr in names(gr_by_chr)) {
 chr_name <- chr
 current_pos <- buffer_length + 1 # Start position in the custom transcriptome
for this chromosome

 chr_genes <- gr_by_chr[[chr_name]]

 for (gene in names(chr_genes)) {

2

 gene_info <- sequences[[gene]]
 gene_ranges <- gene_info$original_coords

 gene_length <- nchar(gene_info$sequence)
 gene_start <- current_pos # Start after the initial buffer
 gene_end <- gene_start + gene_length - 1

 # Gene entry
 gtf_data <- rbind(gtf_data, data.frame(
 seqname = chr_name,
 source = "custom",
 feature = "gene",
 start = gene_start,
 end = gene_end,
 score = ".",
 strand = as.character(strand(gene_ranges[1])),
 frame = ".",
 attribute = paste0('gene_id "', gene, '"; ',
 'gene_name "', gene, '"; ',
 'transcriptome_start "', gene_start, '"; ',
 'transcriptome_end "', gene_end, '"; ',
 'original_chr "',
as.character(seqnames(gene_ranges[1])), '"; ',
 'original_start "', min(start(gene_ranges)), '"; ',
 'original_end "', max(end(gene_ranges)), '";')
))

 # Feature entries (by type: CDS, 5UTR, 3UTR) or just exon (default)
 exon_cumulative_start <- gene_start
 for (i in seq_along(gene_ranges)) {
 range <- gene_ranges[i]

 range_length <- width(range)
 feature_start <- exon_cumulative_start
 feature_end <- exon_cumulative_start + range_length - 1

 # Use "exon" as default feature type since type column is missing
 feature_type <- if("type" %in% colnames(mcols(range))) {
 as.character(range$type)
 } else {
 "exon"
 }

 gtf_data <- rbind(gtf_data, data.frame(
 seqname = chr_name,
 source = "custom",
 feature = feature_type,
 start = feature_start,
 end = feature_end,
 score = ".",
 strand = as.character(strand(range)),
 frame = ".",
 attribute = paste0('gene_id "', gene, '"; ',
 'gene_name "', gene, '"; ',
 'transcript_id "', gene, '_transcript"; ',
 'original_chr "', as.character(seqnames(range)), '";
',
 'original_start "', start(range), '"; ',
 'original_end "', end(range), '"; ',
 'original_strand "', strand(range), '";')

3

))

 # Update the cumulative start position
 exon_cumulative_start <- feature_end + 1
 }

 current_pos <- gene_end + buffer_length + 1 # Add buffer length for the
next gene
 }
 }
 mid_time <- Sys.time()
 message("Function 'create_gtf' (without saving it as GTF) at: ", mid_time)
 message("Execution time without saving it as GTF: ",
 difftime(mid_time, start_time, units = "auto"))

 # Save GTF file
 gtf_file <- paste0(output_dir, "piCtranscriptome.gtf")
 rtracklayer::export(gtf_data, gtf_file, format = "gtf")
 message("GTF file has been saved as", gtf_file)

 end_time <- Sys.time()
 message("Function 'create_gtf' ended at: ", end_time)
 message("Total execution time: ",
 difftime(end_time, start_time, units = "auto"))

 return(gtf_data)
}

get_piC_transcriptome <- function(piCs_gr, genome, column_name_to_sort_by, output_dir,
buffer_length = 2000) {
 # Sort the GRanges object
 sorted_piCs_gr <- sort(piCs_gr)

 # Access the metadata columns
 metadata_columns <- mcols(sorted_piCs_gr)

 # Check if the column exists
 if (!column_name_to_sort_by %in% colnames(metadata_columns)) {
 stop("Column", column_name_to_sort_by, "not found in metadata.")
 }

 # Sort by the specified column using variable name
 sort_order <- order(metadata_columns[[column_name_to_sort_by]])
 sorted_piCs_gr <- sorted_piCs_gr[sort_order]

 # Get the sorted metadata for creating gene names
 sorted_metadata <- mcols(sorted_piCs_gr)

 # Create a new column that is the rank of the piC
 mcols(sorted_piCs_gr)$gene_name <- paste0("rank_",
sorted_metadata[[column_name_to_sort_by]])

 # Create sequences
 message(" ** Creating sequences with buffer length of ", buffer_length, " Ns **")
 sequences <- create_sequences(sorted_piCs_gr, genome, nameCol, output_dir,
buffer_length = buffer_length)

 # Check if sequences is empty or NULL
 if (is.null(sequences) || length(sequences) == 0) {
 stop("Error: No sequences were created. Please check the input data and the

4

create_sequences function.")
 }

 # Create and write GTF file
 message(" ** Creating GTF file **")
 gtf_data <- create_gtf(sorted_piCs_gr, sequences, output_dir, buffer_length =
buffer_length)

 message(" ** Transcriptome has been created and saved in ", output_dir, " **")
}

getGeneTranscriptome <- function(genes, genome, nameCol = "gene_name", output_dir,
buffer_length = 2000, includes = "PCGonly") {
 # genes
 if (class(genes) == "GRanges") {
 genes_gr <- genes
 } else if (class(genes) == "character") {
 message("Loading gtf-file from provided directory.")
 genes_gr <- rtracklayer::import(genes)
 } else {
 stop("Error: genes is not a GRanges object or gtf-directory.")
 }

 #filter genes by 'includes' (all genes or just protein-coding genes)
 if (includes == "PCGonly") { # PCG: protein-coding genes only
 message("Only protein-coding genes will be included in the transcriptome")
 # Filter by protein-coding genes
 genes_gr<-genes_gr[genes_gr$gene_id %in% unique(genes_gr[genes_gr$type %in%
"CDS"]$gene_id)]
 genes_gr<-genes_gr[genes_gr$transcript_id %in% unique(genes_gr[genes_gr$type
%in% "CDS"]$transcript_id)] #since some transcripts do not contain all PCG annotation
features (CDS etc)

 #remove predicted subset (XM_* or XR_*)
 genes_gr <- genes_gr[!grepl("^XM_|^XR_", genes_gr$transcript_id)]
 message("Predicted transcripts (XM_* or XR_*) removed.")

 message("Number of remaining genes: ",
 length(as.list(unique(genes_gr$gene_id))))
 message("Number of remaining transcripts: ",
 length(as.list(unique(genes_gr$transcript_id))))
 } else if (includes == "totalGenes_PCG_nonPCG") {
 message("All genes (PCG and non-PCG) will be included in the transcriptome")
 message("Total genes and total transcripts: ",
length(as.list(unique(genes_gr$gene_id))), " and ",
length(as.list(unique(genes_gr$transcript_id))))
 } else {
 stop("Invalid option for includes. Please choose 'PCGonly' or
'totalGenes_PCG_nonPCG'")
 }

 # Assign stop_codon to CDS
 genes_gr$type[genes_gr$type == "stop_codon"] <- "CDS"
 # check if UTRs are annotated in GRanges, if not create them
 if (all(!c("3UTR", "5UTR") %in% unique(genes_gr$type))) {
 if (class(genes) == "character") {
 message("UTR annotations not present. Trying to load gtf with
makeTxDbFromGFF() if 'genes' variable was a directory")
 genes_txdb <- makeTxDbFromGFF(genes)

5

 transcript_to_gene_name <- setNames(mcols(genes_gr)[[nameCol]],
genes_gr$transcript_id)
 transcript_to_gene <- setNames(mcols(genes_gr)[[nameCol]],
genes_gr$transcript_id)
 transcript_to_gene <- transcript_to_gene[!is.na(names(transcript_to_gene))]
 # get 5'UTR
 fiveUTRs_gr <- unlist(fiveUTRsByTranscript(genes_txdb, use.names = TRUE),
use.names = TRUE)
 fiveUTRs_gr$transcript_id <- names(fiveUTRs_gr)
 fiveUTRs_gr$gene_id <- transcript_to_gene[fiveUTRs_gr$transcript_id]
 fiveUTRs_gr$gene_name <- transcript_to_gene_name[fiveUTRs_gr$transcript_id]
 fiveUTRs_gr$type <- "5UTR"
 names(fiveUTRs_gr) <- NULL

 # get 3'UTR
 threeUTRs_gr <- unlist(threeUTRsByTranscript(genes_txdb, use.names = TRUE),
use.names = TRUE)
 threeUTRs_gr$transcript_id <- names(threeUTRs_gr)
 threeUTRs_gr$gene_id <- transcript_to_gene[threeUTRs_gr$transcript_id]
 threeUTRs_gr$gene_name <-
transcript_to_gene_name[threeUTRs_gr$transcript_id]
 threeUTRs_gr$type <- "3UTR"
 names(threeUTRs_gr) <- NULL

 genes_gr <- c(genes_gr, fiveUTRs_gr, threeUTRs_gr)
 genes_gr <- sort(genes_gr)
 #save GRanges with UTRs
 gtf_newFile <- sub("\\.[^./]*$", "", sub(".*/", "", genes))
 gtf_file <- paste0(output_dir, gtf_newFile, "wUTRs.gtf")
 rtracklayer::export(genes_gr, gtf_file, format = "gtf")
 message("GTF file with UTRs has been saved as ", gtf_file)
 } else {
 stop("Error: UTRs not present in GRanges object, either include them or run
this function with the directory of your gtf-file")
 }
 }

 # Create a list to store the reduced GRanges for each gene
 reduced_genes_list <- list()

 # Sort the GRanges object
 genes_gr <- sort(genes_gr)

 # Get unique gene_ids/gene_names
 unique_genes <- unique(mcols(genes_gr)[[nameCol]])

 # Collapse each gene with annotation hierarchy CDS > 3′UTR > 5′UTR
 for (gene in unique_genes) {
 # Subset data for the current gene
 gene_data <- genes_gr[mcols(genes_gr)[[nameCol]] == gene]

 # Reduce all regions first
 cds_reduced <- reduce(gene_data[gene_data$type == "CDS"])
 utr5_reduced <- reduce(gene_data[gene_data$type == "5UTR"])
 utr3_reduced <- reduce(gene_data[gene_data$type == "3UTR"])

 # Remove CDS regions from UTRs
 if (length(cds_reduced) > 0) {
 utr5_reduced <- GenomicRanges::setdiff(utr5_reduced, cds_reduced)
 utr3_reduced <- GenomicRanges::setdiff(utr3_reduced, cds_reduced)

6

 }

 # Handle overlapping 5'UTR and 3'UTR regions
 overlap <- GenomicRanges::intersect(utr5_reduced, utr3_reduced)
 if (length(overlap) > 0) {
 utr5_reduced <- GenomicRanges::setdiff(utr5_reduced, overlap)
 utr3_reduced <- GenomicRanges::union(utr3_reduced, overlap)
 }

 # Combine all regions
 gene_regions <- c(cds_reduced, utr5_reduced, utr3_reduced)

 # Sort the combined regions
 gene_regions <- sort(gene_regions)

 # Remove duplicates
 gene_regions <- unique(gene_regions)

 # Assign region types
 region_types <- rep("", length(gene_regions))
 region_types[gene_regions %over% cds_reduced] <- "CDS"
 region_types[gene_regions %over% utr5_reduced] <- "5UTR"
 region_types[gene_regions %over% utr3_reduced] <- "3UTR"

 # Add metadata
 mcols(gene_regions)$type <- region_types
 mcols(gene_regions)[[nameCol]] <- rep(gene, length(gene_regions))

 # Add to the list if there are any regions
 if (length(gene_regions) > 0) {
 reduced_genes_list[[gene]] <- gene_regions
 }
 }

 # Combine all reduced GRanges into a single GRanges object
 reduced_genes <- unlist(GRangesList(reduced_genes_list))

 # Remove any potential duplicates in the final GRanges object
 reduced_genes <- unique(reduced_genes)

 # Sort the final GRanges object
 reduced_genes <- sort(reduced_genes)
 if (nameCol == "gene_name") {
 reduced_genes$gene_id <- mcols(reduced_genes)[[nameCol]]
 } else if (nameCol == "gene_id") {
 reduced_genes$gene_name <- mcols(reduced_genes)[[nameCol]]
 }

 message("Number of ranges in the reduced GRanges: ", length(reduced_genes))
 message("Number of unique genes in the reduced GRanges: ",
length(unique(reduced_genes$gene_id)))

 # Save the reduced_genes object to an RData file
 save(reduced_genes, file = paste0(output_dir,
"collapsed_prioritizedCDS3UTR5UTR.RData"))

 # Write the GTF file
 gtf_file <- paste0(output_dir, "collapsed_prioritizedCDS3UTR5UTR.gtf")
 rtracklayer::export(reduced_genes, gtf_file, format = "gtf")

7

 message("Collapsed, prioritized gene file has been saved as ", gtf_file)

 # Create sequences
 message(" ** Creating sequences with buffer length of ", buffer_length, " Ns **")
 sequences <- create_sequences(reduced_genes, genome, nameCol = nameCol, output_dir,
buffer_length = buffer_length)

 # Check if sequences is empty or NULL
 if (is.null(sequences) || length(sequences) == 0) {
 stop("Error: No sequences were created. Please check the input data and the
create_sequences function.")
 }

 # Create and write GTF file
 message(" ** Creating GTF file **")
 gtf_data <- create_gtf(reduced_genes, sequences, nameCol = nameCol, output_dir,
buffer_length = buffer_length)

 message(" ** Transcriptome has been created and saved in ", output_dir, " **")

}

plotLogo.R

Logo from positions 1 to 15 and optional 3' end extension
logoPlot <- function(myAlignments_subset, sampleName, ylim = c(0, 2), genome = NULL){
 # Validate input
 if (!inherits(myAlignments_subset, "GRanges")) {
 stop("myAlignments_subset needs to be a GRanges object (e.g. select for primary
or unique piRNAs).")
 }
 if (!"seq" %in% colnames(mcols(myAlignments_subset))) {
 stop("myAlignments_subset needs to have a seq column. Get through PICBload with
parameter GET.ORIGINAL.SEQUENCE = TRUE.")
 }

 # Main 5' logo (positions 1..15, or fewer if shorter)
 main_width <- min(length(myAlignments_subset$seq)-2, 15)
 label_pos <- c(1, 5, 10, 15)
 main_seqs <- chartr('ATGC', 'AUGC', substr(as.character(myAlignments_subset$seq),
start = 1, stop = main_width))
 p_logo <- ggseqlogo(main_seqs, seq_type = 'rna') +
 scale_y_continuous(limits = ylim, breaks = seq(0, 2, 0.5)) +
 ggtitle(sampleName) +
 scale_x_continuous(breaks = label_pos, labels = label_pos[label_pos <=
main_width]) +
 theme(axis.ticks.y = element_line(),
 axis.ticks.x = element_line(),
 axis.line.x = element_line(),
 axis.line.y = element_line())

 # Attempt to build 3' extension logo if a BSgenome is provided/available
 ext_logo <- NULL
 if (!is.null(genome)) {
 # Resolve BSgenome object
 bs_obj <- NULL
 if (inherits(genome, "BSgenome")) {

8

 print("Using provided BSgenome object to build 3' extension logo.")
 bs_obj <- genome
 } else if (is.character(genome) && length(genome) == 1) {
 bs_obj <- tryCatch(BSgenome::getBSgenome(genome), error = function(e) NULL)
 print("Using provided BSgenome name to build 3' extension logo.")
 } else {
 stop("Invalid BSgenome object or name provided. Make sure to load the
BSgenome package beforehand or place it in quotes.")
 }

 if (!is.null(bs_obj)) {
 # Compute windows around the 3' end per read
 # + strand: 3' end = end(); take [-2,-1] and [+1,+2,+3]
 # - strand: 3' end = start(); take [-2,-1] -> [start+1, start+2] and
[+1..+3] -> [start-3, start-1]
 three_prime_regions <- IRanges(
 start = ifelse(strand(myAlignments_subset) == "+",
 end(myAlignments_subset) - 2,
 start(myAlignments_subset) - 2),
 end = ifelse(strand(myAlignments_subset) == "+",
 end(myAlignments_subset) + 2,
 start(myAlignments_subset) + 2)
)

 # Get the sequences
 three_prime_seqs <- BSgenome::getSeq(
 BSgenome.Mmusculus.UCSC.mm10,
 GRanges(seqnames(myAlignments_subset),
 IRanges(three_prime_regions),
 strand(myAlignments_subset)
)
)

 three_prime_seqs <- chartr('ATGC', 'AUGC',
substr(as.character(three_prime_seqs), start = 1, stop = 5))
 if (length(three_prime_seqs) > 0) {
 ext_logo <- ggseqlogo(three_prime_seqs, seq_type = 'rna') +
 scale_y_continuous(limits = ylim, breaks = NULL) +
 # Separator line at the left edge of the extension logo
 scale_x_continuous(breaks = 3, labels = "3'end") +
 theme(axis.title.y = element_blank(),
 axis.text.y = element_blank(),
 axis.ticks.y = element_blank(),
 axis.ticks.x = element_line(),
 axis.line.x = element_line(),
 axis.line.y = element_line())

 }
 }
 }

 # Return either the base logo or the combined logo with extension
 if (!is.null(ext_logo)) {
 # Place extension to the right; relative widths reflect number of positions
 return(p_logo + ext_logo + patchwork::plot_layout(widths = c(main_width, 5)))
 } else {
 return(p_logo)
 }
}

9

plotCoverage.R

Comprehensive function to plot coverage tracks for GRanges of alignments (e.g. loaded
with PICBload), piRNA clusters and GTF files
coverageTracks <- function(fgr, fgr2, piRNAs_from_Bam=c(), chromosome, IRangesCoord,
tilesWidth=100, xWidth=10000, yRange=c(), normalize = "rpm", scaleWidthKB =
ifelse(end(IRangesCoord) - start(IRangesCoord) > 1000, 1, 0.2)) {
 # find total number of reads in library
 if ("MULT" %in% names(mcols(piRNAs_from_Bam))) {
 Total_reads<-sum(piRNAs_from_Bam$MULT)
 } else {
 Total_reads<-length(piRNAs_from_Bam)
 }

 # Make tiles (100nt default) from GRanges
 fgr.tiles<-unlist(tile(x = fgr, width = tilesWidth)) #minus strand
 fgr.tiles2<-unlist(tile(x = fgr2, width = tilesWidth)) #plus strand

 # Limit GRanges to selected coordinates
 piRNAs_selected_minus<-subsetByOverlaps(piRNAs_from_Bam, fgr, type = "within")
#minus strand
 piRNAs_selected_plus<-subsetByOverlaps(piRNAs_from_Bam, fgr2, type = "within") #plus
strand

 # For minus strand: find reads coverage (rcov) (using the uncollapsed GRanges)
 if ("MULT" %in% names(mcols(piRNAs_selected_minus))) {
 GRcov<-coverage(piRNAs_selected_minus, weight = piRNAs_selected_minus$MULT)
#minus strand
 } else {
 GRcov<-coverage(piRNAs_selected_minus) #minus strand
 }

 # For plus strand: find reads coverage (rcov) (using the uncollapsed GRanges)
 if ("MULT" %in% names(mcols(piRNAs_selected_plus))) {
 GRcov2<-coverage(piRNAs_selected_plus, weight = piRNAs_selected_plus$MULT) #plus
strand
 } else {
 GRcov2<-coverage(piRNAs_selected_plus) #plus strand
 }

 # Ensure coverage objects have same seqlevels as tiles (problem if you hand-currate
some regions beforehand)
 GRcov_filtered <- GRcov[seqlevels(fgr.tiles)] #minus strand
 GRcov2_filtered <- GRcov2[seqlevels(fgr.tiles2)] #plus strand

 # average the coverage in each tile (fgr.tiles) (ie. average coverage within each
tile) and normalize to the size of the library (rpm) -> new column under the name "ncov"
 if (normalize == "rpm") {
 message("Normalizing to RPM")
 fgr.tiles2.ncov<-binnedAverage(bins = fgr.tiles, numvar =
(GRcov_filtered*1000000)/Total_reads, varname = "ncov") #minus strand
 fgr.tiles2.ncov2<-binnedAverage(bins = fgr.tiles2, numvar =
(GRcov2_filtered*1000000)/Total_reads, varname = "ncov") #plus strand
 } else if (normalize == "region") {
 message("Normalizing to region")
 # devides by the total number of reads in the region (minus and plus strand
combined). Sum of ncov is therefore the average piRNA length since the coverage
considers each piRNA for its entire length 10

 fgr.tiles2.ncov<-binnedAverage(bins = fgr.tiles, numvar =
GRcov_filtered/length(c(piRNAs_selected_minus, piRNAs_selected_plus))*tilesWidth,
varname = "ncov") #minus strand
 fgr.tiles2.ncov2<-binnedAverage(bins = fgr.tiles2, numvar =
GRcov2_filtered/length(c(piRNAs_selected_minus, piRNAs_selected_plus))*tilesWidth,
varname = "ncov") #plus strand
 } else if (normalize == "none") {
 message("Not normalizing")
 fgr.tiles2.ncov<-binnedAverage(bins = fgr.tiles, numvar = GRcov_filtered,
varname = "ncov") #minus strand
 fgr.tiles2.ncov2<-binnedAverage(bins = fgr.tiles2, numvar = GRcov2_filtered,
varname = "ncov") #plus strand
 }

 ######## Minus strand ########
 fgr.tiles.ncov3<-as.data.frame(fgr.tiles2.ncov)
 fgr.tiles.ncov3$ncov<--fgr.tiles.ncov3$ncov # make minus strand negative

 ######## Plus strand ########
 fgr.tiles.ncov3_2<-as.data.frame(fgr.tiles2.ncov2)

 axisLinesDist <- max(fgr.tiles.ncov3$end) - min(fgr.tiles.ncov3$start) / 8

 yAxisPrep <- max(abs(min(fgr.tiles.ncov3$ncov)), abs(max(fgr.tiles.ncov3_2$ncov)),
1)

 # Determine rounding for y-axis breaks
 roundBy <- 0
 if (yAxisPrep <= 1) {
 yAxisBreaks <- 0.1
 roundBy <- 2
 } else if (yAxisPrep <= 10) {
 yAxisBreaks <- 1
 roundBy <- 0
 } else if (yAxisPrep <= 100) {
 yAxisBreaks <- 10
 roundBy <- -1
 } else if (yAxisPrep <= 1000) {
 yAxisBreaks <- 100
 roundBy <- -2
 } else if (yAxisPrep <= 10000) {
 yAxisBreaks <- 1000
 roundBy <- -3
 } else if (yAxisPrep > 10000) {
 yAxisBreaks <- 10000
 roundBy <- -4
 }

 ######## Coverage Track ########
 pltCvrg <- ggplot() + theme_classic() +
 geom_line(data = fgr.tiles.ncov3, aes(x = start, y = ncov),
color="blue") +
 #geom_area(data = fgr.tiles.ncov3, aes(x = start, y = ncov),
color="navyblue", fill="blue") + # can be uncommented to fill the area under the curve
 geom_line(data = fgr.tiles.ncov3_2, aes(x = start, y = ncov),
color="red") +
 #geom_area(data = fgr.tiles.ncov3_2, aes(x = start, y = ncov),
color="tomato4", fill="tomato1") + # can be uncommented to fill the area under the curve
 scale_x_continuous(breaks = seq(min(fgr.tiles.ncov3$start),
max(fgr.tiles.ncov3$end), by = xWidth)) +

11

 theme(aspect.ratio = 0.4,
 axis.line.y = element_blank(),
 panel.grid.minor = element_blank()) +
 coord_cartesian(xlim = c(start(IRangesCoord), end(IRangesCoord))) + #,
ylim = c(min(fgr.tiles.ncov3$ncov, -1.1), max(1.1, fgr.tiles.ncov3_2$ncov))
 xlab(paste0(chromosome, " (", tilesWidth, "nt tiles)"))+
 ylab("ncov (rpm)")

 # add scale bar
 pltCvrg <- pltCvrg +
 # Add the horizontal bar
 annotate("segment",
 x = (start(IRangesCoord) + 2),
 xend = (start(IRangesCoord) + 2) + scaleWidthKB * 1000,
 y = max(fgr.tiles.ncov3_2$ncov) * 0.9,
 yend = max(fgr.tiles.ncov3_2$ncov) * 0.9,
 color = "black",
 linewidth = 0.5) +
 # Add the text label
 annotate("text",
 x = (start(IRangesCoord) +2) + (scaleWidthKB*1000/2),
 y = max(fgr.tiles.ncov3_2$ncov) * 0.95,
 label = paste0(scaleWidthKB, " kb"),
 size = 2.5)

 # adapt to defined yRange
 if (length(yRange) == 0) {
 pltCvrg <- pltCvrg + scale_y_continuous(breaks =
seq(round(min(fgr.tiles.ncov3$ncov, -1),roundBy),round(max(fgr.tiles.ncov3_2$ncov,
1),roundBy), by = yAxisBreaks))
 } else {
 pltCvrg <- pltCvrg + scale_y_continuous(breaks = seq(round(yRange[1],roundBy),
round(yRange[2],roundBy), by = yRange[3])) + coord_cartesian(ylim = c(yRange[1],
yRange[2]))
 }
 return(list(pltCvrg = pltCvrg, fgr.tiles.ncov3 = fgr.tiles.ncov3, fgr.tiles.ncov3_2
= fgr.tiles.ncov3_2))

}

#GTF files for cluster can be filtered by its rank when in metacolumn a 'rank' column is
present.
#For transposable elements the family grouping is based on the column 'family_id'.
#For gene the height of the track is based on the column 'type' (CDS, UTR, exon, etc.)

#standarized function for coverage tracks, cluster and TE
allTracksPlotted <- function(piRNAs_from_Bam=c(),
 chromosome, IRangesCoord,
 gtfFiles=c(),
 minRank = INF,
 tilesWidth=100, xWidth=10000,
 yRange=c(), #vector with min y-coordinate, max y-coordinate
and y-axis-breaks: c(y-min, y-max, breaks)
 normalize = "rpm",
 your_color_scale = NULL,
 scaleWidthKB = ifelse(end(IRangesCoord) -
start(IRangesCoord) > 1000, 1, 0.2) # scale of the coverage track
) {

12

 # set fgr
 fgr<-GRanges(seqnames = chromosome, ranges = IRangesCoord, strand = "-")
 fgr2<-GRanges(seqnames = chromosome, ranges = IRangesCoord, strand = "+")

 #perform coverage plot if bam file is given
 if (length(piRNAs_from_Bam) != 0) {
 cvrg <- coverageTracks(fgr, fgr2, piRNAs_from_Bam, chromosome, IRangesCoord,
tilesWidth, xWidth, yRange, normalize = normalize, scaleWidthKB = scaleWidthKB)
 } else {
 cvrg <- NULL
 }

 #retrieve cluster/TE/.. (from gtf) tracks
 if (length(gtfFiles) != 0) {
 #remove x-axis scale on coverage plot since it will be shown by piCs below (or
whichever gtf it is associated with)
 pltCvrg <- cvrg$pltCvrg + theme(axis.text.x = element_blank(),
 axis.ticks.x = element_blank(),
 axis.line.x = element_blank(),
 axis.title.x = element_blank()) # Remove x-axis
label completely

 ######## Tracks From GTF ########

 #define standard settings for gtf tracks
 clusterTracksStandard <- ggplot() + theme_classic() +
 coord_cartesian(xlim = c(start(IRangesCoord),
end(IRangesCoord))) +
 scale_x_continuous(breaks = seq(start(fgr), max(end(fgr)),
by = xWidth)) +
 theme(aspect.ratio = 0.05,
 axis.line.y = element_blank(),
 axis.text.y = element_blank(),
 axis.ticks.y = element_blank(),
 axis.title.y = element_text(angle = 0, vjust = 0.5),
 plot.title = element_text(hjust = 0.5),
 panel.grid.major.y = element_blank(),
 panel.grid.minor = element_blank(),
 axis.text.x = element_blank(),
 axis.ticks.x = element_blank(),
 axis.line.x = element_blank()) + # Remove x-axis label
completely
 xlab(NULL)

 #go through each given gtf file
 gtfNames <- names(gtfFiles)
 trackTotal <- list()
 gtfIt <- 0
 for (gtf in gtfFiles) {
 gtfIt <- gtfIt + 1

 #add TE-color code if applicable
 if ('class_id' %in% names(mcols(gtf))) {
 clusterTracksStandard <- clusterTracksStandard +
scale_colour_manual(values = your_color_scale)
 }
 has_gene_name <- 'gene_name' %in% names(mcols(gtf))
 has_gene_id <- 'gene_id' %in% names(mcols(gtf))

13

 #MINUS
 ovrlps_gtf1_minus <- findOverlaps(gtf, fgr)
 ovrlpsFeat_gtf1_minus <- as.data.frame(gtf[queryHits(ovrlps_gtf1_minus)])

 #Prep for clusters (include rank in metadata in gtf so
 if ('rank' %in% names(ovrlpsFeat_gtf1_minus)) {
 ovrlpsFeat_gtf1_minus$rank <- as.integer(ovrlpsFeat_gtf1_minus$rank)
 ovrlpsFeat_gtf1_minus <-
ovrlpsFeat_gtf1_minus[ovrlpsFeat_gtf1_minus$rank <= minRank,]
 }

 #Prep for RMSK
 if ('class_id' %in% names(ovrlpsFeat_gtf1_minus)) {
 TEtotalWidth <- sum(ovrlpsFeat_gtf1_minus$width)
 sum_widths_by_familyMinus <- ovrlpsFeat_gtf1_minus %>%
 group_by(class_id) %>%
 summarise(total_width =
sum(width)/width(fgr))
 }

 cl_minus <- clusterTracksStandard + ylab(paste0("", gtfNames[gtfIt], "
(-)"))

 if ('class_id' %in% names(ovrlpsFeat_gtf1_minus)) {
 #use segments for TE
 cl_minus <- cl_minus +
 geom_segment(data=ovrlpsFeat_gtf1_minus, aes(x =
start, xend = end, y = 3.05, yend = 3.05, colour = class_id), linewidth = 5)

 } else {
 # Draw rectangles (fallback to non-CDS/UTR height if 'type' is
missing)
 if ('type' %in% names(ovrlpsFeat_gtf1_minus)) {
 cl_minus <- cl_minus +
 geom_rect(data=ovrlpsFeat_gtf1_minus[!grepl("CDS|UTR",
ovrlpsFeat_gtf1_minus$type),], aes(xmin = start, xmax = end, ymin = 4.9, ymax = 5.1),
fill="blue", col="black", linetype=1) +
 geom_rect(data=ovrlpsFeat_gtf1_minus[grepl("exon",
ovrlpsFeat_gtf1_minus$type),], aes(xmin = start, xmax = end, ymin = 4, ymax = 6),
fill="blue", col="black", linetype=1) +
 geom_rect(data=ovrlpsFeat_gtf1_minus[grepl("CDS",
ovrlpsFeat_gtf1_minus$type),], aes(xmin = start, xmax = end, ymin = 3, ymax = 7),
fill="blue", col="black", linetype=1) +
 geom_rect(data=ovrlpsFeat_gtf1_minus[grepl("UTR",
ovrlpsFeat_gtf1_minus$type),], aes(xmin = start, xmax = end, ymin = 4, ymax = 6),
fill="blue", col="black", linetype=1)
 } else {
 cl_minus <- cl_minus +
 geom_rect(data=ovrlpsFeat_gtf1_minus, aes(xmin = start, xmax
= end, ymin = 4.9, ymax = 5.1), fill="blue", col="black", linetype=1)
 }

 # Prepare and draw labels: prefer gene_name, fallback to gene_id; if
neither, skip
 if (has_gene_name || has_gene_id) {
 label_raw_minus <- if (has_gene_name)
ovrlpsFeat_gtf1_minus$gene_name else ovrlpsFeat_gtf1_minus$gene_id
 label_clean_minus <- ifelse(grepl("rank_", label_raw_minus),
sub(".*rank_", "piC-", label_raw_minus), label_raw_minus)
 labels_minus_df <- ovrlpsFeat_gtf1_minus %>%

14

 mutate(.label = label_clean_minus) %>%
 filter(!is.na(.label) & .label != "") %>%
 group_by(.label) %>%
 summarise(
 start_min = if (all(is.na(start))) NA_real_ else
min(start, na.rm = TRUE),
 end_max = if (all(is.na(end))) NA_real_ else max(end,
na.rm = TRUE),
 .groups = "drop"
) %>%
 filter(!is.na(start_min) & !is.na(end_max)) %>%
 mutate(x = (pmax(start_min, start(IRangesCoord)) +
pmin(end_max, end(IRangesCoord))) / 2)
 cl_minus <- cl_minus +
 geom_text(data=labels_minus_df, aes(x = x, y = 5, label =
.label), color="black", size=2.5)
 }
 cl_minus <- cl_minus + xlab(NULL)
 }

 #PLUS
 ovrlps_gtf1_plus <- findOverlaps(gtf, fgr2)
 ovrlpsFeat_gtf1_plus <- as.data.frame(gtf[queryHits(ovrlps_gtf1_plus)])
 #Prep for clusters (include rank in metadata in gtf so
 if ('rank' %in% names(ovrlpsFeat_gtf1_plus)) {
 ovrlpsFeat_gtf1_plus$rank <- as.integer(ovrlpsFeat_gtf1_plus$rank)
 ovrlpsFeat_gtf1_plus <-
ovrlpsFeat_gtf1_plus[ovrlpsFeat_gtf1_plus$rank <= minRank,]
 }
 #Prep for RMSK
 if ('class_id' %in% names(ovrlpsFeat_gtf1_plus)) {
 TEtotalWidth <- sum(ovrlpsFeat_gtf1_plus$width)
 sum_widths_by_familyPlus <- ovrlpsFeat_gtf1_plus %>%
 group_by(class_id) %>%
 summarise(total_width =
sum(width)/width(fgr))
 }

 cl_plus <- clusterTracksStandard + ylab(paste0("", gtfNames[gtfIt], "
(+)"))

 if ('family_id' %in% names(ovrlpsFeat_gtf1_plus)) {
 #use segments for TE
 cl_plus <- cl_plus +
 geom_segment(data=ovrlpsFeat_gtf1_plus, aes(x =
start, xend = end, y = 3.05, yend = 3.05, colour = class_id), linewidth = 5)

 } else {
 # Draw rectangles (fallback to non-CDS/UTR height if 'type' is
missing)
 if ('type' %in% names(ovrlpsFeat_gtf1_plus)) {
 cl_plus <- cl_plus +
 geom_rect(data=ovrlpsFeat_gtf1_plus[!grepl("CDS|UTR",
ovrlpsFeat_gtf1_plus$type),], aes(xmin = start, xmax = end, ymin = 1.4, ymax = 1.6),
fill="red", col="black", linetype=1) +
 geom_rect(data=ovrlpsFeat_gtf1_plus[grepl("exon",
ovrlpsFeat_gtf1_plus$type),], aes(xmin = start, xmax = end, ymin = 1, ymax = 2),
fill="red", col="black", linetype=1) +
 geom_rect(data=ovrlpsFeat_gtf1_plus[grepl("CDS",
ovrlpsFeat_gtf1_plus$type),], aes(xmin = start, xmax = end, ymin = 0, ymax = 3),

15

fill="red", col="black", linetype=1) +
 geom_rect(data=ovrlpsFeat_gtf1_plus[grepl("UTR",
ovrlpsFeat_gtf1_plus$type),], aes(xmin = start, xmax = end, ymin = 1, ymax = 2),
fill="red", col="black", linetype=1)
 } else {
 cl_plus <- cl_plus +
 geom_rect(data=ovrlpsFeat_gtf1_plus, aes(xmin = start,
xmax = end, ymin = 1.4, ymax = 1.6), fill="red", col="black", linetype=1)
 }

 # Prepare and draw labels: prefer gene_name, fallback to
gene_id; if neither, skip
 if (has_gene_name || has_gene_id) {
 label_raw_plus <- if (has_gene_name)
ovrlpsFeat_gtf1_plus$gene_name else ovrlpsFeat_gtf1_plus$gene_id
 label_clean_plus <- ifelse(grepl("rank_", label_raw_plus),
sub(".*rank_", "piC-", label_raw_plus), label_raw_plus)
 labels_plus_df <- ovrlpsFeat_gtf1_plus %>%
 mutate(.label = label_clean_plus) %>%
 filter(!is.na(.label) & .label != "") %>%
 group_by(.label) %>%
 summarise(
 start_min = if (all(is.na(start))) NA_real_ else
min(start, na.rm = TRUE),
 end_max = if (all(is.na(end))) NA_real_ else
max(end, na.rm = TRUE),
 .groups = "drop"
) %>%
 filter(!is.na(start_min) & !is.na(end_max)) %>%
 mutate(x = (pmax(start_min, start(IRangesCoord)) +
pmin(end_max, end(IRangesCoord))) / 2)
 cl_plus <- cl_plus +
 geom_text(data=labels_plus_df, aes(x = x, y = 1.5, label
= .label), color="black", size=2.5)
 }
 cl_plus <- cl_plus + xlab(NULL)
 }
 #}

 #Include in last provided gtf file's minus track the x-scale with text, ticks
and line
 if (gtfIt == length(gtfFiles)) {
 cl_minus <- cl_minus + theme(axis.text.x = element_blank(),
 axis.ticks.x = element_blank(),
 axis.line.x = element_blank()) + xlab(paste0(chromosome, ":",
start(IRangesCoord), "-", end(IRangesCoord)))
 }

 #add to total list
 trackBoth <- list(trackMinus = cl_minus, trackPlus = cl_plus)
 trackTotal <- c(trackTotal, setNames(list(trackBoth), paste0("gtfNum", gtfIt)))
 }
 }
 else {
 #if no gtf file provided
 trackTotal <- NULL
 pltCvrg <- cvrg$pltCvrg
 }
 return(list(plotCoverageTrack = pltCvrg, trackAll = trackTotal, covg_plus =

16

cvrg$fgr.tiles.ncov3_2, covg_minus = cvrg$fgr.tiles.ncov3))
}

17

18

https://www.cell.com/cell-reports/fulltext/S2211-1247(24)01128-8
https://www.cell.com/cell-reports/fulltext/S2211-1247(24)01128-8
https://bioconductor.org/packages/release/bioc/html/PICB.html

for entry in `ls raw_data/*ZL6_S7_R1.fastq.gz`; do echo "$(basename "$entry")";
sbatch --mem=150g --cpus-per-task=32 --time=4:00:00
./mmu_pachytene_smallRNA_mapping_labVsUMIs2_wMiRNAout_wStarSeq.sh $(basename "$entry");
done

#!/bin/bash
-e

echo "Running script"

ml fastqc/0.11.9
ml cutadapt/4.4
ml STAR/2.7.10b
ml samtools/1.17

echo "Modules successfully loaded"

file_name=$1

echo "File to be pre-processed is ${file_name}"

file_ID=$(echo "$file_name" | sed 's/\.fastq\.gz$//;s/\.fastq$//')

echo "File ID of this file: ${file_ID}"

cutadapt -a ACGACTTGGAATTCTCGGGTGCCAAGG \
 --minimum-length 30 \
 -j 4 \
 -o prepro_data/"${file_ID}"_trimmed.fastq.gz \
 raw_data/"${file_name}" >
prepro_data/"${file_ID}"_trimmed_RemoveSmallRNA3pAdaptor_Report.txt

echo "Removed Illumina Small RNA 3' Adapter"

gunzip -c prepro_data/"${file_ID}"_trimmed.fastq.gz >
prepro_data/"${file_ID}"_trimmed.fastq
cat prepro_data/"${file_ID}"_trimmed.fastq | awk 'NR%4==2' | sort | uniq -c | awk
'{OFS= "\n"; print ">"NR"-"$1,$2}' > prepro_data/"${file_ID}"_trimmed_collapsedA.fasta

cutadapt -u 8 -u -2 -o prepro_data/"${file_ID}"_trimmed_collapsed.fasta
prepro_data/"${file_ID}"_trimmed_collapsedA.fasta >
prepro_data/"${file_ID}"_RemoveUMI_Report.txt

echo "UMIs removed"

echo "Removing structural RNA, index exists"

STAR --runMode alignReads \
--runThreadN 16 \
--genomeDir ../mmu_background/background_wmiRNAs/fasta/backgroundDirWstar/ \
--readFilesIn prepro_data/"${file_ID}"_trimmed_collapsed.fasta \
--alignEndsType Local \

 --outFilterMatchNmin 19 \
 --outFilterMultimapNmax 100 \
 --outFilterMismatchNmax 1 \

--alignIntronMax 1 \
--outReadsUnmapped Fastx \

19

 --outSAMattributes NH HI NM MD AS nM \
--outFileNamePrefix prepro_data/structuralRemoval_miRoutwStar_"${file_ID}"_

echo "Mapped to structural RNA"

echo "Continue with those RNAs that did not map to structural RNAs"
cp prepro_data/structuralRemoval_miRoutwStar_"${file_ID}"_Unmapped.out.mate1 \

prepro_data/"${file_ID}"_trimmed_UMIextracted_last6ntRem_lengthFilter_structOut_miRoutwS
.fastq

fastqc -o prepro_data/FASTQC_prepro_data/
prepro_data/"${file_ID}"_trimmed_UMIextracted_last6ntRem_lengthFilter_structOut_miRoutwS
.fastq
echo "fastqc of finished prepro created"

cp
prepro_data/"${file_ID}"_trimmed_UMIextracted_last6ntRem_lengthFilter_structOut_miRoutwS
.fastq \

cleaned_data/"${file_ID}"_trimmed_UMIextracted_last6ntRem_lengthFilter_structOut_miRoutw
S.fastq

echo "finished prepro - moved to cleaned_data"

echo "Mouse genome is already indexed in ../mmu_referenceGenome/GRCm38.p6.genDir/"
echo "Start ${file_ID} mapping"

STAR --runMode alignReads \
--runThreadN 23 \
--genomeDir ../mmu_referenceGenome/GRCm38.p6.genDir/ \
--readFilesIn

cleaned_data/"${file_ID}"_trimmed_UMIextracted_last6ntRem_lengthFilter_structOut_miRoutw
S.fastq \

--alignEndsType EndToEnd \
--outSAMattriD butes All \
--outSAMtype BAM SortedByCoordinate \
--limitBAMsortRAM 40000000000 \
--alignIntronMax 1 \
--alignSoftClipAtReferenceEnds No \
--outFilterMismatchNmax 1 \
--winAnchorMultimapNmax 100 \
--outFilterMultimapNmax 100 \
--outReadsUnmapped Fastx \

 --outFileNamePrefix
STAROutput/smallRNAs_pach_"${file_ID}"/"${file_ID}"_trimmed_UMIcollapsed_structOut_miRou
twS_

echo "Mapped to mouse genome"

samtools index
STAROutput/smallRNAs_pach_"${file_ID}"/"${file_ID}"_trimmed_UMIcollapsed_structOut_miRou
twS_Aligned.sortedByCoord.out.bam
echo "Indexed STARoutput bam file"

echo "Done."

20

suppressPackageStartupMessages({
 library("GenomicRanges")
 library("Biostrings")
 library("BSgenome.Mmusculus.UCSC.mm10")
 library(PICB)
})

Use PICBload to load piRNAs
bam_file <-
"Mouse_161922/Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMIcollapsed_structOut_mi
RoutwS_Aligned.sortedByCoord.out.bam"
myGenome <- "BSgenome.Mmusculus.UCSC.mm10"

alignWT_161922 <- PICBload(
 BAMFILE = bam_file,
 REFERENCE.GENOME = myGenome,
 GET.ORIGINAL.SEQUENCE = TRUE,
 VERBOSE = 0,

)

saveRDS(alignWT_161922, file =
"Mouse_161922/Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMIcollapsed_structOut_mi
RoutwS_Aligned.PICBloadWseqs.RDS")

alignWT_161922 <-
readRDS("Mouse_161922/Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMIcollapsed_stru
ctOut_miRoutwS_Aligned.PICBloadWseqs.RDS")
alignWT_161922_unique_multiPrim <- c(alignWT_161922$unique,
alignWT_161922$multi.primary)
length(alignWT_161922_unique_multiPrim)

#get cluster coordinates (ranked!) from prev. publication (mouse MILI pachytene,
Konstantinidou et al. (2024) in Cell Reports)
load("../../../OneDrive/General/mmu_piRNA_clusters_byThenia/MILIclusters_pachytene.RData
") #MILI_prepach_regions_overl_genes
MILIclusters_pach <- MILIclusters$clusters

MILIclusters_pach <- MILIclusters_pach[order(-
MILIclusters_pach$all_reads_primary_alignments_FPM),]
MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM <- seq_along(MILIclusters_pach)
length(MILIclusters_pach)

21

Mar 21 14:55:36 started STAR run
Mar 21 14:55:36 ... starting to generate Genome files
Mar 21 14:55:37 ... starting to sort Suffix Array. This may take a long time...
Mar 21 14:55:37 ... sorting Suffix Array chunks and saving them to disk...
Mar 21 14:56:24 ... loading chunks from disk, packing SA...
Mar 21 14:56:25 ... finished generating suffix array
Mar 21 14:56:25 ... generating Suffix Array index
Mar 21 14:56:25 ... completed Suffix Array index
Mar 21 14:56:25 ... writing Genome to disk ...
Mar 21 14:56:25 ... writing Suffix Array to disk ...
Mar 21 14:56:25 ... writing SAindex to disk
Mar 21 14:56:25 finished successfully

Find overlaps between piRNAs and piRNA clusters
piRNAs_fromPiC_fO <- findOverlaps(alignWT_161922_unique_multiPrim, MILIclusters_pach,
ignore.strand=FALSE)

mcols(alignWT_161922_unique_multiPrim)$corr_piC_rankByAllReadsPrimaryAlignmentsFPM <- 0

mcols(alignWT_161922_unique_multiPrim)$corr_piC_rankByAllReadsPrimaryAlignmentsFPM[query
Hits(piRNAs_fromPiC_fO)] <-
mcols(MILIclusters_pach[subjectHits(piRNAs_fromPiC_fO)])$rankByAllReadsPrimaryAlignments
FPM
length(alignWT_161922_unique_multiPrim)

#add to readname rank_chr_startPos_strand
seq <- alignWT_161922_unique_multiPrim$seq
names(seq) <- paste0(names(alignWT_161922_unique_multiPrim), "_rank",
alignWT_161922_unique_multiPrim$corr_piC_rankByAllReadsPrimaryAlignmentsFPM, "_",
seqnames(alignWT_161922_unique_multiPrim), "_", start(alignWT_161922_unique_multiPrim),
strand(alignWT_161922_unique_multiPrim), "_NH", alignWT_161922_unique_multiPrim$NH)

save sequences of piRNAs with readname infos in fasta format
writeXStringSet(seq,
file="Mouse_161922/Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMIcollapsed_structO
ut_miRoutwS_Aligned.PICBloadWseqs.primAlignWinfo.fasta")

#BASH, generateGenome
STAR --runMode genomeGenerate \

--genomeDir
../../../OneDrive/General/mmu_referenceGenome/PCG_transcriptome/transcriptomeDir \

--genomeSAindexNbases 6 \
--genomeFastaFiles

../../../OneDrive/General/mmu_referenceGenome/PCG_transcriptome/mm10_PCGtranscriptome_co
llapsed_prioritizedCDS3UTR5UTR_allgenes.fasta \

--limitGenomeGenerateRAM 34173092106\
--runThreadN 23

22

Mar 24 10:03:10 started STAR run
Mar 24 10:03:10 loading genome
Mar 24 10:03:10 started mapping
Mar 24 10:05:21 started sorting BAM
Mar 24 10:05:24 finished successfully
Mapped to PCG_EXON transcriptome

addFastaChange=""
addMappingChange="clip5pNbases1_Extend5pOfRead1_minMatch19"

#bash
input_fasta="Mouse_161922/Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMIcollapsed_
structOut_miRoutwS_Aligned.PICBloadWseqs.primAlignWinfo.fasta"

#minimum Match of 19 nt, to restrict soft-clipping
STAR --runMode alignReads \
 --runThreadN 20 \
 --genomeDir
../../../OneDrive/General/mmu_referenceGenome/PCG_transcriptome/transcriptomeDir/ \
 --readFilesIn $input_fasta \
 --clip5pNbases 1 \
 --alignEndsType Extend5pOfRead1 \
 --outSAMattributes All \
 --outSAMtype BAM SortedByCoordinate \
 --limitBAMsortRAM 20000000000 \
 --alignIntronMax 1 \
 --alignSoftClipAtReferenceEnds No \
 --outFilterMismatchNmax 1 \
 --outFilterMatchNmin 19 \
 --winAnchorMultimapNmax 100 \
 --outFilterMultimapNmax 100 \
 --outReadsUnmapped Fastx \
 --outFileNamePrefix
pachTargetingGenes_PCG/Mouse_161922/PCG_Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed
_UMIcollapsed_structOut_miRoutwS_Aligned.PICBloadWseqs.primAlignWinfo.${addFastaChange}.
PCGtranscriptome_${addMappingChange}_

echo "Mapped to PCG_EXON transcriptome"

suppressPackageStartupMessages({library(Rsamtools)})
#indexBam for every Bam in the folder pachTargetingGenes_PCG/Mouse_161922/ in R
for (bam in list.files("pachTargetingGenes_PCG/Mouse_161922", pattern="\\.bam$",
full.names=TRUE)) {
 indexBam(bam)
}

suppressPackageStartupMessages({
 library(GenomicRanges)
 library(Rsamtools)

23

 library(GenomicAlignments)
 library(tidyr)
 library(dplyr)
 library(ggplot2)
 library(ggrepel)
 library(patchwork)
 library(Biostrings)
 library(UniProt.ws)
 library(scales)
 library(SVbyEye)
 library(Rsubread)
 library(DESeq2)
 library(PICB)
 library(openxlsx)
 library(BSgenome.Mmusculus.UCSC.mm10)
})
source("../scripts/plotCoverage.R")

Load BAM file of piRNAs targeting protein coding genes
bamPCG_dir <-
"../data/bam/mmuToTranscriptome/PCG_Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMI
collapsed_structOut_miRoutwS_Aligned.PICBloadWseqs.primAlignWinfo..PCGtranscriptome_clip
5pNbases1_Extend5pOfRead1_minMatch19_Aligned.sortedByCoord.out.bam"

bam <- BamFile(bamPCG_dir)
exclude both secondary alignments and supplementary alignments
fields <- scanBamWhat()
primary_flag <- scanBamFlag(isSecondary = FALSE, isSupplementary = FALSE)
param <- ScanBamParam(flag = primary_flag,
 what=c('qname','flag','rname','strand','pos','qwidth', 'cigar', 'seq'),
 tag=c('NH', "MD"))

ga_all_alignments <- readGAlignments(bam, param = param)
PCG_total_reads <- length(ga_all_alignments)
ga_alignments <- ga_all_alignments[mcols(ga_all_alignments)$NH == 1] #filter by unique
alignments
PCG_unique_reads <- length(ga_alignments)

gr_alignments <- makeGRangesFromDataFrame(as.data.frame(ga_alignments),
keep.extra.columns=TRUE)

mcols(gr_alignments) <- mcols(gr_alignments)[, !(colnames(mcols(gr_alignments)) %in%
c("njunc", "strandInfo", "rname", "strand.1", "pos", "qwidth.1", "cigar.1", "qual"))]

load annotation of the protein coding genes
geneAnnotation_PCG_EXON_dir <-
"../data/annotations/customTranscriptomes/mm10_PCGtranscriptome_collapsed_prioritizedCDS
3UTR5UTR_allgenes.gtf"

#geneAnnotation_PCG_EXON <- rtracklayer::import(geneAnnotation_PCG_EXON_dir)

Import GTF file without rtracklayer (issues with installation)
read_gtf <- function(file_path) {
 # Read the GTF file - changed start/end to numeric first, then convert to integer
 gtf_data <- read.table(file_path, sep="\t", quote="",
 col.names=c("seqname", "source", "feature", "start", "end",
 "score", "strand", "frame", "attribute"),
 colClasses=c("character", "character", "character", "numeric", 24

"numeric",
 "character", "character", "character", "character"))

 # Convert coordinates to integer after reading
 gtf_data$start <- as.integer(gtf_data$start)
 gtf_data$end <- as.integer(gtf_data$end)

 # Function to extract attributes
 extract_attribute <- function(attr, key) {
 val <- sub(paste0(".*", key, "\\s+\"?([^;\"]+)\"?.*"), "\\1", attr)
 ifelse(val == attr, NA, val)
 }

 # Extract common attributes
 gtf_data$gene_id <- extract_attribute(gtf_data$attribute, "gene_id")
 gtf_data$transcript_id <- extract_attribute(gtf_data$attribute, "transcript_id")
 gtf_data$gene_name <- extract_attribute(gtf_data$attribute, "gene_name")

 return(gtf_data)
}

geneAnnotation_PCG <- read_gtf(geneAnnotation_PCG_EXON_dir)

geneAnnotation_PCG <- makeGRangesFromDataFrame(geneAnnotation_PCG,
 keep.extra.columns = TRUE,
 seqnames.field = "seqname",
 start.field = "start",
 end.field = "end",
 strand.field = "strand")

geneAnnotation_PCG_gene <- geneAnnotation_PCG[geneAnnotation_PCG$feature == "gene"]

load gene coordinates of collapsed, prioritized (CDS > 3UTR > 5UTR) genes in mm10
genome
genes_dir <- "../data/annotations/mm10_collapsed_prioritizedCDS3UTR5UTR.gtf"
genes <- rtracklayer::import(genes_dir)

#piRNA cluster coordinates from Konstantinidou et al. (2024) in Cell Reports and rank
load("../data/annotations/MILIclusters_pachytene.RData")
MILIclusters_pach <- MILIclusters$clusters

MILIclusters_pach <- MILIclusters_pach[order(-
MILIclusters_pach$all_reads_primary_alignments_FPM),]
MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM <- seq_along(MILIclusters_pach)
MILIclusters_pach <- keepStandardChromosomes(MILIclusters_pach)
paste0("Number of piRNA clusters in MILI pachytene by PICB: ",
length(MILIclusters_pach))

load alignments to mm10 genome
gr_mm10 <- PICBload(
 BAMFILE =
"../data/bam/Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMIcollapsed_structOut_miR
outwS_Aligned.sortedByCoord.out.bam",

25

Number of reads mapped to mm10 (primary alignments): 70317338

Number of reads mapped to mm10 (unique alignments only): 64104551

 REFERENCE.GENOME = "BSgenome.Mmusculus.UCSC.mm10",
 GET.ORIGINAL.SEQUENCE = TRUE, VERBOSE = FALSE, WHAT = c("flag", "cigar"))

gr_mm10_prim <- c(gr_mm10$unique, gr_mm10$multi.primary)
genome_total_reads <- length(gr_mm10_prim)
message("Number of reads mapped to mm10 (primary alignments): ", genome_total_reads)
gr_mm10_prim <- keepStandardChromosomes(gr_mm10_prim)

gr_mm10 <- gr_mm10$unique
genome_unique_reads <- length(gr_mm10)
message("Number of reads mapped to mm10 (unique alignments only): ",
genome_unique_reads)
gr_mm10 <- keepStandardChromosomes(gr_mm10)
gr_mm10$qname <- names(gr_mm10)

Initialize result dataframe with all genes
topPiCtarget_df <- data.frame(
 geneName = geneAnnotation_PCG_gene$gene_name,
 topContribPiCrank = "0",
 topPercentage = 0,
 bypiCtargeting_percentage = 0,
 top_piC_percentage = 0,
 cisTargeting = FALSE,
 stringsAsFactors = FALSE
)

Create function to get top contributing piC and percentage
get_top_piC_info <- function(overlaps) {
 if (length(overlaps) == 0) {
 return(c("0", 0, 0, 0))
 }
 # Extract rank information using vectorized operations
 ranks <- sub("_|_", "", sub("rank|_", "", regmatches(overlaps$qname,
regexpr("rank(.*?)_", overlaps$qname))))
 rank_table <- table(ranks)
 top_rank <- names(which.max(rank_table))
 top_percentage <- max(rank_table) / length(overlaps)
 # Get the percentage of targeting by piC
 bypiCtargeting_percentage <- sum(rank_table[names(rank_table) != "0"]) /
length(overlaps)

 if (top_rank == "0") {
 sorted_counts <- sort(rank_table, decreasing = TRUE)
 second_largest <- sorted_counts[2]
 top_piC_percentage <- second_largest / length(overlaps)
 } else {
 top_piC_percentage <- top_percentage
 }
 if (is.na(top_piC_percentage)) {
 top_piC_percentage <- 0
 }

 return(c(top_rank, top_percentage, top_piC_percentage, bypiCtargeting_percentage))26

Number of genes in antisense orientation to piRNA clusters and therefore remove
d: 157

}

Get all overlaps at once
all_overlaps <- findOverlaps(invertStrand(geneAnnotation_PCG_gene), gr_alignments)

Split overlaps by gene
overlaps_by_gene <- split(gr_alignments[subjectHits(all_overlaps)],
 queryHits(all_overlaps))

Apply function to each gene's overlaps
results <- lapply(overlaps_by_gene, get_top_piC_info)

Update only the rows that have overlaps
genes_with_overlaps <- as.numeric(names(overlaps_by_gene))
topPiCtarget_df$totalPiRNAcount <- countOverlaps(invertStrand(geneAnnotation_PCG_gene),
gr_alignments)
topPiCtarget_df$topContribPiCrank[genes_with_overlaps] <- sapply(results, `[`, 1)
topPiCtarget_df$topPercentage[genes_with_overlaps] <- as.numeric(sapply(results, `[`,
2))
topPiCtarget_df$bypiCtargeting_percentage[genes_with_overlaps] <-
as.numeric(sapply(results, `[`, 3))
topPiCtarget_df$top_piC_percentage[genes_with_overlaps] <- as.numeric(sapply(results,
`[`, 4))
rownames(topPiCtarget_df) <- topPiCtarget_df$geneName

After updating topContribPiCrank and topPercentage, update cisTargeting
inverted_clusters <- invertStrand(MILIclusters_pach)
topContribPiCrank_numeric <- as.numeric(as.character(topPiCtarget_df$topContribPiCrank))

for (i in seq_len(nrow(topPiCtarget_df))) {
 geneNameI <- topPiCtarget_df$geneName[i]
 gene_overlaps <- subsetByOverlaps(
 inverted_clusters,
 genes[genes$gene_id == geneNameI])$rankByAllReadsPrimaryAlignmentsFPM
 topPiCtarget_df$cisTargeting[i] <- topContribPiCrank_numeric[i] %in% gene_overlaps
}

Filter for non-cis targeted genes and order by totalPiRNAcount
targetingByPiRNAsSbO_sorted_total_tra <- topPiCtarget_df[topPiCtarget_df$cisTargeting ==
FALSE,]
message("Number of genes in antisense orientation to piRNA clusters and therefore
removed: ", nrow(topPiCtarget_df) - nrow(targetingByPiRNAsSbO_sorted_total_tra))
targetingByPiRNAsSbO_sorted_total_tra <-
targetingByPiRNAsSbO_sorted_total_tra[order(targetingByPiRNAsSbO_sorted_total_tra$totalP
iRNAcount, decreasing=TRUE),]

Calculate percentage of targeting piRNAs for each gene
readsTargetingPCGs <- sum(targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount)
targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAperc <-
(targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount/readsTargetingPCGs)*100
targetingByPiRNAsSbO_sorted_total_tra$targetedRank <-
1:nrow(targetingByPiRNAsSbO_sorted_total_tra)

27

[1] "70% threshold value: 484348.2"

establish targeting threshold
topPercentageCS <- 0.7
cumsum_totalPiRNAcount <- cumsum(targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount)
cumsum_targetingThreshold <- readsTargetingPCGs*topPercentageCS
print(paste0(topPercentageCS*100, "% threshold value: ", cumsum_targetingThreshold))
genes_targetingThreshold <- which(cumsum_totalPiRNAcount >= cumsum_targetingThreshold)
[1]
paste0("", genes_targetingThreshold)

options(repr.plot.width=12, repr.plot.height=7)
plot_1a_full <-
ggplot(targetingByPiRNAsSbO_sorted_total_tra[targetingByPiRNAsSbO_sorted_total_tra$total
PiRNAcount != 0,],
 aes(x = targetedRank, y = log10(totalPiRNAperc), group = 1)) +
 geom_vline(xintercept = 0:genes_targetingThreshold, color = "#ffffff", alpha = 0.3)
+
 scale_x_continuous(breaks = seq(1,
nrow(targetingByPiRNAsSbO_sorted_total_tra[targetingByPiRNAsSbO_sorted_total_tra$totalPi
RNAcount != 0,]), by = 2000)) +
 geom_line(linewidth = 1) +
 theme_classic() +
 annotation_logticks(base = 10, sides = "l", short = unit(0.02, "cm"), mid =
unit(0.04, "cm"), long = unit(0.06, "cm")) +
 theme(
 axis.text.x = element_text(angle = 45, hjust = 1, size = 7),
 axis.text.y = element_text(size = 7),
 axis.title.x = element_text(size = 7),
 axis.title.y = element_text(size = 7)
) +
 labs(
 x = "Ranked Genes by piRNA Targeting",
 y = "mRNA-targeting piRNA (%, log10)"
)

plot_1a_full

28

options(repr.plot.width=12, repr.plot.height=7)

Get the data for specified genes
highlight_genes <- c('Spin1')
gene_data <- targetingByPiRNAsSbO_sorted_total_tra[
 targetingByPiRNAsSbO_sorted_total_tra$geneName %in% highlight_genes,]

Create plot with highlighted genes and corrected ranks
plot_1aInset <-
ggplot(targetingByPiRNAsSbO_sorted_total_tra[1:genes_targetingThreshold,],
 aes(x = targetedRank, y = totalPiRNAperc, group = 1)) +
 geom_line(linewidth = 1, color = "black") +
 geom_point(color = "#9662A9", size = 1.5) +
 scale_x_continuous(breaks = seq(1, nrow(targetingByPiRNAsSbO_sorted_total_tra), by =
20)) +
 # Add highlighted points with different color/size to make them stand out
 geom_point(data = gene_data, color = "#9662A9", size = 1.5) +
 # Add labels for highlighted genes
 geom_text(data = gene_data,
 aes(label = sapply(geneName, function(g) {
 count <-
targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount[targetingByPiRNAsSbO_sorted_total_
tra$geneName == g]
 ppm <- round((count / readsTargetingPCGs) * 1e6, 1)
 paste0(g, " Rank: ",
 match(g, targetingByPiRNAsSbO_sorted_total_tra$geneName),
 " [", ppm, " ppm]")
 })),
 color = "#9662A9",
 vjust = -0.2, # Single value for single gene
 hjust = -0.1, # Single value for single gene
 size = 2.5) +
 theme_classic() +
 theme(
 axis.text.x = element_text(size = 7),

29

 axis.text.y = element_text(size = 7),
 axis.title.x = element_text(size = 7),
 axis.title.y = element_text(size = 7)
) +
 labs(
 x = paste0("Ranked Genes by piRNA Targeting \n(Top ", genes_targetingThreshold,
" genes account for ", topPercentageCS*100, "% of all targeting)"),
 y = "piRNA Targeting (%)"
)

plot_1aInset

#load pseudogenes, download by UCSC
pseudogenes_dir <- "../data/annotations/mm10_retroGenesV6.gtf"
pseudogenes <- rtracklayer::import(pseudogenes_dir)

prefilter piRNA clusters that are generally targeting PCG genes
maxPiC <-
max(as.integer(targetingByPiRNAsSbO_sorted_total_tra[1:genes_targetingThreshold,]$topCon
tribPiCrank))
message("Only considering top ", maxPiC, " piRNA clusters since top ",
genes_targetingThreshold, " targeted genes only are targeted by that max rank.")
MILIclusters_pachSubset <-
MILIclusters_pach[MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM <= maxPiC]
pseudogenesRGOvrlp <- subsetByOverlaps(pseudogenes,
invertStrand(MILIclusters_pachSubset))
pseudogenesRGOvrlp$parent_transcript <- sub("\\..*", "", pseudogenesRGOvrlp$gene_id)
unique_transcripts <- unique(pseudogenesRGOvrlp$parent_transcript)

30

Only considering top 127 piRNA clusters since top 88 targeted genes only are tar
geted by that max rank.

Error in curl::curl_fetch_memory(url, handle = handle): Could not resolve hostna
me [rest.uniprot.org]:
Could not resolve host: rest.uniprot.org
Traceback:

1. queryUniProt(query = paste0("taxonomy_id:", taxId), fields = c("accession",
 . "organism_name"), n = 25, pageSize = 25)
2. .uniprotPages(FUN = .searchPaged, query = query, fields = fields,
 . collapse = collapse, n = n, pageSize = pageSize)
3. FUN(url = url, ..., pageSize = pageSize)
4. httpcache::GET(url = url, query = list(query = paste(query, collapse = collap
se),
 . fields = paste(fields, collapse = ","), format = "tsv", size = pageSize))
5. httr::GET(url, ...)
6. request_perform(req, hu$handle$handle)
7. request_fetch(req$output, req$url, handle)
8. request_fetch.write_memory(req$output, req$url, handle)
9. curl::curl_fetch_memory(url, handle = handle)
10. raise_libcurl_error(6L, "Could not resolve hostname", "Could not resolve hos
t: rest.uniprot.org",
 . "https://rest.uniprot.org/uniprotkb/search?query=taxonomy_id%3A10090&fie
lds=accession%2Corganism_name&format=tsv&size=25",
 . NULL)
11. stop(e)

Extract gene names from parent_transcripts of pseudogenes (so they can be matched with
our gene annotations)
load UniProt.ws for mouse
mmuUp <- UniProt.ws(10090)
mmuUp

Get gene_name for a parent_transcript
columns = c('gene_primary')
getGeneName <- function(transcript) {
 if (grepl("^NM", transcript)){
 keytype = c("RefSeq_Nucleotide")
 } else {
 keytype = c("EMBL-GenBank-DDBJ")
 }

 result <- select(mmuUp, keys = transcript, keytype = keytype, columns = columns)

 if (nrow(result) > 0) {
 return(result$Gene.Names..primary.[1])
 } else {
 return(NA)
 }
}

Create a mapping of parent_transcript to gene_name
transcript_to_gene <- sapply(unique_transcripts, getGeneName)

Update parent_id in pseudogenes
pseudogenesRGOvrlp$parent_id <- transcript_to_gene[pseudogenesRGOvrlp$parent_transcript]

31

#look up NAs in parent_id by hand and replace with actual gene name (of parent from PG)
unique(pseudogenesRGOvrlp[is.na(pseudogenesRGOvrlp$parent_id)]$parent_transcript)

#replace parent_id of parent_transcripts manually
pseudogenesRGOvrlp[pseudogenesRGOvrlp$parent_transcript == "AK209531"]$parent_id <-
"Arpc5"
pseudogenesRGOvrlp[pseudogenesRGOvrlp$parent_transcript == "NR_027488"]$parent_id <-
"Senp2"
pseudogenesRGOvrlp[pseudogenesRGOvrlp$parent_transcript == "BC006068"]$parent_id <-
"Rpl10"
pseudogenesRGOvrlp[pseudogenesRGOvrlp$parent_transcript == "AK076357"]$parent_id <-
"Ddx11"

Find overlaps
overlaps <- findOverlaps(pseudogenesRGOvrlp, invertStrand(MILIclusters_pachSubset))

Extract ranks based on overlaps
ranks <- rep(NA, length(pseudogenesRGOvrlp))
ranks[queryHits(overlaps)] <-
MILIclusters_pachSubset$rankByAllReadsPrimaryAlignmentsFPM[subjectHits(overlaps)]

Add rank to pseudogenesRGOvrlp
pseudogenesRGOvrlp$rankByAllReadsPrimaryAlignmentsFPM <- ranks

Get unique pairs
unique_pairs <- unique(data.frame(
 parent_id = mcols(pseudogenesRGOvrlp)$parent_id,
 rank = mcols(pseudogenesRGOvrlp)$rankByAllReadsPrimaryAlignmentsFPM
))

Sort by cluster_rank if desired
unique_pairs <- unique_pairs[order(unique_pairs$rank),]

unique_pairs$geneTop250targeted <- unique_pairs$parent_id %in% topPiCtarget_df$geneName

Add Unc119b row (unannotated Pseudogene)
unique_pairs <- rbind(
 unique_pairs,
 data.frame(
 parent_id = "Unc119b",
 rank =
targetingByPiRNAsSbO_sorted_total_tra[targetingByPiRNAsSbO_sorted_total_tra$geneName ==
"Unc119b",]$topContribPiCrank,
 geneTop250targeted = TRUE,
 stringsAsFactors = FALSE
)
)

32

Initialize PGasToTopPiC, check if gene is targeted by a piC that contains its
Pseudogene
targetingByPiRNAsSbO_sorted_total_tra$PGasToTopPiC <- FALSE
targetingByPiRNAsSbO_sorted_total_tra$PGasToTopPiC[targetingByPiRNAsSbO_sorted_total_tra
$topContribPiCrank == 0] <- NA

for (gene in targetingByPiRNAsSbO_sorted_total_tra$geneName) {
 if (gene %in% unique(unique_pairs$parent_id)) {
 assRank <- na.omit(unique_pairs[unique_pairs$parent_id == gene, "rank"])
 for (rank in assRank) {
 if
(targetingByPiRNAsSbO_sorted_total_tra[targetingByPiRNAsSbO_sorted_total_tra$geneName ==
gene,]$topContribPiCrank == rank) {

targetingByPiRNAsSbO_sorted_total_tra[targetingByPiRNAsSbO_sorted_total_tra$geneName ==
gene,]$PGasToTopPiC <- TRUE
 }
 }
 }
}

#get total coverage of targeting of gene

gr_alignments_red <- reduce(gr_alignments)

Calculate overlap widths for matches
overlapsPiRNAsRedGenes <- findOverlaps(gr_alignments_red,

33

Warning message:
"ggrepel: 46 unlabeled data points (too many overlaps). Consider increasing max.
overlaps"

invertStrand(geneAnnotation_PCG_gene))
overlap_widths <-
tapply(width(pintersect(gr_alignments_red[queryHits(overlapsPiRNAsRedGenes)],

invertStrand(geneAnnotation_PCG_gene[subjectHits(overlapsPiRNAsRedGenes)]))),
 subjectHits(overlapsPiRNAsRedGenes), sum)

Create a vector of length equal to number of genes in geneAnnotation_PCG_gene
full_overlap_widths <- numeric(length(geneAnnotation_PCG_gene))

Fill in the actual overlap values where they exist
full_overlap_widths[as.numeric(names(overlap_widths))] <- overlap_widths

Create dataframe with all genes and their coverage
all_genes <- geneAnnotation_PCG_gene$gene_name
percentageCoverage_df <- data.frame(
 geneName = all_genes,
 targetingCoverage_bp = full_overlap_widths
)

Merge with targeting dataframe
targetingByPiRNAsSbO_sorted_total_tra <- merge(
 targetingByPiRNAsSbO_sorted_total_tra,
 percentageCoverage_df,
 by = "geneName"
)

targetingByPiRNAsSbO_sorted_total_tra <-
targetingByPiRNAsSbO_sorted_total_tra[order(targetingByPiRNAsSbO_sorted_total_tra$totalP
iRNAcount, decreasing=TRUE),]

plot_targetingCoverage <-
ggplot(targetingByPiRNAsSbO_sorted_total_tra[1:genes_targetingThreshold,], aes(x =
targetingCoverage_bp/1000, y = log10(totalPiRNAperc))) +
 geom_point(color = "#9764aa", alpha = 1, size = 1) +
 geom_text_repel(aes(label = geneName),
 size = 2.5,
 box.padding = 0.5,
 max.overlaps = 10) +
 annotation_logticks(base = 10, sides = "l", short = unit(0.02, "cm"), mid = unit(0.04,
"cm"), long = unit(0.06, "cm")) +
 theme_classic() +
 labs(
 x = "mRNA target-sequence (kb)",
 y = "piRNA Targeting (%, log10)"
) +
 theme(
 plot.title = element_text(size = 7, face = "bold"),
 axis.title = element_text(size = 7),
 axis.text = element_text(size = 7),
 legend.position = "none"
)

plot_targetingCoverage

34

options(repr.plot.width=8, repr.plot.height=8)

only label dots that rank 15 or higher in targeting
temp_targetingByPiRNAsSbO_sorted_total_tra <- targetingByPiRNAsSbO_sorted_total_tra %>%
 mutate(label = if_else(targetedRank < 15, geneName, NA_character_))

plot fraction of targeting piRNAs from its top targeting piRNA cluster
plot_scTopPer <-
ggplot(temp_targetingByPiRNAsSbO_sorted_total_tra[1:genes_targetingThreshold,], aes(x =
targetedRank, y = top_piC_percentage*100)) +
 geom_point(color = "#ed1c24", alpha = 0.5, size = 1) +
 geom_text_repel(aes(label = label),
 size = 2.5,
 box.padding = 0.5,
 max.overlaps = 10,
 na.rm = TRUE) +
 scale_color_identity() +
 theme_classic() +
 labs(y = "Fraction of targeting piRNAs from its top targeting piC", x = "Ranked
targeted genes (1-88)") +
 ylim(0, 100)

plot_scTopPer

35

put alignments to PCG transcriptome into context with the genes they target
match read names, which include (among other things) information about the piC they
came from (rank) and their original read name (when mapped to mm10)
PCG_as_name_df <- as.data.frame(findOverlaps(gr_alignments,
invertStrand(geneAnnotation_PCG_gene)))
PCG_as_name_df$gene_name <-
geneAnnotation_PCG_gene[as.numeric(PCG_as_name_df$subjectHits),]$gene_id
PCG_as_name_df$read_name <- sub("_.*", "",
gr_alignments[as.numeric(PCG_as_name_df$queryHits),]$qname)
PCG_as_name_df$read_nameWInfo <-
gr_alignments[as.numeric(PCG_as_name_df$queryHits),]$qname
PCG_as_name_df$rankOrigin <- sub("_|_", "", sub("rank|_", "",
regmatches(gr_alignments[as.numeric(PCG_as_name_df$queryHits),]$qname,
regexpr("rank(.*?)_", gr_alignments[as.numeric(PCG_as_name_df$queryHits),]$qname))))

Precompute read–gene pairs from a single overlap against invertStrand(genes)
inv_genes <- invertStrand(genes)
hits <- findOverlaps(gr_mm10_prim, inv_genes)

get read name - gene pairs that are antisense to eachother in mm10
mm10_as_pair <- unique(paste0(names(gr_mm10_prim)[as.integer(queryHits(hits))], "\r",
 inv_genes$gene_id[as.integer(subjectHits(hits))]))

Mark cis if (read_name, gene_name) observed in the precomputed pairs

36

PCG_as_pair <- paste0(PCG_as_name_df$read_name, "\r", PCG_as_name_df$gene_name)
PCG_as_name_df$cis_piRNA <- PCG_as_pair %in% mm10_as_pair

all genes
targeting in trans
nrow(PCG_as_name_df[!PCG_as_name_df$cis_piRNA,])/nrow(PCG_as_name_df)
targeting in trans and from piRNA cluster
nrow(PCG_as_name_df[(!PCG_as_name_df$cis_piRNA) & (PCG_as_name_df$rankOrigin !=
0),])/nrow(PCG_as_name_df[!PCG_as_name_df$cis_piRNA,])

top targeted genes (88)
PCG_as_name_df_topTargetedGenes <- PCG_as_name_df[PCG_as_name_df$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tra$geneName[1:genes_targetingThreshold],]

targeting in trans
nrow(PCG_as_name_df_topTargetedGenes[!PCG_as_name_df_topTargetedGenes$cis_piRNA,])/nrow(
PCG_as_name_df_topTargetedGenes)
targeting in trans and from piRNA cluster
nrow(PCG_as_name_df_topTargetedGenes[(!PCG_as_name_df_topTargetedGenes$cis_piRNA) &
(PCG_as_name_df_topTargetedGenes$rankOrigin !=
0),])/nrow(PCG_as_name_df_topTargetedGenes[!PCG_as_name_df_topTargetedGenes$cis_piRNA,])

for top-targeted genes, fraction targeted by piRNAs from piRNA cluster (given that
they are trans targeting)
PCG_as_name_df_topTargetedGenes <- PCG_as_name_df[PCG_as_name_df$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tra$geneName[1:genes_targetingThreshold],]
transTargetingPiCpiRNAs <-
nrow(PCG_as_name_df_topTargetedGenes[(!PCG_as_name_df_topTargetedGenes$cis_piRNA) &
(PCG_as_name_df_topTargetedGenes$rankOrigin !=
0),])/nrow(PCG_as_name_df_topTargetedGenes[!PCG_as_name_df_topTargetedGenes$cis_piRNA,])
transTargetingPiCpiRNAs
Create a data frame with this value
data <- data.frame(
 category = c("transTargetingPiCpiRNAs", "Other"),
 value = c(transTargetingPiCpiRNAs, 1-transTargetingPiCpiRNAs)
)

Create the pie chart
options(repr.plot.width=4, repr.plot.height=4)
plot_byPiCTarg <- ggplot(data, aes(x = "", y = value, fill = category)) +
 geom_bar(stat = "identity", width = 1, alpha=0.5) +
 coord_polar(theta = "y") +
 scale_fill_manual(values = c("lightgrey", "#ed1c24")) +
 theme_void() +
 theme(legend.position = "none")

plot_byPiCTarg

37

filter custom PCG transcriptome coordinates of top targeted genes
subset_tra_gr <- geneAnnotation_PCG_gene[geneAnnotation_PCG_gene$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tra[1:genes_targetingThreshold,]$geneName]
add totalPiRNAcounts and targetedRank to GRange object
mcols(subset_tra_gr)$totalPiRNAcount <-
targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount[match(mcols(subset_tra_gr)$gene_na
me, targetingByPiRNAsSbO_sorted_total_tra$geneName)]
mcols(subset_tra_gr)$targetedRank <-
targetingByPiRNAsSbO_sorted_total_tra$targetedRank[match(mcols(subset_tra_gr)$gene_name,
targetingByPiRNAsSbO_sorted_total_tra$geneName)]

get table with piC-rank targeting contributions per gene
rank_piC_info <- function(overlaps) {
 if (length(overlaps) == 0) {
 return(c("0", 0, 0))
 }
 # Extract rank information using vectorized operations
 ranks <- sub("_|_", "", sub("rank|_", "", regmatches(overlaps$qname,
regexpr("rank(.*?)_", overlaps$qname))))
 rank_table <- table(ranks)

 return(rank_table)
}

Get all targeting piRNAs in relation to the gene they target
overlap_hits <- findOverlaps(invertStrand(subset_tra_gr), gr_alignments)

Split targeting piRNAs by gene
alignments_by_gene <- split(gr_alignments[subjectHits(overlap_hits)],
 queryHits(overlap_hits))

For each gene run rank_piC_info for table with piC-rank targeting contributions
piC_rank_summaries <- lapply(alignments_by_gene, rank_piC_info)

Retrieve top contributing piC and percentage
Separate piRNAs not from piCs and those from piCs that contribute < 5%
process_rank_contributions <- function(rank_table, total_count) {
 # Convert gene's piC_rank_summaries table to named vector and calc fractions 38

 contributions <- as.vector(rank_table) / total_count
 names(contributions) <- names(rank_table)

 # Separate category 0 (if it exists)
 cat_0 <- if("0" %in% names(contributions)) contributions["0"] else 0
 other_contributions <- contributions[names(contributions) != "0"]

 # Sort other contributions in descending order
 sorted_contributions <- sort(other_contributions, decreasing = TRUE)

 # Identify contributions >= 5%
 major_contributions <- sorted_contributions[sorted_contributions >= 0.05]
 minor_contributions <- sorted_contributions[sorted_contributions < 0.05]

 # Create result vector
 result <- c()
 result["rankContr-0"] <- cat_0

 # Add major contributions
 for(i in seq_along(major_contributions)) {
 result[paste0("rankContr-", i)] <- major_contributions[i]
 }

 # Sum minor contributions if any exist
 if(length(minor_contributions) > 0) {
 result["rankContr-rest"] <- sum(minor_contributions)
 }

 return(result)
}

Apply to each gene and create new columns
contribution_results <- lapply(seq_along(alignments_by_gene), function(i) {
 rank_table <- piC_rank_summaries[[i]]
 total_count <- subset_tra_gr$totalPiRNAcount[i]
 process_rank_contributions(rank_table, total_count)
})

Find all unique column names across all results
all_columns <- unique(unlist(lapply(contribution_results, names)))

Ensure each result has all columns, filling missing ones with 0
contribution_results_normalized <- lapply(contribution_results, function(x) {
 missing_cols <- setdiff(all_columns, names(x))
 if(length(missing_cols) > 0) {
 x[missing_cols] <- 0
 }
 return(x[all_columns])
})
convert to one data frame
contribution_df <- do.call(rbind, contribution_results_normalized)
colnames(contribution_df) <- all_columns

Add contribution_df to the subset_tra_gr in df format
subset_tra <- cbind(as.data.frame(subset_tra_gr), contribution_df)

39

Reshape to long format
data_long <- subset_tra %>%
 mutate(gene = rownames(subset_tra)) %>%
 gather(key = "rank", value = "value",
 starts_with("rankContr")) %>%
 mutate(rank = factor(rank,
 levels = c("rankContr-0", "rankContr-rest", "rankContr-4",
"rankContr-3", "rankContr-2", "rankContr-1")))

Create the stacked column chart
options(repr.plot.width=12, repr.plot.height=5)
plot_piCcontr <- ggplot(data_long, aes(x = targetedRank, y = value, fill = rank)) +
 geom_col(width = 0.85) +
 scale_y_continuous(breaks = c(0, 1), labels = c("0", "1")) +
 scale_x_continuous(breaks = seq(1, nrow(subset_tra), by = 20)) +
 scale_fill_manual(values = c("#F1F2F2", "#b3dee2", "#eaf2d7", "#efcfe3",
 "#ea9ab2", "#e27396")) +
 theme_classic() +
 theme(
 axis.text = element_text(size = 7),
 axis.title = element_text(size = 7),
) +
 labs(x = "Ranked Genes by piRNA Targeting",
 y = "Origin of targeting piRNAs (%)")

plot_piCcontr

filter by top-targeted genes
geneAnnotation_PCG_gene_subset <-
geneAnnotation_PCG_gene[geneAnnotation_PCG_gene$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tra$geneName[1:genes_targetingThreshold]]
selected_genes <- geneAnnotation_PCG_gene_subset$gene_name

unique(geneAnnotation_PCG$feature)

40

subset geneAnnotation_PCG by genes (top targeted)
and features (removing 'gene' annotation which includes all collapsed exons, not
seperated by features)
feature_list <- c("5UTR", "CDS", "3UTR")
gene_features <- geneAnnotation_PCG[geneAnnotation_PCG$gene_name %in% selected_genes &
geneAnnotation_PCG$feature %in% feature_list]

#pre-select alignments to only include alignments targeting selected genes
gr_alignments_main <- subsetByOverlaps(gr_alignments,
invertStrand(geneAnnotation_PCG_gene_subset))
mcols(gr_alignments_main) <- NULL

make GRanges that have the starting position for each targeting piRNA
For positive strand, make end = start
end(gr_alignments_main)[as.character(strand(gr_alignments_main)) == "+"] <-
start(gr_alignments_main)[as.character(strand(gr_alignments_main)) == "+"]

For negative strand, make start = end
start(gr_alignments_main)[as.character(strand(gr_alignments_main)) == "-"] <-
end(gr_alignments_main)[as.character(strand(gr_alignments_main)) == "-"]

all_tiles <- NULL
iterate through each gene
for (gene in unique(gene_features$gene_id)) {
 # get all piRNAs targeting that gene
 piRNA_startsAsToGene <- subsetByOverlaps(gr_alignments_main,
invertStrand(gene_features[gene_features$gene_id == gene]))

 # get gene coordinates in custom PCG transcriptome
 gene_ranges <- gene_features[gene_features$gene_id == gene]

 # iterate through each feature
 for (feature in feature_list) {

 # Subset to gene's feature
 temp_gr <- gene_ranges[gene_ranges$feature == feature]
 if (length(temp_gr) == 0) {
 # skip if gene does not have 5'UTR or 3'UTR
 next
 }

 # Merge overlapping or adjacent ranges
 merged_gr <- reduce(temp_gr)
 total_length <- sum(width(merged_gr))

 if (total_length < 20) {
 cat(" Feature ", feature, " for gene ", gene, " too short (<20 nt total).
Skipping.\n")
 next
 }

 # Figure out which direction to tile
 gene_strand <- unique(as.character(strand(temp_gr)))
 merged_gr <- sort(merged_gr)

41

 # Determine exact tile sizes so that each tile is ~5%
 base_tile_size <- floor(total_length / 20)
 leftover <- total_length %% 20
 tile_sizes <- rep(base_tile_size, 20)

 # Distribute the remainder (leftover) among the first tiles
 if (leftover > 0) {
 if (gene_strand == "+") {
 tile_sizes[seq_len(leftover)] <- tile_sizes[seq_len(leftover)] + 1
 } else {
 tile_sizes[21-seq_len(leftover)] <- tile_sizes[21-seq_len(leftover)] + 1
 }
 }

 # Build the 20 tiles by walking through merged_gr
 tile_list <- vector("list", 20)
 current_tile_index <- 1
 target_tile_len <- tile_sizes[current_tile_index]
 cum_len_in_tile <- 0
 current_ranges <- IRanges()

 # Helper to finalize a tile and reset
 finalize_tile <- function() {
 tile_list[[current_tile_index]] <<- GRanges(
 seqnames = seqnames(merged_gr)[1],
 ranges = current_ranges,
 strand = gene_strand,
 gene_id = gene,
 feature = feature,
 tile_index = current_tile_index
)

 current_tile_index <<- current_tile_index + 1
 if (current_tile_index <= 20) {
 target_tile_len <<- tile_sizes[current_tile_index]
 }
 cum_len_in_tile <<- 0
 current_ranges <<- IRanges()
 }

 for (seg in seq_along(merged_gr)) {
 seg_start <- start(merged_gr[seg])
 seg_end <- end(merged_gr[seg])
 seg_width <- width(merged_gr[seg])

 bases_used_in_seg <- 0

 # Iterate base by base in principle, but slice big chunks if possible
 while (bases_used_in_seg < seg_width && current_tile_index <= 20) {

 # Still need 'remaining_in_tile' bases to complete the current tile
 needed_for_tile <- target_tile_len - cum_len_in_tile
 # The maximum we can take from the current segment is what's left in it
 left_in_segment <- seg_width - bases_used_in_seg
 # The actual chunk we’ll consume from this segment
 chunk_size <- min(needed_for_tile, left_in_segment)

 if (chunk_size == 0) {
 # tile is exactly filled

42

 Feature 5UTR for gene Zc3hav1l too short (<20 nt total). Skipping.
 Feature 5UTR for gene Rdh8 too short (<20 nt total). Skipping.
 Feature 5UTR for gene Tex16 too short (<20 nt total). Skipping.

 finalize_tile()
 if (current_tile_index > 20) break
 next
 }

 chunk_start <- seg_start + bases_used_in_seg
 chunk_end <- chunk_start + chunk_size - 1

 # Add IRanges chunk
 current_ranges <- c(
 current_ranges,
 IRanges(start = chunk_start, end = chunk_end)
)

 # Update counters
 bases_used_in_seg <- bases_used_in_seg + chunk_size
 cum_len_in_tile <- cum_len_in_tile + chunk_size

 # If tile is filled, finalize
 if (cum_len_in_tile == target_tile_len) {
 finalize_tile()
 if (current_tile_index > 20) break
 }
 }
 if (current_tile_index > 20) break
 }

 # If something left in the last tile
 if (current_tile_index <= 20 && cum_len_in_tile > 0) {
 finalize_tile()
 }

 final_tiles <- do.call(c, tile_list) # a GRanges of length 20

 #handle minus strand by just reversing the column tile_index (20 to 1, 19 to 2,
etc)
 if (gene_strand == "-") {
 final_tiles$tile_index <- 20 - final_tiles$tile_index + 1
 }

 # Count overlaps for each tile and add these counts to metacolumn of final_tiles
 overlap_counts <- countOverlaps(final_tiles, invertStrand(gr_alignments_main))
 mcols(final_tiles)$read_counts <- overlap_counts

 #combine to all_tiles
 all_tiles <- c(all_tiles, final_tiles)

 }
}
all_tiles <- do.call(c, all_tiles)

Calc percentages of targeting piRNAs for each gene
all_tiles_df <- as.data.frame(all_tiles) %>%
 group_by(gene_id) %>%

43

 mutate(total_counts = sum(read_counts),
 percentage = (read_counts / total_counts) * 100)

all_tiles_df$feature <- factor(all_tiles_df$feature, levels = c("5UTR", "CDS", "3UTR"))

options(repr.plot.width=12, repr.plot.height=6)

to plot them next to each other
all_tiles_df <- all_tiles_df %>%
 mutate(
 Adjusted_Bin = case_when(
 feature == "5UTR" ~ tile_index - 0.5,
 feature == "CDS" ~ tile_index + 19.5,
 feature == "3UTR" ~ tile_index + 39.5
)
)

Calculate averages for the average plot
all_tiles_df_avg <- all_tiles_df %>%
 group_by(feature, Adjusted_Bin) %>%
 summarise(avg_percentage = mean(percentage, na.rm = TRUE), .groups = "drop")

Averaged piRNA targeting across all genes with segmented x-axis
featureTargetingPlotTotal <- ggplot(all_tiles_df_avg, aes(x = Adjusted_Bin, y =
avg_percentage, color = feature)) +
 geom_line(linewidth = 1.5) +
 geom_vline(xintercept = c(20, 40), linetype = "dashed", color = "black") +
 labs(
 x = "Feature Segments (5' UTR, CDS, 3' UTR)",
 y = "Average Percentage of piRNAs Targeting the Gene"
) +
 theme_classic() +
 theme(
 legend.position = "bottom"
)
featureTargetingPlotTotal

44

Normalizing to RPM

Normalizing to RPM

SPIN1 - Figure 1b
options(repr.plot.width=12, repr.plot.height=6)
chr <- "chr13"
start <- 1698200
end <- 1700200
coord <- IRanges(start, end)
geneAnnotation_PCG$type <- geneAnnotation_PCG$feature

SPIN1targeting<- allTracksPlotted(piRNAs_from_Bam = gr_alignments, chromosome = chr,
IRangesCoord=coord, gtfFiles=list(SPIN1 = geneAnnotation_PCG), tilesWidth=1,
scaleWidthKB = 0.5)
SPIN1targetingFull <- SPIN1targeting$plotCoverageTrack /
SPIN1targeting$trackAll$gtfNum1$trackPlus / SPIN1targeting$trackAll$gtfNum1$trackMinus
SPIN1targetingFull

AGO2 - Fig Extended Data 1b
chr <- "chr15"
start <- 1357924
end <- 1365954
coord <- IRanges(start, end)
geneAnnotation_PCG$type <- geneAnnotation_PCG$feature

showing only targeting piRNAs (disregard therefore normalization, not shown in
manuscript)
AGO2targeting<- allTracksPlotted(piRNAs_from_Bam = gr_alignments[strand(gr_alignments)
== "+"], chromosome = chr, IRangesCoord=coord, gtfFiles=list(AGO2 = geneAnnotation_PCG),
tilesWidth=1, scaleWidthKB = 0.5)
AGO2targetingFull <- AGO2targeting$plotCoverageTrack /
AGO2targeting$trackAll$gtfNum1$trackPlus / AGO2targeting$trackAll$gtfNum1$trackMinus
AGO2targetingFull

45

51100830-51152612

load gene coordinates in mm10 genome, uncollapsed genes
genesRefSeq_dir <- "../data/annotations/mm10.ncbiRefSeq.gtf"
genesRefSeq <- rtracklayer::import(genesRefSeq_dir)

Extract Spin1 gene annotations, excluding predicted annotations
geneAnnotation_PCG_Spin1 <- genesRefSeq[genesRefSeq$gene_id == "Spin1",]
geneAnnotation_PCG_Spin1 <- geneAnnotation_PCG_Spin1[!grepl("^X",
geneAnnotation_PCG_Spin1$transcript_id)]

Spin1 region in mm10 genome
chr <- seqnames(geneAnnotation_PCG_Spin1[1])
start <- min(start(geneAnnotation_PCG_Spin1)) - 50
end <- max(end(geneAnnotation_PCG_Spin1)) + 50
message(start, "-", end)
Get sequence and create fasta
genome <- BSgenome.Mmusculus.UCSC.mm10
sequence <- DNAStringSet(getSeq(genome, chr, start, end))
names(sequence) <- chr

writeXStringSet(sequence,
 filepath=paste0("../data/others/FM_Spin1region_mm10/regionSpin1_", chr,
"_", start, "_", end, ".fa"))

Extract Ago2 gene annotations, excluding predicted annotations
geneAnnotation_PCG_Ago2 <- genesRefSeq[genesRefSeq$gene_id == "Ago2",]
geneAnnotation_PCG_Ago2 <- geneAnnotation_PCG_Ago2[!grepl("^X",
geneAnnotation_PCG_Ago2$transcript_id)]

Ago2 region in mm10 genome
chr <- seqnames(geneAnnotation_PCG_Ago2[1])

46

Oct 30 12:57:24 started STAR run
Oct 30 12:57:24 ... starting to generate Genome files
Oct 30 12:57:24 ... starting to sort Suffix Array. This may take a long time...
Oct 30 12:57:24 ... sorting Suffix Array chunks and saving them to disk...
Oct 30 12:57:24 ... loading chunks from disk, packing SA...
Oct 30 12:57:24 ... finished generating suffix array
Oct 30 12:57:24 ... generating Suffix Array index
Oct 30 12:57:24 ... completed Suffix Array index
Oct 30 12:57:24 ... writing Genome to disk ...
Oct 30 12:57:24 ... writing Suffix Array to disk ...
Oct 30 12:57:24 ... writing SAindex to disk
Oct 30 12:57:24 finished successfully

start <- min(start(geneAnnotation_PCG_Ago2)) - 50
end <- max(end(geneAnnotation_PCG_Ago2)) + 50

Get sequence and create fasta
genome <- BSgenome.Mmusculus.UCSC.mm10
sequence <- DNAStringSet(getSeq(genome, chr, start, end))
names(sequence) <- chr

writeXStringSet(sequence,
 filepath=paste0("../data/others/FM_Ago2region_mm10/regionAgo2_", chr,
"_", start, "_", end, ".fa"))

Index the FASTA file for STAR
STAR --runMode genomeGenerate \
 --genomeDir
../data/others/FM_Spin1region_mm10/regionSpin1_chr13_51100830_51152612_dir \
 --genomeFastaFiles
../data/others/FM_Spin1region_mm10/regionSpin1_chr13_51100830_51152612.fa \
 --genomeSAindexNbases 7

#bash
input_fasta="../data/annotations/customTranscriptomes/Mouse_161922_testes_small_RNAs_ZL6
_S7_R1_trimmed_UMIcollapsed_structOut_miRoutwS_Aligned.PICBloadWseqs.primAlignWinfo.fast
a"

addFastaChange=""
addMappingChange="clip5pNbases1_Extend5pOfRead1_minMatch19"

#minimum Match of 19 nt, to restrict soft-clipping
STAR --runMode alignReads \
 --runThreadN 20 \
 --genomeDir
../data/others/FM_Spin1region_mm10/regionSpin1_chr13_51100830_51152612_dir \
 --readFilesIn $input_fasta \
 --clip5pNbases 1 \
 --alignEndsType Extend5pOfRead1 \
 --outSAMattributes All \
 --outSAMtype BAM SortedByCoordinate \
 --limitBAMsortRAM 20000000000 \
 --alignIntronMax 1 \
 --alignSoftClipAtReferenceEnds No \
 --outFilterMismatchNmax 1 \
 --outFilterMatchNmin 19 \ 47

Oct 30 12:57:35 started STAR run
Oct 30 12:57:35 loading genome
Oct 30 12:57:35 started mapping
Oct 30 13:00:19 started sorting BAM
Oct 30 13:00:19 finished successfully
Mapped to Spin1 region (in mm10 genome)

Oct 30 11:28:18 started STAR run
Oct 30 11:28:18 ... starting to generate Genome files
Oct 30 11:28:18 ... starting to sort Suffix Array. This may take a long time...
Oct 30 11:28:18 ... sorting Suffix Array chunks and saving them to disk...
Oct 30 11:28:18 ... loading chunks from disk, packing SA...
Oct 30 11:28:18 ... finished generating suffix array
Oct 30 11:28:18 ... generating Suffix Array index
Oct 30 11:28:18 ... completed Suffix Array index
Oct 30 11:28:18 ... writing Genome to disk ...
Oct 30 11:28:18 ... writing Suffix Array to disk ...
Oct 30 11:28:18 ... writing SAindex to disk
Oct 30 11:28:18 finished successfully

 --winAnchorMultimapNmax 100 \
 --outFilterMultimapNmax 100 \
 --outReadsUnmapped Fastx \
 --outFileNamePrefix
../data/others/FM_Spin1region_mm10/Spin1RegionOnlyWIntrons_PCG_Mouse_161922.Aligned.PICB
loadWseqs.primAlignWinfo.${addFastaChange}.Spin1_chr13_51100830_51152612_${addMappingCha
nge}_

echo "Mapped to Spin1 region (in mm10 genome)"

Index the FASTA file for STAR
STAR --runMode genomeGenerate \
 --genomeDir
../data/others/FM_Ago2region_mm10/regionAgo2_chr15_73101575_73184997_dir \
 --genomeFastaFiles
../data/others/FM_Ago2region_mm10/regionAgo2_chr15_73101575_73184997.fa \
 --genomeSAindexNbases 7

#bash
input_fasta="../data/annotations/customTranscriptomes/Mouse_161922_testes_small_RNAs_ZL6
_S7_R1_trimmed_UMIcollapsed_structOut_miRoutwS_Aligned.PICBloadWseqs.primAlignWinfo.fast
a"

addFastaChange=""
addMappingChange="clip5pNbases1_Extend5pOfRead1_minMatch19"

#minimum Match of 19 nt, to restrict soft-clipping
STAR --runMode alignReads \
 --runThreadN 20 \
 --genomeDir ../data/others/FM_Ago2region_mm10/regionAgo2_chr15_73101575_73184997_dir
\
 --readFilesIn $input_fasta \
 --clip5pNbases 1 \
 --alignEndsType Extend5pOfRead1 \
 --outSAMattributes All \
 --outSAMtype BAM SortedByCoordinate \
 --limitBAMsortRAM 20000000000 \
 --alignIntronMax 1 \
 --alignSoftClipAtReferenceEnds No \
 --outFilterMismatchNmax 1 \

48

Oct 30 11:39:07 started STAR run
Oct 30 11:39:08 loading genome
Oct 30 11:39:08 started mapping
Oct 30 11:42:18 started sorting BAM
Oct 30 11:42:18 finished successfully
Mapped to Ago2 region (in mm10 genome)

 --outFilterMatchNmin 19 \
 --winAnchorMultimapNmax 100 \
 --outFilterMultimapNmax 100 \
 --outReadsUnmapped Fastx \
 --outFileNamePrefix
../data/others/FM_Ago2region_mm10/Ago2RegionOnlyWIntrons_PCG_Mouse_161922_Aligned.PICBlo
adWseqs.primAlignWinfo.${addFastaChange}.Ago2_chr15_73101575_73184997_${addMappingChange
}_

echo "Mapped to Ago2 region (in mm10 genome)"

load gene coordinates in mm10 genome, uncollapsed genes
genesRefSeq_dir <- "../data/annotations/mm10.ncbiRefSeq.gtf"
genesRefSeq <- rtracklayer::import(genesRefSeq_dir)

Load bam file and keep only unique alignments that map uniquely both to Spin1 and also
mm10
bamSpin1_dir <-
"../data/others/FM_Spin1region_mm10/Spin1RegionOnlyWIntrons_PCG_Mouse_161922.Aligned.PIC
BloadWseqs.primAlignWinfo..Spin1_chr13_51100830_51152612_clip5pNbases1_Extend5pOfRead1_m
inMatch19_Aligned.sortedByCoord.out.bam"
bam <- BamFile(bamSpin1_dir)

fields <- scanBamWhat()
primary_flag <- scanBamFlag(isSecondary = FALSE, isSupplementary = FALSE)
param <- ScanBamParam(flag = primary_flag,
 what=c('qname','flag','rname','strand','pos','qwidth', 'cigar', 'seq'),
 tag=c('NH'))

ga_Spin1_alignments <- readGAlignments(bam, param = param)
ga_Spin1_alignments <- ga_Spin1_alignments[mcols(ga_Spin1_alignments)$NH == 1]

gr_Spin1_alignments <- makeGRangesFromDataFrame(as.data.frame(ga_Spin1_alignments),
keep.extra.columns=TRUE)

mcols(gr_Spin1_alignments) <- mcols(gr_Spin1_alignments)[, !
(colnames(mcols(gr_Spin1_alignments)) %in% c("njunc", "strandInfo", "rname", "strand.1",
"pos", "qwidth.1", "cigar.1", "qual"))]

consider only reads mapped uniquely to mm10
gr_Spin1_alignments <- gr_Spin1_alignments[grepl("_NH1$",
mcols(gr_Spin1_alignments)$qname)]

get Spin1 info, exclude predicted annotations and shift to match Spin1 transcriptome
geneAnnotation_PCG_Spin1 <- genesRefSeq[genesRefSeq$gene_id == "Spin1",]
geneAnnotation_PCG_Spin1 <- geneAnnotation_PCG_Spin1[!grepl("^X",
geneAnnotation_PCG_Spin1$transcript_id)]

49

Normalizing to RPM

geneAnnotation_PCG_Spin1_shift <- GenomicRanges::shift(geneAnnotation_PCG_Spin1, shift =
-(min(start(geneAnnotation_PCG_Spin1)) - 50))

Create coverage plot with custom function allTracksPlotted
chr <- as.character(seqnames(genes[genes$gene_id == "Spin1"][1]))
start <- 1
end <- (max(end(genes[genes$gene_id == "Spin1"])) + 50) - (min(start(genes[genes$gene_id
== "Spin1"])) - 50)
coord <- IRanges(start, end)

Spin1 annotations in region
geneAnnotation_PCG_Spin1_shift <- subsetByOverlaps(
 geneAnnotation_PCG_Spin1_shift[geneAnnotation_PCG_Spin1_shift$type %in% c("CDS",
"5UTR", "3UTR")],
 GRanges(seqnames = chr, ranges = coord))

Build coverage track of full region
options(repr.plot.width=8, repr.plot.height=5)
Spin1targetingWintrons <- allTracksPlotted(piRNAs_from_Bam = gr_Spin1_alignments,
chromosome = chr, IRangesCoord=coord, gtfFiles=list(Spin1 =
geneAnnotation_PCG_Spin1_shift), tilesWidth=50, scaleWidthKB = 5)
Spin1targetingWintronsFull <- Spin1targetingWintrons$plotCoverageTrack /
Spin1targetingWintrons$trackAll$gtfNum1$trackPlus /
Spin1targetingWintrons$trackAll$gtfNum1$trackMinus
Spin1targetingWintronsFull

Load bam file and keep only unique alignments that map uniquely both to Ago2 and also
mm10
bamAgo2_dir <-
"../data/others/FM_Ago2region_mm10/Ago2RegionOnlyWIntrons_PCG_Mouse_161922_Aligned.PICBl
oadWseqs.primAlignWinfo..Ago2_chr15_73101575_73184997_clip5pNbases1_Extend5pOfRead1_minM
atch19_Aligned.sortedByCoord.out.bam"
bam <- BamFile(bamAgo2_dir)

fields <- scanBamWhat()
primary_flag <- scanBamFlag(isSecondary = FALSE, isSupplementary = FALSE)
param <- ScanBamParam(flag = primary_flag, 50

Normalizing to RPM

 what=c('qname','flag','rname','strand','pos','qwidth', 'cigar', 'seq'),
 tag=c('NH'))

ga_Ago2_alignments <- readGAlignments(bam, param = param)
ga_Ago2_alignments <- ga_Ago2_alignments[mcols(ga_Ago2_alignments)$NH == 1]

gr_Ago2_alignments <- makeGRangesFromDataFrame(as.data.frame(ga_Ago2_alignments),
keep.extra.columns=TRUE)

mcols(gr_Ago2_alignments) <- mcols(gr_Ago2_alignments)[, !
(colnames(mcols(gr_Ago2_alignments)) %in% c("njunc", "strandInfo", "rname", "strand.1",
"pos", "qwidth.1", "cigar.1", "qual"))]

consider only reads mapped uniquely to mm10
gr_Ago2_alignments <- gr_Ago2_alignments[grepl("_NH1$",
mcols(gr_Ago2_alignments)$qname)]

get Ago2 info, exclude predicted annotations and shift to match Ago2 transcriptome
geneAnnotation_PCG_Ago2 <- genesRefSeq[genesRefSeq$gene_id == "Ago2",]
geneAnnotation_PCG_Ago2 <- geneAnnotation_PCG_Ago2[!grepl("^X",
geneAnnotation_PCG_Ago2$transcript_id)]
geneAnnotation_PCG_Ago2_shift <- GenomicRanges::shift(geneAnnotation_PCG_Ago2, shift = -
(min(start(geneAnnotation_PCG_Ago2)) - 50))

Create coverage plot with custom function allTracksPlotted
chr <- as.character(seqnames(genes[genes$gene_id == "Ago2"][1]))
start <- 1
end <- (max(end(geneAnnotation_PCG_Ago2)) + 50) - (min(start(geneAnnotation_PCG_Ago2)) -
50)
coord <- IRanges(start, end)

Ago2 annotations in region
geneAnnotation_PCG_Ago2_shift <- subsetByOverlaps(
 geneAnnotation_PCG_Ago2_shift[geneAnnotation_PCG_Ago2_shift$type %in% c("CDS",
"5UTR", "3UTR")],
 GRanges(seqnames = chr, ranges = coord))

Build coverage track of full region
Ago2targetingWintrons <- allTracksPlotted(piRNAs_from_Bam = gr_Ago2_alignments,
chromosome = chr, IRangesCoord=coord, gtfFiles=list(Ago2 =
geneAnnotation_PCG_Ago2_shift), tilesWidth=50, scaleWidthKB = 5)
Ago2targetingWintronsFull <- Ago2targetingWintrons$plotCoverageTrack /
Ago2targetingWintrons$trackAll$gtfNum1$trackPlus /
Ago2targetingWintrons$trackAll$gtfNum1$trackMinus
Ago2targetingWintronsFull

51

Spin1 - full gene region
message("Full piC-as(Spin1) region: ", as.character(seqnames(MILIclusters_pach[19])[1]),
":", start(MILIclusters_pach[19]), "-", end(MILIclusters_pach[19]))
slight zoom in to focus on Pseudogene-region
chr <- seqnames(MILIclusters_pach[19])[1]
start <- 67732000
end <- 67760000
coord <- IRanges(start, end)
PG_Spin1 <- subsetByOverlaps(pseudogenesRGOvrlp, invertStrand(MILIclusters_pach[19]))

PG_Spin1$gene_name <- PG_Spin1$parent_id
MILIclusters_pach$gene_name <- paste0("rank_",
MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM)

Spin1originPiCzoomOut <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,
gtfFiles=list(piCs = MILIclusters_pach, PG = PG_Spin1), tilesWidth=50, scaleWidthKB = 1)

Spin1originPiCzoomOutFull <- Spin1originPiCzoomOut$plotCoverageTrack +
 geom_vline(xintercept = min(start(PG_Spin1[PG_Spin1$parent_id == "Spin1"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(PG_Spin1[PG_Spin1$parent_id == "Spin1"])),
linetype = "dashed", color = "black")

t1p <- Spin1originPiCzoomOut$trackAll$gtfNum1$trackPlus +
 geom_vline(xintercept = min(start(PG_Spin1[PG_Spin1$parent_id == "Spin1"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(PG_Spin1[PG_Spin1$parent_id == "Spin1"])),
linetype = "dashed", color = "black")

52

Full piC-as(Spin1) region: chr9:67732316-67772950

Spin1-PG region: chr9:67747306-67748766

Normalizing to RPM

t1m <- Spin1originPiCzoomOut$trackAll$gtfNum1$trackMinus +
 geom_vline(xintercept = min(start(PG_Spin1[PG_Spin1$parent_id == "Spin1"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(PG_Spin1[PG_Spin1$parent_id == "Spin1"])),
linetype = "dashed", color = "black")

t2p <- Spin1originPiCzoomOut$trackAll$gtfNum2$trackPlus +
 geom_vline(xintercept = min(start(PG_Spin1[PG_Spin1$parent_id == "Spin1"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(PG_Spin1[PG_Spin1$parent_id == "Spin1"])),
linetype = "dashed", color = "black")

t2m <- Spin1originPiCzoomOut$trackAll$gtfNum2$trackMinus +
 geom_vline(xintercept = min(start(PG_Spin1[PG_Spin1$parent_id == "Spin1"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(PG_Spin1[PG_Spin1$parent_id == "Spin1"])),
linetype = "dashed", color = "black")

Spin1 zoom in
message("Spin1-PG region: ", as.character(seqnames(PG_Spin1[PG_Spin1$parent_id ==
"Spin1"])[1]), ":", min(start(PG_Spin1[PG_Spin1$parent_id == "Spin1"])), "-",
max(end(PG_Spin1[PG_Spin1$parent_id == "Spin1"])))
chr <- "chr9"
start <- min(start(PG_Spin1[PG_Spin1$parent_id == "Spin1"])) - 100
end <- max(end(PG_Spin1[PG_Spin1$parent_id == "Spin1"])) + 100
coord <- IRanges(start, end)

add dashed lines to plot to indicate pseudogene region
Spin1originPiCzoomIn <- allTracksPlotted(piRNAs_from_Bam = gr_mm10, chromosome = chr,
IRangesCoord=coord, gtfFiles=list(PG = PG_Spin1), tilesWidth=1, scaleWidthKB = 0.2)
Spin1originPiCzoomInFull <- Spin1originPiCzoomIn$plotCoverageTrack +
 geom_vline(xintercept = min(start(PG_Spin1[PG_Spin1$parent_id == "Spin1"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(PG_Spin1[PG_Spin1$parent_id == "Spin1"])),
linetype = "dashed", color = "black")

Spin1originPiCFull <- t1p / t1m / t2p / t2m / Spin1originPiCzoomInFull /
 Spin1originPiCzoomIn$trackAll$gtfNum1$trackPlus /
Spin1originPiCzoomIn$trackAll$gtfNum1$trackMinus /
 Spin1originPiCzoomIn$trackAll$gtfNum2$trackPlus /
Spin1originPiCzoomIn$trackAll$gtfNum2$trackMinus

Spin1originPiCFull

53

Ago2 - full gene region
chr <- seqnames(MILIclusters_pach[56])[1]
start <- start(MILIclusters_pach[56]) - 50
end <- end(MILIclusters_pach[56]) + 50
coord <- IRanges(start, end)
PG_Ago2 <- subsetByOverlaps(pseudogenesRGOvrlp, invertStrand(MILIclusters_pach[56]))

PG_Ago2$gene_name <- PG_Ago2$parent_id
MILIclusters_pach$gene_name <- paste0("rank_",
MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM)

Ago2originPiCzoomOut <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,
gtfFiles=list(piCs = MILIclusters_pach[56], PG = PG_Ago2[PG_Ago2$parent_id == "Ago2"]),
tilesWidth=50, scaleWidthKB = 1)
Ago2originPiCzoomOutFull <- Ago2originPiCzoomOut$plotCoverageTrack +
 geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), linetype
= "dashed", color = "black")

Ago2_1pOut <- Ago2originPiCzoomOut$trackAll$gtfNum1$trackPlus +
 geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), linetype
= "dashed", color = "black")
Ago2_1mOut <- Ago2originPiCzoomOut$trackAll$gtfNum1$trackMinus +
 geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), linetype
= "dashed", color = "black")
Ago2_2pOut <- Ago2originPiCzoomOut$trackAll$gtfNum2$trackPlus +
 geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), linetype 54

Ago2-PG region: chr4:123838102-123839732

Normalizing to RPM

= "dashed", color = "black")
Ago2_2mOut <- Ago2originPiCzoomOut$trackAll$gtfNum2$trackMinus +
 geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), linetype
= "dashed", color = "black")

Ago2 zoom in to Pseudogene region (+/- 50 bp)
message("Ago2-PG region: ", seqnames(PG_Ago2[PG_Ago2$parent_id == "Ago2"])[1], ":",
min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), "-", max(end(PG_Ago2[PG_Ago2$parent_id
== "Ago2"])))
chr <- seqnames(PG_Ago2[PG_Ago2$parent_id == "Ago2"])[1]
start <- min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])) - 50
end <- max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])) + 50
coord <- IRanges(start, end)

Ago2originPiCzoomIn <- allTracksPlotted(piRNAs_from_Bam = gr_mm10, chromosome = chr,
IRangesCoord=coord, gtfFiles=list(PG = PG_Ago2[PG_Ago2$parent_id == "Ago2"]),
tilesWidth=1, scaleWidthKB = 0.2)

add dashed lines to plot to indicate pseudogene region
Ago2originPiCzoomInFull <- Ago2originPiCzoomIn$plotCoverageTrack +
 geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), linetype
= "dashed", color = "black")

Ago2_1pIn <- Ago2originPiCzoomIn$trackAll$gtfNum1$trackPlus +
 geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), linetype
= "dashed", color = "black")

Ago2_1mIn <- Ago2originPiCzoomIn$trackAll$gtfNum1$trackMinus +
 geom_vline(xintercept = min(start(PG_Ago2[PG_Ago2$parent_id == "Ago2"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(PG_Ago2[PG_Ago2$parent_id == "Ago2"])), linetype
= "dashed", color = "black")

Ago2originPiCFull <- Ago2_1pOut / Ago2_1mOut / Ago2_2pOut / Ago2_2mOut /
 Ago2originPiCzoomInFull / Ago2_1pIn / Ago2_1mIn

Ago2originPiCFull

55

Spin1-PG region: chr9:67747306-67748766

DNAStringSet object of length 1:
 width seq names
[1] 1461 TTTTTTTCAGATTTCTCAACAGT...CCACACTGGTCCAATGTTTTTCG Spin1_PG

Pseudogene Spin1
message("Spin1-PG region: ", as.character(seqnames(PG_Spin1)[1]), ":",
min(start(PG_Spin1)), "-", max(end(PG_Spin1)))
chr <- seqnames(PG_Spin1)[1]
start <- min(start(PG_Spin1))
end <- max(end(PG_Spin1))

Get sequence and save as fasta
genome <- BSgenome.Mmusculus.UCSC.mm10
Spin1_PG_seq <- DNAStringSet(getSeq(genome, chr, start, end))
names(Spin1_PG_seq) <- "Spin1_PG"
writeXStringSet(Spin1_PG_seq,
"../data/annotations/GeneVsPGcomparison/Spin1_Pseudogene_region.fasta")
Spin1_PG_seq

Gene Spin1
get all alignments that are antisense to the Spin1 gene in the custom Protein Coding
Gene Transcriptome
Spin1_targeting_gr <- subsetByOverlaps(gr_alignments,
invertStrand(geneAnnotation_PCG_gene[geneAnnotation_PCG_gene$gene_id == "Spin1"]))
then filter from those alignments all that origin from piC-as(Spin1) (in MILI
pachytene: rank 19)
Spin1_targetingFromPG_gr <- Spin1_targeting_gr[sub("_|_", "", sub("rank|_", "",
regmatches(Spin1_targeting_gr$qname, regexpr("rank(.*?)_", Spin1_targeting_gr$qname))))
== 19,]

56

Spin1-gene region: chr13:1698750-1700210

DNAStringSet object of length 1:
 width seq names
[1] 1461 TTTTACCCAGATTTCTCAACAGT...CCACACTGGTCCGATGTTTTCTG Spin1_GENE

Retrieve DNA sequence from region where these alignments map to
PCG_fasta <-
"../data/annotations/customTranscriptomes/mm10_PCGtranscriptome_collapsed_prioritizedCDS
3UTR5UTR_allgenes.fasta"
PCG_seq <- readDNAStringSet(PCG_fasta)

target_region <- GRanges(
 seqnames = seqnames(Spin1_targetingFromPG_gr[1]),
 ranges = IRanges(start = min(start(Spin1_targetingFromPG_gr))-3, end =
max(end(Spin1_targetingFromPG_gr))+32)
)
message("Spin1-gene region: ",target_region)

Spin1_GENE_seq <- reverseComplement(PCG_seq[target_region])
names(Spin1_GENE_seq) <- "Spin1_GENE"
writeXStringSet(Spin1_GENE_seq,
"../data/annotations/GeneVsPGcomparison/Spin1_targeting_region_revcomp.fasta")
Spin1_GENE_seq

export sequences, run mulitple sequence alignments
Spin1_features <- sort(subsetByOverlaps(geneAnnotation_PCG[geneAnnotation_PCG$gene_id ==
"Spin1" & geneAnnotation_PCG$feature != "gene"], target_region))
Spin1_CDS3_seq <- reverseComplement(PCG_seq[Spin1_features[2]]) #1 would be the 3
nucleotides upstream from CDS3 but they don't match CDS2
Spin1_CDS4_seq <- reverseComplement(PCG_seq[Spin1_features[3]])
Spin1_CDS5_seq <- reverseComplement(PCG_seq[Spin1_features[4]])
Spin1_3UTR_seq <- reverseComplement(PCG_seq[Spin1_features[5]])

Spin1_all_seq <- c(Spin1_GENE_seq, Spin1_PG_seq, Spin1_3UTR_seq, Spin1_CDS5_seq,
Spin1_CDS4_seq, Spin1_CDS3_seq)
names(Spin1_all_seq) <- c("Spin1_GENE", "Spin1_PG", "Spin1_3UTR", "Spin1_CDS5",
"Spin1_CDS4", "Spin1_CDS3")
writeXStringSet(Spin1_all_seq,
"../data/annotations/GeneVsPGcomparison/Spin1_geneVsPG_all_regions.fasta")

Feature annotations from UCSC Genome Browser
Spin1_GENE_coord <- GRanges(
 seqnames = rep("Spin1_GENE", 4),
 ranges = IRanges(
 start = c(1, 771, 971, 1205),
 end = c(770, 970, 1204, 1458)
),
 feature_type = c("3' UTR", "Exon 5", "Exon 4", "Exon 3"),
 organism = rep("Spin1_GENE", 4)
)

Spin1_PG_coord <- GenomicRanges::shift(PG_Spin1, (-min(start(PG_Spin1))+1))
Spin1_PG_coord <- renameSeqlevels(Spin1_PG_coord, c("chr9" = "Spin1_PG", "chr13" =
"Spin1_GENE"))
Spin1_PG_coord$organism <- rep("Spin1_PG", length(Spin1_PG_coord))
Spin1_GENE_PG_coord <- c(Spin1_GENE_coord, Spin1_PG_coord)

57

save(Spin1_GENE_PG_coord, file =
"../data/annotations/GeneVsPGcomparison/Spin1_GENE_PG_coord.RData")

minimap2 -x asm10 -c -eqx -secondary=no \
 ../data/annotations/GeneVsPGcomparison/Spin1_targeting_region_revcomp.fasta \
 ../data/annotations/GeneVsPGcomparison/Spin1_Pseudogene_region.fasta \
 > ../data/annotations/GeneVsPGcomparison/Spin1vsSpin1PG.paf

options(repr.plot.width=15, repr.plot.height=3)
read paf file (output of minimap2), using SVbyEye package
paf.table <- readPaf(
 paf.file = "../data/annotations/GeneVsPGcomparison/Spin1vsSpin1PG.paf",
 include.paf.tags = TRUE#, restrict.paf.tags = "cg"
)

Read feature annotations (PG: prediction)
annot.gr <-
get(load("../data/annotations/GeneVsPGcomparison/Spin1_GENE_PG_coord.RData"))

Plot identity for Spin1 annotation
plt_fullPiC <- plotAVA(
 paf.table = paf.table,
 color.by = "identity",
 binsize = 10, perc.identity.breaks = c(80, 90, 95)
)

Add feature annotations to plot
plt_fullPiCwAnn <- addAnnotation(
 ggplot.obj = plt_fullPiC,
 annot.gr = annot.gr,
 coordinate.space = "self",
 shape = "rectangle",
 y.label.id = "organism",
 annotation.level = 0
)

plt_fullPiCwAnn

58

[readPaf] Loading PAF file: ../data/annotations/GeneVsPGcomparison/Spin1vsSpin1P
G.paf
 ... 0s

[pafToBins] Binning PAF alignments, binsize=10bp
 ... 0.08s

Error: object 'pseudogenesRGOvrlp' not found
Traceback:

Get Ago2 pseudogene sequence and annotation prediction
PG_Ago2 <- pseudogenesRGOvrlp[pseudogenesRGOvrlp$parent_id == "Ago2"]
PG_Ago2_seq <- DNAStringSet(getSeq(BSgenome.Mmusculus.UCSC.mm10, GRanges(seqnames =
seqnames(PG_Ago2[1]), ranges = IRanges(start = min(start(PG_Ago2))-tailing_len, end =
max(end(PG_Ago2))+tailing_len))))
names(PG_Ago2_seq) <- "Ago2_PG"
PG_Ago2_seq
Biostrings::writeXStringSet(PG_Ago2_seq,
"../data/annotations/GeneVsPGcomparison/Ago2_Pseudogene_region.fasta", format = "fasta")

Ago2_PG_NULL <- PG_Ago2
Ago2_PG_NULL$organism <- "Ago2_PG"
Ago2_PG_NULL <- renameSeqlevels(Ago2_PG_NULL, c("chr4" = "Ago2_PG"))
start(Ago2_PG_NULL) <- start(Ago2_PG_NULL) - min(start(PG_Ago2)) + 1
end(Ago2_PG_NULL) <- end(Ago2_PG_NULL) - min(start(PG_Ago2)) + 1

get Ago2 gene
gene_Ago2 <- sort(genes[genes$gene_id == "Ago2",], decreasing = TRUE)
chr <- as.character(seqnames(gene_Ago2[1]))
+1 indexing for exons, bc 1st exon is annotated as feature 5UTR and CDS separately
ex <- function(i) gene_Ago2[i + 1] # your object uses +1 indexing for exons

CDS exons 11–18
get_exon_seq <- function(i) {
 s <- DNAStringSet(
 reverseComplement(
 getSeq(BSgenome.Mmusculus.UCSC.mm10,
 GRanges(seqnames = chr,
 ranges = IRanges(start = start(ex(i)),
 end = end(ex(i)))))
)
)
 names(s) <- paste0("exon_", i)
 s
}
exon_seqs <- do.call(c, lapply(11:18, get_exon_seq))

Intron between exon18 and exon19
59

DNAStringSet object of length 1:
 width seq names
[1] 1784 AACAAAGCAATTGCCACCCCTGT...GAACTCTCAGGGCTTTAAAACAC Ago2_genePartial

Warning message in .merge_two_Seqinfo_objects(x, y):
"The 2 combined objects have no sequence levels in common. (Use
 suppressWarnings() to suppress this warning.)"

intron18_seq <- DNAStringSet(
 reverseComplement(
 getSeq(BSgenome.Mmusculus.UCSC.mm10,
 GRanges(seqnames = chr,
 ranges = IRanges(start = end(ex(19)) + 1,
 end = start(ex(18)) - 1)))
)
)
names(intron18_seq) <- "intron_18"

exon19 CDS + beginning of 3'UTR, until 73106583
ex19_start <- 73106583 # coordinate through BLAT of Ago2 PG to gene in UCSC Genome
Browser
exon19part_seq <- DNAStringSet(
 reverseComplement(
 getSeq(BSgenome.Mmusculus.UCSC.mm10,
 GRanges(seqnames = chr,
 ranges = IRanges(start = ex19_start,
 end = end(ex(19)))))
)
)
names(exon19part_seq) <- "exon_19_part"

Combine in transcript order
gene_Ago2_part_seq <- c(exon_seqs, intron18_seq, exon19part_seq)

Build the GRanges using the sequence widths
lens <- width(gene_Ago2_part_seq)
offsets <- cumsum(c(0, lens[-length(lens)]))
gene_Ago2NULL <- GRanges(
 seqnames = "Ago2_genePartial",
 ranges = IRanges(start = offsets + 1, width = lens),
 strand = "+",
 gene_name = names(gene_Ago2_part_seq)
)
mcols(gene_Ago2NULL)$organism <- "Ago2_genePartial"

Put sequence together and save as fasta
gene_Ago2_partCom_seq <- DNAStringSet(paste0(as.character(gene_Ago2_part_seq), collapse
= ""))
names(gene_Ago2_partCom_seq) <- "Ago2_genePartial"
gene_Ago2_partCom_seq
Biostrings::writeXStringSet(gene_Ago2_partCom_seq,
"../data/annotations/GeneVsPGcomparison/Ago2_genePartial.fasta", format = "fasta")

save GRanges object
gene_Ago2NULL <- gene_Ago2NULL[!gene_Ago2NULL$gene_name == "intron_18"]

gr_exonsAgo2 <- c(Ago2_PG_NULL, gene_Ago2NULL)
save(gr_exonsAgo2, file =
"../data/annotations/GeneVsPGcomparison/Ago2_gene_PG_corrd.RData")

60

[readPaf] Loading PAF file: EvoComparison/AGO2PG/Ago2vsAgo2PG.paf
 ... 0s

[pafToBins] Binning PAF alignments, binsize=10bp
 ... 0.12s

minimap2 -x asm10 -c -eqx -secondary=no \
 ../data/annotations/GeneVsPGcomparison/Ago2_genePartial.fasta \
 ../data/annotations/GeneVsPGcomparison/Ago2_Pseudogene_region.fasta \
 > ../data/annotations/GeneVsPGcomparison/Ago2vsAgo2PG.paf

options(repr.plot.width=15, repr.plot.height=3)
read paf file (output of minimap2), using SVbyEye package
paf.table <- readPaf(
 paf.file = "../data/annotations/GeneVsPGcomparison/Ago2vsAgo2PG.paf",
 include.paf.tags = TRUE#, restrict.paf.tags = "cg"
)
Read exon annotations (PG: prediction)
annot.gr <- get(load("../data/annotations/GeneVsPGcomparison/Ago2_gene_PG_corrd.RData"))

Plot identity for Ago2 annotation
plt_fullPiC <- plotAVA(
 paf.table = paf.table,
 color.by = "identity",
 binsize = 10
)

plt_fullPiCwAnn <- addAnnotation(
 ggplot.obj = plt_fullPiC,
 annot.gr = annot.gr,
 coordinate.space = "self",
 shape = "rectangle",
 y.label.id = "organism",
 annotation.level = 0
)
plt_fullPiCwAnn

options(repr.plot.width=9, repr.plot.height=6)

Generic func to get featureCounts and DESeq2 results
calcECDF <- function(bam_files, ann_dir, sample_name) {

61

 # Run featureCounts for gene counts
 counts <- featureCounts(
 files = bam_files,
 annot.ext = ann_dir,
 isGTFAnnotationFile = TRUE,
 GTF.featureType = "exon",
 GTF.attrType = "gene_id",
 useMetaFeatures = TRUE,
 nthreads = 8,
 isPairedEnd = FALSE
)

 # shorter sample names (drop trailing mapping suffixes)
 sample_ids <- sub("\\.fastq.*$", "", basename(colnames(counts$counts))) # e.g.
MIWI_HET1_SRR610421
 colnames(counts$counts) <- sample_ids

 # derive condition (HET/KO) and replicate from sample names
 condition <- factor(sub(".*_(HET|KO)[0-9]+_.*", "\\1", sample_ids))
 message("Condition: ", condition)
 condition <- relevel(condition, ref = "HET") # HET as control/reference
 replicate <- as.integer(sub(".*_(?:HET|KO)([0-9]+)_.*", "\\1", sample_ids))

 # sample info
 coldata <- data.frame(
 sample = sample_ids,
 condition = condition,
 replicate = replicate,
 row.names = sample_ids,
 check.names = FALSE
)

 # DESeq2 pipeline
 dds <- DESeqDataSetFromMatrix(
 countData = counts$counts,
 colData = coldata,
 design = ~ condition
)
 dds <- DESeq(dds)

 # pick the correct coefficient name
 coef_name <- grep("^condition_.*KO.*_vs_.*HET$", resultsNames(dds), value = TRUE)
 stopifnot(length(coef_name) == 1)

 # LFC shrinkage and convert to data frame
 res <- lfcShrink(dds, coef = coef_name, type = "apeglm")
 res_df <- as.data.frame(res)
 gene_ids <- rownames(res_df)
 lfc <- data.frame(
 gene = gene_ids,
 log2FC = res_df$log2FoldChange,
 row.names = NULL,
 check.names = FALSE
)

 return(list(dds, lfc, res))
}

62

 ========== _____ _ _ ____ _____ ______ _____
 ===== / ____| | | | _ \| __ \| ____| /\ | __ \
 ===== | (___ | | | | |_) | |__) | |__ / \ | | | |
 ==== ___ \| | | | _ <| _ /| __| / /\ \ | | | |
 ==== ____) | |__| | |_) | | \ \| |____ / ____ \| |__| |
 ========== |_____/ ____/|____/|_| _______/_/ ______/
 Rsubread 2.20.0

//========================== featureCounts setting ===========================\\
	Input files : 6 BAM files	
	MIWI_HET1_SRR610673.fastq.gz.mapped.Aligned. ...	
	MIWI_HET2_SRR610674.fastq.gz.mapped.Aligned. ...	
	MIWI_HET3_SRR610675.fastq.gz.mapped.Aligned. ...	
	MIWI_KO1_SRR610676.fastq.gz.mapped.Aligned.s ...	
	MIWI_KO2_SRR610677.fastq.gz.mapped.Aligned.s ...	
	MIWI_KO3_SRR610678.fastq.gz.mapped.Aligned.s ...	

top_targeted <-
targetingByPiRNAsSbO_sorted_total_tra[1:genes_targetingThreshold,]$geneName
length(top_targeted)
Filter rows where totalPiRNAcount is greater than 0 and exclude rows 1 to 88
(genes_targetingThreshold)
mid_targeted <- targetingByPiRNAsSbO_sorted_total_tra[
 (targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount > 0) &
 !(seq_len(nrow(targetingByPiRNAsSbO_sorted_total_tra)) %in%
1:genes_targetingThreshold),
]$geneName
length(mid_targeted)
not_targeted <-
targetingByPiRNAsSbO_sorted_total_tra[targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAco
unt == 0,]$geneName
length(not_targeted)

Sample: Late SPC, get bam files
bam_files_lateSPC <- c(
 "MIWI_0/lateSPC/MIWI_HET1_SRR610673.fastq.gz.mapped.Aligned.sortedByCoord.out.bam",
 "MIWI_0/lateSPC/MIWI_HET2_SRR610674.fastq.gz.mapped.Aligned.sortedByCoord.out.bam",
 "MIWI_0/lateSPC/MIWI_HET3_SRR610675.fastq.gz.mapped.Aligned.sortedByCoord.out.bam",
 "MIWI_0/lateSPC/MIWI_KO1_SRR610676.fastq.gz.mapped.Aligned.sortedByCoord.out.bam",
 "MIWI_0/lateSPC/MIWI_KO2_SRR610677.fastq.gz.mapped.Aligned.sortedByCoord.out.bam",
 "MIWI_0/lateSPC/MIWI_KO3_SRR610678.fastq.gz.mapped.Aligned.sortedByCoord.out.bam"
)
ann_dir <-
"../../../OneDrive/General/mmu_referenceGenome/Mm10_refSeq3_copies_annotated3.sorted.gtf
"

run function above to get featureCounts and DESeq2 results and LFC shrinkage
dds_lfc_lateSPC <- calcECDF(bam_files_lateSPC, ann_dir, "lateSPC")
dds_lateSPC <- dds_lfc_lateSPC[1][[1]]
lfc_lateSPC <- dds_lfc_lateSPC[2][[1]]
res_lateSPC <- dds_lfc_lateSPC[3][[1]]

63

	Paired-end : no	
	Count read pairs : no	
	Annotation : Mm10_refSeq3_copies_annotated3.sorted.gtf (GTF)	
	Dir for temp files : .	
	Threads : 8	
	Level : meta-feature level	
	Multimapping reads : counted	
	Multi-overlapping reads : not counted	
	Min overlapping bases : 1	
\\==//

//================================= Running ==================================\\
	Load annotation file Mm10_refSeq3_copies_annotated3.sorted.gtf ...	
	Features : 1366783	
	Meta-features : 49605	
	Chromosomes/contigs : 21	
	Process BAM file MIWI_HET1_SRR610673.fastq.gz.mapped.Aligned.sortedByC ...	
	Single-end reads are included.	
	Total alignments : 134379273	
	Successfully assigned alignments : 116179920 (86.5%)	
	Running time : 0.50 minutes	
	Process BAM file MIWI_HET2_SRR610674.fastq.gz.mapped.Aligned.sortedByC ...	
	Single-end reads are included.	
	Total alignments : 111409874	
	Successfully assigned alignments : 96245345 (86.4%)	
	Running time : 0.38 minutes	
	Process BAM file MIWI_HET3_SRR610675.fastq.gz.mapped.Aligned.sortedByC ...	
	Single-end reads are included.	
	Total alignments : 152438457	
	Successfully assigned alignments : 126889984 (83.2%)	
	Running time : 0.51 minutes	
	Process BAM file MIWI_KO1_SRR610676.fastq.gz.mapped.Aligned.sortedByCo ...	
	Single-end reads are included.	
	Total alignments : 110503411	
	Successfully assigned alignments : 92847870 (84.0%)	
	Running time : 0.37 minutes	
	Process BAM file MIWI_KO2_SRR610677.fastq.gz.mapped.Aligned.sortedByCo ...	
	Single-end reads are included.	
	Total alignments : 151008781	
	Successfully assigned alignments : 127852629 (84.7%)	
	Running time : 0.50 minutes	
	Process BAM file MIWI_KO3_SRR610678.fastq.gz.mapped.Aligned.sortedByCo ...	
	Single-end reads are included.	
	Total alignments : 106079594	
	Successfully assigned alignments : 88100959 (83.1%)	
	Running time : 0.35 minutes	
	Write the final count table.	
	Write the read assignment summary.	
\\==//

Condition: HETHETHETKOKOKO

estimating size factors

estimating dispersions 64

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

using 'apeglm' for LFC shrinkage. If used in published research, please cite:
 Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distributions f
or
 sequence count data: removing the noise and preserving large differences.
 Bioinformatics. https://doi.org/10.1093/bioinformatics/bty895

Build a long table of log2FC for each group (drop NAs and genes not in lfc)
sets <- list(
 `Top targeted` = unique(top_targeted),
 `Mid targeted` = unique(mid_targeted),
 `Not targeted` = unique(not_targeted)
)
ecdf_df <- bind_rows(lapply(names(sets), function(grp) {
 tibble(
 gene = sets[[grp]]
) %>%
 inner_join(as_tibble(lfc_lateSPC), by = "gene") %>%
 mutate(group = grp)
})) %>%
 filter(!is.na(log2FC)) %>%
 mutate(group = factor(group, levels = c("Top targeted","Mid targeted","Not
targeted")))

#Number of genes per group
table(ecdf_df$group)

ECDF plot
get log2FC (x-axis) and ecdf (y-axis) values for Spin1 and Ago2
ecdf_df_tT <- subset(ecdf_df, group == "Top targeted")
ecdf_function <- ecdf(ecdf_df_tT$log2FC)
highlight_df <- data.frame(
 gene = c("Ago2", "Spin1"),
 log2FC = c(
 ecdf_df_tT[ecdf_df_tT$gene == "Ago2",]$log2FC,
 ecdf_df_tT[ecdf_df_tT$gene == "Spin1",]$log2FC),
 ecdf_y = ecdf_function(c(ecdf_df_tT[ecdf_df_tT$gene == "Ago2",]$log2FC,
 ecdf_df_tT[ecdf_df_tT$gene == "Spin1",]$log2FC)),
 group = "Top targeted"
)
highlight_df

plot ECDF
ECDF_lateSPC <- ggplot(ecdf_df, aes(x = log2FC, colour = group)) +
 stat_ecdf(size = 1) +
 scale_colour_manual(
 values = c(
 "Top targeted" = "#9865aa",
 "Mid targeted" = "#7771b3",
 "Not targeted" = "#231f20"
)
) + 65

Top targeted Mid targeted Not targeted
 86 9288 9497

Warning message in ks.test.default(groups[[p[1]]], groups[[p[2]]]):
"p-value will be approximate in the presence of ties"
Warning message in ks.test.default(groups[[p[1]]], groups[[p[2]]]):
"p-value will be approximate in the presence of ties"
Warning message in ks.test.default(groups[[p[1]]], groups[[p[2]]]):
"p-value will be approximate in the presence of ties"

 geom_point(data = highlight_df, aes(x = log2FC, y = ecdf_y), fill = "#9764aa", color =
"black", stroke = 0.2, size = 1) +
 geom_text(data = highlight_df, aes(x = log2FC, y = ecdf_y, label = gene),
 color = "#9764aa", vjust = 1.8, hjust = -0.1, size = 3) +
 labs(x = "log2 fold-change (MIWI KO vs HET)", y = "ECDF", colour = "Group") +
 coord_cartesian(xlim = c(-0.3, 1.8)) +
 theme_classic() +
 ggtitle("Late SPC") +
 theme(axis.title.x = element_text(size = 7),
 axis.title.y = element_text(size = 7),
 axis.text.x = element_text(size = 7),
 axis.text.y = element_text(size = 7),
 legend.text = element_text(size = 7),
 legend.title = element_text(size = 7))

ECDF_lateSPC

Pairwise Kolmogorov-Smirnov Test
groups <- split(ecdf_df$log2FC, ecdf_df$group)
combn(names(groups), 2, FUN = function(p) {
 data.frame(
 pair = paste(p, collapse = " vs "),
 ks_p = ks.test(groups[[p[1]]], groups[[p[2]]])$p.value
)
}, simplify = FALSE) |> dplyr::bind_rows()

66

Combine calcECDF-outputs to get a combined dataframe wiht gene name, log2FC, padj
coef_name <- grep("^condition_.*KO.*_vs_.*HET$", resultsNames(dds_lateSPC), value =
TRUE)
res_full <- results(dds_lateSPC, name = coef_name)

tbl <- as.data.frame(res_lateSPC) %>%
 transmute(gene = rownames(res_lateSPC),
 log2FC = log2FoldChange) %>%
 left_join(
 as.data.frame(res_full) %>%
 transmute(gene = rownames(res_full),
 padj = padj),
 by = "gene"
) %>%
 filter(!is.na(log2FC), !is.na(padj))

create grouping in tbl: top targeted vs all others (mid- and non-targets)
top_targ <- unique(top_targeted)
tbl <- tbl %>%
 mutate(group = ifelse(gene %in% top_targ, "Top targeted", "Other"),
 is_callout = gene %in% c("Spin1","Ago2"))

#plot volcano
p_volcano <- ggplot(tbl, aes(x = log2FC, y = -log10(padj))) +
 # mid and not targeted genes (Other) in grey
 geom_point(data = subset(tbl, group == "Other"),
 color = "grey75", size = 1) +
 # top targeted in purple
 geom_point(data = subset(tbl, group == "Top targeted" & !is_callout),
 color = "#9764aa", size = 1) +
 # highlight Spin1 and Ago2
 geom_point(data = subset(tbl, is_callout),
 aes(fill = group),
 shape = 21, color = "black", stroke = 0.2, size = 1.2, show.legend = FALSE)
+
 scale_fill_manual(values = c("Top targeted" = "#9764aa", "Other" = "grey75")) +

67

 geom_text_repel(data = subset(tbl, is_callout),
 aes(label = gene),
 size = 3, box.padding = 0.25, point.padding = 0.2,
 min.segment.length = 0, max.overlaps = Inf) +
 labs(x = "log2 fold-change (MIWI -/- vs HET)",
 y = "-log10(padj)") +
 theme_classic() +
 theme(axis.title.x = element_text(size = 7),
 axis.title.y = element_text(size = 7),
 axis.text.x = element_text(size = 7),
 axis.text.y = element_text(size = 7),
 legend.text = element_text(size = 7),
 legend.title = element_text(size = 7))

p_volcano

68

#!/bin/bash
#STAR mapping and indexing of paired-end sequencing data

input_file1=$1
input_file2=$2

basename=$(basename "$input_file1")
output_prefix="${OUTDIR}/$(basename "$input_file1").mapped."

module load STAR/2.7.10b
module load samtools/1.17

mkdir -p "$OUTDIR"

STAR \
 --readFilesIn "$input_file1" "$input_file2" \
 --readFilesCommand gunzip -c \
 --genomeDir "$GENOME_DIR" \
 --runThreadN 12 \
 --genomeLoad LoadAndRemove \
 --limitBAMsortRAM 20000000000 \
 --outFileNamePrefix "$output_prefix" \
 --outSAMtype BAM SortedByCoordinate \
 --outReadsUnmapped Fastx \
 --outFilterMultimapNmax 100 \
 --outFilterMultimapScoreRange 0 \
 --outFilterMismatchNoverLmax 0.05 \
 --sjdbScore 2

69

cd "$OUTDIR"
samtools index -@ 24 -M -b *.bam

#SLURM batch submission
#Each job processes a pair of FASTQ files (_R1_ and _R2_).

: '
for forward_file in ${WORKDIR}/*_R1_001.fastq.gz; do
 sample_name=$(basename "$forward_file" "_R1_001.fastq.gz")
 reverse_file="${WORKDIR}/${sample_name}_R2_001.fastq.gz"
 echo "Submitting job for sample: $sample_name"

 sbatch --mem=30g --cpus-per-task=16 --time=5:00:00 \
 ./mapping_mm10_pipeline.sh "$forward_file" "$reverse_file"
done
'

#!/bin/bash
#FeatureCounts for gene expression

input_file1=$1

basename=$(basename "$input_file1")
output_prefix1="${OUTDIR}/$(basename "$input_file1")_featureCounts"

mkdir -p "$OUTDIR"

module load subread

featureCounts \
 -p \
 --countReadPairs \
 -s 2 \
 -a "$ANNOTATION" \
 -o "${output_prefix1}.txt" \
 $input_file1;

#SLURM batch submission
#Each BAM file will be submitted as a separate SLURM job

: '
for file in ${WORKDIR}/*.bam; do
 sample_name=$(basename "$file")
 echo "Submitting featureCounts job for: $sample_name"
 sbatch --mem=10g --cpus-per-task=8 \
 ./featureCounts_refseq.sh "$file"
done
'

#!/bin/bash
#FeatureCounts for TE expression

input_file1=$1
70

basename=$(basename "$input_file1")
output_prefix1="${OUTDIR}/$(basename "$input_file1")_featureCounts_TE"

mkdir -p "$OUTDIR"

module load subread

featureCounts \
 -p \
 --countReadPairs \
 -s 2 \
 -g gene_id \
 -M \
 -O \
 --fraction \
 -a "$ANNOTATION_TE" \
 -o "${output_prefix1}.txt" \
 $input_file1;

#SLURM batch submission
#Each BAM file will be submitted as a separate SLURM job

: '
for file in ${WORKDIR}/*.bam; do
 sample_name=$(basename "$file")
 echo "Submitting featureCounts job for: $sample_name"
 sbatch --mem=10g --cpus-per-task=8 \
 ./featureCounts_TE.sh "$file"
done
'

Suppress warnings globally

options(warn = -1)
suppressPackageStartupMessages({
 library(DESeq2)
 library(GenomicFeatures)
 library(ggplot2)
 library(writexl)
})

###
Title: Differential Expression Analysis of RefSeq Genes in pic-as(Ago2) Knockout
Testes
Description: This script performs DESeq2 analysis of RefSeq-annotated RNA-seq
data from WT and pic-as(Ago2) knockout mouse testes and generates a
volcano plot of differential expression results.
###

Input files

base_dir <- "/Users/loubalovaz2/Documents/Lab/Pachytene piRNA
project/Library_prep/240220_Spin1, Ago2, WT - RNAseq_whole

71

testis/Long_RNA_libraries/Proper_50_PE_seq/featureCountes_refseq"
output_dir <- "/Users/loubalovaz2/Documents/Lab/Writing/Pachytene_clusters
paper/Code_results"

count_files <- c(
 file.path(base_dir,"161212_Zuzana-
7repeat_S2_L008_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts.txt")
,

file.path(base_dir,"161213_s08_S6_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_f
eatureCounts.txt"),

file.path(base_dir,"161922_s09_S7_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_f
eatureCounts.txt"),

file.path(base_dir,"1069_s04_S3_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_fea
tureCounts.txt"),

file.path(base_dir,"1070_s05_S4_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_fea
tureCounts.txt"),

file.path(base_dir,"1071_s06_S5_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_fea
tureCounts.txt")
)

Load and format counts

count_list <- lapply(count_files, function(file) {
 read.table(file, header = TRUE, row.names = 1)
})

Combine into one matrix and select count columns
count_matrix_all <- do.call(cbind, count_list)
count_matrix <- count_matrix_all[, c(6, 12, 18, 24, 30, 36)]

Rename columns
colnames(count_matrix) <- c("WT_1", "WT_2", "WT_3", "Ago2_1", "Ago2_2", "Ago2_3")

Define sample metadata

sample_metadata <- data.frame(
 row.names = colnames(count_matrix),
 Genotype = c("WT", "WT", "WT", "Ago2_KO", "Ago2_KO", "Ago2_KO")
)

Verify that sample names match between counts and metadata
stopifnot(all(colnames(count_matrix) %in% rownames(sample_metadata)))
stopifnot(all(colnames(count_matrix) == rownames(sample_metadata)))

DESeq2 analysis

dds <- DESeqDataSetFromMatrix(
 countData = count_matrix,
 colData = sample_metadata,

72

 design = ~ Genotype
)

Prefilter low-count genes
dds <- dds[rowSums(counts(dds)) >= 10,]

Set reference level
dds$Genotype <- relevel(dds$Genotype, ref = "WT")

Run DESeq2
dds <- DESeq(dds)
res <- results(dds)
res_df <- as.data.frame(res)

Add gene length filter as the RNA isolation was prepared wth >200bp cut off
txdb <-
makeTxDbFromGFF("/Users/loubalovaz2/Documents/Genomes/Mouse/Annotation/mm10_refGene.gtf"
, format = "gtf")
gene_gr <- genes(txdb)
gene_length <- data.frame(gene_id = names(gene_gr), length = width(gene_gr))

Merge DE results with gene lengths
res_df$gene_id <- rownames(res_df)
res_df <- merge(res_df, gene_length, by = "gene_id")

Filter: keep genes >200 bp as the RNA isolation method used columns with 200bp cut off
keep_counts <- rowSums(counts(dds) > 10) == ncol(dds)
res_df <- subset(res_df, keep_counts & length > 200)

Save results to Excel
write_xlsx(res_df, file.path(output_dir,
"Ago2_Refseq_DESeq2_results_10reads_200nt.xlsx"))

Volcano plot

res_df$color <- "#484545"
res_df$color[res_df$padj < 0.05 & res_df$log2FoldChange > 0] <- "#f80000"
res_df$color[res_df$padj < 0.05 & res_df$log2FoldChange < 0] <- "#aeaefc"

volcano_plot_Ago2 <- ggplot(res_df, aes(x = log2FoldChange, y = -log10(padj), color =
color)) +
 geom_point(alpha = 0.6, size = 2.5) +
 geom_vline(xintercept = 0, linetype = "dashed", color = "#343333") +
 scale_color_identity() +
 labs(
 x = "Log2 Fold Change",
 y = "-log10(padj)",
 title = "pic-as(Ago2)_KO vs WT (RefSeq genes)"
) +
 theme_minimal(base_size = 14)

ggsave(file.path(output_dir,"Ago2_refseq_volcano_10reads_200nt.svg"), plot =
volcano_plot_Ago2, bg = "white", width = 6, height = 5)
ggsave(file.path(output_dir,"Ago2_refseq_volcano_10reads_200nt.png"), plot =
volcano_plot_Ago2, bg = "white", width = 6, height = 5)

73

print(volcano_plot_Ago2)

###
Title: Differential Expression Analysis of TEs in pic-as(Ago2) Knockout Testes
Description: This script performs DESeq2 analysis of transposable elements in RNA-seq
data from WT and pic-as(Ago2) knockout mouse testes and generates a
volcano plot of differential expression results
###

Load count matrices

base_dir <- "/Users/loubalovaz2/Documents/Lab/Pachytene piRNA
project/Library_prep/240220_Spin1, Ago2, WT - RNAseq_whole
testis/Long_RNA_libraries/Proper_50_PE_seq/featureCounts_TE"

count_files <- c(
 file.path(base_dir, "161212_Zuzana-
7repeat_S2_L008_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.tx
t"),
 file.path(base_dir,
"161213_s08_S6_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt
"),
 file.path(base_dir,
"161922_s09_S7_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt
"),
 file.path(base_dir,
"1069_s04_S3_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt")

74

,
 file.path(base_dir,
"1070_s05_S4_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt")
,
 file.path(base_dir,
"1071_s06_S5_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt")
)

Read in and combine count files
count_list <- lapply(count_files, function(file) {
 read.table(file, header = TRUE, row.names = 1)
})

count_matrix_all <- do.call(cbind, count_list)

Select count columns

count_matrix <- count_matrix_all[, c(6, 12, 18, 24, 30, 36)]
colnames(count_matrix) <- c("WT_1", "WT_2", "WT_3", "Ago2_1", "Ago2_2", "Ago2_3")

Convert fractional read counts to whole numbers
count_matrix <- round(count_matrix)

Sample metadata

sample_metadata <- data.frame(
 row.names = colnames(count_matrix),
 Genotype = c("WT", "WT", "WT", "Ago2_KO", "Ago2_KO", "Ago2_KO")
)

Verify that sample names match between counts and metadata
stopifnot(all(colnames(count_matrix) %in% rownames(sample_metadata)))
stopifnot(all(colnames(count_matrix) == rownames(sample_metadata)))

DeSeq2 analysis

dds <- DESeqDataSetFromMatrix(
 countData = count_matrix,
 colData = sample_metadata,
 design = ~ Genotype
)

Set reference level
dds$Genotype <- relevel(dds$Genotype, ref = "WT")

Run DESeq2
dds <- DESeq(dds)
res <- results(dds)

Save results

res$gene_id <- rownames(res)
75

res_df <- as.data.frame(res)

write_xlsx(res_df, file.path(output_dir, "Ago2_TE_DESeq2_results.xlsx"))

Volcano plot

res_df$color <- "#484545"
res_df$color[res_df$padj < 0.05 & res_df$log2FoldChange > 0] <- "#f80000"
res_df$color[res_df$padj < 0.05 & res_df$log2FoldChange < 0] <- "#aeaefc"

volcano_plot_Ago2_TE <- ggplot(res_df, aes(x = log2FoldChange, y = -log10(padj), color =
color)) +
 geom_point(alpha = 0.6, size = 2.5) +
 geom_vline(xintercept = 0, linetype = "dashed", color = "#343333") +
 scale_color_identity() +
 labs(
 x = "Log2 Fold Change",
 y = "-log10(padj)",
 title = "piC-as(Ago2_KO) vs WT (Transposable Elements)"
) +
 theme_minimal(base_size = 14)

ggsave(file.path(output_dir, "Ago2_TE_volcano.svg"), plot = volcano_plot_Ago2_TE, bg =
"white", width = 6, height = 5)
ggsave(file.path(output_dir, "Ago2_TE_volcano.png"), plot = volcano_plot_Ago2_TE, bg =
"white", width = 6, height = 5)

print(volcano_plot_Ago2_TE)

76

###
Title: Differential Expression Analysis of TEs in pic-as(Spin1) Knockout Testes
Description: This script performs DESeq2 analysis of transposable elements in RNA-seq
data from WT and pic-as(Spin1) knockout mouse testes and generates a
volcano plot of differential expression results
###

Load count matrices

base_dir <- "/Users/loubalovaz2/Documents/Lab/Pachytene piRNA
project/Library_prep/240220_Spin1, Ago2, WT - RNAseq_whole
testis/Long_RNA_libraries/Proper_50_PE_seq/featureCounts_TE"

count_files_TE <- c(
 file.path(base_dir, "161212_Zuzana-
7repeat_S2_L008_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.tx
t"),
 file.path(base_dir,
"161213_s08_S6_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt
"),
 file.path(base_dir,
"161922_s09_S7_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt
"),
 file.path(base_dir, "161602_Zuzana-
1repeat_S1_L008_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.tx
t"),
 file.path(base_dir,
"161603_s02_S1_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt
"),
 file.path(base_dir,
"161604_s03_S2_R1_001.fastq.gz.mapped.Aligned.sortedByCoord.out.bam_featureCounts_TE.txt
")
)

Read and combine count files into a single count matrix
count_matrix_list_TE <- lapply(count_files_TE, function(file) {
 read.table(file, header = TRUE, row.names = 1)
})
count_matrix_full <- do.call(cbind, count_matrix_list_TE)

Select count columns

count_matrix <- count_matrix_full[, c(6, 12, 18, 24, 30, 36)]

Rename columns
colnames(count_matrix) <- c("WT_1", "WT_2", "WT_3", "Spin1_1", "Spin1_2", "Spin1_3")

Sample metadata

sample_metadata <- data.frame(
 row.names = c("WT_1", "WT_2", "WT_3", "Spin1_1", "Spin1_2", "Spin1_3"),
 Genotype = c("WT", "WT", "WT", "Spin1_KO", "Spin1_KO", "Spin1_KO")
) 77

Verify that sample names match between counts and metadata
stopifnot(all(colnames(count_matrix) %in% rownames(sample_metadata)))
stopifnot(all(colnames(count_matrix) == rownames(sample_metadata)))

Convert fractional counts to whole numbers
count_matrix <- round(count_matrix)

DeSeq2 analysis

Create DESeq2 dataset
dds <- DESeqDataSetFromMatrix(
 countData = count_matrix,
 colData = sample_metadata,
 design = ~ Genotype
)

Set WT as the reference level
dds$Genotype <- relevel(dds$Genotype, ref = "WT")

Run DESeq2
dds <- DESeq(dds)
res <- results(dds)

Save results

res$gene_id <- rownames(res)
res.df <- as.data.frame(res)

write_xlsx(res.df, file.path(output_dir, "Spin1_TE_DESeq2_results.xlsx"))

Volcano plot

Prepare data for volcano plot
res.df$color <- "#484545"
res.df$color[res.df$padj < 0.05 & res.df$log2FoldChange > 0] <- "#f80000"
res.df$color[res.df$padj < 0.05 & res.df$log2FoldChange < 0] <- "#aeaefc"

Spin1_TE_volcano <- ggplot(res.df, aes(x = log2FoldChange, y = -log10(padj), color =
color)) +
 geom_point(alpha = 0.6, size = 2.5) +
 geom_vline(xintercept = 0, color = "#343333", linetype = "dashed", linewidth = 1) +
 scale_color_identity() +
 labs(x = "Log2 Fold Change", y = "-log10(padj)", title = "piC-
as(Spin1)_KO_vs_WT_Transposable Elements") +
 theme_minimal()

Save plots
ggsave(file.path(output_dir, "Spin1_TE_volcano.svg"), bg = "white", plot =
Spin1_TE_volcano, device = "svg")
ggsave(file.path(output_dir, "Spin1_TE_volcano.png"), bg = "white", plot =
Spin1_TE_volcano, device = "png")

78

print(Spin1_TE_volcano)

piRNA precursors

#Load library
library(readxl)
#Create gtf file with 90th percentile of top productive MIWI piRNA clusters
(Konstantinidou, Loubalova, et al., Cell Reports, 2024)
#load MIWI_clusters from Cell Reports publication
MIWI_clusters_xslx <- read_xlsx("/Users/loubalovaz2/Documents/Lab/Pachytene piRNA
project/Library_prep/240220_Spin1, Ago2, WT - RNAseq_whole
testis/Long_RNA_libraries/Old_Seq/Run_Samples_2,3,4,5,6,8,9,/240423_Miwi-PICB_pachytene-
short.xlsx")
#save as data frame
MIWI_clusters <- as.data.frame(MIWI_clusters_xslx)
#arrange by all reads explained=forced mapping for productivity
MIWI_clusters_ordered <-
MIWI_clusters[order(MIWI_clusters$C11_rank_by_all_reads_explained),]
#take top 64 that the publication defined as 90th percentile
MIWI_clusters_90thpercentile <- MIWI_clusters_ordered[1:64,]
#give them names (numbers) based on productivity
MIWI_clusters_90thpercentile$gene_id <-
MIWI_clusters_90thpercentile$C11_rank_by_all_reads_explained
MIWI_clusters_90thpercentile$transcript_id <- MIWI_clusters_90thpercentile$gene_id
MIWI_clusters_90thpercentile$chromosome <- MIWI_clusters_90thpercentile$seqnames
MIWI_clusters_90thpercentile$feature_type <- "gene"

79

Generate GTF file

Function to convert data frame to GTF format
convert_to_gtf <- function(df) {
 gtf <- paste(
 df$chromosome,
 "source",
 df$feature_type,
 df$start,
 df$end,
 ".",
 df$strand,
 ".",
 paste("gene_id", df$gene_id, sep = " "),
 paste("transcript_id", df$transcript_id, sep = " "),
 sep = "\t"
)
 return(gtf)
}

Convert data frame to GTF format
gtf_MIWI_clusters_90thpercentile <- convert_to_gtf(MIWI_clusters_90thpercentile)

Save GTF file

Write GTF content to a file and use it for FeatureCounts
writeLines(gtf_MIWI_clusters_90thpercentile, file.path(output_dir,
"gtf_MIWI_clusters_90thpercentile.gtf"))

BASH - Use FeatureCounts to define the coverage of MIWI piRNA precursors in RNA seq of
piC-as(Ago2) and WT mice using the gtf_MIWI_clusters_90thpercentile GTF file

#!/bin/bash
#FeatureCounts for piRNA precursor expression

module load subread

for run in 161212_Zuzana-7repeat_S2_L008_R1_001 161213_s08_S6_R1_001
161922_s09_S7_R1_001 1069_s04_S3_R1_001 1070_s05_S4_R1_001 1071_s06_S5_R1_001 ; do
input_file1="${run}.fastq.gz.mapped.Aligned.sortedByCoord.out.bam"
output_prefix1="${run}_featureCount_whole_testis_RNA_allMIWI_clusters"

featureCounts \
-p \
--countReadPairs \
-s 2 \
-M \
--fraction \
-t gene \
-a /path/gtf_MIWI_clusters_90thpercentile.gtf \
-o /path/FeatureCounts_90thpercentile_MIWI_clusters/"${output_prefix1}.txt"
$input_file1;

echo " ✓ Finished ${run}"
done

80

##
Title: Differential Expression Analysis of piRNA precursors in pic-as(Ago2) Knockout
Testes
Description: This script performs DESeq2 analysis of piRNA precursors (90th percentile
of top productive MIWI piRNA precursors)
in RNA-seq data from WT and pic-as(Ago2) knockout mouse testes and
generates a
volcano plot of differential expression results
###

Load count matrices

base_dir_WT <- "/Users/loubalovaz2/Documents/Lab/Writing/Pachytene_clusters
paper/statistics/piRNA/whole_testis/FeatureCounts_90thpercentile_MIWI_clusters"
base_dir_KO <- "/Users/loubalovaz2/Documents/Lab/Writing/Pachytene_clusters
paper/250922/Ago2/featureCounts_MIWIcl_90th_percentile_RNA_coverage"

count_files_Ago2_whole_testis_90th <- c(
 file.path(base_dir_WT, "161212_Zuzana-
7repeat_S2_L008_R1_001_featureCount_whole_testis_RNA_allMIWI_clusters.txt"),
 file.path(base_dir_WT,
"161213_s08_S6_R1_001_featureCount_whole_testis_RNA_allMIWI_clusters.txt"),
 file.path(base_dir_WT,
"161922_s09_S7_R1_001_featureCount_whole_testis_RNA_allMIWI_clusters.txt"),
 file.path(base_dir_KO,
"1069_s04_S3_R1_001_featureCount_whole_testis_RNA_allMIWI_clusters.txt"),
 file.path(base_dir_KO,
"1070_s05_S4_R1_001_featureCount_whole_testis_RNA_allMIWI_clusters.txt"),
 file.path(base_dir_KO,
"1071_s06_S5_R1_001_featureCount_whole_testis_RNA_allMIWI_clusters.txt")
)

Read in and combine count files
count_matrix_list_Ago2_whole_testis_90th <- lapply(count_files_Ago2_whole_testis_90th,
function(file) {
 count_data <- read.table(file, header = TRUE, row.names = 1)
 return(count_data)
})

Combine the count matrices into a single matrix
count_matrix1_Ago2_whole_testis_90th <- do.call(cbind,
count_matrix_list_Ago2_whole_testis_90th)

Select count columns

count_matrix1_Ago2_whole_testis_90th <- count_matrix1_Ago2_whole_testis_90th[, c(6, 12,
18, 24, 30, 36)]
new_column_names_Ago2_whole_testis_90th <- c("WT_1", "WT_2", "WT_3", "Ago2_1", "Ago2_2",
"Ago2_3")
colnames(count_matrix1_Ago2_whole_testis_90th) <-
new_column_names_Ago2_whole_testis_90th

Convert fractional read counts to whole numbers
count_matrix1_Ago2_whole_testis_90th <- round(count_matrix1_Ago2_whole_testis_90th)

81

Sample metadata

Create a sample metadata data frame
sample_metadata_Ago2_whole_testis_90th <- data.frame(
 row.names = c("WT_1", "WT_2", "WT_3", "Ago2_1", "Ago2_2", "Ago2_3"), Genotype =
c("WT", "WT", "WT","Ago2_KO", "Ago2_KO", "Ago2_KO"))

Verify that sample names match between counts and metadata
stopifnot(all(colnames(count_matrix1_Ago2_whole_testis_90th) %in%
rownames(sample_metadata_Ago2_whole_testis_90th)))
stopifnot(all(colnames(count_matrix1_Ago2_whole_testis_90th) ==
rownames(sample_metadata_Ago2_whole_testis_90th)))

DeSeq2 analysis

Create a DESeqDataSet
dds_Ago2_whole_testis_90th <- DESeqDataSetFromMatrix(countData =
count_matrix1_Ago2_whole_testis_90th,
 colData =
sample_metadata_Ago2_whole_testis_90th,
 design = ~ Genotype)

Set reference level
dds_Ago2_whole_testis_90th$Genotype <- relevel(dds_Ago2_whole_testis_90th$Genotype, ref
= "WT")

Run DESeq2
dds_Ago2_whole_testis_90th <- DESeq(dds_Ago2_whole_testis_90th)
res_Ago2_whole_testis_90th <- results(dds_Ago2_whole_testis_90th)

Save results

res_Ago2_whole_testis.df_90th <- as.data.frame(res_Ago2_whole_testis_90th)
class(res_Ago2_whole_testis_90th)

res.df.1_Ago2_whole_testis_90th <- res_Ago2_whole_testis.df_90th
res.df.1_Ago2_whole_testis_90th$gene_id <- rownames(res.df.1_Ago2_whole_testis_90th)
write_xlsx(res.df.1_Ago2_whole_testis_90th, file.path(output_dir,
"Ago2_R_seq_90thMIWIclusters_coveraege_VolcanoPlot.xlsx"))

Volcano plot

res.df.1_Ago2_whole_testis_90th$color <- "#484545"
res.df.1_Ago2_whole_testis_90th$color[res.df.1_Ago2_whole_testis_90th$padj < 0.05 &
res.df.1_Ago2_whole_testis_90th$log2FoldChange > 1] <- "#f80000"
res.df.1_Ago2_whole_testis_90th$color[res.df.1_Ago2_whole_testis_90th$padj < 0.05 &
res.df.1_Ago2_whole_testis_90th$log2FoldChange < -1] <- "#0404ef"

Ago2_R_seq_90thMIWIcl_volcano <- ggplot(res.df.1_Ago2_whole_testis_90th, aes(x =
log2FoldChange, y = -log10(padj), color = color)) +

82

 geom_point(alpha = 0.6, size = 2.5) +
 geom_vline(xintercept = 0,
 color = "#343333",
 linetype = "dashed",
 linewidth = 1) +
 scale_color_identity() +
 labs(x = "Log2 Fold Change", y = "-log10(padj)", title = "piC-
as(Ago2)_KO/WT_R_seq_coverage_90thMIWIcl") +
 theme_minimal()

ggsave(file.path(output_dir, "Ago2_R_seq_90thMIWIcl_volcano_lfc>1.svg"), bg = "white",
plot = Ago2_R_seq_90thMIWIcl_volcano, device = "svg")
ggsave(file.path(output_dir, "Ago2_R_seq_90thMIWIcl_volcano_lfc>1.png"), bg = "white",
plot = Ago2_R_seq_90thMIWIcl_volcano, device = "png")

print(Ago2_R_seq_90thMIWIcl_volcano)

BASH - Use FeatureCounts to define the coverage of MIWI piRNA clusters in smallRNA seq
of piC-as(Ago2) and WT mice using the gtf_MIWI_clusters_90thpercentile GTF file

- PROCESSING AND MAPPING OF SMALL RNA SEQ DATA IS REPORTED IN CODE FOR MOUSE_FIGURE1

#!/bin/bash

module load subread

for run in NonStructural_Mouse_161212_testes_small_RNAs_ZL5_S6
NonStructural_Mouse_161922_testes_small_RNAs_ZL6_S7

83

NonStructural_Mouse_1069_testes_small_RNAs_ZL3_S4
NonStructural_Mouse_1070_testes_small_RNAs_ZL4_S5; do
input_file1="${run}_R1_trimmed_collapsed_noUMI_nomiRNA_mm10Aligned-
STAR_sortedByCoord.bam"
output_prefix1="${run}_featureCount"

featureCounts \
-s 1 \
-M \
-O \
--fraction \
-t gene \
-a /path/gtf_MIWI_clusters_90thpercentile.gtf \
-o /path/FeatureCounts_90thpercentile/"${output_prefix1}.txt" \
$input_file1;

echo " ✓ Finished ${run}"
done

##
Title: Differential Expression Analysis of piRNA clusters in pic-as(Ago2) Knockout
Testes
Description: This script performs DESeq2 analysis of piRNAs (90th percentile of top
productive MIWI piRNA clusters)
in small RNA-seq data from WT and pic-as(Ago2) knockout mouse testes and
generates a
volcano plot of differential expression results
###

Load count matrices

List of count files
base_dir_WT <- "/Users/loubalovaz2/Documents/Lab/Writing/Pachytene_clusters
paper/statistics/piRNA/FeatureCounts_90thpercentile"
base_dir_KO <- "/Users/loubalovaz2/Documents/Lab/Writing/Pachytene_clusters
paper/250922/Ago2/featureCounts_MIWI_90th_percentile"

count_files_Ago2_small_90th <- c(
 file.path(base_dir_WT,
"NonStructural_Mouse_161212_testes_small_RNAs_ZL5_S6_featureCount.txt"),
 file.path(base_dir_WT,
"NonStructural_Mouse_161922_testes_small_RNAs_ZL6_S7_featureCount.txt"),
 file.path(base_dir_KO,
"NonStructural_Mouse_1069_testes_small_RNAs_ZL3_S4_featureCount.txt"),
 file.path(base_dir_KO,
"NonStructural_Mouse_1070_testes_small_RNAs_ZL4_S5_featureCount.txt")
)

Read in and combine count files into a single count matrix
count_matrix_list_Ago2_small_90th <- lapply(count_files_Ago2_small_90th, function(file)
{
 count_data <- read.table(file, header = TRUE, row.names = 1)
 return(count_data)
})

Combine the count matrices into a single matrix
count_matrix1_Ago2_small_90th <- do.call(cbind, count_matrix_list_Ago2_small_90th)

84

Select count columns

#choose only columns with gene count for given sample
count_matrix_Ago2_small_90th <- count_matrix1_Ago2_small_90th[, c(6, 12, 18, 24)]
new_column_names_Ago2_small_90th <- c("WT_1", "WT_2", "Ago2_1", "Ago2_2")
colnames(count_matrix_Ago2_small_90th) <- new_column_names_Ago2_small_90th

Convert fractional read counts to whole numbers
count_matrix_Ago2_small_90th <- round(count_matrix_Ago2_small_90th)

Sample metadata

Create a sample metadata data frame
sample_metadata_Ago2_small_90th <- data.frame(
 row.names = c("WT_1", "WT_2", "Ago2_1", "Ago2_2"), Genotype = c("WT", "WT", "Ago2_KO",
"Ago2_KO"))

Verify that sample names match between counts and metadata
stopifnot(all(colnames(count_matrix_Ago2_small_90th) %in%
rownames(sample_metadata_Ago2_small_90th)))
stopifnot(all(colnames(count_matrix_Ago2_small_90th) ==
rownames(sample_metadata_Ago2_small_90th)))

DeSeq2 analysis

Create a DESeqDataSet
dds_Ago2_small_90th <- DESeqDataSetFromMatrix(countData = count_matrix_Ago2_small_90th,
 colData = sample_metadata_Ago2_small_90th,
 design = ~ Genotype)

Set the factor level
dds_Ago2_small_90th$Genotype <- relevel(dds_Ago2_small_90th$Genotype, ref = "WT")

#Run DESeq2
dds_Ago2_small_90th <- DESeq(dds_Ago2_small_90th)
res_Ago2_small_90th <- results(dds_Ago2_small_90th)

Save results

#save results as data.frame
res_Ago2_small.df_90th <- as.data.frame(res_Ago2_small_90th)
class(res_Ago2_small.df_90th)

res.df.1_Ago2_small_90th <- res_Ago2_small.df_90th
res.df.1_Ago2_small_90th$gene_id <- rownames(res.df.1_Ago2_small_90th)
write_xlsx(res.df.1_Ago2_small_90th,
file.path(output_dir,"Ago2_piRNA_90thMIWIclusters_coveraege_VolcanoPlot.xlsx"))

Volcano plot

85

res.df.1_Ago2_small_90th$color <- "#484545"
res.df.1_Ago2_small_90th$color[res.df.1_Ago2_small_90th$padj < 0.05 &
res.df.1_Ago2_small_90th$log2FoldChange > 1] <- "#f80000"
res.df.1_Ago2_small_90th$color[res.df.1_Ago2_small_90th$padj < 0.05 &
res.df.1_Ago2_small_90th$log2FoldChange < -1] <- "#0404ef"

Ago2_piRNA_90thMIWIcl_volcano <- ggplot(res.df.1_Ago2_small_90th, aes(x =
log2FoldChange, y = -log10(padj), color = color)) +
 geom_point(alpha = 0.6, size = 2.5) +
 geom_vline(xintercept = 0,
 color = "#343333",
 linetype = "dashed",
 linewidth = 1) +
 scale_color_identity() +
 labs(x = "Log2 Fold Change", y = "-log10(padj)", title = "piC-
as(Ago2)_KO/WT_piRNA_coverage_90thMIWIcl") +
 theme_minimal()

ggsave(file.path(output_dir, "Ago2_piRNA_90thMIWIcl_volcano.svg"), bg = "white", plot =
Ago2_piRNA_90thMIWIcl_volcano, device = "svg")
ggsave(file.path(output_dir, "Ago2_piRNA_90thMIWIcl_volcano.png"), bg = "white", plot =
Ago2_piRNA_90thMIWIcl_volcano, device = "png")

print(Ago2_piRNA_90thMIWIcl_volcano)

suppressPackageStartupMessages({
 library(GenomicRanges)
 library(PICB)
 library(BSgenome.Mmusculus.UCSC.mm10)

86

 library(GenomicAlignments)
 library(ggplot2)
 library(ggseqlogo)
 library(patchwork)
})
source("../scripts/plotLogo.R")
options(repr.plot.width=10, repr.plot.height=5)

#piRNA cluster coordinates from Konstantinidou et al. (2024) in Cell Reports and rank
load("../data/annotations/MILIclusters_pachytene.RData")
MILIclusters_pach <- MILIclusters$clusters

MILIclusters_pach <- MILIclusters_pach[order(-
MILIclusters_pach$all_reads_primary_alignments_FPM),]
MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM <- seq_along(MILIclusters_pach)
MILIclusters_pach <- keepStandardChromosomes(MILIclusters_pach)
paste0("Number of piRNA clusters in MILI pachytene by PICB: ",
length(MILIclusters_pach))

load alignments to mm10 genome
gr_mm10 <- PICBload(
 BAMFILE =
"../data/bam/Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMIcollapsed_structOut_miR
outwS_Aligned.sortedByCoord.out.bam",
 REFERENCE.GENOME = "BSgenome.Mmusculus.UCSC.mm10",
 GET.ORIGINAL.SEQUENCE = TRUE, VERBOSE = FALSE, WHAT = c("flag", "cigar"))

gr_mm10 <- gr_mm10$unique
gr_mm10 <- keepStandardChromosomes(gr_mm10)

Load BAM file of piRNAs targeting protein coding genes (in custom transcriptome)
bamPCG_dir <-
"../data/bam/mmuToTranscriptome/PCG_Mouse_161922_testes_small_RNAs_ZL6_S7_R1_trimmed_UMI
collapsed_structOut_miRoutwS_Aligned.PICBloadWseqs.primAlignWinfo..PCGtranscriptome_clip
5pNbases1_Extend5pOfRead1_minMatch19_Aligned.sortedByCoord.out.bam"

bam <- BamFile(bamPCG_dir)
exclude both secondary alignments and supplementary alignments
fields <- scanBamWhat()
primary_flag <- scanBamFlag(isSecondary = FALSE, isSupplementary = FALSE)
param <- ScanBamParam(flag = primary_flag,
 what=c('qname','flag','rname','strand','pos','qwidth', 'cigar', 'seq'),
 tag=c('NH', "MD"))

ga_all_alignments <- readGAlignments(bam, param = param)
PCG_total_reads <- length(ga_all_alignments)
ga_alignments <- ga_all_alignments[mcols(ga_all_alignments)$NH == 1] #filter by unique
alignments
PCG_unique_reads <- length(ga_alignments)

gr_alignments <- makeGRangesFromDataFrame(as.data.frame(ga_alignments),
keep.extra.columns=TRUE)

mcols(gr_alignments) <- mcols(gr_alignments)[, !(colnames(mcols(gr_alignments)) %in%
c("njunc", "strandInfo", "rname", "strand.1", "pos", "qwidth.1", "cigar.1", "qual"))]87

Scale for x is already present.
Adding another scale for x, which will replace the existing scale.
[1] "Using provided BSgenome object to build 3' extension logo."
Scale for x is already present.
Adding another scale for x, which will replace the existing scale.

Scale for x is already present.
Adding another scale for x, which will replace the existing scale.
[1] "Using provided BSgenome object to build 3' extension logo."
Scale for x is already present.
Adding another scale for x, which will replace the existing scale.

Sequence logo of piC-as(Ago2)-derived piRNAs: total piRNAs - Fig 2e
piCasAgo2_logo <- logoPlot(subsetByOverlaps(gr_mm10, MILIclusters_pach[56]), "piC-
as(Ago2)", genome = BSgenome.Mmusculus.UCSC.mm10)
piCasAgo2_logo

Sequence logo of piC-as(Ago2)-derived piRNAs: piRNAs targeting Ago2 - Extended Data
Fig 2d
Get all the readnames of piRNAs targeting Ago2 (coordinates in PCG transcriptome:
chr15:1357924-1365954:-)
Ago2as_piRNAs <- gr_mm10[names(gr_mm10) %in% sub("_.*", "",
subsetByOverlaps(gr_alignments, invertStrand(GRanges("chr15:1357924-1365954:-
")))$qname)]
Subset by piC-as(Ago2)
Ago2as_piRNAsFromPiCasAgo2 <- subsetByOverlaps(Ago2as_piRNAs, MILIclusters_pach[56])
Sequence logo
Ago2as_piRNAsFromPiCasAgo2_logo <- logoPlot(Ago2as_piRNAsFromPiCasAgo2, "Ago2as piRNAs
from piC-as(Ago2)", genome = BSgenome.Mmusculus.UCSC.mm10)
Ago2as_piRNAsFromPiCasAgo2_logo

88

89

suppressPackageStartupMessages({
 library("GenomicRanges")
 library("Biostrings")
})

align_69yo <-
readRDS("../../../OneDrive/3_hsa_detection_prepach_adult/Code/STAROutput/oxSmallRNASeq/s
mallRNA_hsa_69y_A01_SRR8575350/smallRNA_hsa_69y_A01_SRR8575350_cleaned_trimmed_snoMiTRou
t_20to40nt_Aligned.PICBloadWithSeq.rds")

align_69yo_allPrimary <- c(align_69yo$unique, align_69yo$multi.primary)
length(align_69yo_allPrimary)

#get cluster coordinates (ranked!) from Cell Reports publication (human 69 yo)
clusters_69yo <-
readRDS("../../../OneDrive/3_hsa_detection_prepach_adult/Code/STAROutput/oxSmallRNASeq/s
mallRNA_hsa_69y_A01_SRR8575350/clusters.ranked.smallRNA_hsa_69y_A01_SRR8575350_cleaned_t
rimmed_snoMiTRout_20to40nt_Aligned.sortedByCoord.ForceMapped.RDS")

90

https://doi.org/10.1038/s41559-019-1065-1
https://www.cell.com/cell-reports/fulltext/S2211-1247(24)01128-8
https://bioconductor.org/packages/release/bioc/html/PICB.html

clusters_69yo <- clusters_69yo[order(clusters_69yo$rank_readsExplained),]
clusters_69yo$rank_readsExplained <- seq_along(clusters_69yo)
length(clusters_69yo)

load disentanglement_piCs_A01_69yo_SRR8575350_FM_90thPercentile_v2.RDS from
STAROutput/oxSmallRNASeq/smallRNA_hsa_69y_A01_SRR8575350/
piCs_A01_69yo_disentangled <-
readRDS("../../../OneDrive/3_hsa_detection_prepach_adult/Code/disentangledCluster/hsa_di
sentanglement_piCs_A01_69yo_SRR8575350_FM_90thPercentile_v2.RDS")

#add to readname rank_chr_startPos_strand_NH_piCgroup
#piCs_A01_69yo_disentangled is in three groups: unique69yo, commonShort, commonLong, add
this information (unique69yo="UN", commonSSC="CS", commonDynamic="CD") to another column
in clusters_69yo based on their shared column rank_readsExplained. If
rank_readsExplained is not listed in piCs_A01_69yo_disentangled, add "NA".
clusters_69yo$piCgroup <- "NA"
clusters_69yo$piCgroup[clusters_69yo$rank_readsExplained %in%
piCs_A01_69yo_disentangled$unique69yo$rank_readsExplained] <- "UN"
clusters_69yo$piCgroup[clusters_69yo$rank_readsExplained %in%
piCs_A01_69yo_disentangled$commonShort$rank_readsExplained] <- "CS"
clusters_69yo$piCgroup[clusters_69yo$rank_readsExplained %in%
piCs_A01_69yo_disentangled$commonLong$rank_readsExplained] <- "CD"

Find overlaps between gr_reads and gr_cl
piRNAs_hsa_fromPiC_fO <- findOverlaps(align_69yo_allPrimary, clusters_69yo,
ignore.strand=FALSE)

mcols(align_69yo_allPrimary)$corr_piC_rankByReadsExplained <- 0

mcols(align_69yo_allPrimary)$corr_piC_rankByReadsExplained[queryHits(piRNAs_hsa_fromPiC_
fO)] <- mcols(clusters_69yo[subjectHits(piRNAs_hsa_fromPiC_fO)])$rank_readsExplained
length(align_69yo_allPrimary)

mcols(align_69yo_allPrimary)$piCgroup <- "NA"
mcols(align_69yo_allPrimary)$piCgroup[queryHits(piRNAs_hsa_fromPiC_fO)] <-
mcols(clusters_69yo[subjectHits(piRNAs_hsa_fromPiC_fO)])$piCgroup
length(align_69yo_allPrimary)

#check if all piRNA clusters present in align_69yo_allPrimary
setdiff(clusters_69yo$rank_readsExplained,
unique(align_69yo_allPrimary$corr_piC_rankByReadsExplained))

#add to readname rank_chr_startPos_strand_NH_piCgroup
seq <- align_69yo_allPrimary$seq
names(seq) <- paste0(names(align_69yo_allPrimary), "_rank",
align_69yo_allPrimary$corr_piC_rankByReadsExplained, "_",
seqnames(align_69yo_allPrimary), "_", start(align_69yo_allPrimary),
strand(align_69yo_allPrimary), "_NH", align_69yo_allPrimary$NH, "_piCgroup",

91

align_69yo_allPrimary$piCgroup)

writeXStringSet(seq,
file="../../../OneDrive/3_hsa_detection_prepach_adult/Code/STAROutput/oxSmallRNASeq/smal
lRNA_hsa_69y_A01_SRR8575350/smallRNA_hsa_69y_A01_SRR8575350_cleaned_trimmed_snoMiTRout_2
0to40nt_Aligned.PICBloadWithSeq.SeqsWithLocation.fasta")

align_69yo <-
readRDS("../../../OneDrive/3_hsa_detection_prepach_adult/Code/STAROutput/oxSmallRNASeq/s
mallRNA_hsa_69y_A01_SRR8575350/smallRNA_hsa_69y_A01_SRR8575350_cleaned_trimmed_snoMiTRou
t_20to40nt_Aligned.PICBloadWithSeq.rds")

align_69yo_allPrimary <- c(align_69yo$unique, align_69yo$multi.primary)
length(align_69yo_allPrimary)

#get cluster coordinates (ranked!) from Cell Reports publication (human 69 yo)
clusters_69yo <-
readRDS("../../../OneDrive/3_hsa_detection_prepach_adult/Code/STAROutput/oxSmallRNASeq/s
mallRNA_hsa_69y_A01_SRR8575350/clusters.ranked.smallRNA_hsa_69y_A01_SRR8575350_cleaned_t
rimmed_snoMiTRout_20to40nt_Aligned.sortedByCoord.ForceMapped.RDS")

clusters_69yo <- clusters_69yo[order(clusters_69yo$rank_readsExplained),]
clusters_69yo$rank_readsExplained <- seq_along(clusters_69yo)
length(clusters_69yo)

load disentanglement_piCs_A01_69yo_SRR8575350_FM_90thPercentile_v2.RDS from
STAROutput/oxSmallRNASeq/smallRNA_hsa_69y_A01_SRR8575350/
piCs_A01_69yo_disentangled <-
readRDS("../../../OneDrive/3_hsa_detection_prepach_adult/Code/disentangledCluster/hsa_di
sentanglement_piCs_A01_69yo_SRR8575350_FM_90thPercentile_v2.RDS")

#add to readname rank_chr_startPos_strand_NH_piCgroup
#piCs_A01_69yo_disentangled is in three groups: unique69yo, commonShort, commonLong, add
this information (unique69yo="UN", commonSSC="CS", commonDynamic="CD") to another column
in clusters_69yo based on their shared column rank_readsExplained. If
rank_readsExplained is not listed in piCs_A01_69yo_disentangled, add "NA".
clusters_69yo$piCgroup <- "NA"
clusters_69yo$piCgroup[clusters_69yo$rank_readsExplained %in%
piCs_A01_69yo_disentangled$unique69yo$rank_readsExplained] <- "UN"
clusters_69yo$piCgroup[clusters_69yo$rank_readsExplained %in%
piCs_A01_69yo_disentangled$commonShort$rank_readsExplained] <- "CS"
clusters_69yo$piCgroup[clusters_69yo$rank_readsExplained %in%
piCs_A01_69yo_disentangled$commonLong$rank_readsExplained] <- "CD"

Find overlaps between gr_reads and gr_cl
piRNAs_hsa_fromPiC_fO <- findOverlaps(align_69yo_allPrimary, clusters_69yo,
ignore.strand=FALSE)

mcols(align_69yo_allPrimary)$corr_piC_rankByReadsExplained <- 0
92

Jan 04 08:43:54 started STAR run
Jan 04 08:43:54 ... starting to generate Genome files
Jan 04 08:43:56 ... starting to sort Suffix Array. This may take a long time...
Jan 04 08:43:56 ... sorting Suffix Array chunks and saving them to disk...
Jan 04 08:44:59 ... loading chunks from disk, packing SA...
Jan 04 08:45:00 ... finished generating suffix array
Jan 04 08:45:00 ... generating Suffix Array index
Jan 04 08:45:00 ... completed Suffix Array index
Jan 04 08:45:00 ... writing Genome to disk ...

mcols(align_69yo_allPrimary)$corr_piC_rankByReadsExplained[queryHits(piRNAs_hsa_fromPiC_
fO)] <- mcols(clusters_69yo[subjectHits(piRNAs_hsa_fromPiC_fO)])$rank_readsExplained
length(align_69yo_allPrimary)

mcols(align_69yo_allPrimary)$piCgroup <- "NA"
mcols(align_69yo_allPrimary)$piCgroup[queryHits(piRNAs_hsa_fromPiC_fO)] <-
mcols(clusters_69yo[subjectHits(piRNAs_hsa_fromPiC_fO)])$piCgroup
length(align_69yo_allPrimary)

#check if all piRNA clusters present in align_69yo_allPrimary
setdiff(clusters_69yo$rank_readsExplained,
unique(align_69yo_allPrimary$corr_piC_rankByReadsExplained))

#add to readname rank_chr_startPos_strand_NH_piCgroup
seq <- DNAStringSet(substring((align_69yo_allPrimary$seq), 2, 20))
names(seq) <- paste0(names(align_69yo_allPrimary), "_rank",
align_69yo_allPrimary$corr_piC_rankByReadsExplained, "_",
seqnames(align_69yo_allPrimary), "_", start(align_69yo_allPrimary),
strand(align_69yo_allPrimary), "_NH", align_69yo_allPrimary$NH, "_piCgroup",
align_69yo_allPrimary$piCgroup)

writeXStringSet(seq,
file="../../../OneDrive/3_hsa_detection_prepach_adult/Code/STAROutput/oxSmallRNASeq/smal
lRNA_hsa_69y_A01_SRR8575350/smallRNA_hsa_69y_A01_SRR8575350_cleaned_trimmed_snoMiTRout_2
0to40nt_Aligned.PICBloadWithSeq.SeqsWithLocation.2to20only.fasta")

#BASH, generateGenome
STAR --runMode genomeGenerate \

--genomeDir
../../../OneDrive/General/hsa_referenceGenome/PCG_transcriptome/transcriptomeDir/ \

--genomeSAindexNbases 6 \
--genomeFastaFiles

../../../OneDrive/General/hsa_referenceGenome/PCG_transcriptome/hg38_PCGtranscriptome_co
llapsed_prioritizedCDS3UTR5UTR_allgenes.fasta \

--limitGenomeGenerateRAM 34173092106\
--runThreadN 23

93

Jan 04 08:45:00 ... writing Suffix Array to disk ...
Jan 04 08:45:00 ... writing SAindex to disk
Jan 04 08:45:00 finished successfully

addFastaChange=""
addMappingChange="clip5pNbases1_Extend5pOfRead1_minMatch19"

input_fasta="../../../OneDrive/3_hsa_detection_prepach_adult/Code/STAROutput/oxSmallRNAS
eq/smallRNA_hsa_69y_A01_SRR8575350/smallRNA_hsa_69y_A01_SRR8575350_cleaned_trimmed_snoMi
TRout_20to40nt_Aligned.PICBloadWithSeq.SeqsWithLocation${addFastaChange}.fasta"

#minimum Match of 19 nt, to restrict soft-clipping
STAR --runMode alignReads \
 --runThreadN 16 \
 --genomeDir
../../../OneDrive/General/hsa_referenceGenome/PCG_transcriptome/transcriptomeDir/ \
 --readFilesIn $input_fasta \
 --clip5pNbases 1 \
 --alignEndsType Extend5pOfRead1 \
 --outSAMattributes All \
 --outSAMtype BAM SortedByCoordinate \
 --limitBAMsortRAM 20000000000 \
 --alignIntronMax 1 \
 --alignSoftClipAtReferenceEnds No \
 --outFilterMismatchNmax 1 \
 --outFilterMatchNmin 19 \
 --winAnchorMultimapNmax 100 \
 --outFilterMultimapNmax 100 \
 --outReadsUnmapped Fastx \
 --outFileNamePrefix
pachTargetingGenes_PCG/hsa_69yo/PCG_smallRNA_hsa_69y_A01_SRR8575350_cleaned_trimmed_snoM
iTRout_20to40nt_Aligned.PICBloadWithSeq.SeqsWithLocation.${addFastaChange}.PCGtranscript
ome_${addMappingChange}_

echo "Mapped to PCG_EXON transcriptome"

suppressPackageStartupMessages({library(Rsamtools)})
#indexBam for every Bam in the folder pachTargetingGenes_PCG/hsa_69yo/ in R
for (bam in list.files("pachTargetingGenes_PCG/hsa_69yo", pattern="\\.bam$",
full.names=TRUE)) {
 indexBam(bam)
}

suppressPackageStartupMessages({
 library(Rsamtools)
 library(GenomicAlignments)
 library(GenomicRanges)

94

Number of reads mapped to PCG-transcriptome: 8995527

Number of reads mapped to PCG-transcriptome (unique alignments only): 7632221

 library(PICB)
 library(BSgenome.Hsapiens.UCSC.hg38)
 library(tidyr)
 library(dplyr)
 library(ggplot2)
 library(ggrepel)
 library(patchwork)
 library(SVbyEye)
})
source("../scripts/plotCoverage.R")

Load BAM file of piRNAs targeting protein coding genes
bamPCG_dir <-
"../data/bam/hsaToTranscriptome/PCG_smallRNA_hsa_69y_A01_SRR8575350_cleaned_trimmed_snoM
iTRout_20to40nt_Aligned.PICBloadWithSeq.SeqsWithLocation..PCGtranscriptome_clip5pNbases1
_Extend5pOfRead1_minMatch19_Aligned.sortedByCoord.out.bam"

bam <- BamFile(bamPCG_dir)
Exclude both secondary alignments and supplementary alignments
fields <- scanBamWhat()
primary_flag <- scanBamFlag(isSecondary = FALSE, isSupplementary = FALSE)
param <- ScanBamParam(flag = primary_flag,
 what=c('qname','flag','rname','strand','pos','qwidth', 'cigar', 'seq'),
 tag=c('NH'))

ga_all_alignments <- readGAlignments(bam, param = param)
PCG_total_reads <- length(ga_all_alignments)
message("Number of reads mapped to PCG-transcriptome: ", PCG_total_reads)
ga_alignments <- ga_all_alignments[mcols(ga_all_alignments)$NH == 1] #UNIQUE ALIGNMENTS
ONLY!
PCG_unique_reads <- length(ga_alignments)
message("Number of reads mapped to PCG-transcriptome (unique alignments only): ",
PCG_unique_reads)

gr_alignments <- makeGRangesFromDataFrame(as.data.frame(ga_alignments),
keep.extra.columns=TRUE)

mcols(gr_alignments) <- mcols(gr_alignments)[, !(colnames(mcols(gr_alignments)) %in%
c("njunc", "strandInfo", "rname", "strand.1", "pos", "qwidth.1", "cigar.1", "qual"))]

geneAnnotation_PCG_EXON_dir <-
"../data/annotations/customTranscriptomes/hg38_PCGtranscriptome_collapsed_prioritizedCDS
3UTR5UTR_allgenes.gtf"

geneAnnotation_PCG_EXON <- rtracklayer::import(geneAnnotation_PCG_EXON_dir)

Import GTF file without rtracklayer (issues with installation)
read_gtf <- function(file_path) {
 # Read the GTF file - changed start/end to numeric first, then convert to integer
 gtf_data <- read.table(file_path, sep="\t", quote="",
 col.names=c("seqname", "source", "feature", "start", "end",
 "score", "strand", "frame", "attribute"),
 colClasses=c("character", "character", "character", "numeric",

95

"numeric",
 "character", "character", "character", "character"))

 # Convert coordinates to integer after reading
 gtf_data$start <- as.integer(gtf_data$start)
 gtf_data$end <- as.integer(gtf_data$end)

 # Function to extract attributes
 extract_attribute <- function(attr, key) {
 val <- sub(paste0(".*", key, "\\s+\"?([^;\"]+)\"?.*"), "\\1", attr)
 ifelse(val == attr, NA, val)
 }

 # Extract common attributes
 gtf_data$gene_id <- extract_attribute(gtf_data$attribute, "gene_id")
 gtf_data$transcript_id <- extract_attribute(gtf_data$attribute, "transcript_id")
 gtf_data$gene_name <- extract_attribute(gtf_data$attribute, "gene_name")

 return(gtf_data)
}

geneAnnotation_PCG <- read_gtf(geneAnnotation_PCG_EXON_dir)

geneAnnotation_PCG <- makeGRangesFromDataFrame(geneAnnotation_PCG,
 keep.extra.columns = TRUE,
 seqnames.field = "seqname",
 start.field = "start",
 end.field = "end",
 strand.field = "strand")

geneAnnotation_PCG_gene <- geneAnnotation_PCG[geneAnnotation_PCG$feature == "gene"]

load genes gencode.v44.primary_assembly.annotation.gtf in hsa_referenceGenome
genes_dir <- "../data/annotations/gencode.v44.primary_assembly.annotation.gtf"
genes <- rtracklayer::import(genes_dir)
genes<-genes[genes$gene_name %in% unique(genes[genes$type %in% "CDS"]$gene_name)]
genes<-genes[genes$transcript_id %in% unique(genes[genes$type %in%
"CDS"]$transcript_id)] #since some transcripts do not contain all PCG annotation
features (CDS etc)

#piRNA cluster coordinates from Konstantinidou et al. (2024) in Cell Reports and ranked
by reads_explained (human 69 yo)
clusters_69yo <-
readRDS("../data/annotations/clusters.ranked.smallRNA_hsa_69y_A01_SRR8575350_cleaned_tri
mmed_snoMiTRout_20to40nt_Aligned.sortedByCoord.ForceMapped.RDS")

clusters_69yo <- clusters_69yo[order(clusters_69yo$rank_readsExplained),]
clusters_69yo$rank_readsExplained <- seq_along(clusters_69yo)
clusters_69yo$gene_name <- paste0("piC-", clusters_69yo$rank_readsExplained)
length(clusters_69yo)

gr_hg38 <- PICBload(
 BAMFILE =
"../data/bam/smallRNA_hsa_69y_A01_SRR8575350_cleaned_trimmed_snoMiTRout_20to40nt_Aligned
.sortedByCoord.out.bam", 96

Number of reads mapped to hg38 (primary alignments): 39486612

Number of reads mapped to hg38 (unique alignments only): 31897713

 REFERENCE.GENOME = "BSgenome.Hsapiens.UCSC.hg38",
 GET.ORIGINAL.SEQUENCE = TRUE, VERBOSE = FALSE, WHAT = c("flag", "cigar"))

gr_hg38_prim <- c(gr_hg38$unique, gr_hg38$multi.primary)
genome_total_reads <- length(gr_hg38_prim)
message("Number of reads mapped to hg38 (primary alignments): ", genome_total_reads)
gr_hg38_prim <- keepStandardChromosomes(gr_hg38_prim)

gr_hg38 <- gr_hg38$unique
genome_unique_reads <- length(gr_hg38)
message("Number of reads mapped to hg38 (unique alignments only): ",
genome_unique_reads)
gr_hg38 <- keepStandardChromosomes(gr_hg38)
gr_hg38$qname <- names(gr_hg38)

Initialize result dataframe with all genes
topPiCtarget_df <- data.frame(
 geneName = geneAnnotation_PCG_gene$gene_name,
 topContribPiCrank = "0",
 topPercentage = 0,
 bypiCtargeting_percentage = 0,
 top_piC_percentage = 0,
 cisTargeting = FALSE,
 stringsAsFactors = FALSE
)

Create function to get top contributing piC and percentage
get_top_piC_info <- function(overlaps) {
 if (length(overlaps) == 0) {
 return(c("0", 0, 0, 0))
 }
 # Extract rank information using vectorized operations
 ranks <- sub("_|_", "", sub("rank|_", "", regmatches(overlaps$qname,
regexpr("rank(.*?)_", overlaps$qname))))
 rank_table <- table(ranks)
 top_rank <- names(which.max(rank_table))
 top_percentage <- max(rank_table) / length(overlaps)
 # Get the percentage of targeting by piC
 bypiCtargeting_percentage <- sum(rank_table[names(rank_table) != "0"]) /
length(overlaps)

 if (top_rank == "0") {
 sorted_counts <- sort(rank_table, decreasing = TRUE)
 second_largest <- sorted_counts[2]
 top_piC_percentage <- second_largest / length(overlaps)
 } else {
 top_piC_percentage <- top_percentage
 }
 if (is.na(top_piC_percentage)) {
 top_piC_percentage <- 0
 }

97

Number of genes in antisense orientation to piRNA clusters and therefore remove
d: 697

 return(c(top_rank, top_percentage, top_piC_percentage, bypiCtargeting_percentage))
}

Get all overlaps at once
all_overlaps <- findOverlaps(invertStrand(geneAnnotation_PCG_gene), gr_alignments)

Split overlaps by gene
overlaps_by_gene <- split(gr_alignments[subjectHits(all_overlaps)],
 queryHits(all_overlaps))

Apply function to each gene's overlaps
results <- lapply(overlaps_by_gene, get_top_piC_info)

Update only the rows that have overlaps
genes_with_overlaps <- as.numeric(names(overlaps_by_gene))
topPiCtarget_df$totalPiRNAcount <- countOverlaps(invertStrand(geneAnnotation_PCG_gene),
gr_alignments)
topPiCtarget_df$topContribPiCrank[genes_with_overlaps] <- sapply(results, `[`, 1)
topPiCtarget_df$topPercentage[genes_with_overlaps] <- as.numeric(sapply(results, `[`,
2))
topPiCtarget_df$bypiCtargeting_percentage[genes_with_overlaps] <-
as.numeric(sapply(results, `[`, 3))
topPiCtarget_df$top_piC_percentage[genes_with_overlaps] <- as.numeric(sapply(results,
`[`, 4))
rownames(topPiCtarget_df) <- topPiCtarget_df$geneName

After updating topContribPiCrank and topPercentage, update cisTargeting
inverted_clusters <- invertStrand(clusters_69yo)
topContribPiCrank_numeric <- as.numeric(as.character(topPiCtarget_df$topContribPiCrank))

for (i in seq_len(nrow(topPiCtarget_df))) {
 geneNameI <- topPiCtarget_df$geneName[i]
 gene_overlaps <- subsetByOverlaps(
 inverted_clusters,
 genes[genes$gene_name == geneNameI])$rank_readsExplained
 topPiCtarget_df$cisTargeting[i] <- topContribPiCrank_numeric[i] %in% gene_overlaps
}

Filter for non-cis targeted genes and order by totalPiRNAcount
targetingByPiRNAsSbO_sorted_total_tra <- topPiCtarget_df[topPiCtarget_df$cisTargeting ==
FALSE,]
message("Number of genes in antisense orientation to piRNA clusters and therefore
removed: ", nrow(topPiCtarget_df) - nrow(targetingByPiRNAsSbO_sorted_total_tra))
targetingByPiRNAsSbO_sorted_total_tra <-
targetingByPiRNAsSbO_sorted_total_tra[order(targetingByPiRNAsSbO_sorted_total_tra$totalP
iRNAcount, decreasing=TRUE),]

Calculate percentage of targeting piRNAs for each gene
readsTargetingPCGs <- sum(targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount)
targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAperc <-
(targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount/readsTargetingPCGs)*100
targetingByPiRNAsSbO_sorted_total_tra$targetedRank <-
1:nrow(targetingByPiRNAsSbO_sorted_total_tra)
genes_targetingThreshold <- 50

98

options(repr.plot.width=12, repr.plot.height=7)
Create plot with highlighted genes and corrected ranks
plot_4a_full <-
ggplot(targetingByPiRNAsSbO_sorted_total_tra[targetingByPiRNAsSbO_sorted_total_tra$total
PiRNAcount != 0,],
 aes(x = targetedRank, y = log10(totalPiRNAperc), group = 1)) +
 geom_vline(xintercept = 0:genes_targetingThreshold, color = "#ffffff", alpha = 0.3)
+
 scale_x_continuous(breaks = seq(1,
nrow(targetingByPiRNAsSbO_sorted_total_tra[targetingByPiRNAsSbO_sorted_total_tra$totalPi
RNAcount != 0,]), by = 2000)) +
 geom_line(linewidth = 1) +
 theme_classic() +
 annotation_logticks(base = 10, sides = "l", short = unit(0.02, "cm"), mid =
unit(0.04, "cm"), long = unit(0.06, "cm")) +
 theme(
 axis.text.x = element_text(angle = 45, hjust = 1, size = 7),
 axis.text.y = element_text(size = 7),
 axis.title.x = element_text(size = 7),
 axis.title.y = element_text(size = 7)
) +
 labs(
 x = "Ranked Genes by piRNA Targeting",
 y = "mRNA-targeting piRNA (%, log10)"
)

plot_4a_full

options(repr.plot.width=12, repr.plot.height=7)

Get the data for specified genes
genes_targetingThreshold <- 50
highlight_genes <- c('GOLGA2')
gene_data <- targetingByPiRNAsSbO_sorted_total_tra[

99

 targetingByPiRNAsSbO_sorted_total_tra$geneName %in% highlight_genes,]

Create plot with highlighted genes and corrected ranks
plot_4aInset <-
ggplot(targetingByPiRNAsSbO_sorted_total_tra[1:genes_targetingThreshold,],
 aes(x = targetedRank, y = totalPiRNAperc, group = 1)) +
 geom_line(linewidth = 1, color = "black") +
 geom_point(color = "#9662A9", size = 1.5) +
 scale_x_continuous(breaks = seq(1, nrow(targetingByPiRNAsSbO_sorted_total_tra), by =
20)) +
 # Add highlighted points with different color/size to make them stand out
 geom_point(data = gene_data, color = "#9662A9", size = 1.5) +
 # Add labels for highlighted genes
 geom_text(data = gene_data,
 aes(label = sapply(geneName, function(g) {
 count <-
targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount[targetingByPiRNAsSbO_sorted_total_
tra$geneName == g]
 ppm <- round((count / readsTargetingPCGs) * 1e6, 1)
 paste0(g, " Rank: ",
 match(g, targetingByPiRNAsSbO_sorted_total_tra$geneName),
 " [", ppm, " ppm]")
 })),
 color = "#9662A9",
 vjust = -0.2, # Single value for single gene
 hjust = -0.1, # Single value for single gene
 size = 2.5) +
 theme_classic() +
 theme(
 axis.text.x = element_text(size = 7),
 axis.text.y = element_text(size = 7),
 axis.title.x = element_text(size = 7),
 axis.title.y = element_text(size = 7)
) +
 labs(
 x = "Ranked Genes by piRNA Targeting",
 y = "piRNA Targeting (%)"
)

plot_4aInset

100

Only considering top 8406 piRNA clusters since top 250 targeted genes only are t
argeted by that max rank.

#load pseudogenes gencode.v47.2wayconspseudos.gtf in hsa_referenceGenome
pseudogenes_dir <- "../data/annotations/gencode.v47.2wayconspseudos.gtf"
pseudogenes <- rtracklayer::import(pseudogenes_dir)

pseudogenes don't contain regular gene_name of parent_id (just Ensembl format)
cleaned_gene_ids_genes <- sub("\\..*", "", mcols(genes)$gene_id)
gene_id_to_name_map <- setNames(mcols(genes)$gene_name, cleaned_gene_ids_genes)

Add the 'geneName' column to 'pseudogenes'
mcols(pseudogenes)$geneName <- ifelse(
 mcols(pseudogenes)$parent_id %in% names(gene_id_to_name_map),
 gene_id_to_name_map[mcols(pseudogenes)$parent_id],
 mcols(pseudogenes)$parent_id
)

prefilter piRNA clusters that are generally targeting PCG genes
maxPiC <-
max(as.integer(targetingByPiRNAsSbO_sorted_total_tra[1:250,]$topContribPiCrank))
message("Only considering top ", maxPiC, " piRNA clusters since top 250 targeted genes
only are targeted by that max rank.")
clusters_69yo_pachSubset <- clusters_69yo[clusters_69yo$rank_readsExplained <= maxPiC]
pseudogenesRGOvrlp <- subsetByOverlaps(pseudogenes,
invertStrand(clusters_69yo_pachSubset))

Find overlaps
overlaps <- findOverlaps(pseudogenesRGOvrlp, invertStrand(clusters_69yo_pachSubset))

101

Extract ranks based on overlaps
ranks <- rep(NA, length(pseudogenesRGOvrlp))
ranks[queryHits(overlaps)] <-
clusters_69yo_pachSubset$rank_readsExplained[subjectHits(overlaps)]

Add rank to pseudogenesRGOvrlp
pseudogenesRGOvrlp$rank_readsExplained <- ranks

Get unique pairs
unique_pairs <- unique(data.frame(
 parentName = mcols(pseudogenesRGOvrlp)$geneName,
 rank = mcols(pseudogenesRGOvrlp)$rank_readsExplained
))
Sort by cluster_rank if desired
unique_pairs <- unique_pairs[order(unique_pairs$rank),]

unique_pairs$geneTop250targeted <- unique_pairs$parentName %in% topPiCtarget_df$geneName

Initialize PGasToTopPiC, check if gene is targeted by a piC that contains its
Pseudogene
targetingByPiRNAsSbO_sorted_total_tra$PGasToTopPiC <- "NO"
targetingByPiRNAsSbO_sorted_total_tra$PGasToTopPiC[targetingByPiRNAsSbO_sorted_total_tra
$topContribPiCrank == 0] <- "N.A."

for (gene in targetingByPiRNAsSbO_sorted_total_tra$geneName) {
 if (gene %in% unique(unique_pairs$parentName)) {
 assRank <- na.omit(unique_pairs[unique_pairs$parentName == gene, "rank"])
 for (rank in assRank) {
 if
(targetingByPiRNAsSbO_sorted_total_tra[targetingByPiRNAsSbO_sorted_total_tra$geneName ==
gene,]$topContribPiCrank == rank) {

targetingByPiRNAsSbO_sorted_total_tra[targetingByPiRNAsSbO_sorted_total_tra$geneName ==
gene,]$PGasToTopPiC <- "YES"
 }
 }
 }
}

#mark also genes that have unannotated Pseudogenes (GOLGA2 is annotated for piC-ranked 1
in UCSC), by changing the BarColorPseudogene to purple
targetingByPiRNAsSbO_sorted_total_tra$PGasToTopPiC[targetingByPiRNAsSbO_sorted_total_tra
$geneName == "GOLGA2"] <- "YES"

#get total coverage of targeting of gene

gr_alignments_red <- reduce(gr_alignments)

Calculate overlap widths for matches
overlapsPiRNAsRedGenes <- findOverlaps(gr_alignments_red,
invertStrand(geneAnnotation_PCG_gene))
overlap_widths <-
tapply(width(pintersect(gr_alignments_red[queryHits(overlapsPiRNAsRedGenes)],

invertStrand(geneAnnotation_PCG_gene[subjectHits(overlapsPiRNAsRedGenes)]))),

102

Warning message:
"ggrepel: 2 unlabeled data points (too many overlaps). Consider increasing max.o
verlaps"

 subjectHits(overlapsPiRNAsRedGenes), sum)

Create a vector of length equal to number of genes in geneAnnotation_PCG_gene
full_overlap_widths <- numeric(length(geneAnnotation_PCG_gene))

Fill in the actual overlap values where they exist
full_overlap_widths[as.numeric(names(overlap_widths))] <- overlap_widths

Create dataframe with all genes and their coverage
all_genes <- geneAnnotation_PCG_gene$gene_name
percentageCoverage_df <- data.frame(
 geneName = all_genes,
 targetingCoverage_bp = full_overlap_widths
)

Merge with targeting dataframe
targetingByPiRNAsSbO_sorted_total_tra <- merge(
 targetingByPiRNAsSbO_sorted_total_tra,
 percentageCoverage_df,
 by = "geneName"
)

targetingByPiRNAsSbO_sorted_total_tra <-
targetingByPiRNAsSbO_sorted_total_tra[order(targetingByPiRNAsSbO_sorted_total_tra$totalP
iRNAcount, decreasing=TRUE),]

plot_targetingCoverage <-
ggplot(targetingByPiRNAsSbO_sorted_total_tra[1:genes_targetingThreshold,], aes(x =
targetingCoverage_bp/1000, y = log10(totalPiRNAperc))) +
 geom_point(aes(color = "#7f3f98"), alpha = 1, size = 1) +
 geom_text_repel(aes(label = geneName),
 size = 2.5,
 box.padding = 0.5,
 max.overlaps = 10) +
 annotation_logticks(base = 10, sides = "l", short = unit(0.02, "cm"), mid = unit(0.04,
"cm"), long = unit(0.06, "cm")) +
 scale_color_identity(guide = "legend",
 breaks = c("#c353ff","#d3d3d3", "#767676"),
 labels = c("PG-as piCs-derived piRNAs",
 "non-piC-derived piRNAs",
 "piC-derived piRNAs")) +
 theme_classic() +
 labs(
 x = "mRNA target-sequence (kb)",
 y = "piRNA Targeting (%, log10)"
) +
 theme(
 plot.title = element_text(size = 7, face = "bold"),
 axis.title = element_text(size = 7),
 axis.text = element_text(size = 7),
 legend.position = "none"
)

plot_targetingCoverage

103

options(repr.plot.width=8, repr.plot.height=8)

only label dots that rank 15 or higher in targeting
temp_targetingByPiRNAsSbO_sorted_total_tra <- targetingByPiRNAsSbO_sorted_total_tra %>%
 mutate(label = if_else(targetedRank < 15, geneName, NA_character_))

plot fraction of targeting piRNAs from its top targeting piRNA cluster
plot_scTopPer <-
ggplot(temp_targetingByPiRNAsSbO_sorted_total_tra[1:genes_targetingThreshold,], aes(x =
targetedRank, y = top_piC_percentage*100)) +
 geom_point(color = "#ed1c24", alpha = 0.5, size = 1) +
 geom_text_repel(aes(label = label),
 size = 2.5,
 box.padding = 0.5,
 max.overlaps = 10,
 na.rm = TRUE) +
 scale_color_identity() +
 theme_classic() +
 labs(y = "Fraction of targeting piRNAs from its top targeting piC", x = "Ranked
targeted genes (1-88)") +
 ylim(0, 100)

plot_scTopPer

104

put alignments to PCG transcriptome into context with the genes they target
match read names, which include (among other things) information about the piC they
came from (rank) and their original read name (when mapped to mm10)
PCG_as_name_df <- as.data.frame(findOverlaps(gr_alignments,
invertStrand(geneAnnotation_PCG_gene)))
PCG_as_name_df$gene_name <-
geneAnnotation_PCG_gene[as.numeric(PCG_as_name_df$subjectHits),]$gene_id
PCG_as_name_df$read_name <- sub("_.*", "",
gr_alignments[as.numeric(PCG_as_name_df$queryHits),]$qname)
PCG_as_name_df$read_nameWInfo <-
gr_alignments[as.numeric(PCG_as_name_df$queryHits),]$qname
PCG_as_name_df$rankOrigin <- sub("_|_", "", sub("rank|_", "",
regmatches(gr_alignments[as.numeric(PCG_as_name_df$queryHits),]$qname,
regexpr("rank(.*?)_", gr_alignments[as.numeric(PCG_as_name_df$queryHits),]$qname))))

Precompute read–gene pairs from a single overlap against invertStrand(genes)
inv_genes <- invertStrand(genes)
hits <- findOverlaps(gr_hg38_prim, inv_genes)

get read name - gene pairs that are antisense to eachother in mm10
hg38_as_pair <- unique(paste0(names(gr_hg38_prim)[as.integer(queryHits(hits))], "\r",
 inv_genes$gene_name[as.integer(subjectHits(hits))]))

Mark cis if (read_name, gene_name) observed in the precomputed pairs

105

PCG_as_pair <- paste0(PCG_as_name_df$read_name, "\r", PCG_as_name_df$gene_name)
PCG_as_name_df$cis_piRNA <- PCG_as_pair %in% hg38_as_pair

all genes
targeting in trans
nrow(PCG_as_name_df[!PCG_as_name_df$cis_piRNA,])/nrow(PCG_as_name_df)
targeting in trans and from piRNA cluster
nrow(PCG_as_name_df[(!PCG_as_name_df$cis_piRNA) & (PCG_as_name_df$rankOrigin !=
0),])/nrow(PCG_as_name_df[!PCG_as_name_df$cis_piRNA,])

top targeted genes (50)
PCG_as_name_df_topTargetedGenes <- PCG_as_name_df[PCG_as_name_df$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tra$geneName[1:genes_targetingThreshold],]

targeting in trans
nrow(PCG_as_name_df_topTargetedGenes[!PCG_as_name_df_topTargetedGenes$cis_piRNA,])/nrow(
PCG_as_name_df_topTargetedGenes)
targeting in trans and from piRNA cluster
nrow(PCG_as_name_df_topTargetedGenes[(!PCG_as_name_df_topTargetedGenes$cis_piRNA) &
(PCG_as_name_df_topTargetedGenes$rankOrigin !=
0),])/nrow(PCG_as_name_df_topTargetedGenes[!PCG_as_name_df_topTargetedGenes$cis_piRNA,])

for top-targeted genes, fraction targeted by piRNAs from piRNA cluster (given that
they are trans targeting)
PCG_as_name_df_topTargetedGenes <- PCG_as_name_df[PCG_as_name_df$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tra$geneName[1:genes_targetingThreshold],]
transTargetingPiCpiRNAs <-
nrow(PCG_as_name_df_topTargetedGenes[(!PCG_as_name_df_topTargetedGenes$cis_piRNA) &
(PCG_as_name_df_topTargetedGenes$rankOrigin !=
0),])/nrow(PCG_as_name_df_topTargetedGenes[!PCG_as_name_df_topTargetedGenes$cis_piRNA,])
transTargetingPiCpiRNAs
Create a data frame with this value
data <- data.frame(
 category = c("transTargetingPiCpiRNAs", "Other"),
 value = c(transTargetingPiCpiRNAs, 1-transTargetingPiCpiRNAs)
)

Create the pie chart
options(repr.plot.width=4, repr.plot.height=4)
plot_byPiCTarg <- ggplot(data, aes(x = "", y = value, fill = category)) +
 geom_bar(stat = "identity", width = 1, alpha=0.5) +
 coord_polar(theta = "y") +
 scale_fill_manual(values = c("lightgrey", "#ed1c24")) +
 theme_void() +
 theme(legend.position = "none")

plot_byPiCTarg

106

filter custom PCG transcriptome coordinates of top targeted genes
subset_tra_gr <- geneAnnotation_PCG_gene[geneAnnotation_PCG_gene$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tra[1:genes_targetingThreshold,]$geneName]
add totalPiRNAcounts and targetedRank to GRange object
mcols(subset_tra_gr)$totalPiRNAcount <-
targetingByPiRNAsSbO_sorted_total_tra$totalPiRNAcount[match(mcols(subset_tra_gr)$gene_na
me, targetingByPiRNAsSbO_sorted_total_tra$geneName)]
mcols(subset_tra_gr)$targetedRank <-
targetingByPiRNAsSbO_sorted_total_tra$targetedRank[match(mcols(subset_tra_gr)$gene_name,
targetingByPiRNAsSbO_sorted_total_tra$geneName)]

get table with piC-rank targeting contributions per gene
rank_piC_info <- function(overlaps) {
 if (length(overlaps) == 0) {
 return(c("0", 0, 0))
 }
 # Extract rank information using vectorized operations
 ranks <- sub("_|_", "", sub("rank|_", "", regmatches(overlaps$qname,
regexpr("rank(.*?)_", overlaps$qname))))
 rank_table <- table(ranks)

 return(rank_table)
}

Get all targeting piRNAs in relation to the gene they target
overlap_hits <- findOverlaps(invertStrand(subset_tra_gr), gr_alignments)

Split targeting piRNAs by gene
alignments_by_gene <- split(gr_alignments[subjectHits(overlap_hits)],
 queryHits(overlap_hits))

For each gene run rank_piC_info for table with piC-rank targeting contributions
piC_rank_summaries <- lapply(alignments_by_gene, rank_piC_info)

Retrieve top contributing piC and percentage
Separate piRNAs not from piCs and those from piCs that contribute < 5%
process_rank_contributions <- function(rank_table, total_count) {
 # Convert gene's piC_rank_summaries table to named vector and calc fractions 107

 contributions <- as.vector(rank_table) / total_count
 names(contributions) <- names(rank_table)

 # Separate category 0 (if it exists)
 cat_0 <- if("0" %in% names(contributions)) contributions["0"] else 0
 other_contributions <- contributions[names(contributions) != "0"]

 # Sort other contributions in descending order
 sorted_contributions <- sort(other_contributions, decreasing = TRUE)

 # Identify contributions >= 5%
 major_contributions <- sorted_contributions[sorted_contributions >= 0.05]
 minor_contributions <- sorted_contributions[sorted_contributions < 0.05]

 # Create result vector
 result <- c()
 result["rankContr-0"] <- cat_0

 # Add major contributions
 for(i in seq_along(major_contributions)) {
 result[paste0("rankContr-", i)] <- major_contributions[i]
 }

 # Sum minor contributions if any exist
 if(length(minor_contributions) > 0) {
 result["rankContr-rest"] <- sum(minor_contributions)
 }

 return(result)
}

Apply to each gene and create new columns
contribution_results <- lapply(seq_along(alignments_by_gene), function(i) {
 rank_table <- piC_rank_summaries[[i]]
 total_count <- subset_tra_gr$totalPiRNAcount[i]
 process_rank_contributions(rank_table, total_count)
})

Find all unique column names across all results
all_columns <- unique(unlist(lapply(contribution_results, names)))

Ensure each result has all columns, filling missing ones with 0
contribution_results_normalized <- lapply(contribution_results, function(x) {
 missing_cols <- setdiff(all_columns, names(x))
 if(length(missing_cols) > 0) {
 x[missing_cols] <- 0
 }
 return(x[all_columns])
})
convert to one data frame
contribution_df <- do.call(rbind, contribution_results_normalized)
colnames(contribution_df) <- all_columns

Add contribution_df to the subset_tra_gr in df format
subset_tra <- cbind(as.data.frame(subset_tra_gr), contribution_df)

108

Reshape to long format
data_long <- subset_tra %>%
 mutate(gene = rownames(subset_tra)) %>%
 gather(key = "rank", value = "value",
 starts_with("rankContr")) %>%
 mutate(rank = factor(rank,
 levels = c("rankContr-0", "rankContr-rest", "rankContr-4",
"rankContr-3", "rankContr-2", "rankContr-1")))

Create the stacked column chart
options(repr.plot.width=12, repr.plot.height=5)
plot_piCcontr <- ggplot(data_long, aes(x = targetedRank, y = value, fill = rank)) +
 geom_col(width = 0.85) +
 scale_y_continuous(breaks = c(0, 1), labels = c("0", "1")) +
 scale_x_continuous(breaks = seq(1, nrow(subset_tra), by = 20)) +
 scale_fill_manual(values = c("#F1F2F2", "#b3dee2", "#eaf2d7", "#efcfe3",
 "#ea9ab2", "#e27396")) +
 theme_classic() +
 theme(
 axis.text = element_text(size = 7),
 axis.title = element_text(size = 7),
) +
 labs(x = "Ranked Genes by piRNA Targeting",
 y = "Origin of targeting piRNAs (%)")

plot_piCcontr

geneAnnotation_PCG_gene_subset <-
geneAnnotation_PCG_gene[geneAnnotation_PCG_gene$gene_name %in%
targetingByPiRNAsSbO_sorted_total_tra$geneName[1:250]]
selected_genes <- geneAnnotation_PCG_gene_subset$gene_name

unique(geneAnnotation_PCG$feature)

109

subset geneAnnotation_PCG by genes (top targeted)
and features (removing 'gene' annotation which includes all collapsed exons, not
seperated by features)
feature_list <- c("5UTR", "CDS", "3UTR")
gene_features <- geneAnnotation_PCG[geneAnnotation_PCG$gene_name %in% selected_genes &
geneAnnotation_PCG$feature %in% feature_list]

#pre-select alignments to only include alignments targeting selected genes
gr_alignments_main <- subsetByOverlaps(gr_alignments,
invertStrand(geneAnnotation_PCG_gene_subset))
mcols(gr_alignments_main) <- NULL

make GRanges that have the starting position for each targeting piRNA
For positive strand, make end = start
end(gr_alignments_main)[as.character(strand(gr_alignments_main)) == "+"] <-
start(gr_alignments_main)[as.character(strand(gr_alignments_main)) == "+"]

For negative strand, make start = end
start(gr_alignments_main)[as.character(strand(gr_alignments_main)) == "-"] <-
end(gr_alignments_main)[as.character(strand(gr_alignments_main)) == "-"]

all_tiles <- NULL
iterate through each gene
for (gene in unique(gene_features$gene_id)) {
 # get all piRNAs targeting that gene
 piRNA_startsAsToGene <- subsetByOverlaps(gr_alignments_main,
invertStrand(gene_features[gene_features$gene_id == gene]))

 # get gene coordinates in custom PCG transcriptome
 gene_ranges <- gene_features[gene_features$gene_id == gene]

 # iterate through each feature
 for (feature in feature_list) {

 # Subset to gene's feature
 temp_gr <- gene_ranges[gene_ranges$feature == feature]
 if (length(temp_gr) == 0) {
 # skip if gene does not have 5'UTR or 3'UTR
 next
 }

 # Merge overlapping or adjacent ranges
 merged_gr <- reduce(temp_gr)
 total_length <- sum(width(merged_gr))

 if (total_length < 20) {
 cat(" Feature ", feature, " for gene ", gene, " too short (<20 nt total).
Skipping.\n")
 next
 }

 # Figure out which direction to tile
 gene_strand <- unique(as.character(strand(temp_gr)))
 merged_gr <- sort(merged_gr)

110

 # Determine exact tile sizes so that each tile is ~5%
 base_tile_size <- floor(total_length / 20)
 leftover <- total_length %% 20
 tile_sizes <- rep(base_tile_size, 20)

 # Distribute the remainder (leftover) among the first tiles
 if (leftover > 0) {
 if (gene_strand == "+") {
 tile_sizes[seq_len(leftover)] <- tile_sizes[seq_len(leftover)] + 1
 } else {
 tile_sizes[21-seq_len(leftover)] <- tile_sizes[21-seq_len(leftover)] + 1
 }
 }

 # Build the 20 tiles by walking through merged_gr
 tile_list <- vector("list", 20)
 current_tile_index <- 1
 target_tile_len <- tile_sizes[current_tile_index]
 cum_len_in_tile <- 0
 current_ranges <- IRanges()

 # Helper to finalize a tile and reset
 finalize_tile <- function() {
 tile_list[[current_tile_index]] <<- GRanges(
 seqnames = seqnames(merged_gr)[1],
 ranges = current_ranges,
 strand = gene_strand,
 gene_id = gene,
 feature = feature,
 tile_index = current_tile_index
)

 current_tile_index <<- current_tile_index + 1
 if (current_tile_index <= 20) {
 target_tile_len <<- tile_sizes[current_tile_index]
 }
 cum_len_in_tile <<- 0
 current_ranges <<- IRanges()
 }

 for (seg in seq_along(merged_gr)) {
 seg_start <- start(merged_gr[seg])
 seg_end <- end(merged_gr[seg])
 seg_width <- width(merged_gr[seg])

 bases_used_in_seg <- 0

 # Iterate base by base in principle, but slice big chunks if possible
 while (bases_used_in_seg < seg_width && current_tile_index <= 20) {

 # Still need 'remaining_in_tile' bases to complete the current tile
 needed_for_tile <- target_tile_len - cum_len_in_tile
 # The maximum we can take from the current segment is what's left in it
 left_in_segment <- seg_width - bases_used_in_seg
 # The actual chunk we’ll consume from this segment
 chunk_size <- min(needed_for_tile, left_in_segment)

 if (chunk_size == 0) {
 # tile is exactly filled
 finalize_tile()

111

 Feature 5UTR for gene RPAP2 too short (<20 nt total). Skipping.
 Feature 5UTR for gene KIAA1143 too short (<20 nt total). Skipping.
 Feature 3UTR for gene ENSG00000281039 too short (<20 nt total). Skipping.

 if (current_tile_index > 20) break
 next
 }

 chunk_start <- seg_start + bases_used_in_seg
 chunk_end <- chunk_start + chunk_size - 1

 # Add IRanges chunk
 current_ranges <- c(
 current_ranges,
 IRanges(start = chunk_start, end = chunk_end)
)

 # Update counters
 bases_used_in_seg <- bases_used_in_seg + chunk_size
 cum_len_in_tile <- cum_len_in_tile + chunk_size

 # If tile is filled, finalize
 if (cum_len_in_tile == target_tile_len) {
 finalize_tile()
 if (current_tile_index > 20) break
 }
 }
 if (current_tile_index > 20) break
 }

 # If something left in the last tile
 if (current_tile_index <= 20 && cum_len_in_tile > 0) {
 finalize_tile()
 }

 final_tiles <- do.call(c, tile_list) # a GRanges of length 20

 #handle minus strand by just reversing the column tile_index (20 to 1, 19 to 2,
etc)
 if (gene_strand == "-") {
 final_tiles$tile_index <- 20 - final_tiles$tile_index + 1
 }

 # Count overlaps for each tile and add these counts to metacolumn of final_tiles
 overlap_counts <- countOverlaps(final_tiles, invertStrand(gr_alignments_main))
 mcols(final_tiles)$read_counts <- overlap_counts

 #combine to all_tiles
 all_tiles <- c(all_tiles, final_tiles)

 }
}
all_tiles <- do.call(c, all_tiles)

Calc percentages of targeting piRNAs for each gene
all_tiles_df <- as.data.frame(all_tiles) %>%
 group_by(gene_id) %>%
 mutate(total_counts = sum(read_counts),

112

 percentage = (read_counts / total_counts) * 100)

all_tiles_df$feature <- factor(all_tiles_df$feature, levels = c("5UTR", "CDS", "3UTR"))

options(repr.plot.width=12, repr.plot.height=6)

to plot them next to each other
all_tiles_df <- all_tiles_df %>%
 mutate(
 Adjusted_Bin = case_when(
 feature == "5UTR" ~ tile_index - 0.5,
 feature == "CDS" ~ tile_index + 19.5,
 feature == "3UTR" ~ tile_index + 39.5
)
)

Calculate averages for the average plot
all_tiles_df_avg <- all_tiles_df %>%
 group_by(feature, Adjusted_Bin) %>%
 summarise(avg_percentage = mean(percentage, na.rm = TRUE), .groups = "drop")

Averaged piRNA targeting across all genes with segmented x-axis
featureTargetingPlotTotal <- ggplot(all_tiles_df_avg, aes(x = Adjusted_Bin, y =
avg_percentage, color = feature)) +
 geom_line(linewidth = 1.5) +
 geom_vline(xintercept = c(20, 40), linetype = "dashed", color = "black") +
 labs(
 title = "top 250 mRNAs targeted by piRNAs derived from PG-as piCs",
 x = "Feature Segments (5' UTR, CDS, 3' UTR)",
 y = "Average Percentage of piRNAs Targeting the Gene"
) +
 theme_classic() +
 theme(
 legend.position = "bottom"
)
featureTargetingPlotTotal

top250_wPGgenes <-
(targetingByPiRNAsSbO_sorted_total_tra[(targetingByPiRNAsSbO_sorted_total_tra$PGasToTopP
iC == "YES") & (targetingByPiRNAsSbO_sorted_total_tra$targetedRank <= 250),])$geneName
mRNAs targeted by piRNAs derived from Pseudogenes
Calculate averages for the average plot
all_tiles_df_avg_wPG <- all_tiles_df[all_tiles_df$gene_id %in% top250_wPGgenes,] %>%
 group_by(feature, Adjusted_Bin) %>%
 summarise(avg_percentage = mean(percentage, na.rm = TRUE), .groups = "drop")

Averaged piRNA targeting across all genes with segmented x-axis
featureTargetingPlotTotal_wPG <- ggplot(all_tiles_df_avg_wPG, aes(x = Adjusted_Bin, y =
avg_percentage, color = feature)) +
 geom_line(linewidth = 1.5) +
 geom_vline(xintercept = c(20, 40), linetype = "dashed", color = "black") +
 labs(
 title = paste0(length(top250_wPGgenes), " mRNAs targeted by piRNAs derived from
Pseudogenes"),
 x = "Feature Segments (5' UTR, CDS, 3' UTR)",
 y = "Average Percentage of piRNAs Targeting the Gene"
) +
 theme_classic() +
 theme(

113

 legend.position = "bottom"
)
featureTargetingPlotTotal_wPG

GOLGA2 - Extended Data Figure 4b
options(repr.plot.width=12, repr.plot.height=6)
chr <- "chr9"
start <- 3848388
end <- 3853143
coord <- IRanges(start, end)
geneAnnotation_PCG$type <- geneAnnotation_PCG$feature

GOLGA2targeting<- allTracksPlotted(piRNAs_from_Bam = gr_alignments, chromosome = chr,
IRangesCoord=coord, gtfFiles=list(GOLGA2 = geneAnnotation_PCG), tilesWidth=20)
GOLGA2targetingFull <- GOLGA2targeting$plotCoverageTrack /

114

Normalizing to RPM

Normalizing to RPM

GOLGA2targeting$trackAll$gtfNum1$trackPlus / GOLGA2targeting$trackAll$gtfNum1$trackMinus
GOLGA2targetingFull

GOLGA2PG_dir <- "../data/annotations/RefSeqFor_chr15_62207201-62280100.gtf" #download
from UCSC Genome Browser
GOLGA2PG_grF <- rtracklayer::import(GOLGA2PG_dir)
GOLGA2PG_gr <- GOLGA2PG_grF[GOLGA2PG_grF$gene_id %in% c("NR_169521.2", "NR_136885.1")]

GOLGA2 - Extended Data Figure 4c
chr <- as.character(seqnames(clusters_69yo[1]))
start <- start(clusters_69yo[1]) - 50
end <- end(clusters_69yo[1]) + 50
coord <- IRanges(start, end)

GOLGA2originPiC <- allTracksPlotted(piRNAs_from_Bam = gr_hg38, chromosome = chr,
IRangesCoord=coord, gtfFiles=list(piC_69yo = clusters_69yo, GOLGA2P11 = GOLGA2PG_gr),
tilesWidth=50, scaleWidthKB = 10)
t <- GOLGA2originPiC$plotCoverageTrack +
 geom_vline(xintercept = min(start(GOLGA2PG_gr)), linetype = "dashed", color =
"black") +
 geom_vline(xintercept = max(end(GOLGA2PG_gr)), linetype = "dashed", color = "black")

GOLGA2originPiCFull <- t /
 GOLGA2originPiC$trackAll$gtfNum1$trackPlus /
GOLGA2originPiC$trackAll$gtfNum1$trackMinus /
 GOLGA2originPiC$trackAll$gtfNum2$trackPlus /
GOLGA2originPiC$trackAll$gtfNum2$trackMinus

GOLGA2originPiCFull

115

GOLGA2
genes_names <- c("C2CD4B", "TLN2")
selRanges <- genes[genes$gene_name %in% genes_names]
chr <- as.character(unique(seqnames(selRanges)))
start <- min(start(selRanges))
end <- min(start(selRanges[selRanges$gene_name == "TLN2"]))+1000
coord <- IRanges(start, end)
GRanges(seqnames = chr, ranges = coord)

options(repr.plot.width=10, repr.plot.height=4)
GOLGA2_hsa <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,
gtfFiles=list(hsa_piCs = clusters_69yo, PG = c(GOLGA2PG_grF, genes)), tilesWidth=100,
scaleWidthKB = 50)
piCsP <- GOLGA2_hsa$trackAll$gtfNum1$trackPlus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "C2CD4B"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "TLN2"])),
linetype = "dashed", color = "black")
piCsM <- GOLGA2_hsa$trackAll$gtfNum1$trackMinus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "C2CD4B"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "TLN2"])),
linetype = "dashed", color = "black")

genesP <- GOLGA2_hsa$trackAll$gtfNum2$trackPlus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "C2CD4B"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "TLN2"])),
linetype = "dashed", color = "black")
genesM <- GOLGA2_hsa$trackAll$gtfNum2$trackMinus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "C2CD4B"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "TLN2"])),
linetype = "dashed", color = "black")

116

GRanges object with 1 range and 0 metadata columns:
 seqnames ranges strand
 <Rle> <IRanges> <Rle>
 [1] chr15 62163535-62391550 *

 seqinfo: 1 sequence from an unspecified genome; no seqlengths

GOLGA2hsaFull <- piCsP / piCsM / genesP / genesM
GOLGA2hsaFull

#RHESUS, chr7:38,755,710-38,974,746

genes_rheMac8 <-
rtracklayer::import("../data/annotations/EvoComparison/rheMac8_GOLGA2PG.gtf") #download
from UCSC Genome Browser
genes_rheMac8$gene_name <- genes_rheMac8$gene_id
genes_rheMac8$type <- "exon"

Published piRNA clusters from Yu et al. (Nat Commun, 2021):
https://doi.org/10.1038/s41467-020-20345-3
piCs_rheMac8 <- GRanges(
 seqnames = c("chr7", "chr7"),
 ranges = IRanges(c(38798200, 38758449), c(38847100, 38797823)),
 strand = c("+", "-"),
 type = c("CDS", "CDS"),
 gene_name = c("pi_rheMac8_IG_99.1", "pi_rheMac8_PC_C2CD4B.1"))

#XM_015142398.1 until XM_015142404.1 but XM_015142398.1 is the one matching ENSEMBL pred
= C2CD4B
#XM_001101705.3 = TLN2
genes_names <- c("XM_015142398.1", "XM_001101705.3")
selRanges <- genes_rheMac8[genes_rheMac8$gene_id %in% genes_names]
chr <- as.character(unique(seqnames(selRanges)))
start <- min(start(selRanges))
end <- min(start(selRanges[selRanges$gene_id == "XM_001101705.3"]))+1000
coord <- IRanges(start, end)
GRanges(seqnames = chr, ranges = coord)

GOLGA2_rheMac8 <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,
gtfFiles=list(piCsRheMac8 = piCs_rheMac8, genes_RheMac8 = genes_rheMac8),
tilesWidth=100, scaleWidthKB = 50)
piCsP <- GOLGA2_rheMac8$trackAll$gtfNum1$trackPlus +

117

GRanges object with 1 range and 0 metadata columns:
 seqnames ranges strand
 <Rle> <IRanges> <Rle>
 [1] chr7 38758450-38973162 *

 seqinfo: 1 sequence from an unspecified genome; no seqlengths

 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_015142398.1"])), linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"XM_001101705.3"])), linetype = "dashed", color = "black")

piCsM <- GOLGA2_rheMac8$trackAll$gtfNum1$trackMinus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_015142398.1"])), linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"XM_001101705.3"])), linetype = "dashed", color = "black")

PGsP <- GOLGA2_rheMac8$trackAll$gtfNum2$trackPlus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_015142398.1"])), linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"XM_001101705.3"])), linetype = "dashed", color = "black")

PGsM <- GOLGA2_rheMac8$trackAll$gtfNum2$trackMinus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_015142398.1"])), linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"XM_001101705.3"])), linetype = "dashed", color = "black")

GOLGA2_rheMac8Full <- piCsP / piCsM / PGsP / PGsM
GOLGA2_rheMac8Full

MARMOSET, chr10:4,546,947-4,698,170
genes_calJac3 <-
rtracklayer::import("../data/annotations/EvoComparison/calJac3_GOLGA2PG.gtf")
genes_calJac3$gene_name <- genes_calJac3$gene_id

piCs_calJac3 <- GRanges(
 seqnames = c("chr10", "chr10"),
 ranges = IRanges(c(4542921, 4570600), c(4556809, 4639500)),
 strand = c("-", "+"),
 type = c("CDS", "CDS"),

118

GRanges object with 1 range and 0 metadata columns:
 seqnames ranges strand
 <Rle> <IRanges> <Rle>
 [1] chr10 4549580-4691440 *

 seqinfo: 1 sequence from an unspecified genome; no seqlengths

 gene_name = c("pi_calJac3_PC_C2CD4B.1", "pi_calJac3_IG_21.1")
)

#XM_002753199.3 = C2CD4B
#XM_017976635.1 = TLN2
genes_names <- c("XM_002753199.3", "XM_017976635.1")
selRanges <- genes_calJac3[genes_calJac3$gene_id %in% genes_names]
chr <- as.character(unique(seqnames(selRanges)))
start <- min(start(selRanges))
end <- min(start(selRanges[selRanges$gene_id == "XM_017976635.1"]))+1000
coord <- IRanges(start, end)
GRanges(seqnames = chr, ranges = coord)

GOLGA2_calJac3 <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,
gtfFiles=list(piCsMarmoset = piCs_calJac3, genes_marmoset = genes_calJac3),
tilesWidth=100, scaleWidthKB = 50)
piCsP <- GOLGA2_calJac3$trackAll$gtfNum1$trackPlus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_002753199.3"])), linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"XM_017976635.1"])), linetype = "dashed", color = "black")

piCsM <- GOLGA2_calJac3$trackAll$gtfNum1$trackMinus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_002753199.3"])), linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"XM_017976635.1"])), linetype = "dashed", color = "black")

genesP <- GOLGA2_calJac3$trackAll$gtfNum2$trackPlus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_002753199.3"])), linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"XM_017976635.1"])), linetype = "dashed", color = "black")

genesM <- GOLGA2_calJac3$trackAll$gtfNum2$trackMinus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_002753199.3"])), linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"XM_017976635.1"])), linetype = "dashed", color = "black")

GOLGA2_calJac3Full <- piCsP / piCsM / genesP / genesM
GOLGA2_calJac3Full

119

#COW - bosTau8, chr10:47,794,442-47,959,240
genes_bosTau8_est <-
rtracklayer::import("../data/annotations/EvoComparison/bosTau8_GOLGA2PG_est.gtf") #
download from UCSC Genome Browser, cow expressed sequence tags (ESTs) in GenBank
genes_bosTau8_refSeq <-
rtracklayer::import("../data/annotations/EvoComparison/bosTau8_GOLGA2PG.gtf") # download
from UCSC Genome Browser, RefSeq
genes_bosTau8 <- c(genes_bosTau8_est, genes_bosTau8_refSeq)
genes_bosTau8$gene_name <- genes_bosTau8$gene_id

piCs_bosTau8 <- GRanges(
 seqnames = c("chr10", "chr10"),
 ranges = IRanges(c(47892700, 47931000), c(47930800, 47947700)),
 strand = c("-", "+"),
 type = c("CDS", "CDS"),
 gene_name = c("pi_bosTau8_IG_3.1", "pi_bosTau8_IG_4.1"))

from genes_bosTau8: C2CD4B = NM_001046307
from genes_bosTau8_est: TLN2 = e.g. EH375118

genes_names <- c("EH375118", "NM_001046307")
selRanges <- genes_bosTau8[genes_bosTau8$gene_id %in% genes_names]
chr <- as.character(unique(seqnames(selRanges)))
start <- max(end(selRanges[selRanges$gene_id == "EH375118"])) - 1000
end <- max(end(selRanges[selRanges$gene_id == "NM_001046307"]))
coord <- IRanges(start, end)

GOLGA2_bosTau8 <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,
gtfFiles=list(piCsCow = piCs_bosTau8, genes_Cow = genes_bosTau8), tilesWidth=100,
scaleWidthKB = 50)
piCsP <- GOLGA2_bosTau8$trackAll$gtfNum1$trackPlus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "EH375118"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"NM_001046307"])), linetype = "dashed", color = "black")

piCsM <- GOLGA2_bosTau8$trackAll$gtfNum1$trackMinus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "EH375118"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"NM_001046307"])), linetype = "dashed", color = "black")

120

PGsP <- GOLGA2_bosTau8$trackAll$gtfNum2$trackPlus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "EH375118"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"NM_001046307"])), linetype = "dashed", color = "black")

PGsM <- GOLGA2_bosTau8$trackAll$gtfNum2$trackMinus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "EH375118"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name ==
"NM_001046307"])), linetype = "dashed", color = "black")

GOLGA2_bosTau8Full <- piCsP / piCsM / PGsP / PGsM
GOLGA2_bosTau8Full

MOUSE - chr9:67,555,573-67,763,784
genes_mm10 <-
rtracklayer::import("../data/annotations/mm10_collapsed_prioritizedCDS3UTR5UTR.gtf")
genes_mm10$gene_name <- genes_mm10$gene_id

#piRNA cluster coordinates from Konstantinidou et al. (2024) in Cell Reports and rank
load("../data/annotations/MILIclusters_pachytene.RData")
#MILI_prepach_regions_overl_genes
MILIclusters_pach <- MILIclusters$clusters
MILIclusters_pach <- MILIclusters_pach[order(-
MILIclusters_pach$all_reads_primary_alignments_FPM),]
MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM <- seq_along(MILIclusters_pach)
MILIclusters_pach$gene_name <- paste0("piC-",
MILIclusters_pach$rankByAllReadsPrimaryAlignmentsFPM)
MILIclusters_pach$type <- "CDS"

#load pseudogenes, download by UCSC
pseudogenes_mm10 <- rtracklayer::import("../data/annotations/mm10_retroGenesV6.gtf")
pseudogenes_mm10$gene_name <- pseudogenes_mm10$gene_id

from genes_mm10: C2cd4b, Tln2
genes_names <- c("C2cd4b", "Tln2")
selRanges <- genes_mm10[genes_mm10$gene_id %in% genes_names]
chr <- as.character(unique(seqnames(selRanges)))
start <- max(end(selRanges[selRanges$gene_id == "Tln2"])) - 1000

121

end <- max(end(selRanges[selRanges$gene_id == "C2cd4b"]))
coord <- IRanges(start, end)

Spin1as_mm10 <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,
gtfFiles=list(piCsMouse = MILIclusters_pach, genes_Mouse = c(pseudogenes_mm10,
genes_mm10)))

Spin1as_mm10M <- Spin1as_mm10$trackAll$gtfNum1$trackMinus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "Tln2"])), linetype
= "dashed", color = "black") +
 geom_vline(xintercept = 67759437, linetype = "dashed", color = "black") #start of
RefSeq NM_001081314.2

Spin1as_mm10P <- Spin1as_mm10$trackAll$gtfNum1$trackPlus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "Tln2"])), linetype
= "dashed", color = "black") +
 geom_vline(xintercept = 67759437, linetype = "dashed", color = "black") #start of
RefSeq NM_001081314.2

Spin1as_mm10PGsP <- Spin1as_mm10$trackAll$gtfNum2$trackPlus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "Tln2"])), linetype
= "dashed", color = "black") +
 geom_vline(xintercept = 67759437, linetype = "dashed", color = "black") #start of
RefSeq NM_001081314.2

Spin1as_mm10PGsM <- Spin1as_mm10$trackAll$gtfNum2$trackMinus +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name == "Tln2"])), linetype
= "dashed", color = "black") +
 geom_vline(xintercept = 67759437, linetype = "dashed", color = "black") #start of
RefSeq NM_001081314.2

Spin1as_mm10Full <- Spin1as_mm10M / Spin1as_mm10P / Spin1as_mm10PGsP / Spin1as_mm10PGsM
Spin1as_mm10Full

#RAT - rn6, chr8:73,438,583-73,595,561
genes_rn6 <- rtracklayer::import("../data/annotations/EvoComparison/rn6_SPIN1PG.gtf")
genes_rn6$gene_name <- genes_rn6$gene_id

piCs_rn6 <- GRanges(
 seqnames = c("chr8", "chr8"),
 ranges = IRanges(c(73533100, 73572400), c(73572100, 73599100)),
 strand = c("-", "+"),

122

 type = c("CDS", "CDS"),
 gene_name = c("pi_rn6_IG_101.1", "pi_rn6_IG_102.1"))

from genes_rn6: C2CD4B = XM_576426.6; TLN2 = e.g. XM_008766404.2
genes_names <- c("XM_576426.6", "XM_008766404.2")
selRanges <- genes_rn6[genes_rn6$gene_id %in% genes_names]
chr <- as.character(unique(seqnames(selRanges)))
start <- max(end(selRanges[selRanges$gene_id == "XM_008766404.2"])) - 1000
end <- min(start(selRanges[selRanges$gene_id == "XM_576426.6"])) + 1000
coord <- IRanges(start, end)

Spin1as_rn6 <- allTracksPlotted(chromosome = chr, IRangesCoord=coord,
gtfFiles=list(piCsRat = piCs_rn6, genes_Rat = genes_rn6), tilesWidth=100, scaleWidthKB =
50)
piCsP <- Spin1as_rn6$trackAll$gtfNum1$trackPlus +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "XM_576426.6"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_008766404.2"])), linetype = "dashed", color = "black")

piCsM <- Spin1as_rn6$trackAll$gtfNum1$trackMinus +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "XM_576426.6"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_008766404.2"])), linetype = "dashed", color = "black")

genesP <- Spin1as_rn6$trackAll$gtfNum2$trackPlus +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "XM_576426.6"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_008766404.2"])), linetype = "dashed", color = "black")

genesM <- Spin1as_rn6$trackAll$gtfNum2$trackMinus +
 geom_vline(xintercept = min(start(selRanges[selRanges$gene_name == "XM_576426.6"])),
linetype = "dashed", color = "black") +
 geom_vline(xintercept = max(end(selRanges[selRanges$gene_name ==
"XM_008766404.2"])), linetype = "dashed", color = "black")

Spin1as_rn6Full <- piCsP / piCsM / genesP / genesM
Spin1as_rn6Full

123

Load genomes
library(BSgenome.Hsapiens.UCSC.hg38)
library(BSgenome.Mmulatta.UCSC.rheMac8)
library(BSgenome.Cjacchus.UCSC.calJac3)

Human - GOLGA2 GENE, get sequence
hsa_GOLGA2gene <- genes[genes$gene_name %in% c("GOLGA2") & genes$type == "exon"]
hsa_GOLGA2gene_seq <- suppressWarnings(DNAStringSet(getSeq(BSgenome.Hsapiens.UCSC.hg38,
GRanges(seqnames = seqnames(hsa_GOLGA2gene[1]), ranges = IRanges(start =
min(start(hsa_GOLGA2gene)), end = max(end(hsa_GOLGA2gene)))))))
names(hsa_GOLGA2gene_seq) <- "hg38_GOLGA2"

Human - full piRNA cluster with GOLGA2 PG, get sequence
hsa_piC_seq <- DNAStringSet(getSeq(BSgenome.Hsapiens.UCSC.hg38, clusters_69yo[1]))
names(hsa_piC_seq) <- "hsa_piC1"

Macaque - full annotated piRNA cluster with GOLGA2 PG, get sequence
rheMac8_piC_seq <- DNAStringSet(getSeq(BSgenome.Mmulatta.UCSC.rheMac8, piCs_rheMac8[1]))
names(rheMac8_piC_seq) <- "rheMac8_piC_IG99"

Marmoset - full annotated piRNA cluster with GOLGA2 PG, get sequence
calJac3_piC_seq <- DNAStringSet(getSeq(BSgenome.Cjacchus.UCSC.calJac3, piCs_calJac3[2]))
names(calJac3_piC_seq) <- "calJac3_piC_IG21"

Marmoset - GOLGA2 GENE, get sequence
calJac3_genes <-
rtracklayer::import("../data/annotations/EvoComparison/calJac3_NCBI_RefSeq.gtf")
calJac3_GOLGA2gene <- calJac3_genes[calJac3_genes$gene_id == "XM_009003501.2" &
calJac3_genes$type == "exon"]
calJac3_GOLGA2gene_seq <- DNAStringSet(getSeq(BSgenome.Cjacchus.UCSC.calJac3,
GRanges(seqnames = seqnames(calJac3_GOLGA2gene[1]), ranges = IRanges(start =
min(start(calJac3_GOLGA2gene)), end = max(end(calJac3_GOLGA2gene))))))
names(calJac3_GOLGA2gene_seq) <- "calJac3_GOLGA2"

Combine seqs and save as fasta
all_seqs <- c(hsa_GOLGA2gene_seq, hsa_piC_seq, rheMac8_piC_seq, calJac3_piC_seq,
calJac3_GOLGA2gene_seq)
Biostrings::writeXStringSet(all_seqs,
"../data/annotations/EvoComparison/GOLGA2_HSA_RHEMAC8_CALJAC3.fasta", format = "fasta")

minimap2, all-versus-all alignment
minimap2 -x asm20 -c --eqx -D -P --dual=no \
 ../data/annotations/EvoComparison/GOLGA2_HSA_RHEMAC8_CALJAC3.fasta \
 ../data/annotations/EvoComparison/GOLGA2_HSA_RHEMAC8_CALJAC3.fasta \

124

[M::mm_idx_gen::0.006*1.88] collected minimizers
[M::mm_idx_gen::0.013*2.42] sorted minimizers
[M::main::0.013*2.41] loaded/built the index for 5 target sequence(s)
[M::mm_mapopt_update::0.014*2.35] mid_occ = 50
[M::mm_idx_stat] kmer size: 19; skip: 10; is_hpc: 0; #seq: 5
[M::mm_idx_stat::0.014*2.30] distinct minimizers: 35632 (88.19% are singletons);
average occurrences: 1.172; average spacing: 5.556; total length: 232053
[M::worker_pipeline::0.454*2.02] mapped 5 sequences
[M::main] Version: 2.30-r1287
[M::main] CMD: ../../../../../../../../../Documents/minimap2/minimap2 -x asm20 -
c --eqx -D -P --dual=no ../data/annotations/EvoComparison/GOLGA2_HSA_RHEMAC8_CAL
JAC3.fasta ../data/annotations/EvoComparison/GOLGA2_HSA_RHEMAC8_CALJAC3.fasta
[M::main] Real time: 0.456 sec; CPU: 0.919 sec; Peak RSS: 0.763 GB

[readPaf] Loading PAF file: ../data/annotations/EvoComparison/GOLGA2_HSA_RHEMAC8
_CALJAC3_x_asm20_c_eqx_D_P_dualNo.paf
 ... 0.01s

[pafToBins] Binning PAF alignments, binsize=100bp
 ... 8.32s

 >
../data/annotations/EvoComparison/GOLGA2_HSA_RHEMAC8_CALJAC3_x_asm20_c_eqx_D_P_dualNo.pa
f

options(repr.plot.width=10, repr.plot.height=10)
read paf file (output of minimap2), using SVbyEye package
paf.table <- readPaf(
 paf.file =
"../data/annotations/EvoComparison/GOLGA2_HSA_RHEMAC8_CALJAC3_x_asm20_c_eqx_D_P_dualNo.p
af",
 include.paf.tags = TRUE
)

Create plot with percent identity as color
plt_fullPiC <- plotAVA(paf.table = paf.table, color.by = "direction", binsize = 100,
 perc.identity.breaks = c(70, 80, 90), seqnames.order= c("hg38_GOLGA2",
"hsa_piC1", "rheMac8_piC_IG99", "calJac3_piC_IG21", "calJac3_GOLGA2"))

plt_fullPiC

125

126

