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1 Supplementary Note 1: Theoretical Derivations and Proofs
for Optimality of Random Image Masking

1.1 Physical Perspective: Symplectic Structure, Liouville’s Theorem, and
Entropy

In imaging and information theory, ideal optical transformations (such as Fourier transforms or lens
propagation) can be viewed as canonical (symplectic) transformations in phase space. According
to Liouville’s theorem, such transformations strictly preserve phase-space volume and Gibbs-type
entropy, ensuring that no information is lost or created. In contrast, image masking is not a canon-
ical transformation: it multiplies the image in the spatial domain, which can disrupt the spectral
distribution and potentially change the phase-space entropy.

The purpose of this work is to clarify how two common masking strategies affect phase-space
entropy:

1. Periodic masking (uniform subsampling).
This operation introduces structured replicas of the spectrum in frequency space. High-frequency
energy is folded (aliased) into the low-frequency region, creating irreversible mixing in phase space.
By strict concavity and Jensen’s inequality, one can show that this aliasing always leads to entropy
increase, and the increase is strict whenever overlapping replicas occur.

2. Random masking (random subsampling).
Unlike periodic masking, random subsampling does not maintain fixed lattice coherence. In the
limit of a large number of degrees of freedom, its effect in phase space is equivalent to adding a small,
unbiased, isotropic perturbation in frequency. Since high frequencies are no longer systematically
folded into the low-frequency baseband, the phase-space entropy is preserved in expectation, with
only small O(N−1/2) fluctuations.

Physical intuition.

Periodic masking acts like a regular folding mechanism: it systematically overlays high-frequency
content onto the low-frequency region, causing irreversible information mixing and an increase in
entropy. Random masking acts more like a uniform jitter : it breaks up coherent folding patterns,
spreading energy in an unbiased way that does not accumulate into systematic aliasing. As the image
size grows, the average phase-space entropy remains nearly unchanged.

In summary, the analysis shows a sharp contrast: periodic subsampling necessarily increases
entropy (irreversible loss of information), while random subsampling approximately
preserves entropy in the statistical limit (information is nearly conserved).

1.2 Stationarity in Natural Images

Natural images are often modeled as approximately stationary random processes: their local statistics
change slowly across space. Formally, for an image function I(x, y), we have

E[I(x− ax, y − ay)] ≈ E[I(x, y)], ∀(ax, ay) ∈ R2. (S1)

Here, E[·] denotes the ensemble average across samples; we assume weak ergodicity, so local spatial
averaging approximates the ensemble expectation. This approximate stationarity motivates analyzing
images in a joint phase-space representation, where spatial and spectral information coexist. Such a
representation allows us to study how operations like masking affect both spatial detail and frequency
content simultaneously.

1.3 Wigner Transform and Phase Space Density

To analyze the information entropy, we introduce the Wigner transform. For an image I(x), where
x = (x, y), the two-dimensional Wigner distribution is defined as:

WI(x;k) =

∫
I

(
x+

ξ

2

)
I∗

(
x− ξ

2

)
e−ik·ξdξ. (S2)

The Wigner transform creates a phase-space representation of an image, combining spatial domain
x and frequency domain k = (kx, ky). Natural images are not purely localized in space or frequency,
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so analyzing them in a joint domain avoids losing structural information. This makes it possible to
evaluate how masking affects both spatial details and spectral content together.

We adopt the symmetric Fourier convention where the Wigner product–convolution carries a
prefactor (2π)−2; all delta masses and normalization constants are stated compatibly with that
convention.

Since WI can take negative values, we choose a Cohen’s class kernel that is known to produce
a non-negative distribution (e.g., the spectrogram/STFT or the Husimi/Q distribution, which cor-
respond to convolving WI with the Wigner of a window function such as a minimum-uncertainty
Gaussian). Define

ρI(X) = (Φ ∗WI)(X), Φ ≥ 0, X = (x,k), (S3)

where ∗ denotes convolution in (x, y, kx, ky). For convenience, we write “∗” for convolution in full
phase space (x,k), and “∗T2” for convolution over the frequency torus T2 (in k only). Throughout this
paper, we use periodic boundary conditions in the frequency domain (T2) for the analysis, ensuring
consistency across all frequency space representations. This allows for proper application of sym-
plectic transformations and the preservation of phase-space volume. Not every Gaussian convolution
guarantees non-negativity; here we specifically use kernels (e.g., spectrogram/Husimi) that do.

We assume that the smoothing kernel Φ may vary across different domains to reflect the spe-
cific physical resolution of each measurement device. In some cases, Φ might represent the imaging
resolution in MRI, or the antenna resolution in wireless MIMO systems.

1.4 Entropy and Liouville Dynamics

We quantify the spread of information in phase space using the (Gibbs-type) entropy of an
unnormalized smoothed Wigner density ρ(X):

S[ρ] := −
∫

ρ(X) ln ρ(X) dX. (S4)

When the image undergoes an ideal (canonical/symplectic) transformation, ρ evolves by a Liouville
(continuity) equation

∂tρ + ∇X · (ρ V ) = 0, ∇X · V = 0, (S5)

where V is the phase-space flow field. Under (S5) and suitable boundary conditions (torus or fast
decay), phase-space volume is preserved and

d

dt
S[ρ] = 0. (S6)

In our analyses we often use a band-normalized density over the frequency torus B ⊂ T2 at each
spatial location:

m[ρ](x) :=

∫
B
ρ(x;k) dk, NB[ρ] (x;k) :=

ρ(x;k)

m[ρ](x)
. (S7)

The corresponding local band-entropy and a spatial aggregate are

sB[NB[ρ]](x) := −
∫
B
NB[ρ] (x;k) lnNB[ρ] (x;k) dk, SB[NB[ρ]] :=

∫
SB[NB[ρ]](x)w(x) dx,

(S8)
where w(x) is a specified weight (e.g., uniform or energy-weighted w ∝ m[ρ](x)). Since NB[ρ] includes
an x-dependent normalization, exact Liouville conservation does not strictly apply to SB[NB[ρ]]; it
serves as an ideal reference when smoothing and normalization are fixed, and becomes exact for ρ
under (S5).

1.5 Effect of Masking on Phase Space Entropy

A masking operation is defined as
J(x) = M(x) I(x), (S9)

where M(x) is the mask and I(x) is the image. The bold vector x = (x, y). Applying the Wigner
transform to the masked image J = M · I yields

WJ(x,k) =

∫
M

(
x+ ξ

2

)
M∗

(
x− ξ

2

)
I
(
x+ ξ

2

)
I∗
(
x− ξ

2

)
e−ik·ξ dξ, (S10)
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where k = (kx, ky) and ξ = (ξx, ξy). We now proceed to express this in a more manageable form in
2D. Using the inverse-Fourier representation of the Wigner distribution, we have

I
(
x+ ξ

2

)
I∗
(
x− ξ

2

)
=

1

(2π)2

∫
R2

WI(x,k
′) eik

′·ξ dk′, (S11)

and similarly

M
(
x+ ξ

2

)
M∗

(
x− ξ

2

)
=

1

(2π)2

∫
R2

WM (x,q) eiq·ξ dq. (S12)

Substituting into the definition of WJ and integrating over ξ gives the product–convolution law in
frequency:

WJ(x,k) =
1

(2π)2

∫
R2

WM (x,q)WI

(
x,k− q

)
dq. (S13)

The numerical prefactor (2π)−2 follows the symmetric Fourier normalization stated above, ensuring
internal consistency across all Wigner and convolution relations.

Let the observed (nonnegative) phase-space density be ρ = Φ∗W with a fixed nonnegative Cohen-
class kernel Φ (convolution in both x and k). From the product–convolution law, ρJ = Φ ∗ WJ =

1
(2π)2 Φ ∗

(
WM ∗T2 WI

)
.

After smoothing both the mask and the image with the kernel Φ, we write

ρJ = Φ ∗WJ , ρI = Φ ∗WI , KM := Φ ∗WM . (S14)

Then, using the product–convolution law and the local-averaging approximation discussed above,

ρJ(x,k) ≈ 1

(2π)2
KM ∗T2 ρI(x,k). (S15)

The kernel KM is nonnegative and plays the role of an effective kernel that modulates both spatial
and frequency components of the image. This convolution reflects how masking affects the phase-space
distribution and hence its entropy.

Unlike the Liouville flow, which preserves phase space volume (i.e., no entropy change), the mask-
ing operation is not a canonical transformation and thus can break entropy conservation. The extent
and direction of entropy change depend on the structure of the mask and on how the smoothing
operation suppresses oscillatory cross-terms in WM . In particular, periodic masks can introduce alias-
ing effects, leading to an increase in entropy. The smoothed phase-space density ρJ(x,k) is a convex
combination of shifted versions of ρI(x,k), and entropy is generally increased due to the mixing of
spatial and frequency components in the distribution.

1.5.1 Periodic Masking Causes Entropy Increase (Uniform Subsampling)

Definition of a periodic (uniform subsampling) mask.

We model uniform subsampling by a 2D Dirac comb with spacings dx, dy:

Mper(x, y) =
∑

m,n∈Z
δ(x−mdx) δ(y − ndy). (S16)

Within a large apodization window of area A (later A→∞), this corresponds to keeping only pixels
on a regular lattice and discarding all others. By the 2D Poisson summation formula (in the sense of
tempered distributions),

Mper(x, y) =
1

dxdy

∑
n∈Z2

exp
(
i κn ·(x, y)

)
, κn =

(
2πnx

dx
,

2πny

dy

)
. (S17)

Thus Mper admits a Fourier series with equal coefficients cn = 1
dxdy

for all n ∈ Z2.
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Wigner distribution of the mask.

Substitute the Fourier series of Mper into the Wigner definition. Writing Mper(x, y) =
∑

n cne
iκn·(x,y)

with cn = 1
dxdy

, the algebra is identical to the general periodic case, and yields

WMper(x, y; kx, ky) = (2π)2
∑

n,m∈Z2

cnc
∗
m δ

(
(kx, ky)− κn+κm

2

)
ei(κn−κm)·(x,y). (S18)

The auto-terms (n = m) are located at k = κn and are independent of (x, y); the cross-terms (n ̸= m)
oscillate in (x, y) with spatial frequencies κn − κm and sit at midpoints κn+κm

2 in frequency.

Smoothing and the effective kernel.

Let the observed (nonnegative) phase-space density be the Cohen-class smoothing of the Wigner
distribution with a kernel Φ:

ρJ = Φ ∗WJ , KMper := Φ ∗WMper . (S19)

Because Φ averages over a few unit cells in (x, y), the rapid oscillations ei(κn−κm)·(x,y) for n ̸=m are
suppressed by destructive averaging (Riemann–Lebesgue). Retaining the dominant auto-terms gives

KMper(kx, ky) ≈ (2π)2
∑
n∈Z2

|cn|2
(
Φ ∗T2 δ(· − κn)

)
(kx, ky). (S20)

Since |cn|2 = 1
d2
xd

2
y
is constant, KMper is a broadened frequency comb centered at the reciprocal-lattice

points {κn} with nonnegative weights proportional to |cn|2.

Resulting phase-space density via the product–convolution law.

For a masked image J = Mper · I, the Wigner transform of the product obeys (in 2D, cf. the standard
derivation in 1D and extending component-wise)

WJ(x, y; kx, ky) =
1

(2π)2

∫∫
R2

WMper(x, y; qx, qy) WI

(
x, y; kx − qx, ky − qy

)
dq. (S21)

Applying the linear smoothing Φ and using the same local-averaging approximation (under which Φ
effectively commutes with the frequency convolution),

ρJ = Φ ∗WJ =
1

(2π)2
(Φ ∗WMper) ∗T2 (Φ ∗WI) =

1

(2π)2
KMper ∗T2 ρI . (S22)

On the frequency torus T2 (i.e., within one Nyquist cell modulo wrap-around), the Φ-averaged peri-
odic kernel KMper is a broadened comb centered at the reciprocal-lattice points modulo the cell.
Consequently,

ρJ(x, y;k) ≈ 1

(2π)2
(
KMper ∗T2 ρI

)
(x, y;k). (S23)

Using that KMper is (after spatial averaging) effectively independent of (x, y), we obtain the
convex-mixture form

NB[ρJ ] (x;k) ≈
∑
κn∈B

wn NB[ρI ]
(
x;k− κn

)
, wn =

∫
B KMper(k− κn) dk∑

κm∈B
∫
B KMper(k− κm) dk

. (S24)

Here wn ≥ 0 and
∑

n wn = 1, and crucially wn do not depend on k (and, after averaging, not on x
either), so the right-hand side is a pointwise convex combination in k at each x.

This formula shows that uniform subsampling replicates ρI on the reciprocal lattice and superposes
the copies. Physically, frequencies outside the baseband are shifted by κn back into it—high-frequency
energy is folded (aliased) into low frequency, producing irreversible mixing.
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Entropy increase via Jensen’s inequality.

Let f(t) = −t ln t, which is strictly concave on (0, 1]. Since the normalized density after masking can
be expressed as

NB[ρJ ] (x;k) =
∑
n

wn rn(k), rn(k) = NB[ρI ] (x;k− κn), (S25)

and
∑

n wn = 1, Jensen’s inequality yields∫
B
f
(
NB[ρJ ] (x;k)

)
dk ≥

∑
n

wn

∫
B
f
(
rn(k)

)
dk. (S26)

That is,
sB[NB[ρJ ]](x) ≥ sB[NB[ρI ]](x), (S27)

with equality only when all rn(k) (for wn > 0) are identical almost everywhere on B.

1.5.2 Random Masking Approximately Preserves Entropy (Random
Subsampling)

Definition of a random subsampling mask.

Let the underlying fine grid have pixel pitches px, py and index set G = {(mpx, npy) : m,n ∈ Z}
within a large window of area A (later A→∞). Define an i.i.d. Bernoulli field {bm,n} with

bm,n ∈ {0, 1}, P(bm,n = 1) = ρ ∈ (0, 1), (S28)

and set the (energy-normalized) random subsampling mask

Mrand(x, y) =
1
√
ρ

∑
(m,n)∈Z2

bm,n δ(x−mpx) δ(y − npy). (S29)

The global factor 1/
√
ρ keeps the average mask energy (Frobenius norm) independent of ρ, so we can

compare entropies under a common normalization.1

Wigner distribution of the mask: mean–fluctuation decomposition.

Write bm,n = ρ+ ϵm,n with E[ϵm,n] = 0, Var(ϵm,n) = ρ(1− ρ) and independence across (m,n). Then

Mrand =
√
ρΓ︸ ︷︷ ︸

mean part

+
1
√
ρ

∑
ϵm,n δ(· −mpx)δ(· − npy)︸ ︷︷ ︸
zero-mean fluctuation

, (S30)

where Γ(x, y) =
∑

m,n δ(x − mpx)δ(y − npy) is the full lattice comb. By bilinearity, the Wigner
distribution splits into

WMrand
= ρWΓ + Wε + 2ReWΓ,ε, (S31)

where Wε is the Wigner of the fluctuation part and WΓ,ε the cross-Wigner. Taking expectations over
the mask randomness yields

E
[
WMrand

]
= ρWΓ + E

[
Wε

]
, since E

[
WΓ,ε

]
= 0 (S32)

(the cross term vanishes because one factor has zero mean).
We now analyze the two contributions:

(i) The mean term ρWΓ. As in the periodic case, WΓ consists of sharp peaks at the reciprocal
lattice κu,v = (2πu/px, 2πv/py) plus oscillatory cross-terms in (x, y). After smoothing in (x, y) with
kernel Φ over a few unit cells, the oscillatory cross-terms of WΓ are suppressed (Riemann–Lebesgue
averaging), leaving broadened peaks centered at all reciprocal lattice points κu,v. However, if one

1If one prefers unit amplitude on the kept pixels, i.e. M =
∑

bm,nδ(·), one can perform unit-mass normalization on the
final phase-space density ρJ instead, with equivalent results; this paper chooses energy normalization for direct comparison
with the “uniform mask” in terms of capacity and Fisher information.
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restricts attention to the baseband detection region |kx| ≤ π/px, |ky| ≤ π/py, then only the central
lobe at k = (0, 0) remains inside the band. 2

(ii) The fluctuation term E[Wε]. By independence and zero-mean, E[ϵm1,n1ϵm2,n2 ] = 0 when
(m1, n1) ̸= (m2, n2) and equals ρ(1− ρ) on the diagonal. Tracing the definition of W shows that only
the diagonal pairs force ξ=0 and hence contribute a k-independent pedestal. Thus E[Wε] produces
a flat (white) background in k, localized in (x, y) on the lattice and becoming spatially uniform after
smoothing by Φ over many unit cells.

Smoothing and the effective kernel.

Let KMrand
:= Φ ∗WMrand

. Under the i.i.d. Bernoulli model and Φ-averaging over many unit cells, we
obtain

E[KMrand
](k) = (2π)2 δ(k) + αA 1B(k), |αA| ≤

C

N
. (S33)

Here δ(k) denotes the identity distribution on the frequency torus T2, satisfying (g∗T2 δ)(k) = g(k)
for any test function g. With this convention, the convolution law ρJ = (2π)−2KMrand

∗T2 ρI implies
that

E[ρJ ] = ρI +O
( 1

N

)
. (S34)

Moreover, since KMrand
is an average of O(N) independent bounded contributions, standard

concentration yields

E
∥∥KMrand

− E[KMrand
]
∥∥
L1(B)

= O
(

1√
N

)
. (S35)

Combining the mean bias O( 1
N ) with the fluctuations O( 1√

N
) yields

E
∥∥ρJ − ρI

∥∥
L1(B)

= O
(

1√
N

)
. (S36)

Band-normalization stability.

Let NB[ρ] denote the band-normalized density on B, i.e.,

NB[ρ] (x;k) =
ρ(x;k)

m[ρ](x)
, m[ρ](x) :=

∫
B
ρ(x; k̃) dk̃. (S37)

Assume m[ρI ](x),m[ρJ ](x) ≥ mmin > 0 almost everywhere. Then for each spatial location x,

∥∥NB[ρJ ] (x; ·)−NB[ρI ] (x; ·)
∥∥
L1

k(B)
≤ 2

mmin

∥∥ρJ(x; ·)− ρI(x; ·)
∥∥
L1

k(B)
. (S38)

Integrating over x and using the O(N−1/2) concentration bound above gives

E
∥∥NB[ρJ ]−NB[ρI ]

∥∥
L1

x,k(B)
= O

(
1√
N

)
. (S39)

This shows that the normalization step is Lipschitz-stable with respect to the L1 perturbation of ρ.

Physical explanation.

Periodic masking creates coherent spectral replicas on the reciprocal lattice, so high-frequency com-
ponents are deterministically folded into the baseband, producing irreversible aliasing and entropy
growth. Random masking, on the other hand, destroys lattice phase coherence: after spatial aver-
aging by Φ, its spectrum contains only a central DC lobe plus a weak isotropic pedestal, which
corresponds to unbiased white perturbations in frequency. Hence, high-frequency energy is not sys-
tematically folded into the low-frequency region, and the phase-space entropy remains statistically
invariant up to O(N−1/2) fluctuations. From an information-theoretic perspective, random masking
results in a measurement operator with a near-isotropic singular-value spectrum and well-conditioned
Fisher information, whereas periodic masking collapses certain singular values and creates spectral
holes that reduce information capacity.

2Under a strictly periodic mask the Wigner spectrum forms a comb on the reciprocal lattice. With Bernoulli coefficients,
however, lattice coherence is destroyed in expectation: after spatial averaging by Φ, nonzero harmonics lose phase coherence
so that only a DC spike at k = 0 remains coherent, while the residual appears as an approximately flat pedestal in k. The
pedestal’s contribution to the smoothed kernel decays like O(1/N) due to averaging over N effectively independent spatial
cells.
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1.6 Assumptions, scope, and possible counterexamples

For clarity and to delimit the regime in which the arguments and asymptotic bounds below hold, we
list here the explicit assumptions used in the derivations above, the finite–N conditions, and several
noteworthy edge cases where the conclusions may fail.

A1. Fourier convention.

We adopt the forward/inverse Fourier transform convention (2D)

f̂(k) =

∫
R2

f(x) e−ik·x dx, f(x) =
1

(2π)2

∫
R2

f̂(k) eik·x dk. (S40)

All (2π) prefactors appearing in the Wigner product–convolution relations follow from this convention.

A2. Smooth, nonnegative Cohen kernel.

The smoothing kernel Φ belongs to the Schwartz class (or is a compactly supported, sufficiently
smooth averaging kernel), satisfies Φ ≥ 0, and has an effective spatial averaging radius ℓΦ that
covers many sampling unit cells (quantitatively: ℓΦ ≫ d, where d denotes the lattice spacing of a
periodic mask). This scale separation guarantees suppression of rapidly oscillatory cross-terms by the
Riemann–Lebesgue lemma in the large-window limit.

A3. Mask models.

• Periodic mask. Modeled as an ideal Dirac comb Mper(x) =
∑

m,n δ(x − mdx)δ(y − ndy) (or its
apodized approximation on a large window of area A), with exact lattice coherence.

• Random mask. Modeled as i.i.d. Bernoulli samples bm,n ∈ {0, 1} with P(bm,n = 1) = ρ ∈ (0, 1) and
finite variance; the mask is energy–normalized as in the main text (1/

√
ρ prefactor). Independence

(or sufficiently fast decay of correlations) across lattice sites is required for the concentration bounds.

A4. Large-sample averaging and finite–N bounds.

Let N denote the effective number of independent spatial cells averaged by Φ (or present in the
apodization window). The principal stochastic statements are asymptotic in N → ∞; for finite N we
obtain the explicit bounds stated in the text:

E∥KMrand
− EKMrand

∥L1(B) = O
(

1√
N

)
, E∥ρJ − ρI∥L1(B) = O

(
1√
N

)
, (S41)

with the constants depending on the per-cell variance and the L∞ bounds of the contributing terms;
standard Hoeffding/Bernstein inequalities justify these rates under A3.

A5. Local energy (band) lower bound.

We assume the local band energy satisfies m[ρ](x) ≥ mmin > 0 a.e., ensuring band–normalization is
Lipschitz and avoiding division by numerically vanishing energy in the L1 stability estimates.

A6. Image regularity and ergodicity.

The image ensemble has bounded energy and sufficiently regular Wigner distributions so that
integrals and exchanges of limits used in the derivations are justified. We further assume weak
ergodicity/stationarity at the scale of Φ so that local spatial averages represent ensemble expectations.

Remarks on scope. Under A1–A6 the periodic mask analysis yields a pointwise convex combination
of band densities (hence Jensen applies) and the random mask analysis yields the stated expectation
and concentration bounds. When any assumption above is violated (see next subsection), the stated
conclusions can fail or require modification.

Possible counterexamples and limiting cases

The following non-exhaustive list highlights situations in which the above conclusions may not hold,
or where the finite–N corrections may be large.

• Lattice-invariant signals. If the original band-normalized densities satisfy rn(k) = NB[ρI ] (x;k−
κn) that are identical (a.e.) for all κn with wn > 0, then Jensen’s inequality is tight and periodic
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subsampling does not increase the band entropy. Such signals are exceptional but conceptually
important (they are “invariant under reciprocal lattice shifts”).

• Strongly correlated or structured masks. If the random mask exhibits long-range correlations,
clustering, or periodic substructure, the decomposition into a DC spike plus small flat pedestal
may fail; the effective kernel KM can keep coherent sidelobes and therefore produce deterministic
aliasing-like effects.

• Insufficient smoothing (ℓΦ too small). If the smoothing kernel Φ averages over too few unit
cells, oscillatory cross-terms in WM may not be suppressed and the broadened-comb approximation
for KMper breaks down.

• Very small N . For small numbers of independent cells, the O(1/
√
N) fluctuations can be non-

negligible and may lead to observable entropy shifts.
• Near-zero local energy (mmin ≈ 0). When local band energy is vanishingly small the

normalization step amplifies perturbations and the Lipschitz bound becomes uninformative.
• Deterministic masks engineered to avoid aliasing. Special deterministic sampling pat-

terns (e.g., certain nonuniform sampling designs used in compressed sensing) can produce
well-conditioned measurement operators without randomness; such constructions lie outside the
Bernoulli model and must be analyzed case by case.

2 Supplementary Note 2: MIMO Over-the-Air Hardware
Configuration

To validate the real-time performance and practical viability of the proposed ALWNN model, a
hardware testbed was established for over-the-air (OTA) signal transmission and reception, simulating
a realistic edge computing scenario. The experimental platform, comprises two National Instruments
USRP-2901 Software-Defined Radios (SDRs) and a Raspberry Pi 4B for inference processing. One
USRP-2901 unit, designated as the transmitter, was interfaced with a host PC running MATLAB
R2024a for baseband signal generation and control. A 2ASK modulated waveforms, synthesized in
software, emulating the signal characteristics specified in the RML2016.10a dataset, before being
upconverted for OTA transmission. A second USRP-2901 served as the receiver, capturing the wireless
signals and performing downconversion and digitization to produce complex in-phase and quadrature
(I/Q) samples. The experiments were conducted in a Line-of-Sight (LOS) indoor environment with
both SDRs tuned to a carrier frequency of 1.2 GHz and operating at a sampling rate of 5.6 MHz. The
transmitter and receiver gains were set to 25 dB and 40 dB, respectively, to achieve an approximate
signal-to-noise ratio (SNR) of 15 dB at the receiver input. Notably, the transmitter and receiver
operated asynchronously, relying on their internal oscillators without a shared high-precision clock
reference. This configuration intentionally introduces realistic channel impairments such as Carrier
Frequency Offset (CFO) and Sampling Rate Offset (SRO).

3 Supplementary Note 3: Ablation Studies on Husimi
Parameters

3.1 Visual Recognition

To evaluate the stability of entropy auditing with respect to the Husimi parameters, we systemat-
ically varied the window size (win), Gaussian width (σ), and hop size (hop) while computing the
band-entropy change ∆SB on the ImageNet subsampling experiments. Across most configurations,
the observed trends align well with theoretical expectations: as the sampling rate decreases (larger
k), the magnitude of ∆SB increases, indicating a stronger perturbation of the local spectral struc-
ture. Furthermore, for any fixed sampling rate, the Uniform masking consistently yields larger ∆SB
values than the Random masking. This confirms that periodic subsampling introduces greater spec-
tral disorder, while random subsampling statistically preserves local entropy, in agreement with the
findings of He et al. (2022) in Masked Autoencoders (MAE) [1]. Together, these results demonstrate
that the Husimi-based entropy change serves as a robust pre-training indicator of downstream task
difficulty in visual recognition.

However, certain parameter settings produce anomalous results at extremely sparse sampling
(e.g., k = 8). Specifically, when win=64, each Husimi window covers only a 4×4 patch region, so
under Uniform masking all pixels within the window may become constant, leading to degeneracy
in the local spectral estimate. A similar artifact arises when hop=192, where the window stride
is so large that many regions—particularly under Uniform masking—are insufficiently sampled. In
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both cases, the computed ∆SB becomes unreliable due to the breakdown of local spectral statistics.
These observations highlight that the Husimi parameters should be chosen in a physically consistent
manner, ensuring that the window and hop sizes reflect the effective spatial–frequency resolution of
the underlying acquisition process.
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Fig. 1 Ablation of Husimi parameters on ImageNet. Each panel corresponds to one combination of (win, σ, hop).
In nearly all cases, ∆SB increases monotonically with sampling interval k, and Uniform masking exhibits higher entropy
change than Random masking. Deviations at extremely sparse sampling (notably at win = 64 and hop = 192) arise
from insufficient spatial coverage within each Husimi window, demonstrating the importance of physically meaningful
parameter choices.
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3.2 MIMO

To ascertain the robustness of the proposed entropy metric with respect to its analysis parameters,
we conducted an ablation study for the MIMO channel scenario. We varied the window size while
holding the Gaussian width (σ = 1) and hop size (hop=1) constant. This parameterization is due to
the fundamental structural differences between natural images and MIMO channel matrices. While
images exhibit strong 2D spatial correlations, the pertinent correlations within a channel matrix
exist primarily along one-dimensional axes, corresponding to the antenna arrays at the transmitter
or receiver. Setting hop=1 ensures a high-resolution scan across the antenna elements without down-
sampling, thereby capturing the fine-grained local spectral variations essential for assessing channel
quality. Concurrently, a small σ = 1 effectively localizes the Gaussian window’s influence, concen-
trating the analysis on a single antenna’s data stream (i.e., a row or column) at each step. This
approach forces the 2D analysis framework to approximate a series of 1D evaluations, thereby mini-
mizing cross-dimensional interference from physically uncorrelated antenna data and preserving the
physical integrity of the spectral entropy measurement for the MIMO channel.

Across the majority of configurations, the observed trends aligned closely with theoretical expec-
tations: as the masking interval d increases, the magnitude of the band-entropy change, ∆SB, grows,
indicating a more significant perturbation of the local spectral structure of the channel response. Fur-
thermore, for any fixed sampling rate, the Uniform masking scheme consistently yields larger ∆SB
values than the Random masking scheme. This finding suggests that periodic subsampling intro-
duces greater spectral disorder into the channel estimate, while random subsampling statistically
preserves local entropy. Collectively, these results demonstrate that the entropy-based analysis pro-
vides a robust characterization of spectral degradation under different subsampling strategies and is
not overly sensitive to the selection of the window size.
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Fig. 2 Ablation of Husimi parameters on MIMO. Each panel corresponds to a specific parameter configuration
of win, σ, and hop. Across all configurations, the ∆SB , exhibits a monotonic decrease as the masking interval d increases.
Furthermore, the Uniform masking scheme consistently yields a greater entropy perturbation than the Random scheme.

3.3 MRI: Ablation on Husimi Parameters

To evaluate the stability of the Husimi-based entropy auditing in magnetic resonance imaging (MRI),
we conducted an extensive grid search across the parameter space of the Gaussian window (win),
its standard deviation (σ), and hop size (hop). For each parameter combination, the band-entropy
change ∆SB was computed from the same set of fully sampled k-space data under three canonical
mask types—Random, Uniform, and Poisson—and multiple acceleration ratios. Each configuration
was processed using the same pipeline described in Main; the analysis was performed entirely prior
to training, and the results were visualized as a 6× 6 grid of violin plots (Fig. 3).

We systematically varied win∈ {12, 24, 48, 96}, σ/win ∈ {0.5, 1, 2}, and hop/win ∈ {0.25, 0.5, 1},
producing 4 × 3 × 3 = 36 configurations. For each combination, ∆SB values across all slices and
sampling ratios were aggregated per mask type to produce violin plots that summarize their statistical
distributions. All subplots share a common color code (orange = Random, blue = Uniform, green
= Poisson) and display the parameter triple (win, σ, hop) in their title; each panel’s vertical scale is
locally adaptive to emphasize within-condition trends.
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Fig. 3 Ablation of Husimi parameters on MRI. Each subplot corresponds to one combination of (win, σ, hop);
violin plots summarize the distribution of ∆SB across all slices and acceleration ratios for three mask types (Random,
Uniform, Poisson). The overall ranking Poisson>Uniform>Random remains stable across nearly all parameter settings,
consistent with the empirical reconstruction results in the main text. The ordering partially reverses only at extremely
small windows (win=12), where the Husimi window covers insufficient spatial–frequency support to distinguish the
structured aliasing of Uniform from the stochastic loss in Random. This highlights the importance of selecting Husimi
parameters that are physically and architecturally consistent with both the imaging resolution and the receptive-field
scale of the downstream network.

Across the majority of settings, the ordering of mean ∆SB values is highly stable:

Poisson > Uniform > Random.

This hierarchy exactly matches the empirical reconstruction ranking (Poisson → best PSNR/SSIM,
Random → worst) reported in the main text, demonstrating that the Husimi-based entropy measure
faithfully captures the relative information preservation of different undersampling patterns. The
Poisson mask consistently produces the smallest |∆SB|, indicating that its variable-density sampling
preserves the original spectral organization most effectively.

When the window size is very small (win=12), however, the ordering between Uniform and Random
reverses. In this regime, the Husimi window spans too few pixels to include sufficient structural
information, and the entropy estimate becomes dominated by local intensity variations rather than
global aliasing structure. Physically, this corresponds to an under-resolved phase-space measurement:
the local spectrogram fails to capture the coherent folding patterns induced by uniform subsampling.
From a representational perspective, the network’s convolutional receptive fields are relatively broad
compared with such a small Husimi window, so the entropy measure loses sensitivity to the periodicity
that the network can still exploit.
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These findings emphasize that the choice of Husimi parameters should reflect not only the imag-
ing physics (spatial–frequency resolution of the acquisition) but also the representational scale of
the downstream model. In other words, the Husimi transform serves as a conceptual bridge between
the measurement domain and the learning domain: its parameters determine at what scale the
instrument-resolved structure is compared to the model’s feature extraction capability. When chosen
appropriately, the band-entropy change ∆SB provides a stable, physically interpretable predictor of
reconstruction difficulty across undersampling strategies.
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