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IMMEDIATE

1. EMPIRICAL POTENTIALS

A. Interface

The Interface Force Field (IFF) is a set of parameters and a methodology that is compatible with
the functional forms of major existing force fields [1]. In this sense, there exist many variants for
the IFF and in this work we have used the “IFF-CHARMM”, which refers to the use of IFF-derived
parameters within a simulation engine that uses the CHARMM force field functional forms [2].
The interaction between species i and j is composed by a van der Waals term (Lennard-Jones)
plus an electrostatic contribution, namely,
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where 1/47e is the usual Coulomb constant and 7;; is the center-to-center separation between
atoms 7 and j. Charges and Lennard-Jones (LJ]) parameters were derived by Kanhaiya et al. [3].
Charge numbers are zg, = 1.74 and zo = —1.16 and e = 1.602 x 1012 C is the elementary charge.
The other parameters are summarized in Table S1.

B. Clay

The functional form of the Clay potential is identical to IFF’s: it is composed by non-bonded
interactions only, a sum of a L] term and a Coulombic contribution [see Eq. (S1)] [4]. Charge
numbers for Fe and O atoms in the Clay parametrization are set to 1.575 and —1.05, respectively.
The L] parameters are mistyped in its original reference (Ref. [4]) and in this work we have used
their corrected values [5], shown in Table S2.

C. Tersoff

The potential we refer as Tersoff belongs to a class of analytical bond-order potentials (ABOP),
with origins in Abell’s [6] discussion of bond order. Tersoff [7, 8] first developed these ideas
into an empirical potential for covalent materials [9, 10]. The ABOP formalism closely follows
Tersoff’s work but is extended in a style similar to Brenner’s [11]. Notably, this entire family of
potentials for covalent systems is fundamentally connected to the embedded atom method (EAM)
potentials [12, 13], used for metals [14].

In this work, we used a slightly modified version of Tersoff equations, fully described in Byg-
gmastar ef al. work, were parameters for the Fe-O interaction were also derived [15]. Parameters
for Fe-Fe were developed by Miiller ef al. [16] and Bjorkas and Nordlund [17], while the O-O
interaction parameters are from Erhart et. al [18].

Table S1. Parameters for the Interface Force Field, Eq. (S1), used in this work.
Pair  ¢jj(kcal/mol) o (A)
Fe-Fe 0.2 1.8085
0O-0 0.2 3.1003
Fe-O 0.2 2.4544




Table S2. Parameters for Clay potential, Eq. (S1), used in this work.
Pair ¢ (kcal/mol) o;; (A)
Fe-Fe 9.0298 x 10~7  4.9062
O-0 0.1554 3.1650
Fe-O 3.7459 x 1078  4.0356

D. Reax

The Reactive Force Field, in this work denoted as Reax, was developed by Adri van Duin, William
A. Goddard III, and collaborators. It is a bond-order-based interatomic interaction designed to
model chemical reactions within classical molecular dynamics simulations [19].

The Reax methodology is founded on a general relationship between bond distance and
bond order, and subsequently between bond order and bond energy, which ensures the correct
dissociation of bonds to separated atoms. The contributions from other valence terms, such as
bond angles and torsions, are also formulated as a function of bond order, causing them to decay
smoothly to zero during dissociation events. Non-bonded interactions are handled by Coulomb
and Morse (van der Waals) potentials applied between all atom pairs, with no exclusions. To
avoid nonphysical behavior at close proximity, these non-bonded interactions are shielded at
short ranges, causing them to plateau at a constant value as the interatomic distance approaches
Zero.

For the complete mathematical description of the Reax Force Field, we invite the reader to
check the aforementioned original references. For the Reax parameters used in this work we used
the Shin et. al derivations [20].

E. Core-Shell

The core-shell model is a classical approach that extends the rigid ion Born model of solids [21] to
include the effects of electronic polarizability [22]. A polarizable ion, typically the anion (O%7), is
modeled as a massive core (representing the nucleus and core electrons) connected to a massless
shell (representing the valence electrons) by a harmonic spring [23]. The polarizability of the ion
is thus determined by the charges of the core and shell and the stiffness of the spring constant
connecting them. Cations are generally treated as unpolarizable point charges [23]. Table S3
details the specific charges assigned to each particle type.

Table S3. Particle charges for the Core-Shell model [23].

Particle ~ Charge (e)

Fe +3.00
Ocore +0.21
Oghell -2.21

Interatomic forces in the model are described by a combination of long-range and short-range
potentials. The long-range electrostatic interactions are calculated between all cores and shells
using a Coulomb potential. Short-range interactions are modeled with a pair-potential function
acting between the shells of neighboring ions. For this model, a Buckingham potential is used,
with the functional form: c

Uij(rij) = Aijexp(—rij/ pij) — r%] (52)
1

These short-range potentials are defined only for interactions involving shells, as detailed in
Table S4. Core-core interactions are purely Coulombic.

Finally, the intramolecular interaction between an oxygen core and its own shell is represented
by the aforementioned harmonic spring [23]. The spring constant for this core-shell (cs) bond
is kes = 27.4 €V/A2. Note that for implementation in the simulation package LAMMPS (Imp)



Table S4. Core-shell parameters for the Buckingham contribution (Eq. S2) [23].

Pair Aji (V)  pij () Cjj (eV-A®)
Fe-Fe 0.0 - 0.0
Fe—Ocore 0.0 - 0.0
Fe-Oghell 11024 0.3299 0.0
Ocore-Ocore 0.0 - 0.0
Ocore-Oshell 0.0 - 0.0

Ognel-Ocherl ~ 22764.0  0.1490 27.88

(through the harmonic bond style), this corresponds to a bond coefficient ki, = 13.7 eV/ A?,
since kjmp = kes/2.

F. Surface Energy Calculation

The surface energies () were determined following an established methodology based on slab
models. The procedure first required establishing a reference bulk energy per formula unit (E,).
This was calculated from a 3 x 3 x 1 supercell containing n = 54 Fe,O3 units, constructed from a
fully relaxed primitive cell. Subsequently, symmetric slabs were cleaved for the (0001) and (0112)
surfaces, with respective surface areas (A) of 208.7 A? and 242.6 A2. The slabs were modeled with
a thickness of approximately 40.0 A to ensure convergence of the surface properties. To prevent
interactions between periodic images, a vacuum gap of 100 A was added. After performing a
full geometric relaxation of the slab atoms, the resulting total energy (Es) was used to derive the
surface energy as:

Es — nEb
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G. Relative Deviations for Calculated Quantities

Here we present tables containing the relative deviation for the structural and elastic properties
calculated in this work, shown in tables 1-6 of the main text.

Table S5. Average deviations from experimental values (%) for lattice parameters of hematite
(see Tab. 1 of main text). (¢) is the absolute average deviation [see Eq. (1) of the main text]

Parameter Tersoff Reax  CS IFF  Clay Fe-MLIP DEFT

a 2.70 -0.89 050 014 093 2.44 2.52
c -7.01 -13.27  -298 -090 0.29 1.92 0.49
c/a 944  -1248 -344 -1.02 -0.62 -0.48 -1.28
(o) 6.38 8.88 231  0.69 0.61 1.61 1.43

2. ELASTIC TENSOR AND ELASTIC MODULI OF HEMATITE

The primitive unit cell of hematite belongs to the trigonal crystal system and to the R3c (nr. 167)
space group. For this symmetry, the elastic tensor C can be expressed in matrix form (in Voigt
notation) as



Table S6. Average deviations from experimental values (%) for elastic constants of hematite
(see Tab. 2 of main text).

Parameter Tersoff Reax CS IFF Clay Fe-MLIP  DFT

Cn 2.02 68.67  43.64 1745 -11.18 -16.35 -5.14
Cs3 27.14 97.09 3436  28.88 0.90 -11.60 -6.32
Cy 35.00 102.07 110.17 14431 71.03 31.55 24.31
Cn -1.68 -4.00 11.30 195  -27.89 -24.65 -8.59
Ci3 -21.63 -5635 -2937 -850 -36.29 -44.75 -31.81
|C14] 142.31 865.38 325.00 -87.50 -43.27 11.54 -45.19
(o) 3830 19876 9231 48.10  31.76 23.41 20.23

Table S7. Average deviations from experimental values (%) for elastic moduli and related
quantities for hematite (see Tab. S10).

Parameter Tersoff Reax CS IFF Clay Fe-MLIP DFT

Y 0.04 8352 51.04 34.14 2.16 -12.75 -11.27
K 14.65 3552 2926 2741 -6.50 -14.02 -0.24
G -2.64 9176 5341 33.96 2.64 -13.30 -13.52
B -1429  -26.53 -2245 -2245 @ 6.12 14.29 0.00
v -13.16  -36.84 -26.32 -21.05 -23.68 -18.42 -13.16
K/G 1814  -29.20 -1549 -487  -8.85 -0.44 15.49
H -14.06 14827 73.66 3743  19.55 -3.81 -18.95
(o) 11.00 64.52 3880 25.90 9.93 11.00 10.38

Table S8. Average deviations from experimental values (%) for lattice and elastic parameters of
maghemite (y-Fe;O3) (see Tab. 5 of main text).

Parameter  Tersoff CS IFF Clay Fe-MLIP

a 029 105 604 408 259

c 068 -0.60 -120 -165  3.19
c/a 040 -164 -170 -552  0.60
Cn 59.7 888 3491 -206  -282
Ci 433 2690 4823 336  -4.06
Ci3 460 385 -165 -131  -883
Cs3 496 426 -619 -746  -363
Cus 762 -307 -308 -41.8  -348
Ces 767 2754 -158 -283  -30.0
K 451 662 665 -443  -9.86
(o) 398 150 250 237 15.8




Table S9. Average deviations from experimental values (%) for lattice and elastic parameters of
magnetite (Fe30y) (see Tab. 6 of main text).

Parameter Tersoff Reax Fe-MLIP

a 212 331 282
Ci 516 663  -135
Ci 364 532 -13.1
Cu 744 812 1.87

Y -66.4  19.22 2.81

K -42.7 275 -11.1
G -63.7  49.09 19.73
B 87.27  49.09 20.00
v 2581 -323 -6.45

K/G 1637 -185  23.81
H 760 1476  31.11
(o) 536 377 133

Cn G Gz Cu
Cz Cnn Gz —Cu
Cs C3 Gz 0
Cas —Cu 0 Cy
0 0 0 0 Cyq Cig
0 0 0 0 Ciy 3(Ci1—Cr2)

0
0
0
0

o o o O©

The relationship between stress (aj) and strain (¢g;) follows Hooke’s law, 0; = Cijs i where Cl-]-
are the elements of C [24]. Indices refer to the standard directions in strain and stress theory, as
defined in Voigt notation [25], specifically xx =1, yy = 2,zz = 3, yz = 4, xz = 5, and xy = 6. The
inverse relationship is given by ¢; = §;;0j, yields the compliance tensor. The explicit equations for
Sij in terms of C;; are

S11 = (Cp2Cs3 — C33) /A

Sz = (C11Cs33 — Ch) /A

Sa3 = (C11Cop — C3,) /A

S12 = (C13C3 — C12C33) /A (S3)
S13 = (C12C3 — C13C2) /A

S23 = (C12C13 — C11Ca3) /A

1 1 1
Sy = Cu’ Ss5 = T’ S = Cod’

where A = C11CCs3 + 2C12C13Co3 — C11Ca3 — CooChy — C33C3,.
For obtaining the Bulk (K) and Shear (G) moduli we used the Voigt-Reuss-Hill averaging
scheme [26].

K— KV—2~_Kr
S4
GV+Gr ( )
G= T
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are their corresponding Voigt (v) [25] and Reuss (r) [27] approximations, with auxiliary functions
fr and fi given by

A=Cn+Cxn+Cs
fo=Cr2+Ci3+Co3
f3 = Caq + Cs5 + Ces
f1 =511+ S22+ Sz

f2 =512+ 513+ 523
fa = Saa + Ss5 + Ses-

The elements C;; were obtained from simulations and S;; are calculated through Egs. (S3).

The isotropic Young’s modulus (Y), Poisson’s ratio (v), and compressibility () can be derived
from the bulk modulus (K) and shear modulus (G) — as shown in Eq. (S4) — using the standard
relations:

Table S10. Elastic moduli and related quantities for empirical potentials and our trained ML
potential (Fe-MLIP) for hematite. DFT data are from Ref. [28] and experimental data is a cal-
culated consensus from literature (see the Suppl. Mat. for details). Young’s (Y), Bulk (K) and
Shear (G) moduli and Vickers hardness (H) are given in GPa units, while the compressibility
(B) in GPa~ L. Poisson (v) and Pugh (K/G) ratios are dimensionless. Colors help to visualize
overestimation (red) and underestimation (blue) in relation to experiments.

Parameter Tersoff  Reax CSs IFF Clay  Fe-MLIP  DFT Exp.
Y 236.2 433.3 356.6 316.7 241.2 206.0 209.5 236.1
K 236.3 279.3 266.4 262.6 192.7 177.2 205.6 206.1
G 88.6 174.5 139.6 121.9 93.4 78.9 78.7 91.0
B 0.0042 0.0038 0.0038 0.0052 0.0056 0.0049  0.0049
v 0.33 0.28 0.30 0.29 0.31 0.33 0.38
K/G 2.67 1.91 2.15 2.06 2.25 2.61 2.26
H 7.21 20.83 14.57 11.53 10.03 8.07 6.80 8.39
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Fig. S1. Elastic tensor constants, Cij for hematite calculated with different potentials. The con-
tinuous line (ideal) is given by Liebermann’s experimental results [29].

Table S10 shows the bulk, K, Young, Y, and shear, G, moduli, the compressibility, B, Poisson’s
ratio, v, Pugh ratio, G/K, and the Vickers hardness, H, for hematite.

Figure S1 shows a parity plot of the elastic tensor elements, C;;, comparing the results of the
potentials to experimental data (Ref. [29]).

3. EXPERIMENTAL ELASTIC PROPERTIES CONSENSUS

A. Hematite

Surprisingly, considering the economic importance of hematite, we have found relatively few
works in the literature addressing its elastic properties. In Table S11 we summarize the exper-
imental results for the lattice constants and elastic moduli found in the literature. As can be
seen, the property that has been measured the most is the isotropic bulk modulus (K), while
the Young (E) and shear (G) moduli have been scarcely investigated. The experimental results
shown in Table S11 were measured over a range of different conditions and samples. Thus, we
use the bootstrap median estimation of the properties reported in the literature as a consensus
for the reported experimental data, and use these estimates as a reference. We performed the
median estimation by sampling the median with replacement (n = 10000) over the experimental
data, and consider the uncertainty as two standard deviations, approximating a 95% confidence
interval. This procedure for the median estimation is robust against outliers, and allows us to
estimate the uncertainty associated with the different experiments as well.

Table S11. Experimental lattice constants, a2 and ¢ (in A), the elastic moduli for hematite (in
GPa): namely, the bulk modulus and its volume derivative, K and K’, the Young modulus, E,
the shear modulus, G, and the Poisson ratio, v (adimensional). Values indicated with apos-
trophes (') were considered fixed by the authors. ?) Calculated by us from the elastic tensor

constants ¢;;. by Obtained by the relationships between elastic moduli.
Material

Ref. % purity Conditions a c K K E G v
[30]” 99.7 216.3 95.0 0.139
[31] 25.0°C, 1 bar 202.66 4.53 237.46Y 0.386
[32] 298 K 260
[33] Synthetic <30 kbar 231 4.0

>30 kbar 178 4.0
[34] 25°C, 1 bar 199(6) 40




Table S11 — Continued from previous page

Material

Ref. % purity Conditions a c K K’ E G v
[35] 298 K, 1 bar 5.0347(4)  13.7473(15) 225(4) 4.0
[36] High purity 298 K, 1 bar 246.1(4) 45(2) 179.98"  653(1.5)  0.378"
[371 212 250.2¢ 9% 0.303%
[38] Powder P=0 5.031(7) 13.765(7) 230(5) 3.5(6)
[39] Bulk 298 K, 1 bar 5.034(5) 13.747(2) 205(5) 4.0
Nanocrystal 211(10) 4.0
[40] Sgygf‘;ggﬁic 202.66(20)
[41] 99.99% 5.049(5) 13.73(2) 206.1(4.8) 4.0
202.1(3.8) 43(3)
[42] Bulk 298 K, 1 bar 300(30)
7 nm nanopart. 336(5)
[43] 298 K, 1 bar 5.060(5) 13.75(2) 268(14) 4.0
[44] Powder, 99.99% 201(4) 43(2)
[45] Powder, 99.99% 201 43
[46] %‘;‘?gé‘;*:f 208K 50850(1)  13.7511(3)  184.0(9) 214803)  8200(7) 0306
201 228 87 0311
[47] 99.999% P<253GPa  50354(17)  13.7477(48) 207(3) 40
199(8) 5.3(9)
[48] 5.0993 13.8040 235.4(8) 329(25)  234.748" 88.0 0.334%

In Figures S2 and S3 we show violin plots for the distributions of the lattice constants and
elastic moduli reported in the literature (shown in Table S11) along with the consensus estimation.

For the elastic tensor constants, C,j, only a handful of works are available in the literature,
shown in Table S12. In this case, it should be noted that we have found only three experimental
measurements, with one of them (Voigt [30]) being substantially softer (lower) than the other
two. This disparity is also clear for the lattice constants (max. values) shown in Fig. S2, and for
the elastic moduli (lower values) shown in Fig. S3. In that regard, Voigt pointed out that the
sample for hematite "was more scarcer and not entirely free of defects" (free translation from
Ref. [30]). Other authors agreed that Voigt’s sample was questionable [31, 49]. Despite this, these
results were used as a reference in later theoretical works [50, 51]. In this work we use the values
obtained by Liebermann [36] as reference for the elastic tensor constants.

For the Vicker’s hardness, we used the average of the results obtained by Bhaumik [53], of 8.58
GPa (at 100 g load, based on literature standards [54]), and the result of 8.2 GPa from Chicot et al.
[55], resulting in an average value of 8.39 GPa.

B. Magnetite
Consensus data for magnetite is shown in the Tab. S13.

al%), =5.034 + 0.009 ), =13.749 +0.007
Exp. | | el 4 | rtellipe]
5.03 5.04 5.05 5.06 13.74 13.75 13.76 13.77
a[Al] c[A]

Fig. S2. Experimental lattice constants violin plot distributions for a-Fe;O3. The blue squares
indicate the median estimation with two standard deviations error bars. The number in paren-
thesis in the labels reports the number of measurements.
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Fig. S3. Experimental elastic moduli (bulk, Young and shear modulus, K, E, and G, respec-
tively) violin plot distributions for a-Fe,O3. The blue squares indicate the median estimation
with two standard deviations error bars. The number in parenthesis in the labels reports the
number of measurements.

Ref. 11 33 Caq c12 13 €14
Voigt (1928) [30]* 47 232 87 56 16 13
Birch (1966) [49]* 3520 3180

Liebermann (1986) [36]* 355.9 299.2 58.0 185.0 209.4 -10.4
Tomar (2004) [50]” 27354 184.05 106.6 56.8 16.52 -12.6
Tomar (2006) [51]” 238.2 223.08 78.05 50.75 28.75 -13.12
Guo (2011) [52]+ 319.6 294.4 80.1 125.6 104.5 5.5
Zhang (2020) [28].r 33756 28026 7211 169.13 142.76 5.71

Table $12. Elastic tensor constants, C;; [GPa], for hematite (Voigt notation). Symmetries: c1; =
C22,C44 = C55,C13 = (23,014 = C56 = —C24,C66 — %(Cu — C12). >(') Experimental results. +)
Theoretical results. ”) Based in magnetic field extrapolation H — 0, except for c11 and c33. by
Fitted to Voigt’s data [30].

K19 =172.5+9.2 EQ),=174.0%522
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Fig. S4. Experimental elastic moduli (bulk and Young, K and E, respectively) violin plot dis-
tributions for magnetite. The blue squares indicate the median estimation with two standard
deviations error bars. The number in parenthesis in the labels reports the number of measure-
ments.

4. RAMAN AND INFRARED ACTIVE MODES’ FREQUENCIES



Ref. Conditions a c K K E G v
Kataoka (1984) [56] 180 0.35
Smasonov (1973) [57] 100 GPa, 273 K 181.8%
Straffelini (2002) [58] 32-43°C 210 0.3
Seo (2001) [59] Room 174
Asada (1983) [60] 141 0.33
Hearmon (1984) [61] 230.33 91.3
Mao (1974) [62] 185

175

183

159

161

170

160

177

139

183
Reichmann (2004) [63] Ambient 8.39639(14) 180(1)  5.2(4)
Lin (2014) [64] 186(3) 4’ 66.3(1.8)

Table S13. Experimental lattice constants and elastic moduli (units for length and pressure: A,
GPa) for hematite. #) Calculated by the inverse of the compressibility. Values indicated with
apostrophes () were considered fixed by the authors.

Ref. c11 Ca4 c12
[65] 272.5 97.1 106.0
[63] 260.5(1.0) 63.3(1.5) 148.3(3.0)
[64] 240.6(49) 68.3(1.6) 113.8(5.9)

Table S14. Elastic tensor constants, Cij [GPa], for magnetite (Voigt notation).
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11

Fe-MLIP Clay Reax Tersoff IFF Exp.

n  Sym. w n  Sym. w n  Sym. w n  Sym. w n  Sym. w Sym. Wavg
Eg 2194 | 7 Alg 255 | 5 Eg 3173 | 7 Eg 1721 | 7 Alg 3027 | Alg 2263+£25
Alg 2218 | 8 Eg 2727 | 12 Eg 4035 | 9 Eg 2158 | 8 Eg 3247 Eg 2457431
11 Eg 2679 | 10 Eg 2811 | 15 Alg 4322 | 11 Alg 2271 | 10 Eg 3327 Eg 2927425
15 Eg 2869 | 14 Eg 3250 | 16 Eg 4468 16 Eg 4331 | 14 Eg 3751 Eg  299.0%26
19 Eg 3779 | 18 Eg 4374 | 18 Eg 4763 | 21 Eg 4926 | 18 Eg 5230 Eg  411.7+32
26 Alg 4814 | 26 Alg 6126 | 25 Eg 5870 | 26 Eg 6284 | 26 Alg 7128 | Alg 4987+23
28 Eg 5489 | 28 Eg 6915 | 27 Alg 6062 | 29 Alg 7328 | 28 Eg  800.6 Eg  6120£3.0

Table S15. Calculated Raman active modes: number of the mode (n), irreducible representation symmetry, and frequency (w [cm~!]) for active Raman modes.
Experimental average (wgpg) taken from the data of Refs. [40, 66, 67]

Fe-MLIP Clay Reax Tersoff IFF Exp.

n Sym. w n Sym. w n Sym. w n Sym. w n Sym. w Sym. Wavg

5 Eu 2122 | 5 Eu 2363 | 10 A2u 4115 | 5 Eu 169.7 | 5 Eu 292.3 Eu 2240+7.0
10  A2u 2331 | 12 A2u 2906 | 10 Eu 390.5 | 14 Eu 3654 | 12 A2u 3501 Eu 292.7 +£7.0
13 Eu 286.4 | 16 Eu 356.0 | 8 Eu 3459 | 13  A2u 3381 | 16 Eu 426.7 | A2u  300.0 £1.4
21 Eu 385.6 | 21 Eu 4926 | 20 Eu 486.5 | 18 Eu 4535 | 21 Eu 594.2 Eu 436.5+29
23 A2u 4320 | 23 A2u 5174 | 23 A2u 5092 | 23 A2u 5198 | 23 A2u 6183 Eu 523.0 £4.1
24 Eu 456.3 | 24 Eu 585.8 | 28 Eu 618.1 | 24 Eu 621.8 | 24 Eu 673.6 | A2u 525.7+0.6

Table S16. Calculated IR active modes: number of the mode (n), irreducible representation symmetry, and frequency (w [em~1]) for active IR modes. Experimental
average (wayg) taken from the data of Refs. [66, 68-70]



5. TRAINING

The configurations that comprised our dataset, used to train our potential, were sampled by
molecular dynamics simulations with temperatures ranging from 100 to 2000 K and pressures
from 1 to 100 atm. We also generated configurations by applying strains of +1% and £3% in each
direction (x, y, and z), and combined directions (xy, yz, xz, and xyz) concomitantly with random
displacements with standard deviations of 0.01, 0.02, and 0.03 A. After sampling this first set of
configurations, we trained a preliminary GNN potential from which we calculated the thermal
expansion coefficient in the quasi-harmonic approximation, and random thermal displacements
for the atoms at temperatures from 300 to 2100 K (with volumes corresponding to each given
temperature) using the phonopy code [71]. Figure S5 shows the energy-pressure diagram of the
configurations of our data.
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Fig. S5. Energy vs. pressure diagrams of the data sets for bulk configurations (top), (001) sur-
face configurations (middle), and (110) surface configurations (bottom). The pictures show the
supercell geometries of the configurations. The arrows indicate configurations generated by
molecular dynamics (MD), random displacements and strains (RD+S), and random thermal
displacements (TD).

We trained 4 different message-passing graph neural networks (MPGNN) with different initial
random weights, in order to use the models in a committee by averaging them. The node states
of the GNNs were represented by 32 channels up to L = 1 equivariant features. Two message
passing interactions were used, with correlation order 7. = 3. A hybrid scheme that smoothly
interpolates the Ziegler-Biersack-Littmark (ZBL) screened nuclear repulsion potential with the
GNN models was employed to avoid divergences in predicted forces and energies if atoms get
too close to one another [72]. A Huber loss function was used for energies, forces, and stresses in
a two-phase optimization. First, we applied the exponential moving average (EMA) weight decay
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with weight #ppa = 0.95, and loss function component weights of wEMA =1, wEMA = 100,
and wEMA = 1000 for energies, forces and stresses, respectively. Then, we switch to stochastic
weight averaging (SWA) with loss function component weights of w34 = 100, w34 = 1, and
w3WA = 100 for another maximum 150 epochs with a learning rate of 10~3, using early stopping
if the models do not improve for 20 epochs. The schedulefree optimizer [73] was used during
optimization.

Figure S6 shows the root mean square errors for the validation data set during training of
energies, forces, and stresses. The vertical lines indicate the switching from EMA to SWA at epoch
150, and the horizontal lines are typical accuracy targets for interatomic potentials, 1 meV /atom
for forces, 40 meV /A for forces and 0.6 meV/A3 (0.1 GPa) for stresses. All models are well
converged.

Figures S7-S10 show the parity graphs and the error distributions for the 4 individual trained
Fe-MLIP models. All of the models display good performance on the test set, with RMS errors
lesser than 1.2 meV /atom for energies, 32 meV/ A for forces, and 0.72 meV /A3 for stresses.

The four different models shown above can be averaged in a committee. This procedure has
two main advantages: first, there is some error cancellation between the models, improving
robustness and generalization; and secondly, the dispersion of the models predictions (the
standard deviation, for instance) can be used as a measure of the adequacy of the potential for
a given configuration, which allows the assessment of the quality of the potential for different
thermodynamic conditions, for example [74]. Figure S11 shows the parity graphs and the error
distributions for the committee Fe-MLIP models. The RMS errors of the committee for energies,
forces and stresses are 0.75 meV /atom, 21 meV /A, and 0.33 meV/A3, respectively.
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