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Supplementary Fig. 1 Mechanism of 1O2 trapping by 2,2,6,6-tetramethyl-4-piperidone (4-Oxo-TEMP). The reaction between 4-Oxo-TEMP and 1O2 forms a stable 4-Oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-Oxo-TEMPO) radical, which is detected via EPR spectroscopy. The trapping reaction kinetically competes with 1O2 relaxation to 3O2 and other side reactions, necessitating high 4-Oxo-TEMPO concentrations (0.1 M) in the electrolyte as a trapping agent.
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Supplementary Fig. 2 Parameters of pre-discharged electrode for in situ Electron Paramagnetic Resonance (EPR) and Ultraviolet-Visible Spectroscopy (UV-vis): The electrode was 1 cm2 MXene/CNT-carbon paper (CP) with the mass loading of 5 mg cm-2. The pre-discharge procedure involved discharging at 100 μA for 5 h in standard electrolyte. The discharge capacity was set to five times the charge capacity to maximize EPR signal intensity. Pre-discharged electrode for subsequent in situ UV-vis was prepared under identical parameters.
[image: 24 h]
Supplementary Fig. 3 EPR spectra of the 0 h and 24 h electrolyte with 0.1 M 4-oxo-TEMP. The 24 h electrolyte with 0.1 M 4-oxo-TEMP extracted from an Ar-protected cell using few-layer Ti3C2Tx MXene/CNT as cathode after 24-hour aging. The EPR spectrum of the 0 h electrolyte shows a weak 1:1:1 triplet signature from 4-Oxo-TEMPO impurity; this does not affect trend analysis. After 24 h the triplet intensity is unchanged, indicating no redox reaction between the catalyst and 4-Oxo-TEMP.
[image: 图片1]
Supplementary Fig. 4 UV-vis absorption spectra and Fitting curve. a, UV-vis absorption spectra of electrolytes containing different 9,10-dimethylanthracene (DMA) concentrations. b, Fitting curve of dependence of relative absorbance on DMA concentration at 380 nm.
[image: In situ UV]
Supplementary Fig. 5 Schematic diagram of the in situ UV-vis testing device. In UV–vis was performed in 10 mm high-precision quartz cell with a custom-made gasproof polytetrafluoroethylene (PTFE) lid. The cell contained a 1 cm2 catalyst-loaded cathode, a 1 cm2 Li1-xFePO4-loaded anode and 4 mL electrolyte with DMA. The DMA concentration of 50 μM was chosen to balance an effective trapping concentration with the excellent detecting precision of the instrument. For the in situ UV–Vis, the cell was charged at 300 μA for 40 min. In situ EPR was tested in the same in situ cell.
[image: 3O2 Curve]
Supplementary Fig. 6 UV-vis absorption spectra of DMA in electrolyte before and after contacting with air for 24 h.
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Supplementary Fig. 7 Scanning Electron Microscopy (SEM) images of the catalyst. As marked in yellow, abundant macroscopic wrinkles are observed on the catalyst surface. All scale bars in the supplementary fig. 7 represent 20 μm.
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Supplementary Fig. 8 Transmission Electron Microscopy (TEM) and High-Resolution Transmission Electron Microscopy (HRTEM) images of the catalyst. a, TEM image of the catalyst. Abundant macroscopic wrinkles are observed on the catalyst surface. b, HRTEM images of the catalyst. The zoomed-in image reveals abundant metal-vacancy defects on the catalyst surface.
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Supplementary Fig. 9 Bending Energy of Flat-, Defective (Up)- and Defective (Down)-TMC.
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Supplementary Fig. 10 X-Ray Diffraction (XRD) patterns of low anion exposure MXene (LA-TMC), medium anion exposure MXene (MA-TMC), and high anion exposure MXene (HA-TMC).
[image: Raman-P]
Supplementary Fig. 11 Raman spectra of LA-TMC, MA-TMC, and HA-TMC. In the MXene skeletal region, the peaks located at 202.8 cm-1 and 718.5 cm-1 are attributed to the out-of-plane phonon modes involving Ti atoms, C atoms, and terminal groups. The peaks at approximately 268.1 cm-1, 405.2 cm-1, and 613.5 cm-1 are associated with in-plane vibrational modes of Ti atoms, C atoms, and terminal groups. In the carbon region, the peaks observed at around 1355.7 cm-1 and 1580.9 cm-1 correspond to the D-band and G-band, representing defective carbon lattices and sp2-hybridized C atoms, respectively.
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Supplementary Fig. 12 Cyclic Voltammetry (CV) curves at 0.5 mV s-1 in 2.0-4.5 V of LA-TMC, MA-TMC and HA-TMC. The inset shows the onset potentials during charge and the discharge voltage corresponding to a discharge current of 0.3 mA.
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Supplementary Fig. 13 CV curves at 0.5 mV s-1 in 2.0-4.5 V of HA-TMC (first and second cycle).
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Supplementary Fig. 14 Galvanostatic discharge-charge (GDC) curves of LA-TMC with a limited capacity of 500 μAh cm-2 at different current densities.
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Supplementary Fig. 15 GDC curves of MA-TMC with a limited capacity of 500 μAh cm-2 at different current densities.
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Supplementary Fig. 16 GDC curves of HA-TMC with a limited capacity of 500 μAh cm-2 at different current densities.
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Supplementary Fig. 17 Energy efficiencies of LA-TMC, MA-TMC and HA-TMC with a limited capacity of 500 μAh cm-2 at different current densities.
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Supplementary Fig. 18 Cycling performance of LA-TMC, MA-TMC, and HA-TMC with a limited capacity of 200 μAh cm-2 at 20 μA cm-2.
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Supplementary Fig. 19 Cycling performance of LA-TMC, MA-TMC, and HA-TMC with a limited capacity of 200 μAh cm-2 at 100 μA cm-2.
[image: SI cycle200]
Supplementary Fig. 20 Cycling performance of LA-TMC, MA-TMC, and HA-TMC with a limited capacity of 200 μAh cm-2 at 200 μA cm-2.
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Supplementary Fig. 21 Energy Efficiency at various current densities (20, 100 and 200 μA cm-2) for different cycle numbers.
[image: SI EIS-Rct]
Supplementary Fig. 22 The charge transfer resistance (Rct) results fitted from EIS at different cycling stages (fitting results provided in Supplementary Table 3).
[image: SI Full discharge-charge]
Supplementary Fig. 23 Deep discharge curves to 2.4 V and subsequent recharge curves of a LA-TMC, b MA-TMC, and c HA-TMC. The fluctuations in the charging curve originate from localized conductivity discontinuities and uneven current distribution caused by the heterogeneous accumulation of insulating Li2CO3 after deep discharge. However, LA-TMC can still complete the full-capacity charging with potential oscillations around 3.4 V. During this process, the charging potential of LA-TMC does not polarize beyond 4.0 V as observed in MA-TMC and HA-TMC, indicating its superior anti-oxidation capability.
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Supplementary Fig. 24 Electrochemical performance comparison of reversible capacity among reported catalysts (Supplementary Table 4).
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Supplementary Fig. 25 Ti K-edge XANES of LA-TMC, MA-TMC and HA-TMC.
[image: SI SEM-cycle]
Supplementary Fig. 26 SEM images of LA-TMC, MA-TMC, and HA-TMC electrodes at pristine state and after 10th discharge, 10th charge, 100th charge. All scale bars in the Supplementary Fig. 25 represent 2 μm. To clearly display the cycled electrodes and discharge products, the scales were not unified due to the size differences between catalysts and discharge products. The yellow annotations indicate solid discharge products.
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Supplementary Fig. 27 XRD patterns of LA-TMC, MA-TMC, and HA-TMC electrodes after 10th discharge.
[image: SI all-GDC]
Supplementary Fig. 28 GDC curves of in situ Raman test based on LA-TMC, MA-TMC, and HA-TMC electrodes.
Supplementary Table 1. Electrochemical performance comparison of cycle time, initial charge voltage and polarization charge voltage among reported catalysts.
	Species
	Cathode
	Cycle Time (h)
	Initial charge potential (V)
	Cyclic Polarization Voltage (V)
	References

	Transition metal
	CC@Mo2C NPs
	200
	3.52
	0.24
	1

	Transition metal
	MoS2-NS
	500
	3.5
	0.37
	2

	Transition metal
	MnO@NMCNFs
	1300
	4.25
	0.35
	3

	Transition metal
	CIS/CC
	1050
	3.53
	0.55
	4

	Transition metal
	V-MoS2/Co9S8@CP
	620
	3.71
	0.24
	5

	Transition metal
	Mo2N–ZrO2@NCNF
	1650
	3.79
	0.33
	6

	Transition metal
	Vs-Co2CuS4
	580
	3.81
	0.29
	7

	Transition metal
	Fe2O3@CoS
	550
	3.36
	0.94
	8

	Transition metal
	MOC@NCNT
	1000
	4.33
	0.17
	9

	Transition metal
	Sv-CoS
	400
	3.61
	0.49
	10

	Transition metal
	CoS-Vs-1.0
	600
	3.5
	1.5
	11

	Transition metal
	Ex-Ti3C2Tx-3
	1380
	3.2
	1.1
	12

	Noble metal
	RuO2@CNT
	1100
	4
	0.25
	13

	Noble metal
	RuCo NSs/CNT
	172
	3.79
	0.79
	14

	Noble metal
	G-III
	1300
	3.86
	0.9
	15

	Carbon based
	NGCA
	1500
	3.65
	0.55
	16

	Carbon based
	CM/CNTs
	488
	4.1
	0.36
	17

	Carbon based
	FGDY
	480
	4.3
	0.18
	18

	Porous Framework Materials
	HOF-FJU-1-Ru/CNT
	1800
	4.01
	0.29
	19

	Porous Framework Materials
	CoPc
	1600
	3.88
	0.52
	20

	Porous Framework Materials
	Ni-Fc
	2000
	4.21
	0.39
	21

	Single-Atom Catalysts
	Fe-ISA/N,S-HG
	420
	4.3
	0.2
	22

	Single-Atom Catalysts
	RuAC+SA@NCB
	200
	4.19
	0.28
	23

	Single-Atom Catalysts
	TeAC@NCNS
	600
	4.25
	0.24
	24

	Soluble catalysis
	Br-PPD
	200
	3.98
	0.87
	25



Supplementary Table 2. Resistance of LA-TMC, MA-TMC and HA-TMC at different cycling stages, calculated from EIS simulations.
	
	
	Rs
	Rsei
	Rct

	LA-TMC
	Pristine
	5.51
	5.64
	63.93

	
	1st Discharge
	5.91
	3.94
	80.43

	
	1st Charge
	6.43
	4.52
	186.50

	
	10th Discharge
	9.38
	149.80
	813.90

	
	10th Charge
	8.87
	62.43
	614.50

	MA-TMC
	Pristine
	6.29
	2.24
	76.26

	
	1st Discharge
	6.87
	2.38
	104.90

	
	1st Charge
	7.90
	223.30
	378.70

	
	10th Discharge
	12.79
	380.10
	2223.00

	
	10th Charge
	13.47
	323.90
	3401.00

	HA-TMC
	Pristine
	10.52
	3.84
	80.87

	
	1st Discharge
	11.78
	4.93
	89.51

	
	1st Charge
	6.531
	239.20
	535.90

	
	10th Discharge
	17.56
	485.90
	3312.00

	
	10th Charge
	19.51
	439.20
	3478.00

	[image: 电路图]
Rs: ohmic resistance from the electrolyte, electrodes, current leads, and other components. 
Rct: charge-transfer resistance.
Cdl: double-layer capacitance.
W: Warburg impedance of the diﬀusion process.



Supplementary Table 3. Parameters of discharge capacity and recharge capacity.
Discharge capacity: capacity discharged to 2.4 V.
Reversible capacity/Recharge capacity: capacity recharged with voltage not exceeding 4.0 V.
Rechargeability = Recharge capacity / Discharge capacity.
	Sample
	Recharge capacity
 (mAh cm-2)
	Discharge capacity
 (mAh cm-2)
	Rechargeability
(%)

	LA-TMC
	31.5
	31.5
	100

	MA-TMC
	27.8
	9.1
	33

	HA-TMC
	26.8
	3.2
	12




Supplementary Table 4. Electrochemical performance comparison of reversible capacity among reported catalysts.
	Species
	Cathode
	reversible capacity(mAh cm-2)
	References

	Transition metal
	LA-TMC
	31.5
	This work

	Transition metal
	CC@Mo2C NPs
	1
	1

	Transition metal
	MoS2-NS
	0.8
	2

	Transition metal
	MnO@NMCNFs
	1
	3

	Transition metal
	CIS/CC
	0.1
	4

	Transition metal
	V-MoS2/Co9S8@CP
	0.1
	5

	Transition metal
	Mo2N–ZrO2@NCNF
	3.7
	6

	Transition metal
	Vs-Co2CuS4
	1.8
	7

	Transition metal
	Fe2O3@CoS
	3.5
	8

	Transition metal
	MOC@NCNT
	6.7
	9

	Transition metal
	Sv-CoS
	0.1
	10

	Transition metal
	CoS-Vs-1.0
	0.1
	11

	Transition metal
	Ex-Ti3C2Tx-3
	3.2
	12

	Noble metal
	RuO2@CNT
	1.1
	13

	Noble metal
	RuCo NSs/CNT
	1.8
	14

	Carbon based
	NGCA
	0.1
	16

	Carbon based
	CM/CNTs
	0.2
	17

	Carbon based
	FGDY
	0.1
	18

	Porous Framework Materials
	CoPc
	1.3
	20

	Porous Framework Materials
	Ni-Fc
	3.7
	21

	Single-Atom Catalysts
	Fe-ISA/N,S-HG
	4.5
	22

	Single-Atom Catalysts
	RuAC+SA@NCB
	0.3
	23

	Single-Atom Catalysts
	TeAC@NCNS
	1
	24

	Soluble catalysis
	Br-PPD
	0.1
	25
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