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Supplementary Text
Introductory Material

Dynamic models of microbial growth primarily fall into two categories: (1) those that model
interaction characteristics directly, as in Lotka-Volterra type equations, and (2) those that mediate
interactions and fitness through resources in what we call Consumer-Resource (CR) equations. The
generalized Lotka-Volterra (gLV) equations, which describe the concentration of 𝑛 taxons through
their pairwise interactions, are formulated as

d𝑋𝑖

d𝑡
= 𝑋𝑖

©­«𝑟𝑖 +
𝑛∑︁
𝑗=1

𝑎𝑖 𝑗𝑋 𝑗
ª®¬ for 𝑖 = 1, 2, . . . , 𝑛. (S1)

The only dynamics described in gLV models are those for the concentrations of the taxons themselves
(values 𝑋𝑖), and they depend only on their base fitness values, 𝑟𝑖, and the interaction coefficients 𝑎𝑖 𝑗 .
Consumer-Resource models distinguishes between the taxons, 𝑋𝑖, and resources 𝑅𝑖. In CR models,
interactions are mediated by resource concentration as opposed to the pairwise terms that appear
in gLV models. For example, 𝑛 communities competing over a single resource in a batch culture
would be described by

d𝑋𝑖

d𝑡
= 𝑓𝑖 (𝑅)𝑋𝑖 − 𝑑𝑖𝑋𝑖 for 𝑖 = 1, 2, . . . , 𝑛,

d𝑅
d𝑡

= −
𝑛∑︁
𝑖=1

𝑓𝑖 (𝑅)
𝑋𝑖

𝑦𝑖
,

(S2)

where 𝑑𝑖 is the death rate of 𝑋𝑖, 𝑦𝑖 is the yield coefficient and 𝑓𝑖 is the response function. The
Holling type 2 response function (1) is a reparameterization of the Monod growth curve (2) which
we employ below. Monod growth describes the growth of a microorganism as a function of the
concentration of a substrate such that in the context of equation (S2),

𝑓𝑖 (𝑅) = 𝑏𝑖
𝑅

𝑘𝑖 + 𝑅
, (S3)

where 𝑏𝑖 is the maximal exponential growth rate, 𝑅 is the concentration of the resource, and 𝑘𝑖
is the half-velocity constant, defined such that 𝑓𝑖 (𝑘𝑖) = 1/2. A model of a single community’s
concentration with respect to a single resource is given by

d𝑋
d𝑡

= 𝑋

(
𝑏

𝑅

𝑘 + 𝑅
− 𝑑

)
,

d𝑅
d𝑡

= −𝛽𝑋 𝑅

𝑘 + 𝑅
.

(S4)

By including additional resources and consumers to equation (S4), we can model common
ecological interactions. Keeping only one resource and adding consumers can model competition
for a single resource, or perhaps adding more resources and changing the sign of their 𝛽 coefficients
can determine if they are producers or consumers of that resource. We are interested in the auxotroph
over-producer relationship. When we consider a single strain of a bacterium identifiable subclades
may form from different mutations. A subclade that requires a resource that the original strain did
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not is called an auxotroph and a subclade that produces more of a resource than the orginal is called
an over-producer.

To model the auxotroph over-producer relationship we add a resource corresponding to the
nutrient produced by the over-producer and required by the auxotroph.

Definition 1. (Noncompetitive Crossfeeder Model) In equation (S5) below, the concentrations 𝑋1
and 𝑋2 refer to the over-producer and auxotroph respectively. Resource 𝑅1 is the limiting resource
for the over-producer 𝑋1 and 𝑅2 is the metabolite required by the auxotroph 𝑋2. The coefficients 𝑏𝑖𝑖
are the maximal growth coefficients, 𝑘𝑖𝑖 are the half-velocity constants, and 𝑑𝑖 are death rates. The
coefficients 𝛽𝑖 𝑗 = 𝑏𝑖 𝑗/𝑦𝑖 𝑗 are reparameterizations of the yield coefficients:

d𝑋1
d𝑡

= 𝑋1

(
𝑏11

𝑅1
𝑘11 + 𝑅1

− 𝑑1

)
d𝑋2
d𝑡

= 𝑋2

(
𝑏22

𝑅2
𝑘22 + 𝑅2

− 𝑑2

)
d𝑅1
d𝑡

= −𝛽11𝑋1
𝑅1

𝑘11 + 𝑅1
d𝑅2
d𝑡

= 𝛽12𝑋1
𝑅1

𝑘11 + 𝑅1
− 𝛽22𝑋2

𝑅2
𝑘22 + 𝑅2

(S5)

This simplified model decouples resource usage and does not explicitly include terms for lag
or stationary phases. The separate resource usage suggests 𝑅𝑖 is the limiting resource for 𝑋𝑖 for
𝑖 = 1, 2. Model (S5) can be thought of as a sub-model of more complex models, for example if
there were competition for 𝑅1, but the over-producer auxotroph relationship is maintained for 𝑅2
as in equation (S6).

Definition 2. (Competitive Crossfeeder Model) The coefficients in equation (S6) are defined in the
same way as equation (S5) where 𝑏𝑖 𝑗 and 𝑘𝑖 𝑗 are the maximum growth and half-velocity constants
of 𝑋𝑖 with respect to 𝑅 𝑗 :

d𝑋1
d𝑡

= 𝑋1

(
𝑏11

𝑅1
𝑘11 + 𝑅1

− 𝑑1

)
d𝑋2
d𝑡

= 𝑋2

(
𝑏21

𝑅1
𝑘21 + 𝑅1

+ 𝑏22
𝑅2

𝑘22 + 𝑅2
− 𝑑2

)
d𝑅1
d𝑡

= −𝛽11𝑋1
𝑅1

𝑘11 + 𝑅1
− 𝛽21𝑋2

𝑅1
𝑘21 + 𝑅1

d𝑅2
d𝑡

= 𝛽12𝑋1
𝑅1

𝑘11 + 𝑅1
− 𝛽22𝑋2

𝑅2
𝑘22 + 𝑅2

.

(S6)

Note that model (S4) is a submodel of (S5) and (S5) is a submodel of (S6) in the sense that if
𝑏21 = 𝛽21 = 0, then equations (S6) are identical to (S5). Similarly, eliminating the dimensions and
coefficients for 𝑋2 and 𝑅2 in equation (S5), yields equation (S4).

We seek to model the process of serial transfer cultures through a process where an underlying
system propagates through an interval (𝑡𝑛, 𝑡𝑛+1) and at time 𝑡𝑛+1 a ‘transfer’ is made instantaneously
by introducing a discontinuous impulse in the flow of the underlying system that dilutes the existing
culture and replaces consumed nutrients. Examples of experimental data obtained by serial dilution
are given in figure S4.
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Definition 3. (Serial Transfer Model) Let ¤𝑌 = 𝑓 (𝑌 ) denote either model (S5) or (S6) where𝑌𝑖 = 𝑋𝑖

and 𝑌 𝑗 = 𝑅 𝑗−2 for 𝑖 = 1, 2 and 𝑗 = 3, 4. Let 𝜏 > 0 be the transfer interval such that the transfer
times are 𝑛𝜏 for 𝑛 = 1, 2, 3, . . . and let 𝜙 : R𝑛 → R𝑛 be the instantaneous transfer function. Define
𝑈 : R × R4 → R4 to be the forward operator such that

𝑈 (𝑡, 𝑌0) = 𝑌 (𝑡)

where 𝑌 (𝑡) is the solution to the initial value problem ¤𝑌 = 𝑓 (𝑌 ), 𝑌 (0) = 𝑌0. Then define serial
transfer map

𝐺 𝑡 (𝑌0) = 𝜙 ◦𝑈 (𝑡, 𝑌0). (S7)

Repeated applications of the map (S7) define a discontinuous set of semi-flows,𝑌 , with the properties{ ¤𝑌 (𝑡) = 𝑓 (𝑌 ) for 𝑡 ≠ 𝑛𝜏

𝑌 (𝑡+) = 𝜙(𝑌 (𝑡−)) for 𝑡 = 𝑛𝜏
(S8)

For models (S5) and (S6) we define 𝜙1(𝑥) = 𝜙2(𝑥) = 𝜙4(𝑥) = 𝑟𝑥 and 𝜙3(𝑥) = (1− 𝑟) (𝑌0)3 + 𝑟𝑥

where 𝑟 is the dilution fraction and (𝑌0)3 the third component of𝑌0, which is the initial concentration
of 𝑅1. The component functions 𝜙1, 𝜙2, and 𝜙4, denote the transfer of the contents of one culture
to the next; the component 𝜙3 denotes both the transfer of the contents of a previous culture, the 𝑟𝑥
term, and the concentration of the nutrient in the fresh medium, the (1 − 𝑟) (𝑌0)3 term.

Definition 4. (Discrete Time Map) Let 𝑈 : R × R4 → R4 be the forward operator and 𝜙 be the
transfer function defined in definition (3). Define 𝐻𝑡 : R4 → R4 by

𝐻𝑡 (𝑥) = 𝑈 (𝑡, 𝜙(𝑥)). (S9)

Then the sequence

𝑥1 = 𝑈 (𝜏, 𝑥0) (S10)
𝑥𝑛 = 𝐻𝜏 (𝑥𝑛−1) for 𝑛 > 1 (S11)

corresponds to the sequence of values 𝑌 (𝑡−) for 𝑡 = 𝜏𝑛 as defined in definition (3). The sequence
{𝑥𝑖}∞𝑖=0 we refer to as the discrete time map or just discrete map.

Model Characteristics

Note that there are no fixed points for model (S5) or (S6) where 𝑋1 or 𝑋2 are positive. Considering
model (S5) if there is a fixed point with 𝑋𝑖 > 0 then we must have 𝑅𝑖/(𝑘𝑖𝑖 + 𝑅𝑖) = 𝑑𝑖/𝑏𝑖𝑖. For 𝑖 = 1
this would imply −𝛽11𝑋1𝑑1/𝑏11 = 0 which is a contradiction. Similarly, for 𝑖 = 2 we know 𝑋1 = 0
(by the previous sentence) thus we would have −𝛽22𝑋2𝑑2/𝑏22 = 0, again a contradiction.

For system (S6) if we assume either 𝑋1 = 0 or 𝑋2 = 0 then similar reasoning to the previous
paragraph will imply the other must be zero as well. If we assume both 𝑋1 > 0 and 𝑋2 > 0 then the
equation d𝑅

d𝑡 = 0 implies that 𝑅1/(𝑘11 + 𝑅1) and 𝑅1/(𝑘21 + 𝑅1) have opposite signs when 𝑅1 > 0
which is a contradiction as 𝛽𝑖 𝑗 , 𝑘𝑖 𝑗 > 0 for all 𝑖, 𝑗 and 𝑅1 > 0 by assumption. Thus, all fixed points
for both models (S5) and (S6) have the form 𝑋1 = 𝑋2 = 0 and 𝑅1, 𝑅2 ∈ R.
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Calibration Methodology

To calibrate specific examples we take advantage of the nested property of models (S4), (S5), and
(S6). In order to scale coefficients, we first determine a ‘general fit’ to an underlying growth curve.
This is done sequentially:

1. Calibrate a monoculture model, equation (S4), to the growth data of the overproducer.

2. Fix the parameters of the overproducer in (S4) as nested in model (S5), and calibrate the
remaining parameters, 𝑏22, 𝑘22, 𝑑2, 𝛽12, and 𝛽22, to the growth curve of the auxotroph.

3. Include all parameters of the calibrated model (S5) as fixed in model (S6), and fit the
competitive parameters 𝑏21, 𝑘21, and 𝛽21.

4. Finally, let 𝑝 be the vector of parameters of model (S6). Choose a set of bounds 𝑙, 𝑢 ∈ R𝑚

such that 𝑙𝑖 ≤ 𝑝𝑖 ≤ 𝑢𝑖 and allow parameters to vary within the box {𝑥 ∈ R𝑚 : 𝑙𝑖 ≤ 𝑥 ≤ 𝑢𝑖} for
a final optimization pass conducted on all parameters of equation (S6).

These steps generate a system with the form of equations (S6) that is a best fit for the growth curve
data over single time period, where no transfers as in definition (3) occurs. An example of data
over a single time period is given in figure S5. The result is a best fit relative to the loss function
and produces a local minimum, given the nonconvex nature of the optimization problems involved.
This system shares some important properties with the underlying growth data. In particular, model
(S6) produces an averaged growth and death phase that track the underlying dynamics, although
more subtle stationary and lag phases are not directly captured.

Taking the set of parameters obtained from step (4.) and simulating a sequence of serial transfers
as described in definition (3) commonly produces a sequence of trajectories that converge in the
sense that the values 𝑌 (𝑡+) for 𝑡 = 𝑛𝜏, 𝑛 = 1, 2, . . . converge as a vector in R4. This will, in the
limit, produce a periodic trajectory for 𝑌 (𝑡) and constant sequence 𝑌 (𝜏𝑛+), see figure S7. Note
that, as there are discontinuities at time points 𝑛𝜏, this convergence can in fact occur in finite time.

While large swathes of the parameter space produce convergent sequences of the values of
𝑌 (𝑛𝜏+), there are open sets of parameter space which produce sequences of 𝑌 (𝑛𝜏+) that are
periodic, sometimes with very high period, or even aperiodic. To capture the seemingly chaotic
behavior of the relative abundance data, see figure S4, we implement further fitting steps that
involve serial passaging data:

5. Let 𝑝∗ be the vector of calibrated parameters obtained in step (4.). Choose new upper and lower
bounds 𝑙′, 𝑢′ ∈ R𝑚 such that 𝑙′

𝑖
≤ 𝑝∗

𝑖
≤ 𝑢′

𝑖
and define the box 𝑃 = {𝑥 ∈ R𝑚 : 𝑙′

𝑖
≤ 𝑥𝑖 ≤ 𝑢′

𝑖
},

and sample uniformly from 𝑃.

6. Simulate each sample and find an example than reasonably minimizes the residual sum of
squares of the relative values. That is, we want to minimize the differences

2∑︁
𝑖=1

𝑛∑︁
𝑗=1

(
𝑋𝑖 (𝑡 𝑗 , 𝑝)

𝑋1(𝑡 𝑗 , 𝑝) + 𝑋2(𝑡 𝑗 , 𝑝)
−

𝑥𝑖 (𝑡 𝑗 )
𝑥1(𝑡 𝑗 ) + 𝑥2(𝑡 𝑗 )

)2
(S12)

with respect to 𝑝 ∈ 𝑃, where 𝑥𝑖 (𝑡 𝑗 ) are the measurements obtained from a serial transfer
experiment.
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7. Using the parameters obtained in step (6.) as initial values, do a final optimization round
minimizing the loss function (S12) producing a calibrated parameter vector 𝑝.

These steps generate a parameter set that is a best fit of the relative abundance values of the serial
passage data, as in panel (A) of figure S4, while the details of the absolute growth values may differ
from the initial reference values used in steps (1)-(4). It is important to note that the experimental
conditions driving the dynamics in the 20-day culture, such as figure S6, are different from those
in the longer-term, serial dilution experiments such as figure S4. The initial inoculation for 20-day
growth experiments starts at an initial value of 0 for 𝑅2, whereas under serial dilutions, a positive
value of 𝑅2 is present after each passaging. Therefore, parameter values that we estimate from steps
(1-4) are not expected to be exactly the same as those in steps (5-7). Instead, they serve to establish
reasonable ranges for the parameters that characterize the dynamics in the long-term serial dilution
experiments.

The process of finding areas in the parameter space that display some non-periodic behavior is
dependent on the initial calibration of parameters. Say, as a trivial example, we find all parameters
are zero except for 𝑑1, and our parameter box contains only a cylinder around 𝑑1, then every solution
will converge to zero, and there will be no nontrivial periodicity or aperiodicity of 𝑌 at the dilution
times 𝑛𝜏. If, however, a given set of parameters produces periodic solutions to equation (S7), then
small changes to the parameters can have large effects on the trajectories. As a result, identifying
a set where the trajectory, 𝑌 (𝑡), is sensitive to initial values is critical to fitting aperiodic relative
growth values. To do this, we may split step (6.) into two separate steps

6a. Sample from 𝑃 and search for parameter vectors 𝑝 that display aperiodic behavior at points
𝑛𝜏. These need not match any data.

6b. For each 𝑝 identified in (6a.) construct a new box 𝑃′′ with bounds {𝑙′′
𝑖
, 𝑢′′

𝑖
} such that 𝑝 ∈∏

𝑖 [𝑙′′𝑖 , 𝑢′′𝑖 ]. Sample 𝑃′′ to minimize quantity (S12), and continue as above.

This is a nondeterministic procedure. A grid search in the parameter space may be practical for
very small sets, but quickly becomes computationally daunting for larger sets. As we are ultimately
looking for solutions that match relative abundances of empirical measurements, a direct global
optimization over the entire parameter space, R12 for equation (S6), is unreasonable. Additionally
gradient based methods performed quite poorly. We used differential evolution based optimiza-
tion algorithms for minimization, specifically the BBO_adaptive_de_rand_1_bin method of the
BlackBoxOptim.jl package included with the Optimization.jl package (3). These methods
perform a global gradient free optimization over a region in R𝑛 defined by the product of intervals
[𝑙1, 𝑢1] × [𝑙2, 𝑢2] × . . . × [𝑙𝑛, 𝑢𝑛]. We use steps (1.-4.) to determine a reasonable set of bounds for
steps (5.-7.). This is effective because the number of parameters over which which we optimize
in steps (1.-4.) is much smaller. We start out in step 1 optimizing over just 4 parameters in the
box [0, 100]4 then sequentially fixing previous parameters and optimizing over new parameters to
arrive at scales of the parameters that produce empirically feasible trajectories at step 4.

These parameters then serve as a starting point for steps (5.-7.). When we construct the bounds
in step 5, we do so by first choosing factors 0 < 𝑎 < 1 and 1 < 𝑏, and setting 𝑙′

𝑖
= 𝑎𝑝∗

𝑖
and

𝑢′
𝑖
= max{𝑏𝑝∗

𝑖
, 𝜇} for some 𝜇 > 0 to avoid intervals that are too narrow when 𝑝∗

𝑖
is small. Steps

(5-7) then result in parameters that fit the relative values of the 10-day dilutions, but their fit for the
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original 20-day batch culture is not as close as the one obtained at the end of step 4, although still
capturing the features of the original growth curves and, of course, the relative magnitude of the
abundance values at time 10 vacillate. As explained above, this is a necessary and expected result
as the highly variant 10 day dilution values cannot have inter-dilution growth curves identical to
the original growth curves.

Examples of Calibrated Systems

Steps (1.-4.) of calibration methodology, the section Calibration Methodology, produce different
results depending on the specific loss function used. Here we used two least square loss functions:

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗 (𝑥𝑖 (𝑡 𝑗 ) − 𝑥𝑖 (𝑡 𝑗 ))2 and
𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑤𝑖 𝑗 (log
(
𝑥𝑖 (𝑡 𝑗 )

)
− log

(
𝑥𝑖 (𝑡 𝑗 )

)
)2, (S13)

a residual squared error and a residual squared error of the log-transformation respectively, either
of which may be weighted. The log-transformed least-squares better captures the dynamics in the
values closer to zero, while the standard least-squares, both with 𝑤𝑖 𝑗 = 1 for all 𝑖, 𝑗 , more closely
approximates the dynamics of the larger values. Choosing different weights similarly produces
slightly different results.

Figures S5 and S6 show the results of the calibration steps (1.-4.). Panels (A), (B), and (C) of
figure S5 show the result of calibrating with respect to the log-transformed data, which produced
parameter set Π1, see Table S1. The subsequent sets of three panels (D, E, F), and (H, I, J), and (K,
L, M) of figure S6 each correspond to the parameter sets Π2, Π3 and Π4 of Table S1, respectively.
The parameter set Π2 was obtained with unweighted squared error. For parameter sets Π3 and Π4
the later data points were weighted more heavily. In particular parameter set Π3 was obtained using
standard least squares with a weight of 100 at the final time 𝑡 = 20 and a weight of 1 for all other
times. Parameter set Π4 was obtained using a weighted residual of the log-transform of the data;
specifically a weight of 10 for all values of 𝑡 such that 𝑡 ≥ 10 and a weight of 1 for all 0 ≤ 𝑡 < 10.

If we take the parameters found for panels (A), (B), and (C) of figure S5 and evaluate the dilution
map, defined in (3), out to 20 dilutions with 10 days between dilutions, we see in panels (A) and
(B) of figure S7 that the dilution map 𝑌 (𝑡) converges to a periodic solution which corresponds
to a constant solution of the discrete map whose values are 𝑌 (10𝑛+). Indeed all of the parameter
sets Π1,Π2,Π3, and Π4 that result from steps (1-4) of the section Calibration Methodology create
dilution maps with similar long term behavior; that is, the discrete map converges quickly to a state
where 𝑋1 > 𝑋2 and 𝑋2 approaches 0.

The results of steps 5-7 of the section Calibration Methodology, are displayed in figure S8.
We provide three examples of the system defined in definition 4 fitted to specific measurements
of coculture serial dilution lines. In figure S8 the left hand column plots the relative abundance
values of 𝑌 (10𝑛+) for 𝑛 = 0, 1, 2, . . . 9 and the right hand column plots the absolute abundances
on a log scale. Panels pairs (A, B), (C, D), and (E, F) correspond to parameters Π5, Π6, and Π8
of table S2 respectively. Note that all parameter sets Π1 through Π4 do not serve equally well
for starting points steps (5-7). When we construct the box 𝑃 over which we uniformly sample in
step 5, the bounds we choose are proportional to the initial values 𝑝∗ in the form 𝑙′

𝑖
= 𝑎𝑝∗

𝑖
and

𝑢′
𝑖
= max{𝑏𝑝∗

𝑖
, 𝜇}. If we take 𝑎 and 𝑏 to be 0.5 and 2.0, random sampling provides very few

parameters sets with nonconvergent or slowly converging discrete maps. Using Π3 or Π4 as starting

S7



point, the larger interval around 𝛽11 allows for more variant discrete map orbits and following step
7 provides significantly closer fits to the 10 day dilution lines. While we do not closely recapitulate
the absolute abundances, panels (A), (C), and (E) show a surprisingly close fit to the highly variant
empirical relative abundances. We show in the following section that these parameters occur in
sections of the parameter space where one finds chaotic behavior of the discrete map.

Transition to chaotic behavior

Chaotic orbits of Dynamical Systems arise when those systems are extremely sensitive to small
changes in initial conditions. This sensitivity to initial conditions is measured by the Lyapunov
Exponent (4). The Lyapunov exponent describes how a small set of initial conditions around a point
𝑥0 converge or diverge from the orbit generated by 𝑥0 through repeated iterations of a map. In our
case we are interested in the Lyapunov exponent associated to the discrete map, definition 4, for a
fixed set of parameters defining the underlying system and a fixed dilution time 𝜏. Letting 𝛿 = 𝑥−𝑥0
be a small perturbation of the initial point 𝑥0 and let 𝐷𝐻𝜏 be the Jacobian of the discrete map 𝐻𝜏.
The Lyapunov exponent of the 𝐻𝜏 with respect to 𝛿 is defined as the limit

𝜆 = lim
𝑛→∞

1
𝑛

log∥𝐷𝐻
(𝑛)
𝜏 (𝑥0)𝛿∥ (S14)

assuming it exists; where 𝐻
(𝑛)
𝜏 is the 𝑛th application of the map 𝐻𝜏. In general to capture all

dimensions of perturbation this is computed instead by taking a unit ball, 𝐵, around the point 𝑥0 and
evolving it forward, again, by the linearized dynamics as 𝐷𝐻

(𝑛)
𝜏 (𝑥0)𝐵. If 𝑟 (𝑛) is the largest radius

of the ellipsoid 𝐷𝐻
(𝑛)
𝜏 (𝑥0)𝐵 then we define the Lyapunov exponent of 𝐻𝜏 at 𝑥0 as

𝜆 = lim
𝑛→∞

1
𝑛

log 𝑟 (𝑛) . (S15)

Computationally the matrix 𝐽𝐽⊺ for 𝐽 = 𝐷𝐻𝜏 can become extremely ill conditioned and thus
various normalization methods have been introduced. We compute Lyapunov exponents with the
ChaosTools.jl package (5) which uses the ‘H2’ method of (6) originally published by (7). For
additional details see (8).

Many solutions to the serial passage system given in definition (3) have convergent solutions in
sense that the values of 𝑌 (𝑛𝜏) converge to a fixed point in R𝑛 as 𝑛 → ∞, which corresponds to a
periodic solution of the discontinuous semi-flow 𝑌 (𝑡) for 𝑡 > 0. But as we have seen empirically,
figure S4, these relationships do not display obviously convergent behavior. The relative abundances
can be recapitulated as in figure S8, and these solutions exist in regions of the parameter space that
display chaotic behavior.

Let us consider example 3 from figure S8, which has parameters Π8 of table S2. The orbits
of the discrete map do not display obviously convergent or periodic behavior. To test whether we
observe chaotic behavior, we can calculate the Lyapunov exponent. For example 3 from figure S8,
the Lyapunov exponent, calculated out to 100, 000 iterations, is approximately 0.117, indicating
chaotic trajectory. The first dimension, 𝑋1, is constant but 𝑋2 and 𝑅2 are highly variant resulting in
the high Lyapunov exponent.

We can observe the transition to chaos for this example by interpolating between a set of parame-
ters with convergent discrete map, Π1 of table S1, and the parameters that fit the relative abundances
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of example 3, Π8. In figure S9(A) we simply perform a linear interpolation (1 − 𝑠) (Π1) + 𝑠(Π6)
for 𝑠 ∈ [0, 1] to produce a bifurcation diagram. Panel (A) of figure S9 shows the orbits of 𝑋2
for a particular value of 𝑠 in the previously mentioned interpolation. In particular if {𝑋 (𝑖)

2 }∞
𝑖=0 is

the sequence of 𝑋2 values generated by the discrete map with respect to a particular parameter
set, panel (A) plots the values 𝑋

(1001)
2 , . . . , 𝑋

(1100)
2 . This creates a classical bifurcation diagram;

initially 𝑋2 values converge to zero, then undergo a period doubling bifurcation and then have
chaotic orbits with isolated periodic regions which include period 3 orbits. Panel (B) plots the
approximate Lyapunov exponents of the discrete map at each interpolation point. This shows, as
one would expect, negative Lyapunov exponents for convergent and periodic regions and positive
Lyapunov exponents in the chaotic regions. Example system 1 is very similar to example system 3,
in the sense that the parameters Π5 have positive Lyapunov exponent and the bifurcation diagram
when interpolating between Π1 and Π5 is very similar to figure S9.

The particulars of the bifurcation diagram or the Lyapunov exponent are not the same for all
examples. They differ in fact within a single example. The calibration procedure does not guarantee
a unique minimum and can produce different results when starting from different initial conditions
and choosing different sets in the parameter space. Figure S11 contains several bifurcation diagrams
related to example system 2 of figure S8. We provide separate calibrations of example system 2, one
using initial parameters Π3 (Table S1) and producing parameters Π6 (Table S2), the result of which
is shown in panels (A) and (B) of figure S10. The second calibration, using Π4 (Table S1) as initial
parameters and producing parameters Π7 (Table S2), is plotted in panels (C) and (D) of figure S10.
Two bifurcation diagrams presented in panels (A) and (C) of figure S11 both have parameter set Π7
as the final parameter set, but they interpolate from initial sets Π1 and Π3, respectively. We can see
that, not surprisingly, taking different lines through the parameter space creates distinct bifurcation
diagram though they end at the same point. Parameter set Π6 similarly recapitulates example 2 but
does not have positive Lyapunov exponent. The bifurcation diagram interpolating between Π1 and
Π6 is given in panel (E) of figure S11, and it shows the existence of chaotic regions, although set Π6
(the rightmost region of the bifurcation diagram) falls in an isolated region of periodic dynamics
with period three. Thus the chaotic quality is not inherent when calibrating to specific culture lines,
but these variant coculture values lie near chaotic regions of the parameter space.

The dilution time parameter, 𝜏, also plays a crucial role in the behavior of the discrete map.
Fixing the parameters to Π8, and evaluating the orbits for values of 𝜏 between 𝜏 = 3 and 𝜏 = 14
days we see a transition to chaos with 𝜏 as the bifurcation parameter (figure S12), as we did in
figure S11. So, not only do the interactions result in a bifurcation, but the frequency of dilution also
determines the long term behavior of the orbits of the discrete map.

Chaos in the gLV model with resampling

So far we have demonstrated that a transition to chaotic behavior can be observed in a system where
(1) two species are involved in asymmetric crossfeeding (that is, where one species requires the
other in order to grow); where (2) growth equations are fully mediated by endogenous resource
concentrations; and (3) a process of serial transfers takes place introducing discontinuities into
the abundance and concentration trajectories. Note that the underlying gLV system in many cases
converges in the absence of serial transfers.

It turns out that the transition to chaotic behavior can be observed in simpler models that describe
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co-dynamics of two species in a resampled system. Consider a gLV model with resampling, which
was studied in (9):

¤𝑥 ( 𝑗)1 = 𝑏1𝑥
( 𝑗)
1 +∑𝑚

𝑘=1 𝑎1𝑘𝑥
( 𝑗)
𝑘
𝑥
( 𝑗)
1

...

¤𝑥 ( 𝑗)
𝑖

= 𝑏𝑖𝑥
( 𝑗)
𝑖

+∑𝑚
𝑘=𝑖 𝑎𝑖𝑘𝑥

( 𝑗)
𝑘
𝑥
( 𝑗)
𝑖

...

¤𝑥 ( 𝑗)𝑚 = 𝑏𝑚𝑥
( 𝑗)
𝑚 +∑𝑚

𝑘=1 𝑎𝑚𝑘𝑥
( 𝑗)
𝑘
𝑥
( 𝑗)
𝑚

(S16)

where 𝑏𝑖 and 𝑎𝑖𝑘 are constants for all 𝑖 and 𝑘 , 𝑚 is the number of interacting subpopulations, and
the superscript, 𝑗 , numbers the “frame” (that is, the period of time between resamplings). The
initial conditions for each of these systems are given by setting 𝑥𝑖 to be proportional to the relative
abundance of 𝑥𝑖 at the terminal point of the previous frame,

𝑥
( 𝑗)
𝑖

(𝑡 𝑗−1) = 𝜈
𝑥
( 𝑗−1)
𝑖

(𝑡 𝑗−1)∑𝑚
𝑘=1 𝑥

( 𝑗−1)
𝑘

(𝑡 𝑗−1)
, (S17)

where 𝜈 is a constant that determines the volume of the transferred culture and 𝑥 (1) (0) = 𝑥0 is given.
Note that the system described by equations (S16) and (S17) corresponds to a serial transfer system
where the underlying dynamics are given by the gLV equations and the instantaneous transfer
function 𝜙 is given by 𝜙𝑖 (𝑥) = 𝑥𝑖/

∑
𝑗 𝑥 𝑗 .

Taking the simplest case of 𝑚 = 2, the sequence

(𝑥 ( 𝑗)1 (𝑡 𝑗−1), 𝑥 ( 𝑗)2 (𝑡 𝑗−1)), 𝑗 = 1, 2, . . .

can be described by a 1D map, as, for the 𝑚 = 2 case, we must have 𝑥 ( 𝑗)2 (𝑡 𝑗−1) = 𝜈 − 𝑥
( 𝑗)
1 (𝑡 𝑗−1).

Definition 5. (gLV Resampling Map) Define the map 𝐹𝑡 : [0, 𝜈] → [0, 𝜈] by

𝐹𝑡 (𝑦) = [𝜙 ◦𝑈 (𝑡, (𝑦, 𝜈 − 𝑦))]1 (S18)

where 𝑈 is forward operator associated to the 2-dimensional gLV system

¤𝑥1 = 𝑏1𝑥1 + 𝑎11𝑥
2
1 + 𝑎12𝑥1𝑥2

¤𝑥2 = 𝑏2𝑥2 + 𝑎21𝑥2𝑥1 + 𝑎22𝑥
2
2

(S19)

and 𝜙 is the proportional resampling instantaneous transfer function defined by

𝜙((𝑥1, 𝑥2)) =
𝜈

𝑥1 + 𝑥2
(𝑥1, 𝑥2). (S20)

That is, 𝐹𝑡 takes a point 𝑦 ∈ [0, 𝜈], interprets it as the initial value of the first dimension of equation
(S19), assigns 𝜈 − 𝑦 as the initial value of the second dimension, evolves them forward according
to (S19) to time 𝑡, then applies the resampling map, and returns the value of the first dimension.
We refer to equation (S19) as the gLV system.
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We consider sequences generated by a fixed resampling time 𝜏 ∈ (0,∞). The set of points,
{𝑦𝑛}∞𝑛=0 defined by

𝑦𝑛+1 = 𝐹𝜏 (𝑦𝑛), for some 𝑦0 ∈ [0, 𝜈] (S21)

we call an orbit of 𝐹𝜏.
This is a convenient map to investigate with respect to its trajectories as it is one-dimensional.

It is continuous and maps a closed interval to itself, so it must have a fixed point. Indeed, 𝐹𝜏 has at
least two trivial fixed points, 𝜈 and 0. In reality, 𝐹𝜏 often exhibits fixed points on the interior.

Below we present three examples of gLV systems that are characterized by different types of
behavior.

gLV System 1. Let us consider the system

¤𝑥1 = 0.1𝑥1 − 0.6𝑥2
1 + 0.4𝑥1𝑥2

¤𝑥2 = 0.2𝑥2 + 0.2𝑥2𝑥1 − 0.5𝑥2
2

(S22)

with 𝜏 = 1, 𝜈 = 1, and let 𝑦0 = 0.5. System (S22) has fixed points (0, 0), (0, 2/5), (1/6, 0),
and (13/22, 7/11), where the strictly positive fixed point is asymptotically stable. Some properties
of system (S22) are shown in panels (A), (B), and (C) of figure S13. We see the underlying gLV
system converges to its only stable fixed point in panel (A), and panel (B) indicates the location of
the interior fixed point of 𝐹𝜏, the resampling map. The stable point of the underlying gLV system
and the fixed point of 𝐹𝜏 do not correspond to the same values. The fixed point of 𝐹𝜏 depends on
the value of 𝜏 and the speed of the underlying gLV dynamics. More specifically, if the gLV system
converges to (𝑥1, 𝑥2) and 𝐹𝜏 is convergent, then the larger 𝜏 is the closer the fixed point of 𝐹𝜏 is to
the value 𝑥1/(𝑥1 + 𝑥2).

We see from panel (B) of figure S13 that not only does 𝐹𝜏 map [0, 1] to itself, but if one takes
a smaller interval containing the fixed point, say [0.25, 0.75], then 𝐹𝜏 also maps this interval to
itself, thus 𝐹𝜏 must converge to its internal fixed point. This can be seen clearly in the orbits of 𝐹𝜏
shown in figure S14.

gLV System 2. Next, we consider the following set of parameters for the gLV model:

¤𝑥1 = 0.3247𝑥1 − 0.0038𝑥2
1 + 1.1787𝑥1𝑥2

¤𝑥2 = 4.9591𝑥2 − 0.0432𝑥2𝑥1 − 0.0541𝑥2
2

(S23)

with 𝜏 = 1, 𝜈 = 1, and 𝑦0 = 0.5. Here we have the property that 𝑎12𝑎21 < 0. The only stable fixed
point of equation (S23) is the nonzero point which is approximately (114.557, 0.096).

As before, the map has a single internal fixed point, call it 𝑦̂, but in contrast to the previous
example, we have |𝐷𝑦𝐹𝜏 ( 𝑦̂) | > 1. Note that |𝐷𝑦𝐹𝜏 ( 𝑦̂) | > 1 implies that 𝐹𝜏 cannot converge to this
internal fixed point from an arbitrary initial value in [0, 1]. This scenario gives rise to chaotic orbits
of the map 𝐹𝜏 with classical bifurcation phenomena. See figure S14 panel (B) for the initial orbits
of 𝐹𝜏.

In figure S15 we keep the parameters of the gLV system as they are given by equation (S23),
except the parameters 𝑎12 and 𝑎21, which we vary in a given interval. Panel (A) shows the bifurcation
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diagram of 𝐹𝑡 resulting from varying 𝑎21 and holding all other parameters constant. The approximate
Lyapunov exponents appear below the corresponding orbit. In panel (B) of figure S15 we vary 𝑎21
and hold all other parameters constant, and in panel (C) we vary 𝑎12 and 𝑎21 simultaneously and
plot the sign the Lyapunov exponent, denoted as 𝜆. The green points indicate 𝜆 > 0 and thus chaotic
trajectories; the gray points indicate 𝜆 < 0.

gLV System 3. There are parameter sets, which have multiple internal fixed points, none of which
the resampling map will converge to. Consider the system

¤𝑥1 = 0.4095𝑥1 + 0.0242𝑥2
1 − 0.407𝑥1𝑥2

¤𝑥2 = −0.4367𝑥2 + 0.6013𝑥2𝑥1 − 0.0083𝑥2
2

(S24)

with constants 𝜏 = 24, 𝜈 = 1, and 𝑦0 = 0.5. The fixed points of this system are approximately
given by (0,0), (0, 52.5), (-16.9, 0), and (0.71, 1.048). The only stable fixed point is (-16.9, 0), but
definitionally, initial values must be nonnegative. As (0,0) is an unstable fixed point, any initial
values that start in the positive reals will stay positive but not converge to any of the positive
fixed points. Note that the map, 𝐹𝜏, has five internal fixed points, for all of which the derivative
|𝐷𝑦𝐹𝜏 (𝑦) | > 1. This scenario too produces chaotic trajectories, see figure S14(C). In figure S16 we
plot a bifurcation diagram varying 𝑎11 and holding all other parameters constant.

Note that in each chaotic example the off diagonal interaction coefficients have opposite signs,
that is 𝑎12𝑎21 < 0. We have not observed chaotic solutions for the resampling map when this
inequality is reversed.
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Fig. S1: Overproducer fitness against wild-type E. coli K-12 in mM9 + 0.2% glucose. The
overproducer ΔmetJ E. coli strain was co-cultured with wild-type K-12 for a continuous 10-day
period (n = 12). Each strain was initiated from a single colony overnight in 2 mL of modified M9
minimal medium + 0.2% glucose grown for 18 hours. Cells were washed twice with fresh mM9.
Into 10 mL of mM9 + 0.2% glucose, 100 µL of washed wild-type and 150 µL of washed mutant
strain ΔmetJ were aliquoted into each tube (the knockout strain has a higher perceived mortality
rate, therefore starting cell amounts were adjusted to achieve a 1:1 starting ratio). Each culture was
homogenized and 100 µL samples were taken from at days 0, 1, 4, 7, and 10. Samples were serial
diluted and plated on tetrazolium agar to differentiate between strains, and overproducer selection
rate was calculated from the differences in its growth relative to wild-type using the difference in
their Malthusian parameters across each number of days (see methods). Error bars indicate +/- 95%
confidence intervals.
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Fig. S2: Death curves of the auxotroph and overproducer strains in monoculture conditions.
The overproducer ΔmetJ and auxotroph ΔmetB E. coli strains were cultured in isolation for a
continuous 20-day period. Each strain was initiated from a single colony overnight in 2 mL of
modified M9 minimal medium + 0.2% glucose grown for 18 hours. Cells were washed twice with
fresh mM9. Into 10 mL of mM9 + 0.2% glucose, 100 µL of washed strains were aliquoted into
each tube. Each culture (n = ) was homogenized and 100 µL samples were taken every 2 days for 20
days. Additionally, the growth curve of each strain was manually collected by CFU plating every 2
hours until 12 hours of growth. Error bars indicate +/- 95% confidence intervals.
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Fig. S3: Measurements of extracellular glucose and L-methionine across an 18 hour period
in overproducer ΔmetJ monocultures. (A) Glucose measurements in millimolar concentration
across 18 hours (n=2). Samples were collected every 2 hours from 0 to 10 hours. Glucose became
undetectable by 10 hours (assay measurements were collected and quantified at hours 14 and
18 and yielded no positive measurements). Error bars indicate +/- 95% confidence intervals. (B)
L-methionine measurements in millimolar concentration across 18 hours (n=3). Samples were
collected every 2 hours from 0 to 10 hours, and at hours 14 and 18. See Methods for collection and
analysis methodology. Error bars indicate +/- 95% confidence intervals.

Fig. S4: The empirical data for 3 serial dilution cultures. The blue dots are measurements of the
overproducer and the orange dots are the auxotroph. Panel (A) displays the relative abundance data
and panel (B) displays the absolute abundance data. Note that the absolute abundance data, panel
(B), is plotted on a log scale.
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Fig. S5: Initial calibrations, steps (1-4) of the section Calibration Methodology, of the model
(S6) to a 20-day batch coculture with unweighted loss functions. The left column, panels (A),
(B), and (C), are fitted using the residual sum of squares of the log-transform of the data, thus
weighting the smaller values heavily relative to the larger values and better capturing the behavior
for absolute abundance near the minimal measurements. The right column, panels (E), (F), and (G),
are calibrated using a standard residual sum of squares. This fits the larger values more closely but
overestimates the smaller values. The parameters that produced (A), (B), and (C) are Π1 of table
S1, and the parameters that produced (D), (E), and (F), are Π2.
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Fig. S6: Initial calibrations, steps (1-4) of the section Calibration Methodology, of the model
(S6) to a 20-day batch coculture with weighted loss functions. Panels (A), (B), and (C), which
correspond to parameters Π3, were generated with a weighted least squares where the final time,
𝑡 = 20, was given a weight of 100, for all data values and all other values were given a weight of
1. Panels (D), (E), and (F), which correspond to parameters Π4, where generated with a weighted
log-transformed residual, where all times 𝑡 such that 𝑡 ≥ 10 were given a weight of 10 and given a
weight of 1 otherwise.
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Fig. S7: The trajectories of the dilution map, 𝑌 (𝑡), as defined in (3) for model (S6), with
parameters Π1 of table S1, fit to the underlying empirical data as shown in panels (C) and (D)
of figure S5. Panel (A) shows the trajectories of 𝑋1 and 𝑋2 and panel (B) shows the trajectories
for 𝑅1 and 𝑅2 for 0 ≤ 𝑡 ≤ 200 thus representing the evolution of the system over 20 dilutions.
Panel (C) is a line plot of only the values 𝑋𝑖 (10𝑛−) for 𝑛 = 0, 1, 2, . . . , 20 and 𝑖 = 1, 2, i.e. the
absolute abundance values. Panel (D) is a line plot of the values 𝑋𝑖 (10𝑛−)/∑2

𝑗=1 𝑋 𝑗 (10𝑛−) for
𝑛 = 1, 2, . . . , 20 and 𝑖 = 1, 2, i.e. the relative abundance values. This is an example of a convergent
system, in the sense that the discrete map converges to a constant value.
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Fig. S8: Plots of the three calibration examples. The panel pairs (A, B), (C, D), and (E, F)
each display the results of calibration to relative abundance values via steps (1-7) of the section
Calibration Methodology. Dashed lines connect points which are CFU measurements of cultures.
Solid lines denote values obtained from simulating a calibrated system. The left-hand side, panels
(A), (C), and (E) display the relative abundance values and the right-hand side, panels (B), (D),
and (F), display absolute abundance values on a log scale. The pairs (A,B), (C, D), and (E, F)
correspond to parameters Π5, Π6, and Π8 respectively.
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Fig. S9: A bifurcation diagram of example system 3. Panel (A) displays the orbits of 𝑋2 and
panel (B) is the Lyapunov exponent. We observe period doubling and the transition to chaos of the
discrete map with intertemporal dynamics defined by model (S6). The x-axis denotes the value of 𝑠
in an interpolation between parameter sets Π𝑠𝑡𝑎𝑟𝑡 and Π𝑒𝑛𝑑 of the form Π𝑠𝑡𝑎𝑟𝑡 (1− 𝑠) +Π𝑒𝑛𝑑𝑠 where
𝑠 ∈ [0, 1]. The parameters for panels (A) and (B) are Π𝑠𝑡𝑎𝑟𝑡 = Π1 and Π𝑒𝑛𝑑 = Π5. For panels (C)
and (D) we have Π𝑠𝑡𝑎𝑟𝑡 = Π1 and Π𝑒𝑛𝑑 = Π6. The Lyapunov exponents, 𝜆, satisfy 𝜆 > 0 for chaotic
regions and 𝜆 < 0 for convergent and periodic regions.
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Fig. S10: Different calibrations of example 2. Panels (A, B) and (C, D) are distinct calibrations
of Example 2 corresponding to parameters Π6 and Π7 (Table S2) respectively. The parameter sets
Π6 and Π7 are the results of steps 5-7 of the section Calibration Methodology from initial points
Π3 and Π4 (Table S1) respectively.
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Fig. S11: Bifurcation diagrams and Lyapunov exponent plots related to example 2. Panels (A)
and (B) are an interpolation between Π1 and Π7, (C) and (D) are an interpolation between Π3 and
Π7, and (E) and (F) are an interpolation between Π1 and Π6. Panels (A) and (C) are both in log
scale for better legibility. Note that Π7, 𝑠 = 1 for panels (A) and (C) is chaotic, and Π6 which is the
𝑠 = 1 orbit for panel (E) converges to a 3-cycle.
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Fig. S12: Plots describing the transition to chaos of example 2 where the bifurcation param-
eter is sample frequency. Transition to chaos with 𝜏 (time between transfers) as the bifurcation
parameter. Parameter set, Π6 of table S2 is used. (A) The bifurcation diagram with 𝜏 as the x-axis;
shown is the orbit of 𝑋2 of the discrete map for values of 𝜏 ∈ [3, 14]. (B) The Lyapunov exponents
over the same values. Panels (C), (D), (E), and (F) are plots of the dilution map 𝑌 (𝑡) and the
associated discrete map over the course of 50 dilutions with 𝜏 days dilution frequency. For each
of the panels (C), (D), (E), and (F) the sub-panels from top to bottom are the dilution map values
of 𝑋1(𝑡) and 𝑋2(𝑡) in blue and orange lines, the relative abundance of the discrete map values of
𝑋1(𝜏𝑛), 𝑋2(𝜏𝑛) in blue and orange dots, and the dilution map values of 𝑅1(𝑡) and 𝑅2(𝑡) in green
and purple lines.

S23



Fig. S13: The qualitative behavior of the gLV system and the resampling map. The top row,
(panels (A-C)) correspond to Example system (S22), the middle row, (D-F), correspond to example
system (S23) and the bottom row, (G-I), correspond to example system (S24). The left column,
(A), (D), and (G), are the trajectories of the respective underlying gLV system. The center column,
(B), (E), and (H), are the images of the respective resampling map, 𝐹𝑡 , and the right most column
shows the derivative of the resampling map. The internal fixed points are denoted as purple dots.
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Fig. S14: The initial orbits of the resampling map, 𝐹𝑡 , for systems (S22), (S23), and (S24) from
left to right. Each panel contains 30 iterations of 𝐹𝑡 starting from 9 initial points, 0.1, 0.2, . . . , 0.9.
That is, they plot the sets {𝑦0, 𝑦1, . . . , 𝑦30} where 𝑦𝑛+1 = 𝐹𝑡 (𝑦𝑛) with 𝑦0 = 0.1, 0.2, . . . , 0.9. Panel
(A) corresponds to the initial orbits of the resampling map of gLV system 1 where we clearly see
the convergence of the resampling map to its fixed point. Panel (B) and (C) show the chaotic orbits
of gLV systems 2 and 3 respectively.
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Fig. S15: Bifurcations of the resampling map with gLV system 1, equations (S23). Panel (A)
contains the orbits of 𝐹𝑡 on the top and the Lyapunov exponent on the bottom, as parameter 𝑎12
changes from 0.25 to 2.5. Panel (B) similarly contains the orbits on top and Lyapunov exponent on
the bottom, for parameter 𝑎21 from -0.3 to 0.0. Specifically the portion of the orbits of 𝐹𝑡 displayed
are the 200 points from iterations 2001 to 2200. The bottom panel, (C), shows the sign of the
Lyapunov exponent, 𝜆, with gray indicating 𝜆 < 0 and green indicating 𝜆 > 0. In this panel both
𝑎12 (horizontal axis) and 𝑎21 (vertical axis) are varied.
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Fig. S16: This figure contains the bifurcation diagram for the resampling map corresponding
to equation (S24) in which we vary 𝑎11.
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Tables

Π
1

Π
2

Π
3

Π
4

𝑏
11

021.576289641760773
17.647004280307897

023.275038953066783
028.030945506538735

𝑏
21

000.49466546912470866
00.7151984174443384

000.5059225471404939
000.42361785985620026

𝑏
22

000.004448801780818573
00.0044488027068634185

000.34999999997271225
000.17500000143600514

𝑘
11

074.9999993816303
62.3225322298297

074.99999999987163
149.99999873100478

𝑘
21

097.52877100977861
92.43942437853232

121.58594177518263
128.3931984360433

𝑘
22

148.49902957352418
49.499726984899354

050.00000000037668
099.99999985842923

𝑑
1

000.44374501863818333
00.22065174178258318

000.24987681294756886
000.49975362587609146

𝑑
2

000.2579156438584344
00.38500474945549484

000.3895826377760444
000.2203719385585063

𝛽
11

006.991543173649346
05.923338681634315

027.08576223466813
024.809972874387338

𝛽
12

002.713209008462893
01.3658907245351297

003.404517287005149
006.280633529917886

𝛽
21

001.21638912025012
01.6184461719807959

000.6868378558755645
000.34341892793905887

𝛽
22

000.020902885352629987
00.020902942999367922

010.08112524083857
010.93693621354907

Table S1: Parameter combinations that result from steps (1-4) of the section Calibration
Methodology. Loss functions used are unweighted log-transform, unweighted least squares, least
squares with a weight of 100 at 𝑡 = 20 and 1 elsewhere, and weighted log-transform with a weight
of 10 for 𝑡 ≥ 10 and 1 elsewhere which correspond to Π1, Π2, Π3, and Π4 respectively.
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Π
5

Π
6

Π
7

Π
8

𝑏
11

038.71863840540505
002.1069766222304986

023.93199887080769
04.889020048624366,

𝑏
21

002.686875124309263
003.071832943915211

001.2888046697578246
01.650906058303704,

𝑏
22

000.4995398153291667
000.30836276191300754

000.11322806476230424
01.1304589898282e-11,

𝑘
11

036.74618494623955
014.429657784664181

188.92468374966288
18.254673464768086,

𝑘
21

046.46509804125519
148.79941534100308

045.204754408018786
69.72139555429486,

𝑘
22

088.44265672150951
009.901316969356856

087.46735945850776
33.23492697784605,

𝑑
1

000.5197558544158776
000.3345484783901732

000.31926367897308894
00.33541105598322607,

𝑑
2

002.2640541385518316
002.4846843720172713

000.47812535661954725
01.2124534052801628,

𝛽
11

119.8177333619479
014.74826752326542

028.53375002723319
41.09910705553466,

𝛽
12

028.33501530776103
005.7845614222681565

002.679753870132352
12.420788537544192,

𝛽
21

000.37152097226325376
000.23598031746348647

000.1355413722193278
00.7339000569511533,

𝛽
22

000.499768850928141
000.49986821663815784

034.478577367827654
04.319009014855137e-9

Table S2: Parameters that correspond the example dilution lines presented in figure S8.
Parameters Π5 produce example 1 of figure S8, Π6 and Π7 both correspond to example 2 and are
presented in figure S10, and Π8 produces example 3 of figure S8.
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Movie S1. Generic example of ecotype co-dynamics across 25 dilutions under increasing
dilution intervals. Ecotype dynamics between the overproducer (blue, 𝑋1) and auxotroph (orange,
𝑋2) across 25 dilutions as the dilution interval increases from 1 to 25 days. Top row indicates the
absolute abundance of each competitor. Second from top indicates the abundance of each competitor
at the time of dilution. Second from bottom indicates the relative frequency of each competitor
at the time of dilution. Bottom row indicates the concentrations of resources 1 (primary carbon
source) and 2 (secondary carbon sources) across a dilution period.
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