Supplementary Materials
1. The relationship of accuracy to the fraction-product
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	SUPP.  TABLE I. Elemental Confusion Matrix

	
	Reference

	
	
	Class 1
	Class 2

	Allotted
	Class 1
	A,B,C
	E

	
	Class 2
	D
	F,G


	SUPP.  TABLE II. Statistics

	f1
	3/4

	f2
	2/3

	fp
	1/2

	accuracy
	5/7

	prevalence Class 1 
	4/7

	prevalence Class 2
	3/7



Supplementary Figure 1. This figure (above left) uses a simple model to illustrate the probabilistic processes that underlie the concept of accuracy for a single feature. Panel A shows a sample of 7 subjects from populations of two known classes. The general coding of information is the same as Figure 1 in the main text: colors red and blude distinguish the two classes; a vertical bar indicates the median for each class; a caret marks the cut-off for classifying the subjects; the line is a 1D scatter plot of the subjects according to the numerical values of the attribute. However, there are two differences. Each data point is given a unique label for clarity, and the numbers of subjects in each class differ. This latter fact raises the concept of prevalence, the relative proportions of each class in the sample. 
     Panel B illustrates the effect of prevalence on outcomes and clarifies the relationship of accuracy to the fraction-product. A single subject is drawn from the sample, and the probability of its belonging to Class 1 or Class 2 equals the prevalence denoted as a fraction. In Panel B, N is the total number of points in the sample; N1 and N2 are the numbers in each class; clearly, N1 + N2 = N. The second branch point asks the probability that the selected subject will be correctly allotted by the algorithm, which is determined by the factors of the fraction product, f1 and f2. The four final probabilities correspond to the four outcomes in the confusion matrix. 
[bookmark: _Hlk194934091]     The four outcomes listed in the confusion matrix may be represented in several ways. SUPPLEMENTARY TABLE I shows the outcomes by collecting individual subjects into the four cells. This is the most concrete representation but can only be used for small N. SUPPLEMENTARY TABLE 2 lists the statistics calculated on the sample that relate to this discussion. The final probabilities in Panel B together with the simple numerical entries in TABLE 2 demonstrate the formula
	Accuracy (as probability) = (prevalence Class 1) f1 + (prevalence Class 2)f2	Eq. 1

which shows the relationship of the factors of the fraction-product to the related but distinct concept of accuracy.

2. Annotated R scripts

A. Analysis

# import Wisconsin database
read.csv("data.csv")->dfcsv

# remove column of patient identifier numbers
# 31 is in the name because it is number of columns and helps when indices are used
dfcsv[,2:32]->dfMB31

# collect row numbers for each diagnosis in column 1
allM<-which(dfMB31[,1]=="M")
allB<-which(dfMB31[,1]=="B")

# randomly select training set, 282 rows, with 141 M and 141 B
set.seed(77)
sample(allM, 141)->trM
set.seed(77)
sample(allB, 141)->trB

# combine trM and trB into training set
c(trM,trB)->trMB

# load function mkfpdf(); it is also in supplementary material
# mkfpdf() calculates fp, f1, f2, median1 - median2 and
# stores them in 4x31 array; "fpdf" = "fraction-product data frame"
source('../mkfpdf.R')

# make fpdf array from training sets of M and B patients
mkfpdf(dfMB31[trM, ], dfMB31[trB, ]) -> tr31.fpdf

# fp > 0.359 are extreme values by p=0.001 criterion
# find those with fp-values that are likely due to chance
which( tr31.fpdf[1, ] < 0.359 )  ->  no.info

# remove those with fp-values that are likely due to chance
# note change in column number
dfMB31[ ,-no.info] -> dfMB26
tr31.fpdf[ ,-no.info] -> tr26.fpdf

# find maximal values of fp, f1 and f2
# first column holds NAs as a placeholder for diagnosis
# na.rm=T option tells max() to skip NAs; column indices don't change
# which() returns column indices here as list if more than one
maxfp.26 <- which( tr26.fpdf[1, ]  ==  max( tr26.fpdf[1, ],  na.rm=T) )
maxf1.26 <- which( tr26.fpdf[2, ]  ==  max( tr26.fpdf[2, ],  na.rm=T) )
maxf2.26 <- which( tr26.fpdf[3, ]  ==  max( tr26.fpdf[3, ],  na.rm=T) )

# which() returns column index so create generalized vector with column names 
colnames( dfMB26 )->nam26

# find feature name associated with index
# output would be a list if multiple features attained maximum value
nam26[ maxfp.26 ]		# output is radius_worst
nam26[ maxf1.26 ] 		# output is concave.points_worst
nam26[ maxf2.26 ]		# output is area_worst

# create array of Pearson's r of each feature with the feature that has max fp, max f1 or 
# max f2; column number 25 because it’s better not to trouble cor() with NAs
cor( dfMB26[ trMB, maxfp.26 ], dfMB26[ trMB, 2:26 ])  ->  cormaxfp.25
cor( dfMB26[ trMB, maxf1.26 ], dfMB26[ trMB, 2:26 ])  ->  cormaxf1.25
cor( dfMB26[ trMB, maxf2.26 ], dfMB26[ trMB, 2:26 ])  ->  cormaxf2.25

# create and load a matrix with "potential" for taxonomic information like fp, f1, and f2
# without being significantly correlated with fp, f1 or f2
# here we use values of fp, f1, f2 as a measure of taxonomic information in each feature 
pot.mat.fx <- matrix( nrow=3, ncol=26 )
for( j in 2:26 ) { tr26.fpdf[1, j]*(1 - cormaxfp.25[j-1]^2) -> pot.mat.fx[1, j] }
for( j in 2:26 ) { tr26.fpdf[2, j]*(1 - cormaxf1.25[j-1]^2) -> pot.mat.fx[2, j] }
for( j in 2:26 ) { tr26.fpdf[3, j]*(1 - cormaxf2.25[j-1]^2) -> pot.mat.fx[3, j] }

# in other analyses we have used the fp-value as the sole measure of taxonomic            # information
# for the Wisconson data set the two methods give nearly identical results
# the "fpdf" has fp in row 1, f1 in row 2, f2 in row3 so difference highlighted
# for(j in 2:26) {tr26.fpdf[1,(j)]*(1-cormaxfp.25[j-1]^2) -> pot.mat.fp[1,j]}
# for(j in 2:26) {tr26.fpdf[1,(j)]*(1-cormaxf1.25[j-1]^2) -> pot.mat.fp[2,j]}
# for(j in 2:26) {tr26.fpdf[1,(j)]*(1-cormaxf2.25[j-1]^2) -> pot.mat.fp[3,j]}

# get names of features corresponding to the index returned by which()
# for maximal value of each potential
nam26[ which( pot.mat.fx[1, ] == max( pot.mat.fx[1, ], na.rm=T) )]	
#output smoothness_worst

nam26[ which( pot.mat.fx[2, ] == max( pot.mat.fx[2, ], na.rm=T) )]	
# output texture_mean

nam26[ which( pot.mat.fx[3, ] == max( pot.mat.fx[3, ], na.rm=T) )]		
# output smoothness_worst


# load library with lda()
library(MASS)

# perform LDA with 5 features and put output in fx5.lda
fx5.lda <- lda( diagnosis ~ radius_worst + concave.points_worst + area_worst + smoothness_worst  +  texture_mean,  data = dfMB26[trMB, ] )

# load library to calculate confusion matrix
library(caret)

# training set
confusionMatrix ( data = predict(fx5.lda, newdata = dfMB26[trMB, ])$class, reference = as.factor(dfMB26[trMB,1] ) )

# test set
confusionMatrix( data = predict(fx5.lda, newdata = dfMB26[-trMB, ])$class, reference = as.factor(dfMB26[-trMB,1] ) )

# because of dramatic separation of cormaxf1 values into two groups, try new method; 
# select the feature that has the largest f1-value rather than use the potential as above

# identify those features in the lower group of r-values
tmp<-which(cormaxf1.25 < 0.65)

# these indices are from 25 columns so must add 1 to get corresponding indices for 26
uncorf1<-tmp+1

# get index of uncorrelated feature with the largest f1-values
which( tr26.fpdf[2, uncorf1]  ==  max(tr26.fpdf[2, uncorf1] ) )	# output is 10

# 10 is the index for the generalized vector uncorf1
# so correct index for nam26 is
nam26[uncorf1[10]]	# output is texture_worst

# try lda with 4 features: max fp, max f1, max f2 and max uncorrelated f1
fx4.lda<-lda( diagnosis ~ radius_worst + concave.points_worst + area_worst +  texture_worst, data = dfMB26[trMB, ] )

# examine confusion matrix
# training set
confusionMatrix(data = predict( fx4.lda, newdata = dfMB26[trMB, ] )$class, reference = as.factor( dfMB26[trMB,1] ) )

confusionMatrix(data = predict( fx4.lda, newdata = dfMB26[-trMB, ] )$class, reference = as.factor( dfMB26[-trMB,1] ) )

q("yes")



B. mkfpdf.R
mkfpdf<-function(in1, in2) {

# data should be subjects as rows, attributes as columns
# first col is dx 
# call as mkfpdf(input file 1, input file 2) -> name_of_output_file.fpdf
# initial in1 is dfMB31[trM, ], in2 is dfMB31[trB, ]

# both input files must have identical columns, minimal check
if (ncol(in1) != ncol(in2)) {print("Error: input columns don't match")}

# determine number of columns in input file
N <- ncol(in1)

# create output matrix to become fpdf
out <- matrix(nrow=4, ncol=N) 

# determine number of subjects in first input file
C1 <- nrow(in1)

# determine number of subjects in second input file
C2 <- nrow(in2)

# start at i=2 to leave NA in first column as placeholder for diagnosis
for( i in 2:N ) {

m1 <- median(in1[ ,i])
m2 <- median(in2[ ,i])
cut <- (m1+m2)/2

# determine N1, N2 numbers correctly classified
# in1[,i] < cut returns 1 if true, sum to count
if ( m1 < m2 ) {
sum( in1[,i] < cut )/C1 -> f1
sum( in2[,i] > cut )/C2 -> f2
}
if ( m1 > m2 ) {
sum( in1[,i] > cut )/C1 -> f1
sum( in2[,i] < cut )/C2 -> f2
}
if (m1 == m2) {f1<-0.5; f2<-0.5; print("Well, it acually happened!")}

# end if-statements, all parameters determined

# write parameters to matrix out
out[1,i]<- f1*f2
out[2,i]<- f1
out[3,i]<- f2
out[4,i]<- m1-m2
                } # end for-statements

# convert matrix to data.frame
data.frame(out)->out.df

# assign names of input file 1 to out.df
names(out.df)<-colnames(in1)

# returns as program output so must call as mkfpdf(in1, in2)-> desired_name.fpdf
return(out.df)
}


C. mkallfpdf.R
mkallfpdf <- function() {

# make table of all 5 choose 2 combinations of benign sets
combn(c(1,2,3,4,5), 2) -> tb
# make table of all 5 choose 2 combinations of malignant sets
combn(c(1,2,3), 2) -> tm
# output of combn is for tm is
#       [,1] [,2] [,3]
# [1,]    1    1    2
# [2,]    2    3    3
# there is a similar table for tb with 10 columns


# create output name oname2; j is index for tm; k is index for tb; names are M13B25.fpdf,  etc
for(j in 1:3) { for(k in 1:10) {
                        oname0<-paste("M", toString(tm[2,j]), sep=toString(tm[1,j]))
                        oname1<-paste("B", toString(tb[2,k]), sep=toString(tb[1,k]))
                        oname2<-paste(oname0, ".fpdf", sep=oname1)

# create input name iname

                        iname0<-paste("M", toString(tm[1,j]), sep="")
                        iname1<-paste("M", toString(tm[2,j]), sep="")
                        iname2<-paste("B", toString(tb[1,k]), sep="")
                        iname3<-paste("B", toString(tb[2,k]), sep="")
# get objects whose names are strings iname0, etc.; e.g, M1, M3, B2, B5
in0<-get(iname0)
in1<-get(iname1)
in2<-get(iname2)
in3<-get(iname3)

# mkfpdf must be in the global environment
# M1, M2, B1, B2, etc. are indices of rows 
mkfpdf( dfMB31[ c(in0,in1), ], dfMB31[ c(in2,in3), ] ) -> tmp

# so input sets M1, M3, B2, B5 get assigned M13B25.fpdf as output
# all four input files have 70-72 elements so approximately 141 M and 141 B elements
assign(oname2, tmp, envir=.GlobalEnv)

                                } #end k loop
              } # end j loop
# end function
}


3. Feature stability analysis
# import data; subjects as rows; attributes as columns
dfcsv<-read.csv("data.csv", header=T)

# remove patient identifier column
# name indicates "data frame with all Malignant and Benign diagnoses"
dfMB31<-dfcsv[,2:32]

# collect all rows accroding to diagnosis
allM<-which(dfMB[,1]=="M")
allB<-which(dfMB[,1]=="B")

# form random subests of allM and allB of 70-72 subjects to match training set
# 3 subsets of allM (M1, etc.); 5 subsets of allB (B1, etc)
set.seed(77)
sample(allM, 71)->M1
setdiff(allM, M1)->tmp
set.seed(77)
sample(tmp, 71)->M2
setdiff(allM, c(M1, M2))->M3

# lengths and intersections of M1, M2, M3 check but are deleted as commands

# 5 subsets of allB
set.seed(77)
sample(allB, 72)->B1
setdiff(allB, B1)->tmp1
set.seed(77)
sample(tmp1, 72)->B2
setdiff(tmp1, B2)->tmp2
set.seed(77)
sample(tmp2, 71)->B3
setdiff(tmp2, B3)->tmp3
set.seed(77)
sample(tmp3, 71)->B4
setdiff(tmp3, B4)->tmp5
#length(tmp5) checks as 71
tmp5->B5

# intersections check but commands deleted

# The function mkallfpdf() 2. C. above includes the script for writing all file names 
# and is included in supplementary material as a separate file. 
# Each file output is a fraction-product data frame (fpdf), like that created in 
# the analysis file, which is also included in the supplementary material.
# An "fpdf" file is a 4x31 array, rows are fp, f1, f2, m1-m2; columns are features; 
# column 1 contains NAs so that the feature has the same column number in dfMB and fpdf.
# The function mkallfpdf() outputs fpdf files named after combinations to compute
# the fraction-product, e.g., c(M2,M3) and c(B1,B5) name M23B15.fpdf, etc.
mkallfpdf()

# Output of ls() is an array (generalized vector) and an element is retrieved by tmp[i].
# "M..B...dpdf" retrieves all MijBhk.fpdf output by mkallfpdf()
tmp<-ls(pattern="M..B...fpdf")

# create three 30-element lists to accept output from function below
vector("list", 30)->maxfp.lst
vector("list", 30)->maxf1.lst
vector("list", 30)->maxf2.lst

# collect column number of feature with maximum value of [[1]] (ie, fp);  [[2]] (i.e., f1); [[3]] (ie. f2)
# i steps over the names of all M..B...fpdf file collected as strings in "tmp"
for(i in 1:30) {

		# in1 contains data frame named by string tmp[i]
		in1<-get(tmp[[1]][i]);

# get column numbers of those features whose fp-value equals the maximum for # that analysis
# "diagnosis" column has NA as entry and "na.rm=T" option skips that but              # preserves column numbers
		maxfp.lst[[i]]<-which(in1[1,] == max(in1[1,], na.rm=T))

		# same as above for f1-values
		maxf1.lst[[i]]<-which(in1[2,] == max(in1[2,], na.rm=T))

		# same as above for f2-values
		maxf2.lst[[i]]<-which(in1[3,] == max(in1[3,], na.rm=T)) 

       	      }

# in R, some functions won't work on a list; 
# you must unlist() to convert the list to a generalized vector
# examine unique column numbers (features) 
unique(unlist(maxfp.lst))
unique(unlist(maxf1.lst))
unique(unlist(maxf2.lst))

# examine frequency of all features across fp, f1, f2
table(c(unlist(maxf2.lst),unlist(maxf1.lst), unlist(maxfp.lst)))

# collect column numbers of these features to examine correlations
maxfp12feat<-unique(c(unlist(maxf2.lst),unlist(maxf1.lst), unlist(maxfp.lst)))

# explore; note this is over the entire data set 
cor(dfMB[,maxfp12feat], dfMB[,maxfp12feat])

# collect no.info for all combinations
# put all file names into generalized vector
tmp0<-ls(pattern="M..B...fpdf")

# create output list for no.info features
no.info.lst <- vector("list", 30)

# put features with no information into list
for(i in 1:30) {get(tmp0[i])->in1; which(in1[1,] < 0.359)->no.info.lst[[i]]}

# idenitfy column indices of no.info features across all combinations
unique(unlist(no.info.lst)) 

# examine frequency distribution of no.info features across all combinations
table(unlist(no.info.lst))
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