
Supplementary information 

This Supplementary Information provides detailed derivations and numerical 

estimates supporting the feasibility claims in the main text. 

§1. Derivation of the photon propagator in the Casimir cavity 

In the Casimir geometry-two perfectly conducting plates located at 𝑧 = 0 and        

𝑧 = 𝑑 – the boundary conditions require: 

𝐸𝑧 = 0, 𝐵∥ = 0 at 𝑧 = 0, 𝑑. 

These conditions are implemented by decomposing the electromagnetic field into 

transverse electric (TE) and transverse magnetic (TM) models. In the Coulomb 

gauge (𝛻𝐴 = 0, 𝐴0 = 0), the vector potential takes the form: 

• TE modes (𝐸𝑧 = 0): 

𝐴𝑇𝐸 = 𝛻 × (𝑧̂𝛹𝑇𝐸), 𝛹𝑛,𝑘∥

𝑇𝐸 = 𝑁𝑛
𝑇𝐸 𝑐𝑜𝑠(𝑘𝑧𝑛𝑧) 𝑒𝜄𝑘∥𝑟∥ , 

where 𝑘𝑛 = 𝜋𝑛/𝑑; n = 0,1,2,… . 

• TM modes (𝐵𝑧 = 0): 

𝐴𝑇𝑀 = 𝛻𝜙𝑇𝑀, 𝜙𝑛,𝑘∥

𝑇𝑀 = 𝑁𝑛
𝑇𝑀 𝑠𝑖𝑛(𝑘𝑧𝑛𝑧)𝑒𝜄𝑘∥𝑟∥ , 

Normalization constants are fixed by the energy quantization condition: 
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The photon propagator in spectral representation is: 

𝐷𝜇𝜈(𝑥, 𝑥′) = ∑
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where 𝑓𝑛(𝑧) = cos(𝑘𝑛𝑧) or sin(𝑘𝑛𝑧) depending on polarization. 

 §2. One-loop polarization tensor in bounded space 

The one-loop vacuum polarization tensor is: 

∏ (𝑥, 𝑥′) = −𝑒2𝑇𝑟[𝛾𝜇𝑆𝐹(𝑥, 𝑥′)𝛾𝜈𝑆𝐹(𝑥′, 𝑥)]𝜇𝜈 , 

with 𝑆𝐹 the fermion propagator incorporating boundary conditions. 

After dimensional regularization (𝑑 = 4 − 2 ∈) in momentum space: 
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The Casimir correction is: 
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where 𝛫1 is modified Bessel function of the second kind. 

In the limit 𝑞 → 0, this yields: 
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, 

with 𝜆𝑒 = ℏ/(𝑚𝑒𝑐) ≈ 386 fm. 

§3. Angular dependence of the Scharnhorst effect 

The dispersion relation in the presence of boundaries is: 
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For a photon with wavevector k = (𝑘 sin 𝜃, 0, 𝑘 cos 𝜃), the phase velocity becomes: 

𝑣𝑝ℎ =
𝜔
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= 𝑐 [1 + ∏(−𝑘2 sin2 𝜃) −
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Expanding in powers of sin2 𝜃 gives: 

𝐹(𝜃) = cos4 𝜃 + 𝑂(sin6 𝜃). 

The exact expression (see, e.g., Barton & Scharnhorst, J. Phys. A 26, 2037(1993)) 

is: 
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For 𝜃 ≲ 5°, however, the approximation 𝐹(𝜃) ≈ cos4 𝜃 sufficient. 

§4. Material correction: Lifshitz theory 

 For real metals, we use the Drude-Lorentz dielectric function: 
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Euclidean reflection coefficients: 
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The suppression factor is: 
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For gold at 𝑑 = 5 nm, 𝐺 ≈ 0.85, indicating ~15% suppression. 

§5. Noise analysis and quantum limits 

§5.1. Quantum noise (Standard Quantum Limit) 

For coherent light: 

𝛿𝜙SQL =
1

√𝑁phot

. 

With 𝑃 = 1 kW, 𝜆 = 10 nm: 

𝐸ph =
ℎ𝑐

𝜆
≈ 1.99 × 10−17J, 𝑁̇phot =

𝑃

𝐸ph
≈ 5 × 1019s−1. 

Over 1 s: 𝑁phot ≈ 5 × 1019 ⇒ 𝛿𝜙SQL ≈ 4.5 × 10−10 rad. 

§5.2. Squeezed light 

With 15 dB squeezing: 

𝛿𝜙comp = 𝛿𝜙SQL ∙ 10−
15

20 ≈ 7.9 × 10−11 rad. 

§5.3. Thermal and mechanical noise 

• Thermal noise (4 K): < 10−14 rad. 

• Vibrations (with active stabilization): < 10−13 rad. 

§6. Optimization of the number of passes 

Interference fringe contrast: 



𝜈𝑁 = 𝑅𝑁/2. 

Effective phase response: 

Δ𝜙eff = 𝑁Δ𝜙1 ∙ 𝑅𝑁/2. 

Maximum occurs at: 

𝑁opt =
1

− ln 𝑅
. 

For 𝑅 = 0.99999 ∶  𝑁opt ≈ 105. 

Geometric limit: 

𝑁geom =
𝐿

𝑑 ∙ tan 𝜃
=

92.5 𝜇m

5 nm ∙ tan(1°)
≈ 1.06 × 106. 

Loss limit (for 𝜂min = 10−8): 

𝑁loss =
ln 𝜂min

ln 𝑅
≈ 1.84 × 106. 

Thus, 𝑁 = 1.06 × 106 is geometrically constrained. 

§7. Higher-order QED corrections 

Two-loop correction: 

𝛿𝑐(2)

𝑐
~𝛼3 𝜆𝑐

6

𝑑6
≪

𝛿𝑐(1)

𝑐
 for 𝑑 ≳ 1 nm. 

Estimate: 𝛿𝑐(2) 𝛿𝑐(1)⁄ ~10−3 – negligible. 

§8. Nonlinear QED effects 

Schwinger critical field: 𝐸𝑐 = 𝑚𝑒
2𝑐3 𝑒ℏ⁄ ≈ 1.3 × 1018 V/m. 

Field in Casimir gap: 𝐸~ℏ𝑐/𝑑2 ≈ 106 V/m at 𝑑 = 5 nm. 

Ratio: 𝐸/𝐸𝑐~10−12 – nonlinear effects are negligible. 

§9. Experimental parameters summary 

Parameter Value 
Plate separation d 5 nm 

Plate length L 92.5 μm 

Wavelength λ 10 nm (XUV) 

Incidence angle 𝜃 1° 

Mirror reflectivity R 0.99999 

Temperature T 4 K 

Peak power P 1 kW (XUV FEL) 



Phase-sensitive gain G 2 × 108 

Squeezing level 15 dB 

Vacuum pressure 1.3 × 10−7 Pa 

Signal-to-noise ratio (SNR) 1.07 

 

§Summary 

This Supplementary Information provides the theoretical foundation, detailed 

derivations, and numerical validation supporting the feasibility of detecting the 

Scharnhorst effect via multipass Casimir-Lloyd interferometer. 


