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& Denitrification:
NO; ---nap,nar---> NO, ---nirS,nirK---> NO --nor---> N,O ---nosZ---> N,
(Fe, Mo) (Fe, Cu) (Fe, Cu) (Cu)

& Dissimilatory Nitrate Reduction to Ammonium (DNRA)

NO; ---nap,nar---> NO, ---nirB-nirD,nrf---> NH,
(Fe, Mo) (Fe)

& Assimilatory Nitrate Reduction to Ammonium (ANR)
NO; ---nas,nar---> NO, ---nirA,NR---> NH,
(Fe, Mo) (Fe)

& Nitrification:
NH; ---amo---> NH,OH ---hao---> NO, ---nxr---> NOj;
(Cu) (Fe) (Fe, Mo)

& Nitrogen fixation:
N, ---nif--->NH,
(MoFe,VFe,FeFe)

& Anaerobic Ammonium Oxidation (ANAMMOX):
NO, + NH, ---hzs,hdh---> N,
(Mn, Fe)

Supplementary Figure. 1 Reactions of N-transforming processes and the corresponding trace

metals employed by the metalloenzymes.
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Supplementary Figure. 2 Relative abundances (GPMs) of urease genes in the a) free-living

and b) particle-attached communities.
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Supplementary Figure. 3 Results of the Spearman correlation analyses for the a) free-living

and b) particle-attached communities. Stars indicate significant correlations (p<0.05).
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Supplementary Figure. 4 a) Coverage of representative MAGs in FL communities b) Copy
numbers of representative N-transforming genes encoded by the MAGs. ¢) Coverage of

representative MAGs in PA communities. Stars represent the MAGs with species affilation.
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Supplementary Figure. 5 Dissolved TM concentrations at the depth of sample collection for

metagenomic analyses.
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Supplementary Figure. 6 Particulate TM concentrations at the depth of sample collection for

pFe (nM)
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metagenomic analyses.
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Supplementary Figure. 7 Physiochemical parameters concentrations, of the samples collected

NO,~ (uM)
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Yikrazuul et al., 2011. Overview of C4 photosynthesis NADP-ME type. CC BY-S4 3.0.

NADP-ME - Nicotinamide adenine dinucleotide phosphate— Malic enzyme, CA — Carbonic anhydrase,
HC03_- Bicarbonate, PEP — phosphoenolpyruvate, Pi — phosphate, PEPC - PEP carboxylase, OA — oxaloacetate,

M — malate, Pyr — pyruvate, PPDK - Pyruvate phosphate dikinase, PPi — pyrophosphate, PGA — phosphoglycerate,
FAD - Flavin adenine dinucleotide, CC — Calvin Cycle

Supplementary Figure. 8 Inorganic carbon fixing pathways observed/detected in MAGs

associated with N-transformations.
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Supplementary Figure. 9 nap gene abundances in the a) free-living and b) particle-attached

fractions.
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Supplementary Figure. 11 Urease VS ANR gene abundances a) free-living and b) particle-

attached fractions.
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Supplementary Figure. 12 Organic N compounds synthesis and degradation gene abundances

a) free-living and b) particle-attached fractions.



