Supplementary information

This Supplementary Information provides detailed derivations and numerical
estimates supporting the feasibility claims in the main text.

§1. Derivation of the photon propagator in the Casimir cavity

In the Casimir geometry-two perfectly conducting plates located at z = 0 and
z = d — the boundary conditions require:

EZ = O,B” =Q0atz = O,d

These conditions are implemented by decomposing the electromagnetic field into
transverse electric (TE) and transverse magnetic (TM) models. In the Coulomb
gauge (VA = 0, A° = 0), the vector potential takes the form:

e TE modes (E, = 0):
ATE =7 X (2¥TF), Yor, = Ni¥ cos(k,nz) etam,
where k, = nn/d; n=20,1,2,... .
e TM modes (B, = 0):
A™ = 7™, pple. = NgM sin(k,nz)etm,

Normalization constants are fixed by the energy quantization condition:
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The photon propagator in spectral representation is:

yielding:
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where f,,(z) = cos(k,z) or sin(k, z) depending on polarization.
§2. One-loop polarization tensor in bounded space
The one-loop vacuum polarization tensor is:

(6, x") = —€2Tr[y,Sp (6, X 1 Sp (2, )],
with S the fermion propagator incorporating boundary conditions.

After dimensional regularization (d = 4 — 2 €) in momentum space:
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The Casimir correction is:
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where K, is modified Bessel function of the second kind.

In the limit g — 0, this yields:
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with A, = h/(m,c) ~ 386 fm.
§3. Angular dependence of the Scharnhorst effect

The dispersion relation in the presence of boundaries is:
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For a photon with wavevector k = (k sin 8, 0, k cos 6), the phase velocity becomes:
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Expanding in powers of sin? 8 gives:
F(0) = cos* 0 + 0(sin® 9).

The exact expression (see, e.g., Barton & Scharnhorst, J. Phys. A 26, 2037(1993))
Is:
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For 6 < 5°, however, the approximation F(8) ~ cos* 6 sufficient.

§4. Material correction: Lifshitz theory

For real metals, we use the Drude-Lorentz dielectric function:
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Euclidean reflection coefficients:
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with g = /52 + k.

The suppression factor is:
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Forgoldatd =5 nm, G = 0.85, indicating ~15% suppression.
§5. Noise analysis and quantum limits
§5.1. Quantum noise (Standard Quantum Limit)

For coherent light:

WithP =1 kW, A = 10 nm:

hc . P
Eph = 7 ~ 1.99 x 10_17], Nphot = E_ ~5x 10Y9s71,
ph

Over 1s: Nppor = 5 X 10' = §¢psqr, = 4.5 x 10719 rad.
§5.2. Squeezed light
With 15 dB squeezing:

15
6¢comp = 6¢SQL . 10_% ~ 79X 10_11 rad
§5.3. Thermal and mechanical noise

e Thermal noise (4 K): < 10~ rad.
e Vibrations (with active stabilization): < 10713 rad.

§6. Optimization of the number of passes

Interference fringe contrast:



VN = RN/Z.
Effective phase response:
Adesr = NAD, - RV/2.

Maximum occurs at:
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For R = 0.99999 : N, ~ 10°.
Geometric limit:
L 92.5 um

~ 1.06 x 10°.

N = —
8OM " d-tan® 5nm-tan(1°)

Loss limit (for n,,;, = 1078):

Inny;
Njgss = % ~ 1.84 x 10°.

Thus, N = 1.06 x 10° is geometrically constrained.
§7. Higher-order QED corrections
Two-loop correction:
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Estimate: 6¢@® /5¢c™W ~1073 — negligible.
§8. Nonlinear QED effects

Schwinger critical field: E, = m2c3/eh ~ 1.3 x 1018 V/m.

ford = 1 nm.

Field in Casimir gap: E~hAc/d? ~ 10° V/Imatd = 5 nm.
Ratio: E/E.~10712 —nonlinear effects are negligible.

§9. Experimental parameters summary

Parameter Value
Plate separation d 5nm
Plate length L 92.5 um
Wavelength A 10 nm (XUV)
Incidence angle 6 1°
Mirror reflectivity R 0.99999
Temperature T 4 K
Peak power P 1 kW (XUV FEL)




Phase-sensitive gain G 2 x 108
Squeezing level 15dB
Vacuum pressure 1.3 X 1077 Pa
Signal-to-noise ratio (SNR) 1.07

§Summary

This Supplementary Information provides the theoretical foundation, detailed
derivations, and numerical validation supporting the feasibility of detecting the
Scharnhorst effect via multipass Casimir-Lloyd interferometer.



