## Supplementary Information for "Enhanced Quantum Many-Body Scars in Non-Hermitian Systems"

Xinzhi Zhao<sup>1,2</sup>, Wen-Yi Zhang<sup>1,3</sup>, Ning Wu<sup>4</sup>, Lin Zhuang<sup>5</sup>, Wen-Long
You<sup>1,3,†</sup>, Xiangmei Duan<sup>2,†</sup>, Wu-Ming Liu<sup>6,†</sup>, and Chengjie Zhang<sup>2,†</sup>

<sup>1</sup>College of Physics, Nanjing University of Aeronautics
and Astronautics, Nanjing, 211106, China

<sup>2</sup>School of Physical Science and Technology, Ningbo University, Ningbo 315211, China

<sup>3</sup>Key Laboratory of Aerospace Information Materials
and Physics (NUAA), MIIT, Nanjing, 211106, China

<sup>4</sup>Center for Quantum Technology Research, School of Physics,
Beijing Institute of Technology, Beijing 100081, China

<sup>5</sup>School of Physics, Sun Yat-Sen University, Guangzhou 510275, China

<sup>6</sup>Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

<sup>†</sup> E-mail: wlyou@nuaa.edu.cn; duanxiangmei@nbu.edu.cn;
wmliu@iphy.ac.cn; zhangchengjie@nbu.edu.cn

#### CONTENTS

| 1.         | . Theoretical methods                                                          | 3  |
|------------|--------------------------------------------------------------------------------|----|
|            | 1.1. Mapping Kitaev model with uniaxial single-ion anisotropy onto the detuned |    |
|            | PXP model                                                                      | 3  |
|            | 1.2. The detuned PXP Model                                                     | 5  |
|            | 1.3. The non-Hermitian PXP Model                                               | 5  |
|            | 1.4. Complete set of Bloch states                                              | 6  |
|            | 1.5. Non-Hermitian PXP Hamiltonian in the subspace of $k=-\pi$                 | 7  |
|            | 1.6. Varying system sizes                                                      | 8  |
| <b>2</b> . | . The scheme of the experiment                                                 | 10 |
|            | 2.1. The heralded single-photon source                                         | 10 |
|            | <b>2.2</b> . Evolution method for Hermitian Hamiltonian $g = 0$                | 12 |
|            | <b>2.2.1</b> . Evolution under parameter $D=0$                                 | 13 |
|            | <b>2.2.2</b> . Evolution under different parameters $D = -0.655$ and $D = -2$  | 15 |
|            | <b>2.3</b> . Evolution method for non-Hermitian Hamiltonian $D=0$              | 18 |
| 3.         | . The result of the experiment                                                 | 21 |
|            | 3.1. The experimental result for Hermitian case                                | 21 |
|            | <b>3.2</b> . The experimental result for non-Hermitian case                    | 22 |
|            | 3.3. The experimental result for exceptional point                             | 23 |
|            | References                                                                     | 24 |

#### 1. THEORETICAL METHODS

# 1.1. Mapping Kitaev model with uniaxial single-ion anisotropy onto the detuned PXP model

The Hamiltonian for the Kitaev model with uniaxial single-ion anisotropy reads

$$H_{KD} = \sum_{i=1}^{L/2} \left[ K(S_{2j-1}^x S_{2j}^x + S_{2j}^x S_{2j+1}^y) + D(S_j^z)^2 \right].$$
 (S1)

For convenience, we perform the unitary transformation on the even sites, i.e.,  $U = \prod_{j} \exp(i\pi S_{2j}^x) \exp\left(i\frac{\pi}{2}S_{2j}^z\right)$ , and the rotated Hamiltonian becomes

$$\tilde{H}_{KD} = U H_{KD} U^{\dagger} = \sum_{j=1}^{L} \left[ K S_j^x S_{j+1}^y + D (S_j^z)^2 \right].$$
 (S2)

Using the translation and  $\mathbb{Z}_2$  symmetries of Eq. (S2), we can express its ground states on a two-site unit cell. For a pair of nearest neighbor sites  $\langle j, j+1 \rangle$ , total  $3 \times 3 = 9$  allowed states can be distinguished into the sector with positive gauge charge  $(w_j = 1)$  spanned by  $|\bullet \bullet\rangle$ ,  $|\bullet \bullet\rangle$ .

The one-to-one mapping between the 5 allowed two-site configurations for a pair of nearest neighbor sites  $\langle j, j+1 \rangle$  and spin-1/2 degree of freedom for the bond center j+1/2 is given by

$$|\cdots \bullet \bullet \cdots \rangle_{j,j+1} \leftrightarrow |\cdots \downarrow \cdots \rangle_{j+\frac{1}{2}},$$

$$|\cdots \bullet \bullet \cdots \rangle_{j,j+1} \leftrightarrow |\cdots \uparrow \cdots \rangle_{j+\frac{1}{2}},$$

$$|\cdots \bullet \bullet \cdots \rangle_{j,j+1} \leftrightarrow |\cdots \downarrow \cdots \rangle_{j+\frac{1}{2}},$$

$$|\cdots \bullet \bullet \cdots \rangle_{j,j+1} \leftrightarrow |\cdots \downarrow \cdots \rangle_{j+\frac{1}{2}},$$

$$|\cdots \bullet \bullet \cdots \rangle_{j,j+1} \leftrightarrow |\cdots \downarrow \cdots \rangle_{j+\frac{1}{2}},$$

$$|\cdots \bullet \bullet \cdots \rangle_{j,j+1} \leftrightarrow |\cdots \downarrow \cdots \rangle_{j+\frac{1}{2}}.$$
(S3)

It is worthy noting that the prime lattice of the spin-1 Kitaev chain is defined on the sites  $\{j\}$ , while the dual lattice of spin-1/2 PXP model lives on the linking bonds at sites  $\{j+1/2\}$ . Although the mapping seems to be many to one at first glance, it is in fact invertible. The mapping from the dual lattice back to the spin-1 lattice reads

$$|\cdots\downarrow\uparrow\cdots\rangle_{j-\frac{1}{2},j+\frac{1}{2}}\to|\cdots\bullet\cdots\rangle_{j}$$

$$|\cdots\uparrow\downarrow\cdots\rangle_{j-\frac{1}{2},j+\frac{1}{2}}\to|\cdots\bullet\cdots\rangle_{j}$$

$$|\cdots\downarrow\downarrow\cdots\rangle_{j-\frac{1}{2},j+\frac{1}{2}}\to|\cdots\bullet\cdots\rangle_{j}.$$
(S4)

In this case, Eqs. (S3) and (S4) ensure that the mapping is one to one for periodic boundary conditions.

The local two-spin Hamiltonian is given by

$$\tilde{H}_{j,j+1} = KS_i^x S_{j+1}^y + D[(S_i^z)^2 + (S_{j+1}^z)^2]. \tag{S5}$$

For the 5 states satisfying  $w_j = 1$ , we have

$$\tilde{H}_{j,j+1}|\bullet\bullet\rangle = 2D|\bullet\bullet\rangle, \quad \tilde{H}_{j,j+1}|\bullet\bullet\rangle = D|\bullet\bullet\rangle, 
\tilde{H}_{j,j+1}|\bullet\bullet\rangle = D|\bullet\bullet\rangle, \quad \tilde{H}_{j,j+1}|\bullet\bullet\rangle = K|\bullet\bullet\rangle, 
\tilde{H}_{j,j+1}|\bullet\bullet\rangle = K|\bullet\bullet\rangle + 2D|\bullet\bullet\rangle.$$
(S6)

Accordingly, the Hamiltonian can be written in the matrix form as

$$\tilde{H}_{j,j+1} = \begin{pmatrix} 2D & 0 & 0 & 0 & 0 \\ 0 & D & 0 & 0 & 0 \\ 0 & 0 & D & 0 & 0 \\ 0 & 0 & 0 & 2D & K \\ 0 & 0 & 0 & K & 0 \end{pmatrix}, \tag{S7}$$

which yields 5 energy eigenvalues  $2D,D,D,D \pm \sqrt{D^2 + K^2}$ . Hence, within the lowest-state manifold residing in the  $w_j = 1$  sector that is spanned by  $\{|\bullet \bullet\rangle, |\bullet \bullet\rangle\}$ . The process of bond converting  $|\cdots \bullet \bullet \cdots\rangle_{j,j+1} \leftrightarrow |\cdots \bullet \bullet \cdots\rangle_{j,j+1}$  under the action of  $\tilde{H}_K$  corresponds to the spin flip  $|\cdots \downarrow \cdots\rangle_{j+1/2} \leftrightarrow |\cdots \uparrow \cdots\rangle_{j+1/2}$  in  $\{\mathcal{K}_{S=1/2}\}$  under the action of  $H_{PXP}$ . In this regard, the spin-1 Kitaev chain with periodic boundary conditions can be exactly mapped to the a single qubit-flip model represented by the effective spin-1/2 PXP model. Remarkably, we find the ground state remains in the flux-free sector even in the presence of the uniaxial SIA. The action of the uniaxial SIA term on the active bases yields,

$$D\left[ (S_j^z)^2 + (S_{j+1}^z)^2 \right] | \cdots \bullet \bullet \cdots \rangle_{j,j+1} = 2D | \cdots \bullet \bullet \cdots \rangle_{j,j+1},$$

$$D\left[ (S_j^z)^2 + (S_{j+1}^z)^2 \right] | \cdots \bullet \bullet \cdots \rangle_{j,j+1} = 0,$$
(S8)

which results in an effective detuning term on the spin-1/2 degrees of freedom, i. e.,

$$2D \cdot n_{j+1/2} | \cdots \uparrow \cdots \rangle_{j+1/2} = 2D | \cdots \uparrow \cdots \rangle_{j+1/2},$$

$$2D \cdot n_{j+1/2} | \cdots \downarrow \cdots \rangle_{j+1/2} = 0.$$
(S9)

Therefore, the spin-1 Kitaev chain with uniaxial SIA can be mapped to the spin-1/2 detuned PXP model,

$$\hat{H}_{dPXP} = K \sum_{i=1}^{N} P_{i-1} X_i P_{i+1} + 2D \sum_{i=1}^{N} P_{i-1} n_i P_{i+1},$$
 (S10)

where  $n = 1 - P = |\uparrow\rangle\langle\uparrow|$  and  $X_i$  is the Pauli-X matrix.

#### 1.2. The detuned PXP Model

Consider the detuned PXP model in Eq.(S10) with L = 6 sites with K = 1,

$$H_{\text{dPXP}} = H_{\text{PXP}} + H_{\text{PNP}},$$

where

$$H_{\text{PXP}} = \sum_{i=1}^{6} P_{i-1} \sigma_i^x P_{i+1},$$

$$H_{\text{PNP}} = 2D \sum_{i=1}^{6} P_{i-1} n_i P_{i+1},$$
(S11)

where  $P_i = (1 - \sigma_i^z)/2$  and  $n_i = (1 + \sigma_i^z)/2$ . We impose the periodic boundary conditions, i.e.,  $\sigma_{L+1}^{\alpha} = \sigma_1^{\alpha}$ . The PXP part  $H_{\text{PXP}}$  does not conserve the total magnetization  $M_z$  along the z-axis and change  $M_z$  by one unit, so that it anticommutes with the parity operator of the number of down spins,  $\mathcal{P} = \prod_{i=1}^6 \sigma_i^z$ . As a result, for D = 0 the spectrum is symmetric with respect to the zero energy:  $H_{\text{PXP}}(\mathcal{P}|E\rangle) = -\mathcal{P}H_{\text{PXP}}|E\rangle = -E(\mathcal{P}|E\rangle)$ .

We take the fully polarized state  $|F\rangle = |\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\rangle$  as a reference state. To construct all the Bloch states for a six-site PXP-PNP ring, we use the following mapping between basis states of the spin-1 Kitaev model and the PXP model

$$|\bullet \bullet \bullet \bullet \bullet \rangle \leftrightarrow |\uparrow \downarrow \downarrow \uparrow \downarrow \downarrow \rangle. \tag{S12}$$

Note that there is always an ' $\bullet$ ' (' $\downarrow$ ') on the right of ' $\bullet$ ' (' $\uparrow$ ').

#### 1.3. The non-Hermitian PXP Model

We consider the operator  $X_i = |\downarrow\rangle_i \langle\uparrow|_i + |\uparrow\rangle_i \langle\downarrow|_i$ . To introduce non-Hermiticity, the symmetric coupling between  $|\uparrow\rangle$  and  $|\downarrow\rangle$  is generalized to a non-reciprocal form, expressed

$$|\downarrow\rangle_i\langle\uparrow|_i + |\uparrow\rangle_i\langle\downarrow|_i \to (1-g) |\downarrow\rangle_i\langle\uparrow|_i + (1+g) |\uparrow\rangle_i\langle\downarrow|_i, \tag{S13}$$

resulting in a non-Hermitian PXP Hamiltonian given by

$$\hat{H}_{\text{nH-dPXP}} = \sum_{i=1}^{N} P_{i-1}(X_i + igY_i)P_{i+1} + 2D\sum_{i=1}^{N} P_{i-1}n_iP_{i+1},$$
 (S14)

where the parameter g quantifies the strength of non-Hermiticity, and  $Y_i$  is the Pauli-Y matrix.

#### 1.4. Complete set of Bloch states

Beside the reference state  $|F\rangle = |\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\rangle$ , we construct the remaining 17 Bloch states as follows:

i) One-magnon Bloch states.

$$|\psi(k \in K_0)\rangle = \frac{1}{\sqrt{6}} \sum_{n=0}^{5} e^{ikn} T^n |\bullet \bullet \bullet \bullet \bullet \bullet\rangle,$$
 (S15)

where T is the translation operator by one lattice spacing. The wave number k takes values in the set  $(e^{i6k} = 1)$ 

$$K_0 = \left\{ -\pi, -\frac{2}{3}\pi, -\frac{\pi}{3}, 0, \frac{\pi}{3}, \frac{2}{3}\pi \right\}$$
 (S16)

to ensure the translational invariance of  $|\psi(k)\rangle$ , i.e.,  $T|\psi(k)\rangle = e^{-ik}|\psi(k)\rangle$ . There are totally 6 one-magnon Bloch states.

ii) Two-magnon Bloch states.

$$|\psi_2(k \in K_0)\rangle = \frac{e^{ik}}{\sqrt{N}} \sum_{n=0}^5 e^{ikn} T^n |\bullet \bullet \bullet \bullet \bullet \bullet \rangle,$$
 (S17)

and

$$|\psi_3(k \in K_1)\rangle = \frac{e^{i\frac{3}{2}k}}{\sqrt{3}} \sum_{n=0}^2 e^{ikn} T^n |\bullet \bullet \bullet \bullet \bullet \bullet\rangle.$$
 (S18)

In the above expressions, the subscript in each state indicates the separation between the two excitations. Note that the k in  $|\psi_3(k)\rangle$  is restricted to the following subset of  $K_0$  ( $e^{i3k} = 1$ ):

$$K_1 = \left\{ -\frac{2\pi}{3}, 0, \frac{2\pi}{3} \right\}. \tag{S19}$$

Thus, there are totally 6 + 3 = 9 two-magnon Bloch states.

iii) Three-magnon Bloch states.

$$|\psi_{2,2}(k \in K_2)\rangle = \frac{e^{i2k}}{\sqrt{2}} \sum_{n=0}^{1} e^{ikn} T^n |\bullet \bullet \bullet \bullet \bullet \bullet \rangle,$$
 (S20)

Similarly, the two indices denote the two separations between the three local excitations. The k in  $|\psi_{2,2}(k)\rangle$  takes values in the subset

$$K_2 = \{-\pi, 0\}. \tag{S21}$$

There are totally 2 three-magnon Bloch states.

After a straightforward calculation, we find that for each fixed k the allowed Bloch states form a closed set under the action of the Hamiltonian, resulting in four different types of effective single-particle Hamiltonians with dimensions given by

5, 
$$k = 0$$
,  $\{|F\rangle, |\psi(0)\rangle, |\psi_{2}(0)\rangle, |\psi_{3}(0)\rangle, |\psi_{2,2}(0)\}$ ,  
3,  $k = -\pi$ ,  $\{|\psi(-\pi)\rangle, |\psi_{2}(-\pi)\rangle, |\psi_{2,2}(-\pi)\rangle\}$ ,  
 $6 = 3 \times 2$ ,  $k = \pm \frac{2}{3}\pi$ ,  $\{|\psi(\pm \frac{2}{3}\pi)\rangle, |\psi_{2}(\pm \frac{2}{3}\pi)\rangle, |\psi_{3}(\pm \frac{2}{3}\pi)\rangle\}$ ,  
 $4 = 2 \times 2$ ,  $k = \pm \frac{\pi}{3}$ ,  $\{|\psi(\pm \frac{\pi}{3})\rangle, |\psi_{2}(\pm \frac{\pi}{3})\rangle\}$ . (S22)

#### 1.5. Non-Hermitian PXP Hamiltonian in the subspace of $k = -\pi$

We now focus on the  $k=-\pi$  subspace. Direct calculation gives

$$H_{\text{PXP}}^{(-\pi)} = \begin{pmatrix} 0 & -2 & 0 \\ -2 & 0 & -\sqrt{3} \\ 0 & -\sqrt{3} & 0 \end{pmatrix}, \tag{S23}$$

in the basis  $\{|\psi(-\pi)\rangle, |\psi_2(-\pi)\rangle, |\psi_{2,2}(-\pi)\rangle\}$ .

It is obvious that

$$H_{\text{PNP}}^{(-\pi)} = \begin{pmatrix} 2D & 0 & 0\\ 0 & 4D & 0\\ 0 & 0 & 6D \end{pmatrix}. \tag{S24}$$

Hence,

$$H_{\text{dPXP}}^{(-\pi)} = \begin{pmatrix} 2D & -2 & 0\\ -2 & 4D & -\sqrt{3}\\ 0 & -\sqrt{3} & 6D \end{pmatrix}. \tag{S25}$$

For completeness, we also write down  $H^{(0)}_{\text{dPXP}}$  in the basis  $\{|F\rangle, |\psi(0)\rangle, |\psi_2(0)\rangle, |\psi_3(0)\rangle, |\psi_{2,2}(0)\}$ :

$$H_{\text{dPXP}}^{(0)} = \begin{pmatrix} 0 & \sqrt{6} & 0 & 0 & 0 \\ \sqrt{6} & 2D & 2 & \sqrt{2} & 0 \\ 0 & 2 & 4D & 0 & \sqrt{3} \\ 0 & \sqrt{2} & 0 & 4D & 0 \\ 0 & 0 & \sqrt{3} & 0 & 6D \end{pmatrix}, \tag{S26}$$

for comparison with exact diagonalization. The non-Hermitian Hamiltonian can be written as

$$H_{\text{nH-dPXP}}^{(-\pi)} = \begin{pmatrix} 2D & -2(1-g) & 0\\ -2(1+g) & 4D & -\sqrt{3}(1-g)\\ 0 & -\sqrt{3}(1+g) & 6D \end{pmatrix}.$$
 (S27)

#### 1.6. Varying system sizes

To further substantiate the generality of our theoretical model, we have extended our analysis to systems with varying of system sizes. This section presents complementary theoretical results that demonstrate the existence of perfect QMBS in these extended parameter spaces (see Fig. S1). We have numerically verified that the high-fidelity of perfect scars emerge consistently across different system sizes. This includes one-dimensional chains with increased system sizes. Across the full space, we notice a clear pattern: the closer the parameter g is to an exceptional point (EP, |g| = 1), the more easily perfect scars appear. This proximity dependence appears insensitive to the actual system size. It's as if the EP acts like a focal point, pulling the dynamics toward states that can sustain these exact scars.

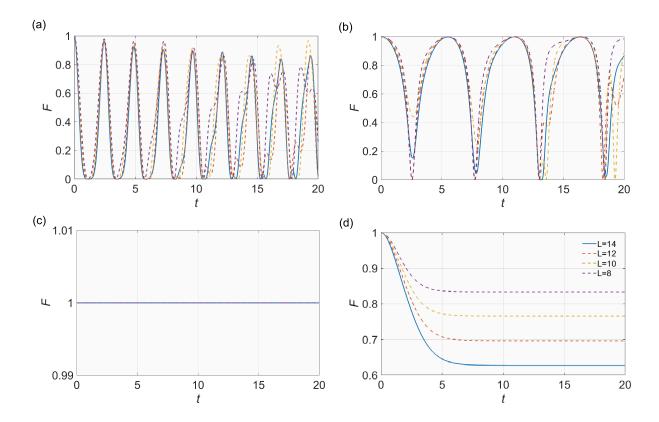



Figure S1. Time evolution of the normalized fidelity (F) for different system sizes, (a) g = 0.2, (b) g = 0.9, (c) g = 1.0, (d) g = 1.1. With increasing system size, With increasing system size, the high-fidelity plateaus shrink toward the exceptional point at g = 1, indicating that scarred oscillations induced by the non-Hermitian term persist across lattice sizes.

#### 2. THE SCHEME OF THE EXPERIMENT

Before delving into the specifics of our experimental procedure, we will first introduce the critical components within the optical components:

1). According to our experimental requirements, we have defined the horizontal polarization state  $|H\rangle$  and the vertical polarization state  $|V\rangle$  as follows

$$|H\rangle := |0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, |V\rangle := |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}.$$
 (S28)

- 2). The beam displacer (BD) is capable of fully transmitting horizontally polarized photons, but diverting them from their original path when they emit vertically polarized photons (4 mm in our experiments).
- 3). Polarization beam splitter (PBS) can divide polarized light into two paths, namely horizontal polarized light transmission and vertical polarized light reflection.
- 4). Dichroic mirror (DM) reflects light at a wavelength of 405 nm while allowing light at 810 nm to transmit.
- 5). We use half-wave plates (HWP:  $\alpha$ ) and quarter-wave plates (QWP:  $\beta$ ) to implement unitary operation. The  $\alpha$  or  $\beta$  here refers to the angle between the fast axis of the waveplate and the horizontal polarization direction. The *Jones matrix* of waveplates can be denoted as [1]

$$HWP(\alpha) = \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix}, QWP(\beta) = \begin{pmatrix} \cos^2 \beta + i \sin^2 \beta & (1-i)\cos \beta \sin \beta \\ (1-i)\cos \beta \sin \beta & \sin^2 \beta + i \cos^2 \beta \end{pmatrix}.$$
(S29)

#### 2.1. The heralded single-photon source

The experimental procedure necessitates a pump light, which is produced by an ultraviolet laser diode (LD) that has a central wavelength set at 405 nm. As shown in Fig.S2, the power of the pump light can be adjusted by the wave plate group (HWP and QWP) and PBS (see section of I). Then PBS and HWP are used to prepare the polarization state of the pump light (see section II). Here, the HWP is rotated by 0° (the angle between the fast axis and the horizontal direction). The crystal is operated at a temperature of 25°C.

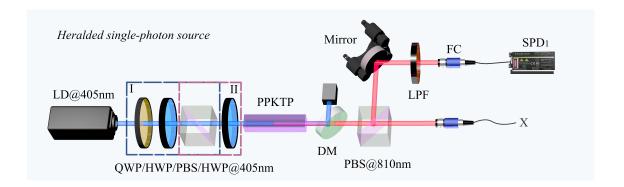



Figure S2. Experimental setup of the heralded single-photon source. (I)The 405 nm continuous-wave laser (LD@405 nm) passes through an isolator followed by a quarter-wave plate (QWP@405 nm), half-wave plate (HWP@405 nm) and polarizing beam splitter (PBS@405 nm) for power control. (II) After a PBS, the HWP (405 nm) polarization pure module the beam is focused into a PPKTP crystal (type-II SPDC). Signal and idler photons are separated from the pump by a dichroic mirror (DM) and a long-pass filter (LPF), then collected by a single-mode fiber coupler (FC). The idler photons are routed to a single photon detector (SPD). The single photons are collected by the X port and then transmitted to the subsequent experimental setup paths.

Because of the small size of the PPKTP crystal, two lenses are used to focus and reduce the diameter of the pump light (we do not include these in Fig. S2, the two lenses are matched to a wavelength of 405nm). The generation of photon pairs at 810 nm is achieved through type-II spontaneous parametric down-conversion (SPDC). In type-II SPDC, there indeed exists a specific polarization configuration where the signal photon and the idler photon are produced with orthogonal polarization states. This occurs because, within a nonlinear crystal, the pump photon can generate two photons with different polarization directions through nonlinear interaction. Specifically, if the pump photon is linearly polarized, for instance, horizontally polarized ( $|H_{\text{pump}}\rangle$ ), then through the process of type-II SPDC, a pair of photons can be produced where one is vertically polarized  $(|V_{\text{signal}}\rangle)$  or  $|V_{\text{idel}}\rangle$  and the other remains horizontally polarized ( $|H_{\text{signal}}\rangle$  or  $|H_{\text{idel}}\rangle$ ), or vice versa. Since the DM reflects the 405 nm pump light, the generated photon pairs at 810 nm naturally separate into two paths after passing through the PBS. Among them, the idler photon pairs, after passing through a long-pass filter (LPF) and being coupled by a fiber coupler (FC), are collected using a single-photon detector (SPD<sub>1</sub>). The signal photons are coupled via FC and fed into the experimental optical path at port X (see Fig. S2) through a single-mode fiber. Ultimately within the experimental optical path, the signal photons are collected by  $SPD_{2,3}$ , and coincidence counting is performed between  $SPD_1$  and  $SPD_{2,3}$ .

The construction method for a heralded single-photon source is not limited to the type illustrated in Fig. S2; if necessary, references to other types of articles may also be consulted [2–6].

#### **2.2.** Evolution method for Hermitian Hamiltonian g = 0

In this experiment, we have realized the Hermitian Hamiltonian  $H = H_{\rm dPXP}^{(-\pi)}$ , the expression of which is presented in Eq. (S25). Under the context of 3d space, we have adopted a method that decomposes unitary operations into a product of a series of 2d unitary matrices [7]. Specifically, this decomposition is represented in the form of  $U = U_{13}U_{23}U_{12}$ , where  $U = e^{-iHt}$  denotes the overall unitary operation, and  $U_{ij}$  (i, j = 1, 2, 3) represents the individual 2d unitary matrices that constitute U. The experimental setup of the evolution method for Hermitian model is shown in Fig. S3. The initial state prepared in the experiment as  $|\psi_3(\pi)\rangle = (|\mathbb{Z}_2\rangle - |\mathbb{Z}_2'\rangle)/\sqrt{2}$  with L=6, which is represented by  $|3\rangle := |H\rangle |\text{down}_1\rangle$ , where  $|H\rangle$  represent the horizontal polarization information.  $|\text{up}_{\text{m}}\rangle$  and  $|\text{down}_{\text{m}}\rangle$  (m = 1,2,3,4) denote the path information after BD, respectively.

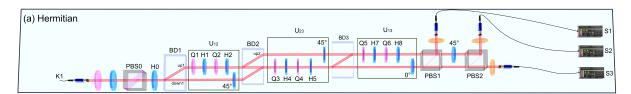



Figure S3. Experimental setup of the Hermitian model. We use  $PBS_0$ ,  $H_1$  and  $BD_1$  to encode the polarization information of the signal photons entering at port  $K_1$  and to prepare the required initial state. The additional HWP at 45° on the  $|down_1\rangle$  path flips polarisation so that this beam is steered upward by  $BD_2$ . After  $BD_2$  with a 45° HWP on  $|up_2\rangle$  that closes the interference network.

In the following, we denote  $\alpha_k$  as the angle of the half wave plate  $H_k$  (with k form 0 to 17), and denote  $\beta_t$  as the angle of the quarter wave plate  $Q_t$  (with t from 1 to 10).

#### **2.2.1**. Evolution under parameter D = 0

According to the Eq. (S25), the Hamiltonian  $H_0$  with D=0 can be expressed as

$$H_0 = \begin{pmatrix} 0 & -2 & 0 \\ -2 & 0 & -\sqrt{3} \\ 0 & -\sqrt{3} & 0 \end{pmatrix}. \tag{S30}$$

Since its evolved form is  $U_0 = e^{-iH_0t}$ , its matrix representation can be formulated as

$$U_{0} = \begin{pmatrix} \frac{1}{7}(3 + 4\cos\sqrt{7}t) & \frac{2i\sin\sqrt{7}t}{\sqrt{7}} & \frac{2\sqrt{3}}{7}(-1 + \cos\sqrt{7}t) \\ \frac{2i\sin\sqrt{7}t}{\sqrt{7}} & \cos\sqrt{7}t & -i\sqrt{\frac{3}{7}}\sin\sqrt{7}t \\ \frac{2\sqrt{3}}{7}(-1 + \cos\sqrt{7}t) & -i\sqrt{\frac{3}{7}}\sin\sqrt{7}t & \frac{1}{7}(3 + 4\cos\sqrt{7}t) \end{pmatrix}.$$
 (S31)

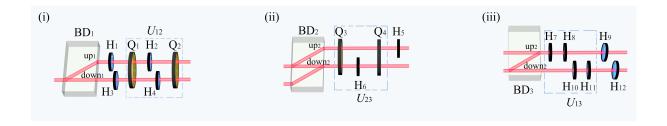



Figure S4. Experimental setup of D=0. The core principle involves decomposing the target quantum operator into a series of elementary unitary operators  $U_{ij}$ , which are physically realized via path encoding. Waveplates ( $H_{1-12}$  and  $Q_{1-4}$ ) set at specific angles perform the corresponding unitary operations. The initial state evolves through conditional operations applied along these paths, and finally outputs the target quantum state via path merging and interference. Detailed configurations of optical components and their corresponding state evolution results are provided in the Table. I.

The experimental setup of unitary operator  $U_0 = U_{13}U_{23}U_{12}$  is shown in Fig. S4. The decomposed  $U_{12}$ ,  $U_{23}$  and  $U_{13}$  takes the following theoretical for as

$$U_{12} = \begin{pmatrix} \frac{\sqrt{7}\cos\sqrt{7}t}{(4+3\cos\sqrt{7}t)\sqrt{\frac{4+3\cos^2\sqrt{7}t}{(4+3\cos\sqrt{7}t)^2}}} & \frac{2i\sin\sqrt{7}t}{(4+3\cos\sqrt{7}t)\sqrt{\frac{4+3\cos^2\sqrt{7}t}{(4+3\cos\sqrt{7}t)^2}}} & 0\\ \frac{2i\sin\sqrt{7}t}{(4+3\cos\sqrt{7}t)\sqrt{\frac{4+3\cos^2\sqrt{7}t}{(4+3\cos\sqrt{7}t)^2}}} & \frac{\sqrt{7}\cos\sqrt{7}t}{(4+3\cos\sqrt{7}t)\sqrt{\frac{4+3\cos^2\sqrt{7}t}{(4+3\cos\sqrt{7}t)^2}}} & 0\\ 0 & 0 & 1 \end{pmatrix},$$
 (S32)

$$U_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{11+3\cos2\sqrt{7}t}{2\sqrt{7}(4+3\cos\sqrt{7}t)\sqrt{\frac{4+3\cos^2\sqrt{7}t}{(4+3\cos\sqrt{7}t)^2}}} & i\sqrt{\frac{3}{7}}\sin\sqrt{7}t \\ 0 & i\sqrt{\frac{3}{7}}\sin\sqrt{7}t & \frac{11+3\cos2\sqrt{7}t}{2\sqrt{7}(4+3\cos\sqrt{7}t)\sqrt{\frac{4+3\cos^2\sqrt{7}t}{(4+3\cos\sqrt{7}t)^2}}} \end{pmatrix},$$
 (S33)

$$U_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{11+3\cos2\sqrt{7}t}{2\sqrt{7}(4+3\cos\sqrt{7}t)\sqrt{\frac{4+3\cos^2\sqrt{7}t}{(4+3\cos\sqrt{7}t)^2}}} & i\sqrt{\frac{3}{7}}\sin\sqrt{7}t \\ 0 & i\sqrt{\frac{3}{7}}\sin\sqrt{7}t & \frac{11+3\cos2\sqrt{7}t}{2\sqrt{7}(4+3\cos\sqrt{7}t)\sqrt{\frac{4+3\cos^2\sqrt{7}t}{(4+3\cos\sqrt{7}t)^2}}} \end{pmatrix}, \quad (S33)$$

$$U_{13} = \begin{pmatrix} \frac{1}{\sqrt{7}\sqrt{\frac{4+3\cos^2\sqrt{7}t}{(4+3\cos\sqrt{7}t)^2}}} & 0 & \frac{2\sqrt{\frac{6}{7}}(-1+\cos\sqrt{7}t)}{(4+3\cos\sqrt{7}t)\sqrt{\frac{11+3\cos2\sqrt{7}t}{(4+3\cos\sqrt{7}t)^2}}} \\ 0 & 1 & 0 \\ \frac{2\sqrt{\frac{6}{7}}(1-\cos\sqrt{7}t)}{(4+3\cos\sqrt{7}t)\sqrt{\frac{11+3\cos2\sqrt{7}t}{(4+3\cos\sqrt{7}t)^2}}} & 0 & \frac{1}{\sqrt{7}\sqrt{\frac{4+3\cos^2\sqrt{7}t}{(4+3\cos\sqrt{7}t)^2}}} \end{pmatrix}. \quad (S34)$$

In the experiment, we selected  $|\psi_0\rangle = |3\rangle := |H\rangle |down_1\rangle$  as the initial state. The state evolved from the initial state by  $U_0$  is recorded in Table. I for reference. Since we employed a method with a fixed initial state, the corresponding experimental outcomes were obtained by adjusting the evolution parameter t, with different values of t being achieved by altering the angles of the HWPs in each  $U_{ij}$ .

TABLE I. The preparation of the unitary operators  $U_0$  in the case of D=0.

| State prepared                                | Result                                                                                                                                                            |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $H_0 \ (\alpha_0 = 0^\circ)$                  | 0 angle                                                                                                                                                           |
| $\mathrm{BD}_1$                               | $ 0\rangle { m down}_1\rangle$                                                                                                                                    |
| $H_3 \ (\alpha_3 = 45^\circ)$                 | $ 1 angle 	ext{down}_1 angle$                                                                                                                                     |
| $Q_1 \ (\beta_1 = 0^\circ)$                   | $i 1 angle \mathrm{down}_1 angle$                                                                                                                                 |
| $H_4 \ (\alpha_4 = 0^\circ)$                  | $-i 1 angle \mathrm{down}_1 angle$                                                                                                                                |
| $Q_2 \ (\beta_2 = 0^\circ)$                   | $ 1 angle 	ext{down}_1 angle$                                                                                                                                     |
| $\mathrm{BD}_2$                               | $ 1 angle { m dowm}_2 angle$                                                                                                                                      |
| $Q_3 \ (\beta_3 = 0^\circ)$                   | $i 1 angle \mathrm{down}_2 angle$                                                                                                                                 |
| $H_6 (\alpha_6)$                              | $i\sin 2lpha_6 0 angle \mathrm{down}_2 angle-\mathrm{i}\cos 2lpha_6 1 angle \mathrm{down}_2 angle$                                                                |
| $Q_4 \ (\beta_4 = 0^\circ)$                   | $i\sin 2\alpha_6 0\rangle \mathrm{down}_2\rangle + \cos 2\alpha_6 1\rangle \mathrm{down}_2\rangle$                                                                |
| $\mathrm{BD}_3$                               | $i\sin 2\alpha_6 0\rangle \mathrm{down}_2\rangle + \cos 2\alpha_6 1\rangle \mathrm{up}_2\rangle$                                                                  |
| $\mathrm{H}_7 \; (lpha_7)$                    | $i\sin 2\alpha_6 0\rangle \mathrm{down}_2\rangle + (\cos 2\alpha_6\sin 2\alpha_7 0\rangle - \cos 2\alpha_6\cos 2\alpha_7 1\rangle) \mathrm{up}_2\rangle$          |
| $H_8 (\alpha_8) = 0^\circ$                    | $i\sin 2\alpha_6 0\rangle \mathrm{down}_2\rangle + (\cos 2\alpha_6\sin 2\alpha_7 0\rangle + \cos 2\alpha_6\cos 2\alpha_7 1\rangle) \mathrm{up}_2\rangle$          |
| $H_{10-11} \left( \alpha_{10-11} \right) = 0$ | $ i\sin 2\alpha_6  0\rangle  \mathrm{down}_2\rangle + (\cos 2\alpha_6 \sin 2\alpha_7  0\rangle + \cos 2\alpha_6 \cos 2\alpha_7  1\rangle)  \mathrm{up}_2\rangle $ |

#### **2.2.2.** Evolution under different parameters D = -0.655 and D = -2

In order to enhance our understanding and research on the Hermitian Hamiltonian, we have added other parameters of D.  $H_1$  and  $H_2$  correspond to the Hamiltonians for D = -0.655 and D = -2, respectively, with their experimental setups illustrated in Fig. S5. These implementations employ the same decomposition method as the D = 0 case, but require more complex sequences of optical operations.

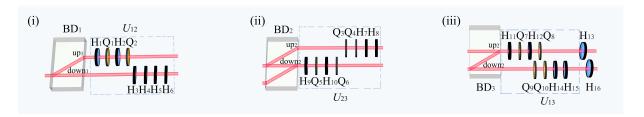



Figure S5. Experimental setup of D = -0.655 and D = -2. The simulation of temporal dynamics is achieved through precise adjustments of HWPs and QWPs angles within each  $U_{ij}$  subunit, with complete experimental parameters provided in Table. II.

Based on the Eq. (S25), the Hamiltonian  $H_1$  with D = -0.655 can be expressed as

$$H_1 = \begin{pmatrix} -1.31 & -2 & 0 \\ -2 & -2.62 & -\sqrt{3} \\ 0 & -\sqrt{3} & -3.93 \end{pmatrix}.$$
 (S35)

Since its evolved form is  $U_1 = e^{-iH_1t}$ , its matrix representation can be formulated as

```
U_1 = ((0.54\cos 0.405t + 0.367\cos 2.771t + 0.093\cos 5.494t) + i(-0.54\sin 0.405t + 0.367\sin 2.771t + 0.093\sin 5.494t))|1\rangle\langle 1| \\ + ((-0.463\cos 0.405t + 0.268\cos 2.771t + 0.195\cos 5.494t) + i(0.463\sin 0.405t + 0.268\sin 2.771t + 0.195\sin 5.494t))|1\rangle\langle 2| \\ + ((0.185\cos 0.405t - 0.401\cos 2.771t + 0.216\cos 5.494t) + i(-0.185\sin 0.405t - 0.401\sin 2.771t + 0.216\sin 5.494t))|1\rangle\langle 3| \\ + ((-0.463\cos 0.405t + 0.268\cos 2.771t + 0.195\cos 5.494t) + i(0.463\sin 0.405t + 0.268\sin 2.771t + 0.195\sin 5.494t))|2\rangle\langle 1| \\ + ((0.397\cos 0.405t + 0.196\cos 2.771t + 0.407\cos 5.494t) + i(-0.397\sin 0.405t + 0.196\sin 2.771t + 0.407\sin 5.494t))|2\rangle\langle 2| \\ + ((-0.159\cos 0.405t - 0.293\cos 2.771t + 0.451\cos 5.494t) + i(0.159\sin 0.405t - 0.293\sin 2.771t + 0.451\sin 5.494t))|2\rangle\langle 3| \\ + ((0.185\cos 0.405t - 0.401\cos 2.771t + 0.216\cos 5.494t) + i(-0.185\sin 0.405t - 0.401\sin 2.771t + 0.216\sin 5.494t))|3\rangle\langle 1| \\ + ((-0.159\cos 0.405t - 0.293\cos 2.771t + 0.451\cos 5.494t) + i(0.159\sin 0.405t - 0.293\sin 2.771t + 0.216\sin 5.494t))|3\rangle\langle 2| \\ + ((-0.159\cos 0.405t - 0.293\cos 2.771t + 0.451\cos 5.494t) + i(0.159\sin 0.405t - 0.293\sin 2.771t + 0.451\sin 5.494t))|3\rangle\langle 2| \\ + ((-0.159\cos 0.405t - 0.293\cos 2.771t + 0.451\cos 5.494t) + i(0.159\sin 0.405t - 0.293\sin 2.771t + 0.451\sin 5.494t))|3\rangle\langle 3|.
```

The evolution process of  $H_1$  (or  $H_2$ ) under a fixed initial state  $|\psi_0\rangle$  is detailed in Table. II. The outcomes are obtained by rotating the angles of the HWP and the QWP.

TABLE II. The preparation of the unitary operators  $U_1$  (or  $U_2$ ) in the case of D=-0.655 (or D=-2).

| State prepared                                       | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $H_0 \ (\alpha_0 = 0^\circ)$                         | $ 0\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| $\mathrm{BD}_1$                                      | $ 0 angle { m down_1} angle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| $H_{3-5} \ (\alpha_{3-5} = 0^{\circ})$               | $ 0 angle 	ext{down}_1 angle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| $H_6~(\alpha_6=45^\circ)$                            | $ 1 angle 	ext{down}_1 angle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| $\mathrm{BD}_2$                                      | $ 1 angle { m dowm_2} angle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| $H_9 (\alpha_9)$                                     | $\sin 2\alpha_9  0\rangle  \mathrm{down}_2\rangle - \cos 2\alpha_9  1\rangle  \mathrm{down}_2\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| $Q_5 (\beta_9)$                                      | $\tfrac{1+i}{2}(\sin 2\alpha_9  -  i\sin 2(\alpha_9-\beta_5)) 0\rangle down_2\rangle  +  \tfrac{1-i}{2}(-i\cos 2\alpha_9  +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                      | $\cos 2(\alpha_9 - \beta_5)) 1\rangle {\rm down}_2\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| $\mathrm{H}_{10}~(lpha_{10})$                        | $\begin{array}{l} \frac{-1-i}{2}(\sin 2(\alpha_{10}-\alpha_{9})+i\sin 2(\alpha_{10}+\alpha_{9}-\beta_{5})) 0\rangle down_{2}\rangle+\frac{1+i}{2}(\cos 2(\alpha_{10}-\alpha_{9})+i\cos 2(\alpha_{10}+\alpha_{9}-\beta_{5})) 1\rangle down_{2}\rangle \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| $Q_6 (\beta_6)$                                      | $(-i\cos(2\alpha_9 - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6)\cos(2\alpha_9 - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6)\cos(2\alpha_9 - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6)\cos(2\alpha_9 - \beta_6)\cos($ |  |  |  |
| <b>(</b> 0 (~0)                                      | $\beta_5 - \beta_6)) 0\rangle down_2\rangle + (\frac{1}{2}(\cos 2(\alpha_{10} - \alpha_9) + i(\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + i(\cos 2(\alpha_{10} + \alpha_9 - \alpha_9) + i(\cos 2(\alpha_{10} + \alpha_9) + i(\alpha_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                      | $\cos 2(\alpha_{10} - \alpha_9 - \beta_6) + i \cos 2(\alpha_{10} + \alpha_9 - \beta_5 - \beta_6)))) 1\rangle  \text{down}_2\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| $\mathrm{BD}_3$                                      | $(-i\cos(2\alpha_9 - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6)\cos(2\alpha_9 - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6)\cos(2\alpha_9 - \beta_$        |  |  |  |
|                                                      | $\beta_5 - \beta_6)) 0\rangle \operatorname{down}_2\rangle + (\frac{\mathrm{i}}{2}(\cos 2(\alpha_{10} - \alpha_9) + \mathrm{i}(\cos 2(\alpha_{10} + \alpha_9 - \beta_5) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                      | $\cos 2(\alpha_{10} - \alpha_9 - \beta_6) + i \cos 2(\alpha_{10} + \alpha_9 - \beta_5 - \beta_6)))) 1\rangle up_2\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| $\mathrm{H}_{11} \; (lpha_{11})$                     | $(-i\cos(2\alpha_9 - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6)\cos(2\alpha_9 - \beta_$        |  |  |  |
| ( ,                                                  | $\beta_5 - \beta_6) \sin 2\alpha_{11}  0\rangle  \text{down}_2\rangle + \frac{1}{2} \cos 2\alpha_{11} (-\text{i} \cos 2(\alpha_{10} - \alpha_9) + \cos 2(\alpha_{10} + \alpha_9)) + \cos 2(\alpha_{10} + \alpha_9) + \cos 2(\alpha_{10} + \alpha_9))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                      | $\alpha_9 - \beta_5$ ) + cos 2( $\alpha_{10} - \alpha_9 - \beta_6$ ) + i cos 2( $\alpha_{10} + \alpha_9 - \beta_5 - \beta_6$ )) 1\  up <sub>2</sub> \  +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                      | $\frac{i}{2}(\cos 2(\alpha_{10} - \alpha_9) + i(\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9 - \beta_6) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                      | $i\cos 2(\alpha_{10} + \alpha_9 - \beta_5 - \beta_6))) 0\rangle up_2\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| $Q_7 (\beta_7)$                                      | $(-i\cos(2\alpha_9 - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_6)\sin(2\alpha_{10} - \beta_5 -$                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                      | $\beta_5 - \beta_6) \sin 2\alpha_{11}  0\rangle  \text{down}_2\rangle + \frac{1+i}{4} (-i\cos 2(\alpha_{10} - \alpha_9) + \cos 2(\alpha_{10} + \alpha_9 - \alpha_9)) + \cos 2(\alpha_{10} + \alpha_9 - \alpha_9) + \cos 2(\alpha_{10} + \alpha_9 - \alpha_9))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                      | $\beta_5$ ) + cos 2( $\alpha_{10}$ - $\alpha_9$ - $\beta_6$ ) + i cos 2( $\alpha_{10}$ + $\alpha_9$ - $\beta_5$ - $\beta_6$ ))(cos 2 $\alpha_{11}$ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                      | $i\cos 2(\alpha_{11}-\beta_7)) 1\rangle up_2\rangle \ + \ \tfrac{1+i}{4}(\cos 2(\alpha_{10}-\alpha_9) \ + \ i(\cos 2(\alpha_{10}+\alpha_9-\beta_5) \ +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                      | $\cos 2(\alpha_{10} - \alpha_9 - \beta_6)$ + $i\cos 2(\alpha_{10} + \alpha_9 - \beta_5 - \beta_6)))(i\sin 2\alpha_{11}$ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                                      | $\sin 2(lpha_{11}-eta_7)) 0 angle \mathrm{up}_2 angle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| $H_{12}$ $(\alpha_{12})$                             | $(-i\cos(2\alpha_9-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)+\cos(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_9-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_5-\beta_6)\sin(2\alpha_{10}-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6-\beta_6-\beta_6)\sin(2\alpha_{10}-\beta_6-\beta_6-\beta_6-\beta_6-\beta_6-\beta_6-\beta_6-\beta_6-\beta_6-\beta_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                      | $\beta_5 \ - \ \beta_6)) \sin 2\alpha_{11}  0\rangle   down_2\rangle \ + \ \frac{-1+i}{4} (\cos 2(\alpha_{10} \ - \ \alpha_9) \ + \ i\cos 2(\alpha_{10} \ + \ \alpha_9 \ - \ - \ - \ - \ - \ - \ - \ - \ - \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                      | $(\beta_5) + \cos 2(\alpha_{10} - \alpha_9 - \beta_6) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5 - \beta_6))(\cos 2(\alpha_{11} - \alpha_{12}) + \alpha_9 - \beta_6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                      | $i\cos 2(\alpha_{11}+\alpha_{12}-\beta_7)) 1\rangle up_2\rangle+\tfrac{1+i}{4}(\cos 2(\alpha_{10}-\alpha_9)+i(\cos 2(\alpha_{10}+\alpha_9-\beta_5)+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                      | $\cos 2(\alpha_{10} - \alpha_9 - \beta_6) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5 - \beta_6)))(i\sin 2\alpha_{11} - \alpha_{12} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                      | $\sin 2(\alpha_{11} + \alpha_{12} - \beta_7)) 0\rangle \mathrm{up}_2\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| $Q_8 (\beta_8)$                                      | $(-i\cos(2\alpha_9 - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_6)\sin(2$                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                      | $\beta_6$ )) $\sin 2\alpha_{11} 0\rangle down_2\rangle + \frac{-1}{4}(\cos 2(\alpha_{10} - \alpha_9) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9) + i\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9) + i\cos $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                      | $\alpha_9 - \beta_6$ ) + i cos 2( $\alpha_{10} + \alpha_9 - \beta_5 - \beta_6$ ))(cos 2( $\alpha_{11} - \alpha_{12}$ ) + i cos 2( $\alpha_{11} + \alpha_{12} - \beta_7$ ) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                      | $i\cos 2(\alpha_{11} + \alpha_{12} - \beta_7 - \beta_8)\cos 2(\alpha_{11}\alpha_{12} + \beta_8)) 1\rangle up_2\rangle$ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                      | $\frac{-1}{4}(\cos 2(\alpha_{10} - \alpha_9) + i(\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9 - \beta_6) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                      | $i\cos 2(\alpha_{10} + \alpha_9 - \beta_5 - \beta_6))(\sin 2(\alpha_{11} - \alpha_{12}) - i\sin 2(\alpha_{11} + \alpha_{12} - \beta_7) -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                                      | $i \sin 2(\alpha_{11} + \alpha_{12} - \beta_7 - \beta_8) + \sin 2(\alpha_{11} - \alpha_{12}\beta_8)) 0\rangle up_2\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| $Q_{9-10} \ (\beta_{9-10} = 0^{\circ})$              | $(-i\cos(2\alpha_9 - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_6)\sin$                         |  |  |  |
|                                                      | $\beta_6)) \sin 2\alpha_{11}  0\rangle  down_2\rangle + \frac{-1}{4} (\cos 2(\alpha_{10} - \alpha_9) + i \cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9 - \beta_6) + i \cos 2(\alpha_{10} + \alpha_9 - \beta_5 - \beta_6)) (\cos 2(\alpha_{11} - \alpha_{12}) + i \cos 2(\alpha_{11} + \alpha_{12} - \beta_7) + i \cos 2(\alpha_{10} + \alpha_9 - \beta_5 - \beta_6)) (\cos 2(\alpha_{11} - \alpha_{12}) + i \cos 2(\alpha_{11} + \alpha_{12} - \beta_7) + i \cos 2(\alpha_{10} + \alpha_9 - \beta_5 - \beta_6)) (\cos 2(\alpha_{11} - \alpha_{12}) + i \cos 2(\alpha_{11} + \alpha_{12} - \beta_7) + i \cos 2(\alpha_{10} + \alpha_9 - \beta_5 - \beta_6)) (\cos 2(\alpha_{11} - \alpha_{12}) + i \cos 2(\alpha_{11} + \alpha_{12} - \beta_7) + i \cos 2(\alpha_{10} - \alpha_9 - \beta_5)) (\cos 2(\alpha_{11} - \alpha_{12}) + i \cos 2(\alpha_{11} - \alpha_{12}) + i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                      | $\alpha_9 - \beta_6$ ) + 1 cos 2( $\alpha_{10} + \alpha_9 - \beta_5 - \beta_6$ ))(cos 2( $\alpha_{11} - \alpha_{12}$ ) + 1 cos 2( $\alpha_{11} + \alpha_{12} - \beta_7 - \beta_8$ ) cos 2( $\alpha_{11}\alpha_{12} + \beta_8$ )) 1 $\rangle$  up <sub>2</sub> $\rangle$ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                                      | $\frac{-1}{4}(\cos 2(\alpha_{10} - \alpha_9) + i(\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9 - \beta_6) + \cos 2(\alpha_{10} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                      | $\frac{1}{4}(\cos 2(\alpha_{10} - \alpha_9)^2 + 1(\cos 2(\alpha_{10} + \alpha_9 - \beta_5)^2 + \cos 2(\alpha_{10} - \alpha_9 - \beta_6)^2 + \cos 2(\alpha_{10} + \alpha_9 - \beta_5 - \beta_6)))(\sin 2(\alpha_{11} - \alpha_{12})^2 - i\sin 2(\alpha_{11} + \alpha_{12} - \beta_7)^2 - \cos 2(\alpha_{10} - \alpha_9)^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{10} - \alpha_{10})^2 + i\cos 2(\alpha_{10} - \alpha_{10} - \alpha_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                      | $i \sin 2(\alpha_{11} + \alpha_{12} - \beta_7 - \beta_8) + \sin 2(\alpha_{11} - \alpha_{12}\beta_8)  0\rangle  up_2\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| $H_{14} = (\alpha_{14} + \epsilon_{25} = 0^{\circ})$ | $ (-i\cos(2\alpha_9 - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta_6) + \cos(2\alpha_{10} - \beta_5 - \beta_6)\sin(2\alpha_9 - \beta_5 - \beta_6)\sin(2\alpha_{10} - \beta_5 - \beta$                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 1114-15 (414-15 - 0 )                                | $(2\alpha_{10} + \alpha_{10} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                      | $\alpha_{9} - \beta_{6}) + i \cos 2(\alpha_{10} + \alpha_{9} - \beta_{5} - \beta_{6}))(\cos 2(\alpha_{11} - \alpha_{12}) + i \cos 2(\alpha_{11} + \alpha_{12} - \beta_{5}) + \cos 2(\alpha_{11} + \alpha_{12} - \beta_{7}) + \cos 2(\alpha_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                      | $\alpha_9 = \beta_6$ ) + $1\cos 2(\alpha_{10} + \alpha_9 = \beta_5 - \beta_6)$ + $(\cos 2(\alpha_{11} + \alpha_{12} + \beta_7) + \cos 2(\alpha_{11} + \alpha_{12} - \beta_7 - \beta_8)\cos 2(\alpha_{11}\alpha_{12} + \beta_8)) 1\rangle up_2\rangle$ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                      | $\frac{-1}{4}(\cos 2(\alpha_{10} - \alpha_9) + i(\cos 2(\alpha_{10} + \alpha_9 - \beta_5) + \cos 2(\alpha_{10} - \alpha_9 - \beta_6) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                      | $i\cos 2(\alpha_{10} + \alpha_9 - \beta_5 - \beta_6)))(\sin 2(\alpha_{11} - \alpha_{12}) - i\sin 2(\alpha_{11} + \alpha_{12} - \beta_7) - \beta_6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                      | $i \sin 2(\alpha_{11} + \alpha_{12} - \beta_7 - \beta_8) + \sin 2(\alpha_{11} - \alpha_{12}\beta_8)) 0\rangle  up_2\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                      | ( 11 · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |

Here, the choice of  $H_1$  results in the form of  $U_1$  not being expressible as the elegant analytical solution shown in Eq. (S31). Consequently, the  $U_{ij}$  decomposed according to  $U_1$ also fails to provide an analytical solution form. However, we list the corresponding matrices for  $U_{ij}$  at t = 0.4 as an example:

$$U_{12} = \begin{pmatrix} -0.163 + 0.587i & -0.663 - 0.434i & 0 \\ -0.664 + 0.433i & 0.161 + 0.588i & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
 (S37)

$$U_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.802 - 0.188i & -0.552 + 0.129i \\ 0 & 0.552 + 0.129i & 0.802 + 0.188i \end{pmatrix},$$
 (S38)

$$U_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.802 - 0.188i & -0.552 + 0.129i \\ 0 & 0.552 + 0.129i & 0.802 + 0.188i \end{pmatrix},$$

$$U_{13} = \begin{pmatrix} 0.176 - 0.938i & 0 & -0.204 - 0.218i \\ 0 & 1 & 0 \\ 0.204 - 0.218i & 0 & 0.176 + 0.938i \end{pmatrix}.$$
(S38)

Similar to the process for handling  $H_1$ , we first express  $H_2$  as

$$H_2 = \begin{pmatrix} -4 & -2 & 0 \\ -2 & -8 & -\sqrt{3} \\ 0 & -\sqrt{3} & -12 \end{pmatrix}, \tag{S40}$$

and accordingly, the corresponding unitary operation  $U_2=e^{-iH_2t}$  is represented as

```
U_2 = ((0.832\cos 3.119t + 0.16\cos 8.174t + 0.007\cos 12.706t) + i(0.832\sin 3.119t + 0.16\sin 8.174t + 0.007\sin 12.706t))|1\rangle\langle 1|
                                  +\left((-0.367\cos 3.119t+0.334\cos 8.174t+0.033\cos 12.706t)+i(-0.367\sin 3.119t+0.334\sin 8.174t+0.033\sin 12.706t))|1\rangle\langle 2|1\rangle\langle 2|1\rangle\langle
                                  +((-0.367\cos 3.119t + 0.334\cos 8.174t + 0.033\cos 12.706t) + i(-0.367\sin 3.119t + 0.334\sin 8.174t + 0.033\sin 12.706t))|2\rangle\langle 1|
                                  +\left((0.161\cos 3.119t+0.697\cos 8.174t+0.142\cos 12.706t)+i(0.161\sin 3.119t+0.697\sin 8.174t+0.142\sin 12.706t)\right)|2\rangle\langle 2|
                                  +\left((-0.031\cos 3.119t - 0.316\cos 8.174t + 0.347\sin 12.706t) + i(-0.031\sin 3.119t - 0.316\sin 8.174t + 0.347\sin 12.706t))|2\rangle\langle3|+i(-0.031\cos 3.119t - 0.316\cos 8.174t + 0.347\sin 12.706t)|2\rangle\langle3|+i(-0.031\cos 3.119t - 0.316\cos 3.119t + 0.316\cos 3.1
                                  +\left((0.071\cos 3.119t - 0.151\cos 8.174t + 0.08\cos 12.706t) + i(0.071\sin 3.119t - 0.151\sin 8.174t + 0.08\sin 12.706t))|3\rangle\langle 1|
                                  +\left((-0.031\cos 3.119t - 0.316\cos 8.174t + 0.347\sin 12.706t) + i(-0.031\sin 3.119t - 0.316\sin 8.174t + 0.347\sin 12.706t))|3\rangle\langle 2|+i(-0.031\cos 3.119t - 0.316\cos 
                                  +\left((0.006\cos 3.119t + 0.143\cos 8.174t + 0.851\cos 12.706t) + i(0.006\sin 3.119t + 0.143\sin 8.174t + 0.851\sin 12.706t))|3\rangle\langle3|.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (S41)
```

With t = 0.4 as an example, the form of  $U_{ij}$  resulting from the decomposition of  $U_2$  is

illustrated as

$$U_{12} = \begin{pmatrix} 0.037 + 0.699i & -0.463 - 0.544i & 0 \\ -0.551 + 0.455i & -0.158 + 0.681i & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$U_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.096 + 0.842i & 0.429 - 0.313i \\ 0 & -0.429 - 0.313094i & 0.096 - 0.842i \end{pmatrix},$$

$$U_{13} = \begin{pmatrix} 0.967 - 0.09i & 0 & 0.0118 + 0.238i \\ 0 & 1 & 0 \\ -0.0118 = +0.238i & 0 & 0.967 + 0.09i \end{pmatrix}.$$
(S44)

$$U_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.096 + 0.842i & 0.429 - 0.313i \\ 0 & -0.429 - 0.313094i & 0.096 - 0.842i \end{pmatrix},$$
(S43)

$$U_{13} = \begin{pmatrix} 0.967 - 0.09i & 0 & 0.0118 + 0.238i \\ 0 & 1 & 0 \\ -0.0118 = +0.238i & 0 & 0.967 + 0.09i \end{pmatrix}.$$
 (S44)

#### 2.3. Evolution method for non-Hermitian Hamiltonian D=0

In this experiment, we have realized the non-Hermitian Hamiltonian  $H=H_{\mathrm{dPXP}}^{(-\pi)}$ , the expression of which is presented in Eq. (S27). In the context of a 3D space, we have employed a method based on singular value decomposition (SVD)  $\mathbb{U} = e^{-iH_{D=0}^{-\pi}t} = USV$  [8]. U(V) is unitary operator, and S as a diagonal operation with non-negative entries, and then decompose it into a product of a series of 2D unitary matrices. The experimental setup of the evolution method for Hermitian model is shown in Fig. S6.

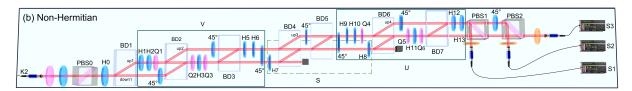



Figure S6. Experimental setup of the non-Hermitian model. The implementation of the non-Hermitian evolution operator follows a distinct decomposition strategy from the Hermitian case. The overall operator is first subjected to a singular value decomposition (SVD). Subsequently, each component resulting from the SVD is further decomposed into a sequence of 2×2 unitary operators. We use PBS<sub>0</sub>, H<sub>1</sub> and BD<sub>1</sub> to encode the polarization information of the signal photons entering at port  $K_2$  and to prepare the required initial state. These unitary operations are physically realized via path encoding using the depicted optical elements, including waveplates  $(H_{1-13} \text{ and } Q_{1-6})$  and  $BD_{1-7}$ .

U and V are unitary operators, and S as a diagonal operator with non-negative entries. The unitary operator  $V_{ij}$   $(i, j = 1, 2, 3, i \neq j)$  is implemented with  $H_{1-6}$  and  $Q_{1-3}$  after  $BD_1$ . The diagonal operator S is put into action through  $H_{7,8}$  and  $BD_{4-6}$ . The unitary operator  $U_{ij}$  is realized with  $H_{9-13}$  and  $Q_{4-6}$  after  $BD_5$ .  $H_{13,16}$  and  $BD_7$  are used for the final interference. The final state evolved after these unitary operations is measured by a measurement module composed of  $PBS_1$ , a HWP (45°) and  $PBS_2$ . After passing through the measurement module, the photons are collected by  $S_{1-3}$  through FP, and the idle photons collected by another SPD are counted together. The initial state prepared in the experiment as  $|\psi_3(\pi)\rangle = (|\mathbb{Z}_2\rangle - |\mathbb{Z}_2'\rangle)/\sqrt{2} = |3\rangle$  with L=6, where  $|3\rangle := |H\rangle |down_1\rangle$ .

According to the Eq. (S27), the non-Hermitian Hamiltonian  $H_3$  with D=0 can be expressed as

$$H_3 = \begin{pmatrix} 0 & -2(1-g) & 0\\ -2(1+g) & 0 & -\sqrt{3}(1-g)\\ 0 & -\sqrt{3}(1+g) & 0 \end{pmatrix}.$$
 (S45)

Since its evolved form is  $\mathbb{U} = e^{-iH_3t}$ , its matrix representation can be formulated as

$$\mathbb{U} = \begin{pmatrix} \frac{1}{7} (3 + 4 \cosh \left[\sqrt{7} \sqrt{-1 + g^2} t\right]) & -\frac{2i(-1 + g) \sinh \left[\sqrt{7} \sqrt{-1 + g^2} t\right]}{\sqrt{7} \sqrt{-1 + g^2}} & -\frac{2\sqrt{3} (-1 + g)(-1 + \cosh \left[\sqrt{7} \sqrt{-1 + g^2} t\right])}{7(1 + g)} \\ & \frac{2i(1 + g) \sinh \left[\sqrt{7} \sqrt{-1 + g^2} t\right]}{\sqrt{7} \sqrt{-1 + g^2}} & \cosh \left[\sqrt{7} \sqrt{-1 + g^2} t\right] & -i\frac{\sqrt{\frac{3}{7}} (-1 + g) \sinh \left[\sqrt{7} \sqrt{-1 + g^2} t\right]}{\sqrt{-1 + g^2}} \\ & -\frac{2\sqrt{3} (1 + g)(-1 + \cosh \left[\sqrt{7} \sqrt{-1 + g^2} t\right])}{7(1 + g)} & i\frac{\sqrt{\frac{3}{7}} (1 + g) \sinh \left[\sqrt{7} \sqrt{-1 + g^2} t\right]}{\sqrt{-1 + g^2}} & \frac{1}{7} (3 + 4 \cosh \left[\sqrt{7} \sqrt{-1 + g^2} t\right]) \end{pmatrix}. \tag{S46}$$

Given the complexity of the analytical SVD of  $\mathbb{U}$ , we consider a specific example with g=0.2 (t=0.4) to present the corresponding numerical results. First, we provide the decomposition of the unitary operator V,

$$V = \begin{pmatrix} 0.7853139411543668 & -0.5672020334732046 & -0.24812067034500962 \\ 0.5674940565426148i & 0.4993238670332199i & 0.6546954800514503i \\ -0.2474520349833533 & -0.6549484934213169 & 0.7140097767872257 \end{pmatrix}. (S47)$$

The unitary operators  $V_{ij}$  as

$$V_{12} = \begin{pmatrix} 0.6605750303252698 & -0.7507600344389468 & 0\\ 0.7507600344389467i & 0.6605750303252698i & 0\\ 0 & 0 & 1 \end{pmatrix},$$
(S48)

$$V_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.7558927360414313 & 0.6546954800514504i \\ 0 & 0.6546954800514504i & 0.7558927360414313 \end{pmatrix},$$
(S49)  

$$V_{13} = \begin{pmatrix} 0.9445913986770871 & 0 & -0.3282485179635459 \\ 0 & 1 & 0 \\ 0.3282485179635459 & 0 & 0.9445913986770871 \end{pmatrix}.$$
(S50)

$$V_{13} = \begin{pmatrix} 0.9445913986770871 & 0 & -0.3282485179635459 \\ 0 & 1 & 0 \\ 0.3282485179635459 & 0 & 0.9445913986770871 \end{pmatrix}.$$
 (S50)

Then, The operator S corresponds to a diagonal matrix,

$$S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.818 & 0 \\ 0 & 0 & 0.668 \end{pmatrix}. \tag{S51}$$

And another unitary operator U as,

$$U = \begin{pmatrix} 0.24812067034501029 & -0.5672020334732053 & -0.24812067034500962 \\ 0.6546954800514512i & -0.4993238670332173i & 0.5674940565426155i \\ -0.7140097767872242 & -0.6549484934213176 & 0.24745203498335488 \end{pmatrix}, (S52)$$

$$U_{12} = \begin{pmatrix} -0.6064337091410452 & -0.7951340493384955 & 0\\ 0.7951340493384955i & -0.6064337091410452i & 0\\ 0 & 0 & 1 \end{pmatrix},$$
(S53)

$$U_{23} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0.8233774928845254 & 0.5674940565426156i \\ 0 & 0.5674940565426156i & 0.8233774928845254 \end{pmatrix},$$

$$U_{13} = \begin{pmatrix} 0.30053291123669174 & 0 & -0.9537714449822865 \\ 0 & 1 & 0 \\ 0.9537714449822865 & 0 & 0.30053291123669174 \end{pmatrix}.$$
(S54)

$$U_{13} = \begin{pmatrix} 0.30053291123669174 & 0 & -0.9537714449822865 \\ 0 & 1 & 0 \\ 0.9537714449822865 & 0 & 0.30053291123669174 \end{pmatrix}.$$
 (S55)

### 3. THE RESULT OF THE EXPERIMENT

### 3.1. The experimental result for Hermitian case

We list the experimental results for the fidelity of D=0,-0.655,-2 in the Hermitian case, as shown in Table. III

TABLE III. The fidelity of D for different times.

|     | TABLE III. The lidenty of D for different times. |                              |                          |  |
|-----|--------------------------------------------------|------------------------------|--------------------------|--|
| t   | $D = 0 \ (\pm 10^{-5})$                          | $D = -0.655 \ (\pm 10^{-5})$ | $D = -2 \ (\pm 10^{-5})$ |  |
| 0   | 0.99790(1325)                                    | 0.99882(229)                 | 0.99692(268)             |  |
| 0.4 | 0.59478(1029)                                    | 0.61480(159)                 | 0.68047(223)             |  |
| 0.8 | 0.10871(333)                                     | 0.14875(98)                  | 0.52973(197)             |  |
| 1.2 | 0.00801(88)                                      | 0.01524(50)                  | 0.91767(255)             |  |
| 1.6 | 0.11496(371)                                     | 0.25247(118)                 | 0.86026(234)             |  |
| 2   | 0.64928(1095)                                    | 0.83958(193)                 | 0.52886(183)             |  |
| 2.4 | 0.99464(1396)                                    | 0.87237(205)                 | 0.71807(221)             |  |
| 2.8 | 0.51848(92)                                      | 0.45198(148)                 | 0.97627(261)             |  |
| 3.2 | 0.09305(71)                                      | 0.13433(103)                 | 0.66460(193)             |  |
| 3.6 | 0.01935(38)                                      | 0.01649(59)                  | 0.53247(169)             |  |
| 4   | 0.16361(60)                                      | 0.46289(148)                 | 0.93279(231)             |  |
| 4.4 | 0.70006(87)                                      | 0.87166(198)                 | 0.84523(230)             |  |
| 4.8 | 0.98660(118)                                     | 0.72326(178)                 | 0.50632(167)             |  |
| 5.2 | 0.52759(126)                                     | 0.44003(132)                 | 0.75521(193)             |  |
| 5.6 | 0.09074(70)                                      | 0.06154(100)                 | 0.96239(191)             |  |
| 6   | 0.02184(38)                                      | 0.10460(84)                  | 0.64102(205)             |  |
| 6.4 | 0.18050(59)                                      | 0.53415(126)                 | 0.55709(176)             |  |
| 6.8 | 0.73005(98)                                      | 0.75631(166)                 | 0.93240(185)             |  |
| 7.2 | 0.96925(124)                                     | 0.73345(182)                 | 0.83688(213)             |  |
| 7.6 | 0.49047(132)                                     | 0.39389(159)                 | 0.49370(188)             |  |
| 8   | 0.07810(71)                                      | 0.00756(75)                  | 0.77497(181)             |  |

### 3.2. The experimental result for non-Hermitian case

We list the experimental results for the fidelity of g=0.2,0.9,1,1.1 in the non-Hermitian case, as shown in Table. IV.

TABLE IV. The fidelity of g for different times.

| t   | $g = 0.2 \; (\pm 10^{-5})$ | $g = 0.9 \ (\pm 10^{-5})$ | $g = 1 \ (\pm 10^{-5})$ | $g = 1.1 \ (\pm 10^{-5})$ |
|-----|----------------------------|---------------------------|-------------------------|---------------------------|
| 0   | 0.99987(10)                | 0.99990(13)               | 0.99987(9)              | 0.99988(8)                |
| 0.4 | 0.72779(374)               | 0.99607(92)               | 0.99999(9)              | 0.99647(77)               |
| 0.8 | 0.22104(638)               | 0.98074(202)              | 0.99415(11)             | 0.98366(162)              |
| 1.2 | 0.04734(323)               | 0.94534(443)              | 0.99805(7)              | 0.96567(216)              |
| 1.6 | 0.20523(608)               | 0.89980(796)              | 0.99953(7)              | 0.94304(302)              |
| 2   | 0.69166(562)               | 0.83643(1495)             | 0.99795(8)              | 0.92656(329)              |
| 2.4 | 0.99908(33)                | 0.83945(2407)             | 1.00026(6)              | 0.92042(356)              |
| 2.8 | 0.75218(511)               | 0.89062(2961)             | 0.99546(8)              | 0.91030(370)              |
| 3.2 | 0.24598(613)               | 0.82747(2082)             | 0.99292(14)             | 0.90826(379)              |
| 3.6 | 0.05167(361)               | 0.86596(1158)             | 0.99827(17)             | 0.90317(350)              |
| 4   | 0.18531(607)               | 0.92328(602)              | 0.99954(17)             | 0.90182(365)              |
| 4.4 | 0.65344(544)               | 0.96607(338)              | 1.00407(16)             | 0.89912(390)              |
| 4.8 | 0.99589(66)                | 0.98716(168)              | 0.99892(16)             | 0.90150(391)              |
| 5.2 | 0.77559(471)               | 0.99805(62)               | 0.99985(18)             | 0.89816(358)              |
| 5.6 | 0.27762(612)               | 0.99972(24)               | 1.00265(16)             | 0.89491(386)              |
| 6   | 0.04800(354)               | 0.99258(119)              | 1.00002(17)             | 0.90104(385)              |
| 6.4 | 0.16477(540)               | 0.97074(292)              | 1.00061(14)             | 0.89787(366)              |
| 6.8 | 0.62966(591)               | 0.92209(605)              | 0.99773(18)             | 0.89376(383)              |
| 7.2 | 0.99059(102)               | 0.89060(953)              | 0.99911(18)             | 0.89479(366)              |
| 7.6 | 0.80555(461)               | 0.85438(1653)             | 0.99975(17)             | 0.88915(409)              |
| 8   | 0.30488(653)               | 0.89221(2677)             | 1.00063(16)             | 0.89702(381)              |
|     |                            |                           | ·                       |                           |

#### 3.3. The experimental result for exceptional point

In the non-Hermitian case, we have calculated the eigenvalues of  $H_3$  as follows

$$E_1 = 0, \ E_2 = \sqrt{7}\sqrt{1 - g^2}, \ E_3 = -\sqrt{7}\sqrt{1 - g^2}.$$
 (S56)

We list the experimental results corresponding to the real and imaginary parts (S56) of different g (t = 0.4) in the non-Hermitian case, as shown in Table. V.

TABLE V. The results of t = 0.4 for different g.

| g   | Experimental vale $g~(\pm 10^{-5})$ | $Rm_{\pm} (\pm 10^{-5})$ | Theoretical value( $\pm$ ) | ${\rm Im}_{\pm} \ (\pm 10^{-5})$ | Theoretical value( $\pm$ ) |
|-----|-------------------------------------|--------------------------|----------------------------|----------------------------------|----------------------------|
| 0   | 0.00901(1438)                       | 2.64564(48)              | 2.64575                    | 0                                | 0                          |
| 0.2 | 0.19544(1472)                       | 2.59473(775)             | 2.59230                    | 0                                | 0                          |
| 0.4 | 0.40455(1208)                       | 2.41958(1416)            | 2.42487                    | 0                                | 0                          |
| 0.6 | 0.59930(1095)                       | 2.11800(2167)            | 2.11660                    | 0                                | 0                          |
| 0.8 | 0.79924(1114)                       | 1.59012(3929)            | 1.58745                    | 0                                | 0                          |
| 0.9 | 0.90158(1124)                       | 1.14461(6265)            | 1.15326                    | 0                                | 0                          |
| 1   | 0.98408(1440)                       | 0.47021(30523)           | 0                          | 0                                | 0                          |
| 1.1 | 1.08391(1295)                       | 0                        | 0                          | 1.10637(9004)                    | 1.21244                    |
| 1.2 | 1.19716(1187)                       | 0                        | 0                          | 1.74135(5720)                    | 1.75499                    |
| 1.4 | 1.39605(1368)                       | 0                        | 0                          | 2.57733(5189)                    | 2.59230                    |
| 1.6 | 1.59381(1469)                       | 0                        | 0                          | 3.28354(4991)                    | 3.30454                    |
| 1.8 | 1.79274(1752)                       | 0                        | 0                          | 3.93674(5584)                    | 3.95980                    |
| 2   | 2.00104(2204)                       | 0                        | 0                          | 4.58576(6731)                    | 4.58258                    |

- [1] James D F V, Kwiat P G, Munro W J, White A G. Measurement of qubits. Phys. Rev. A. **64**, 052312 (2001).
- [2] Zhao X, Yu X, Zhou W, Zhang C, Xu J-S, Li C-F, and Guo G-C. Experimental Investigation of Uncertainty Relations for Non-Hermitian Operators. Phys. Rev. Lett. **132**, 070203 (2024).
- [3] Yu X, Zhao X, Li L, Hu X-M, Duan X, Yuan H, Zhang C. Toward Heisenberg scaling in non-Hermitian metrology at the quantum regime. Sci. Adv. 10, eadk7616 (2024).
- [4] Kaneda F, Garay-Palmett K, U'Ren A B, and Kwiat P. G. Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion. Opt. Express. 24, 010733 (2016).
- [5] Tanida M, Okamoto R and Takeuchi S. Highly indistinguishable heralded single-photon sources using parametric down conversion. Opt. Express. **20**, 015275 (2012).
- [6] Montaut N, Sansoni L, Meyer-Scott E, Ricken R, Quiring V, Herrmann H and Silberhorn, C. High-efficiency plug-and-play source of heralded single photons. Phys. Rev. Applied. 8, 024021 (2017).
- [7] Reck M and Zeilinger A, Experimental realization of any discrete unitary operator, Phys. Rev. Lett. **73**, 58 (1994).
- [8] M. A. Nielsen, I. L.Chuang, Quantum computation and quantum information, *Cambridge university press* 2010.