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Table S1. qPCR primer and probe sets used in this study.
	Target gene/plasmid group
	Primers/Probes
	Sequence [5´-3]
	Annealing temp
	Reference

	Bacterial 16S 
rRNA gene
	Bact1369F
Prok1492R
TM1389F_P
	CGGTGAATACGTTCYCGG
GGWTACCTTGTTACGACTT
CTTGTACACACCGCCCGTC
	56°C
	(Suzuki et al., 2000)

	ermA
	ermA-F
ermA-R
ermA-P
	TCTTATCGTTGAGAAGGGAT
CTACACTTGGCTTAGGATGA
TGCAAAATCTGCAACGAGCTTTGGG
	55°C
	(Werner et al., 2022)

	ermB
	ermBF
ermBR
ermBP
	GGATTCTACAAGCGTACCTTGGA
GCTGGCAGCTTAAGCAATTGCT
CACTAGGGTTGCTCTTGCACACTCAAGTC
	60°C
	(Böckelmann et al., 2009)

	inc18
	Inc18-F
Inc18-R
Inc18-P
	AACTATCAAGGGGCTAATAGGG
CCACCCTTGACGGACAAATA
TTGCAAAGCTTGGGTATCAA
	58°C
	(Soufi et al., 2025)

	intI1
	intI1-LC1
intI1-LC5
intI1-P
	GCCTTGATGTTACCCGAGAG
GATCGGTCGAATGCGTGT
ATTCCTGGCCGTGGTTCTGGGTTTT
	60°C
	(Barraud et al., 2010)

	korB (IncP-1)
	korB-F
korB-Fz
korB-R
korB-Rge
korB-Rd
tp_korBgz
tp_korB
	TCATCGACAACGACTACAACG
TCGTGGATAACGACTACAACG
TTCTTCTTGCCCTTCGCCAG
TTYTTCYTGCCCTTGGCCAG
TTCTTGACTCCCTTCGCCAG
TSAGGTCGTTGCGTTGCAGGTTYTCAAT
TCAGYTCRTTGCGYTGCAGGTTCTCGAT
	54°C
	(Jechalke et al., 2013b, 2013a)

	qnrA
	qnrA-F
qnrA-F
	ATTTCTCACGCCAGGATTTG
GCAGATCGGCATAGCTGAAG
	62°C
	(Marti and Balcázar, 2013)

	qnrS
	qnrS F
qnrS R
	GACGTGCTAACTTGCGTGAT
TGGCATTGTTGGAAACTTG
	62°C
	(Marti and Balcázar, 2013)

	repA_N
	RepA_N-F
RepA_N-R
RepA_N-P
	TCTACACAGTTGCTGAATTAATG
GGTTTTCCGAGATATAGCAG
CTGCTAAATTGCAGAGAAGG
	55°C
	(Soufi et al., 2025)

	reppI258
	pI258-F
pI258-R
pI258-P
	GTGCGAGTACTTAGGTTATGGAGA
TTCCTTGGTAAGACTTGCTTCA
TAACTCAAGAGCGTGTTGGC
	55°C
	(Soufi et al., 2025)

	reppSK1
	pSK1-F
pSK1-R
pSK1-P
	CAGGCGCTTGAAGAATTACC
CACTTACAAGTTCAAATTCGACG
CTTATCAAGGGAAAAGTCA
	56°C
	(Soufi et al., 2025)

	sul1
	q-sul_1 653f
q-sul_1 719r
tp_sul1
	CCGTTGGCCTTCCTGTAAAG
TTGCCGATCGCGTGAAGT
CAGCGAGCCTTGCGGCGG
	60°C
	(Heuer and Smalla, 2007)

	sul2
	q_sul2 595f
q_sul2 654f
tp_sul2 614
	CGGCTGCGCTTCGATT
CGCGCGCAGAAAGGATT
CGGTGCTTCTGTCTGTTTCGCGC
	60°C
	(Heuer and Smalla, 2007)

	tetA
	tetA_qfw
tetA_qrv
tetA_tp
	CCGCGCTTTGGGTCATT
TGGTCGCGTCCCAGTGA
TCGGCGAGGATCG
	60°C
	(Guarddon et al., 2011)

	tetM
	tetM_qfw
tetM_qrv
tetM_tp
	GGTTTCTCTTGGATACTTAAATCAATCR
CCAACCATAYAATCCTTGTTCRC
ATGCAGTTATGGARGGGATACGCTATGGY
	60°C
	(Peak et al., 2007)



Table S2. Differentially abundant amplicon sequence variants (ASVs) in soil from preferential flow paths, rhizosphere and phyllosphere irrigated with untreated and treated wastewater, both unspiked and spiked with antibiotics and disinfectants (see attached Excel file).
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	Soil type
	Coordinates
	Years of UWW irrigation
	Village

	Leptosol 
	20°4'44.90"N 99°12'20.10"W
	92
	Tlaxcoapan

	Vertisol 
	20°8'30.89"N 99°10'25.26"W
	111
	Ulapa de Melchor Ocampo



Fig. S1. Geographical map of the Mezquital Valley indicating the soil sampling sites, coordinates, closest villages, and years of untreated wastewater irrigation (UWW) of the soils.
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Fig. S2. Vertical section of Leptosol soil column.
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Fig. S3. Rarefaction curves of 16S rRNA gene sequences retrieved from the sequencing analysis (n=115).
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Fig. S4. Antibiotic resistance gene (ARG) and mobile genetic element (MGE) absolute abundances (log10 gene copies per L) in untreated (UWW) and treated (TWW) wastewater samples. Statistical significance was assessed using Wilcoxon test. The significance levels are indicated by the following asterisks: p<0.05 (*), p<0.01 (**), and p<0.001 (***).
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[bookmark: _GoBack]Fig. S5. Principal component analysis using antibiotic resistance gene (ARG) and mobile genetic element (MGE) relative abundances from untreated (UWW) and treated (TWW) wastewater. Significance of separation was assessed with PERMANOVA test (water type: R2=0.20, p=0.1053).
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Fig. S6. 16S rRNA gene log10 copies per gram of dry soil in samples from unstained soil and preferential water flow paths (stained soil) irrigated with untreated (UWW) or treated (TWW) wastewater, both unspiked and spiked with antibiotics and disinfectants. No significant differences were observed (p>0.05; linear regression with bootstrap values).
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Fig. S7. Antibiotic resistance gene (ARG) and mobile genetic element (MGE) relative abundances (log10 copies/16S rRNA gene copies) in A) Leptosol soil samples from unstained soil, B) Vertisol soil samples from unstained soil, C) Leptosol soil samples from preferential water flow paths (stained soil), D) Vertisol soil samples from preferential water flow paths (stained soil), E) cilantro rhizosphere from Leptosol columns, F) cilantro rhizosphere from Vertisol columns, G) cilantro phyllosphere from Leptosol columns, H) cilantro phyllosphere from Vertisol columns irrigated with untreated (UWW) or treated (TWW) wastewater, both unspiked and spiked with antibiotics and disinfectants.
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Fig. S8. Principal Component Analysis of antibiotic resistance gene (ARG) and mobile genetic element (MGE) distributions in Leptosol and Vertisol soils from unstained soil and preferential water flow paths (stained soil) irrigated with untreated (UWW) or treated (TWW) wastewater, both unspiked and spiked with antibiotics and disinfectants. Significance of separation was assessed with PERMANOVA test (microhabitat: R2=0.06, p=0.003; soil type: R2=0.02, p=0.2872; spike level: R2=0.09, p=0.0001; water type: R2=0.013, p=0.4776).
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Fig. S9. Multidimensional scaling analysis performed on Bray-Curtis distance matrices from 16S rRNA gene amplicon sequencing data from untreated (UWW) and treated (TWW) wastewater. Significance of separation was assessed with PERMANOVA test (water type: R2=0.36, p=0.0081).
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Fig. S10. Relative abundance of the five most abundant bacterial phyla (A) and classes (B) in untreated (UWW) and treated (TWW) wastewater. Statistical significance was assessed using Wilcoxon test. The significance levels are indicated by the following asterisks: p<0.05 (*), p<0.01 (**), and p<0.001 (***).
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Fig. S11. Relative abundance of the 15 most abundant amplicon sequence variants (ASVs) in untreated (UWW) and treated (TWW) wastewater. Statistical significance was assessed using Wilcoxon test. The significance levels are indicated by the following asterisks: p<0.05 (*), p<0.01 (**), and p< 0.001 (***).


A
[image: ]
B
[image: ]
C
[image: ]
Fig. S12. Relative abundance (RA) (% reads) of the five most abundant phyla in soil from preferential water flow paths (A), rhizosphere (B), and phyllosphere (C) irrigated with untreated (UWW) and treated (TWW) wastewater, both unspiked and spiked with antibiotics and disinfectants. No significant differences were observed (p>0.05; Dunn´s test with Benjamini Hochberg adjustment).
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	Fig. S13. Relative abundance (RA) (% reads) of the 5 most abundant genera in soil from preferential water flow paths (A), rhizosphere (B), and phyllosphere (C) irrigated with untreated (UWW) and treated (TWW) wastewater, both unspiked and spiked with antibiotics and disinfectants. No significant differences were observed (p>0.05; Dunn´s test with Benjamini Hochberg adjustment).
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