
Supplementary materials for
“Curve correlation”

October 29, 2025

A A third type of centering

While we do not advocate centering each function by its expectation as in Dubin & Müller
(2005) and Liu et al. (2016), there is a third type of centering that may be warranted in
some cases, such as the Canadian temperature data of Ramsay & Silverman (2005) analyzed
in Paul et al. (2025) and in section 4: when there is a strong common trend among the p
functions, this should be removed to avoid an uninteresting matrix of very high positive
correlations among all of them (see section 4 of Paul et al. (2025)). To summarize, then,
considering for simplicity an n× p×M data array comprising M instances of p functions
each observed at n time points, dynamic correlation estimation Dubin & Müller (2005)
entails centering along the first and third dimensions. (A disadvantage of this, as noted
by Opgen-Rhein & Strimmer (2006), is that the dynamic correlation cannot be estimated
when M = 1.) Curve correlation, on the other hand, entails centering only along the first
dimension, and possibly along the second, in the case of a strong common trend. Different
approaches to centering may be appropriate for different applications; one should, of course,
always be clear about what was done and why.

B Separable multivariate Gaussian processes

Before deriving formula (13) in supplementary appendix C below, we briefly explain the
notion of a separable multivariate Gaussian process. Given a mean function µ : I → Rp,
temporal (within-curve) covariance function Γ : I × I → R and p × p between-curve
covariance matrix Σ, we say that x : I → Rp arises from the separable multivariate
Gaussian process MGP(µ,Γ,Σ) (Morris & Carroll 2006, Chen et al. 2020) if, for any
t1, . . . , tn ∈ I, the n×p matrix X t1,...,tn ≡ [xu(ti)]1≤i≤n,1≤u≤p has the matrix-variate normal
distribution (Dawid 1981, Gupta & Nagar 1999) with n × p mean matrix M t1,...,tn ≡
[µu(ti)]1≤i≤n,1≤u≤p, between-row covariance matrix Γt1,...,tn ≡ [Γ(ti, tj)]1≤i,j≤n and between-
column covariance matrix Σ; or equivalently,

vec(XT
t1,...,tn

) ∼ Nnp[vec(MT
t1,...,tn

),Γt1,...,tn ⊗Σ].
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The Kronecker product form of the above covariance matrix makes the process “separable,”
in the sense for each i, j,

Cov[x(ti),x(tj)] = Γ(ti, tj)Σ, (B1)

i.e., the cross-covariance matrix for times ti, tj can be separated into (expressed as the
product of) the temporal covariance Γ(ti, tj) and the between-variable covariance Σ. (Mul-
tivariate Gaussian processes not satisfying this separability property are commonly studied
in geostatistics (Gelfand 2021) and in the kernel literature (Alvarez et al. 2012).)

The above process is unidentifiable in the sense that it is equal to MGP(µ, hΓ, h−1Σ)
for any h > 0. But if the process is stationary, identifiability can be established by letting
Γ be an autocorrelation function

Γ(s, t) = ϕ(s− t) (B2)

where ϕ is an even function satisfying ϕ(0) = 1.

C Derivation of (13)

Our derivation of (13) is based on a related formula for a stationary bivariate Gaussian
time series (x1t, x2t), t = 1, . . . , n with autocorrelations and lagged cross-correlations

ρ11,k = Cor(x1t, x1,t+k), ρ22,k = Cor(x2t, x2,t+k), ρ12,k = Cor(x1t, x2,t+k)

for integer-valued lags k. Note that ρ12,0 is the (non-lagged) cross-correlation ρ. By eq.
(2) of Afyouni et al. (2019), the ordinary sample correlation rn between x1t and x2t has
approximate variance1

Var(rn) ≈ n−2
[
n(1− ρ2)2

+ρ2
n−1∑
k=1

(n− k)(ρ211,k + ρ222,k + ρ212,k + ρ212,−k)

−2ρ
n−1∑
k=1

(n− k)(ρ11,k + ρ22,k)(ρ12,k + ρ12,−k) (C3)

+2
n−1∑
k=1

(n− k)(ρ11,kρ22,k + ρ12,kρ12,−k)
]
.

Expression (13) is an analogous variance formula for r∗ given [x1(t), x2(t)] arising from a
bivariate Gaussian process on I, with lag-τ auto- and cross-correlations %1(τ), %2(τ), %12(τ)
defined by (12). For simplicity we take I = [0, 1]. Moreover, since (C3) is valid for bivariate
observations measured at n arbitrary equally spaced time points, we can take these time
points to be 1

n
, 2
n
, . . . , 1. The derivation of (13) proceeds in four steps:

1The authors of Afyouni et al. (2019) wrote to the publisher to report typographical errors in equation
(2) and two other formulas, but the corrections appear not to have been published.
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1. “Translate” the discrete time series values and their auto- and cross-correlations to
appropriate function values.

2. Show that under mild conditions,

Var(rn)→ Var(r∗). (C4)

3. Compute the limit of the approximate variance (C3) of rn as n → ∞, and conclude
from (C4) that this is an approximate variance formula for r∗.

4. Show that if, in addition to being stationary, the bivariate process is separable, then
the limit from step 3 equals (13).

Step 1. Given the time points 1
n
, 2
n
, . . . , 1, for u = 1, 2, the discrete observations xu1, . . . , xun

are replaced by xu( 1
n
), . . . , xu(1), and ρ11,k, ρ22,k, ρ12,k in (C3) are equal to

%1(k/n), %2(k/n), %12(k/n),

respectively.

Step 2. Aside from stationarity and separability, the only assumptions required for the
bivariate Gaussian process are as follows:

(i) For u = 1, 2, xu : [0, 1]→ R is almost surely (a.s.) Riemann integrable.

(ii) For u = 1, 2,
∫ 1

0
xcu(t)2dt 6= 0 a.s., where the superscript c denotes time-centering as

in (2).

(iii) The autocorrelation functions %1(τ), %2(τ) and the cross-correlation function %12(τ)
are a.s. Riemann integrable.

By Assumption (i), the sample variances of x1(
1
n
), . . . , x1(1) and x2(

1
n
), . . . , x2(1), and the

sample covariance between them, converge a.s. to∫ 1

0

xc1(t)
2dt,

∫ 1

0

xc2(t)
2dt,

∫ 1

0

xc1(t)x
c
2(t)dt,

respectively. It follows by Assumption (ii), definition (3) of r∗, and the continuous mapping
theorem that rn → r∗, a.s. and therefore in probability. This, together with Theorem 5.12
of Kallenberg (2021) and the boundedness of rn, implies that rn → r∗ in mean square, from
which (C4) follows as required.
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Step 3. Using the “translations” from step 1, (C3) can be rewritten as

Var(rn) ≈ n−2
[
n(1− ρ2)2

+ρ2
n−1∑
k=1

(n− k)
{
%21(k/n) + %22(k/n) + %212(k/n) + %212(−k/n)

}
−2ρ

n−1∑
k=1

(n− k)
{
%1(k/n) + %2(k/n)

}{
%12(k/n) + %12(−k/n)

}
+2

n−1∑
k=1

(n− k)
{
%1(k/n)%2(k/n) + %12(k/n)%12(−k/n)

} ]
, (C5)

As n → ∞, the first term in (C5) vanishes and the remaining terms (the three sums)
converge to integrals. For example, the second term in (C5) can be written as

ρ2
n−1∑
k=1

(
1

n

)(
1− k

n

)[
%21(k/n) + %22(k/n) + %212(k/n) + %212(−k/n)

]
,

which, by Assumption (iii), is a Riemann sum converging to

ρ2
∫ 1

0

(1− τ)
[
%21(τ) + %22(τ) + %212(τ) + %212(−τ)

]
dτ

as n→∞. Applying the same argument to the last two terms of (C5) yields the following
approximate variance formula for r∗:

Var(r∗) ≈ ρ2
∫ 1

0

(1− τ)
[
%21(τ) + %22(τ) + %212(τ) + %212(−τ)

]
dτ

−2ρ

∫ 1

0

(1− τ)
[
%1(τ) + %2(τ)

] [
%12(τ) + %12(−τ)

]
dτ (C6)

+2

∫ 1

0

(1− τ)
[
%1(τ)%2(τ) + %12(τ)%12(−τ)

]
dτ.

Step 4. Assuming the stationary Gaussian bivariate process is separable (see (B1), (B2))

with between-curve covariance matrix Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
and lag-τ autocorrelation

ϕ(τ), we have

%1(τ) =
Cov[x1(t), x1(t+ τ)]√
Var[x1(t)]Var[x1(t+ τ)]

=
ϕ(τ)σ2

1√
[ϕ(0)σ2

1][ϕ(0)σ2
1]

= ϕ(τ),
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and similarly %2(τ) = ϕ(τ) and %12(τ) = %12(−τ) = ρϕ(τ). Thus (C6) becomes

Var(r∗) ≈ ρ2(2 + 2ρ2)

∫ 1

0

(1− τ)ϕ(τ)2dτ

−8ρ2
∫ 1

0

(1− τ)ϕ(τ)2dτ + 2(1 + ρ2)

∫ 1

0

(1− τ)ϕ(τ)2dτ

= 2(1− ρ2)2
∫ 1

0

(1− τ)ϕ(τ)2dτ,

verifying (13).
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