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Supplementary Text

Introductory Material

Dynamic models of microbial growth primarily fall into two categories: (1) those that model
interaction characteristics directly, as in Lotka-Volterra type equations, and (2) those that mediate
interactions and fitness through resources in what we call Consumer-Resource (CR) equations. The
generalized Lotka-Volterra (gLV) equations, which describe the concentration of n taxons through
their pairwise interactions, are formulated as

dx; < .
d—t’:Xi ri+;ainj fori=1,2,...,n. (S1)

The only dynamics described in gLV models are those for the concentrations of the taxons themselves
(values X;), and they depend only on their base fitness values, r;, and the interaction coeflicients a;;.
Consumer-Resource models distinguishes between the taxons, X;, and resources R;. In CR models,
interactions are mediated by resource concentration as opposed to the pairwise terms that appear
in gLV models. For example, n communities competing over a single resource in a batch culture
would be described by

dX;

7 fi(R)X; —d;X; fori=1,2,...,n,

dR ¢ X; (S2)
—=-) filR)—,

where d; is the death rate of X;, y; is the yield coefficient and f; is the response function. The
Holling type 2 response function (/) is a reparameterization of the Monod growth curve (2) which
we employ below. Monod growth describes the growth of a microorganism as a function of the
concentration of a substrate such that in the context of equation (S2),

R

‘(R) = b;——, S3
Fi(R) = b (S3)
where b; is the maximal exponential growth rate, R is the concentration of the resource, and k;
is the half-velocity constant, defined such that f;(k;) = 1/2. A model of a single community’s

concentration with respect to a single resource is given by

dX R
~x (b -),

dr k+R (S4)
dR X R
dr k+R’

By including additional resources and consumers to equation (S4), we can model common
ecological interactions. Keeping only one resource and adding consumers can model competition
for a single resource, or perhaps adding more resources and changing the sign of their 8 coefficients
can determine if they are producers or consumers of that resource. We are interested in the auxotroph
over-producer relationship. When we consider a single strain of a bacterium identifiable subclades
may form from different mutations. A subclade that requires a resource that the original strain did
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not is called an auxotroph and a subclade that produces more of a resource than the orginal is called
an over-producer.

To model the auxotroph over-producer relationship we add a resource corresponding to the
nutrient produced by the over-producer and required by the auxotroph.

Definition 1. (Noncompetitive Crossfeeder Model) In equation (S5) below, the concentrations X
and X, refer to the over-producer and auxotroph respectively. Resource R; is the limiting resource
for the over-producer X; and R, is the metabolite required by the auxotroph X,. The coefficients b;;
are the maximal growth coeflicients, k;; are the half-velocity constants, and d; are death rates. The
coeflicients ;; = b;;/y;; are reparameterizations of the yield coefficients:

dX; R

X by — —d

dr 1( 11k11+R1 1)

dX R

—Z—Xz(bzz 2 —dz)

dR, xR

dr B 1 1k11 + Ry

dR, R R>
T = 12X s BnX o

This simplified model decouples resource usage and does not explicitly include terms for lag
or stationary phases. The separate resource usage suggests R; is the limiting resource for X; for
i = 1,2. Model (S5) can be thought of as a sub-model of more complex models, for example if
there were competition for Rj, but the over-producer auxotroph relationship is maintained for R;
as in equation (S6).

Definition 2. (Competitive Crossfeeder Model) The coefficients in equation (S6) are defined in the
same way as equation (S5) where b;; and k;; are the maximum growth and half-velocity constants

of X; with respect to R;:
dX; Ry
— =X |byj————-d
dr 1( llk” + R 1)

dX. R R
_2:X2(b21_1+b _2_d2)

dr ko1 + Ry 22 ko + Ry (S6)
dR, R, R,

e —,311X1“—+ Ba X Eyo—s

dRz R Rz

U = BrX e ——— —,322 o

Note that model (S4) is a submodel of (SS) and (S5) is a submodel of (S6) in the sense that if
by1 = P21 = 0, then equations (S6) are identical to (S5). Similarly, eliminating the dimensions and
coeflicients for X, and R, in equation (S5), yields equation (S4).

We seek to model the process of serial transfer cultures through a process where an underlying
system propagates through an interval (¢, t,,+1) and at time #,,41 a ‘transfer’ is made instantaneously
by introducing a discontinuous impulse in the flow of the underlying system that dilutes the existing
culture and replaces consumed nutrients. Examples of experimental data obtained by serial dilution
are given in figure S4.
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Definition 3. (Serial Transfer Model) Let Y = f(Y) denote either model (S5) or (S6) where ¥; = X;
andY; = R; 5 fori = 1,2 and j = 3,4. Let 7 > 0 be the transfer interval such that the transfer
times are nt forn = 1,2,3,... and let ¢ : R” — R" be the instantaneous transfer function. Define
U : R x R* = R* to be the forward operator such that

U(t,Yy) =Y(1)

where Y (¢) is the solution to the initial value problem ¥ = f(Y), Y(0) = Yy. Then define serial

transfer map
G;(Yo) = ¢ o U(1,Yp). (S7)

Repeated applications of the map (S7) define a discontinuous set of semi-flows, Y, with the properties

{ Y(t) = f(Y) fort # nt (S8)

Y(t+) = ¢(Y(t-)) fort = nt

For models (S5) and (S6) we define ¢ (x) = ¢2(x) = ¢4(x) = rxand ¢3(x) = (1 -r)(Yp)3 +rx
where r is the dilution fraction and (¥)3 the third component of ¥, which is the initial concentration
of R;. The component functions ¢, ¢, and ¢4, denote the transfer of the contents of one culture
to the next; the component ¢3 denotes both the transfer of the contents of a previous culture, the rx
term, and the concentration of the nutrient in the fresh medium, the (1 — r)(Yp)3 term.

Definition 4. (Discrete Time Map) Let U : R x R* — R* be the forward operator and ¢ be the
transfer function defined in definition (3). Define H; : R* — R* by

H;(x) = U(t, ¢(x)). (59)

Then the sequence
x1 = U(r,x0) (S10)
X, = Hi(x,—1) forn>1 (S11)

corresponds to the sequence of values Y (1—) for t = 7n as defined in definition (3). The sequence
{xi}2, we refer to as the discrete time map or just discrete map.

Model Characteristics

Note that there are no fixed points for model (S5) or (S6) where X; or X, are positive. Considering
model (S5) if there is a fixed point with X; > 0 then we must have R;/(k;; + R;) = d;/b;;. Fori = 1
this would imply —8;1X1d/b11 = 0 which is a contradiction. Similarly, for i = 2 we know X; =0
(by the previous sentence) thus we would have —f,, X>d» /by = 0, again a contradiction.

For system (S6) if we assume either X; = 0 or X, = 0 then similar reasoning to the previous
paragraph will imply the other must be zero as well. If we assume both X; > 0 and X, > 0 then the
equation % = 0 implies that R;/(k;; + Ry) and R;/(k21 + R;) have opposite signs when R; > 0
which is a contradiction as §;;, k;; > 0 for all 7, j and R; > 0 by assumption. Thus, all fixed points
for both models (S5) and (S6) have the form X; = X, = 0and R;, R, € R.
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Calibration Methodology

To calibrate specific examples we take advantage of the nested property of models (S4), (S5), and
(S6). In order to scale coeflicients, we first determine a ‘general fit’ to an underlying growth curve.
This is done sequentially:

1. Calibrate a monoculture model, equation (S4), to the growth data of the overproducer.

2. Fix the parameters of the overproducer in (S4) as nested in model (S5), and calibrate the
remaining parameters, b2, k22, d2, B12, and S22, to the growth curve of the auxotroph.

3. Include all parameters of the calibrated model (S5) as fixed in model (S6), and fit the
competitive parameters b1, k21, and S51.

4. Finally, let p be the vector of parameters of model (S6). Choose a set of bounds /,u € R"
such that /; < p; < u; and allow parameters to vary within the box {x € R™ : [; < x < u;} for
a final optimization pass conducted on all parameters of equation (S6).

These steps generate a system with the form of equations (S6) that is a best fit for the growth curve
data over single time period, where no transfers as in definition (3) occurs. An example of data
over a single time period is given in figure SS. The result is a best fit relative to the loss function
and produces a local minimum, given the nonconvex nature of the optimization problems involved.
This system shares some important properties with the underlying growth data. In particular, model
(S6) produces an averaged growth and death phase that track the underlying dynamics, although
more subtle stationary and lag phases are not directly captured.

Taking the set of parameters obtained from step (4.) and simulating a sequence of serial transfers
as described in definition (3) commonly produces a sequence of trajectories that converge in the
sense that the values Y (¢+) for r = nt,n = 1,2,... converge as a vector in R*. This will, in the
limit, produce a periodic trajectory for Y (#) and constant sequence Y (7n+), see figure S7. Note
that, as there are discontinuities at time points n7, this convergence can in fact occur in finite time.

While large swathes of the parameter space produce convergent sequences of the values of
Y (nt+), there are open sets of parameter space which produce sequences of Y (nt+) that are
periodic, sometimes with very high period, or even aperiodic. To capture the seemingly chaotic
behavior of the relative abundance data, see figure S4, we implement further fitting steps that
involve serial passaging data:

5. Let p* be the vector of calibrated parameters obtained in step (4.). Choose new upper and lower
bounds /’,u’ € R™ such that ] < p7 < u} and define the box P = {x € R™ : Il < x; < u’},
and sample uniformly from P.

6. Simulate each sample and find an example than reasonably minimizes the residual sum of
squares of the relative values. That is, we want to minimize the differences

Sh Xi(tj, p) f(t)
2.2, T (512
pr e Xi(tj, p) + Xo(tj,p)  £1(2;) +%2(2))
with respect to p € P, where £;(¢;) are the measurements obtained from a serial transfer

experiment.
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7. Using the parameters obtained in step (6.) as initial values, do a final optimization round
minimizing the loss function (S12) producing a calibrated parameter vector p.

These steps generate a parameter set that is a best fit of the relative abundance values of the serial
passage data, as in panel (A) of figure S4, while the details of the absolute growth values may differ
from the initial reference values used in steps (1)-(4). It is important to note that the experimental
conditions driving the dynamics in the 20-day culture, such as figure S6, are different from those
in the longer-term, serial dilution experiments such as figure S4. The initial inoculation for 20-day
growth experiments starts at an initial value of O for R,, whereas under serial dilutions, a positive
value of R; is present after each passaging. Therefore, parameter values that we estimate from steps
(1-4) are not expected to be exactly the same as those in steps (5-7). Instead, they serve to establish
reasonable ranges for the parameters that characterize the dynamics in the long-term serial dilution
experiments.

The process of finding areas in the parameter space that display some non-periodic behavior is
dependent on the initial calibration of parameters. Say, as a trivial example, we find all parameters
are zero except for d, and our parameter box contains only a cylinder around d, then every solution
will converge to zero, and there will be no nontrivial periodicity or aperiodicity of Y at the dilution
times nt. If, however, a given set of parameters produces periodic solutions to equation (S7), then
small changes to the parameters can have large effects on the trajectories. As a result, identifying
a set where the trajectory, Y (¢), is sensitive to initial values is critical to fitting aperiodic relative
growth values. To do this, we may split step (6.) into two separate steps

6a. Sample from P and search for parameter vectors p that display aperiodic behavior at points
nt. These need not match any data.

6b. For each p identified in (6a.) construct a new box P” with bounds {I/’,u}} such that p €
[1;[L],u!]. Sample P” to minimize quantity (S12), and continue as above.

This is a nondeterministic procedure. A grid search in the parameter space may be practical for
very small sets, but quickly becomes computationally daunting for larger sets. As we are ultimately
looking for solutions that match relative abundances of empirical measurements, a direct global
optimization over the entire parameter space, R!'? for equation (S6), is unreasonable. Additionally
gradient based methods performed quite poorly. We used differential evolution based optimiza-
tion algorithms for minimization, specifically the BBO_adaptive_de_rand_1_bin method of the
BlackBoxOptim. j1 package included with the Optimization. j1 package (3). These methods
perform a global gradient free optimization over a region in R" defined by the product of intervals
[l1,u1] X [la,uz] X ... X [ly, u,]. We use steps (1.-4.) to determine a reasonable set of bounds for
steps (5.-7.). This is effective because the number of parameters over which which we optimize
in steps (1.-4.) is much smaller. We start out in step 1 optimizing over just 4 parameters in the
box [0, 100]* then sequentially fixing previous parameters and optimizing over new parameters to
arrive at scales of the parameters that produce empirically feasible trajectories at step 4.

These parameters then serve as a starting point for steps (5.-7.). When we construct the bounds
in step 5, we do so by first choosing factors 0 < @ < 1 and 1 < b, and setting [/ = ap’ and
u; = max{bp:, u} for some u > 0 to avoid intervals that are too narrow when p; is small. Steps
(5-7) then result in parameters that fit the relative values of the 10-day dilutions, but their fit for the

S6



original 20-day batch culture is not as close as the one obtained at the end of step 4, although still
capturing the features of the original growth curves and, of course, the relative magnitude of the
abundance values at time 10 vacillate. As explained above, this is a necessary and expected result
as the highly variant 10 day dilution values cannot have inter-dilution growth curves identical to
the original growth curves.

Examples of Calibrated Systems

Steps (1.-4.) of calibration methodology, the section Calibration Methodology, produce different
results depending on the specific loss function used. Here we used two least square loss functions:

n k n k
Z wij(xi(¢;) — %(t;))*  and ZZW,‘j(lOg(xl'(tj)) —log(%:(1,)))% (S13)
1

=l j= i=1 j=1

a residual squared error and a residual squared error of the log-transformation respectively, either
of which may be weighted. The log-transformed least-squares better captures the dynamics in the
values closer to zero, while the standard least-squares, both with w;; = 1 for all i, j, more closely
approximates the dynamics of the larger values. Choosing different weights similarly produces
slightly different results.

Figures S5 and S6 show the results of the calibration steps (1.-4.). Panels (A), (B), and (C) of
figure SS show the result of calibrating with respect to the log-transformed data, which produced
parameter set I1;, see Table S1. The subsequent sets of three panels (D, E, F), and (H, 1, J), and (K,
L, M) of figure S6 each correspond to the parameter sets I, 13 and I14 of Table S1, respectively.
The parameter set I, was obtained with unweighted squared error. For parameter sets II3 and Il
the later data points were weighted more heavily. In particular parameter set I13 was obtained using
standard least squares with a weight of 100 at the final time ¢ = 20 and a weight of 1 for all other
times. Parameter set 14 was obtained using a weighted residual of the log-transform of the data;
specifically a weight of 10 for all values of ¢ such that # > 10 and a weight of 1 for all 0 <z < 10.

If we take the parameters found for panels (A), (B), and (C) of figure S5 and evaluate the dilution
map, defined in (3), out to 20 dilutions with 10 days between dilutions, we see in panels (A) and
(B) of figure S7 that the dilution map Y (¢) converges to a periodic solution which corresponds
to a constant solution of the discrete map whose values are Y (10n+). Indeed all of the parameter
sets Iy, I, 13, and I1y4 that result from steps (1-4) of the section Calibration Methodology create
dilution maps with similar long term behavior; that is, the discrete map converges quickly to a state
where X; > X, and X, approaches O.

The results of steps 5-7 of the section Calibration Methodology, are displayed in figure S8.
We provide three examples of the system defined in definition 4 fitted to specific measurements
of coculture serial dilution lines. In figure S8 the left hand column plots the relative abundance
values of Y (10n+) forn = 0, 1,2,...9 and the right hand column plots the absolute abundances
on a log scale. Panels pairs (A, B), (C, D), and (E, F) correspond to parameters Ils, I1g, and Ilg
of table S2 respectively. Note that all parameter sets II; through Il4 do not serve equally well
for starting points steps (5-7). When we construct the box P over which we uniformly sample in
step 5, the bounds we choose are proportional to the initial values p* in the form I = ap} and
u; = max{bp, u}. If we take a and b to be 0.5 and 2.0, random sampling provides very few
parameters sets with nonconvergent or slowly converging discrete maps. Using I13 or Il as starting
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point, the larger interval around £, allows for more variant discrete map orbits and following step
7 provides significantly closer fits to the 10 day dilution lines. While we do not closely recapitulate
the absolute abundances, panels (A), (C), and (E) show a surprisingly close fit to the highly variant
empirical relative abundances. We show in the following section that these parameters occur in
sections of the parameter space where one finds chaotic behavior of the discrete map.

Transition to chaotic behavior

Chaotic orbits of Dynamical Systems arise when those systems are extremely sensitive to small
changes in initial conditions. This sensitivity to initial conditions is measured by the Lyapunov
Exponent (4). The Lyapunov exponent describes how a small set of initial conditions around a point
xo converge or diverge from the orbit generated by x( through repeated iterations of a map. In our
case we are interested in the Lyapunov exponent associated to the discrete map, definition 4, for a
fixed set of parameters defining the underlying system and a fixed dilution time 7. Letting 6 = X —x¢
be a small perturbation of the initial point x¢ and let D H, be the Jacobian of the discrete map H-.
The Lyapunov exponent of the H, with respect to ¢ is defined as the limit

1
A = lim - log||DH™ (x0)5|| (S14)
n—oon

assuming it exists; where Hﬁ") is the nth application of the map H,. In general to capture all
dimensions of perturbation this is computed instead by taking a unit ball, B, around the point xy and
evolving it forward, again, by the linearized dynamics as DHi") (x0)B. If ™ is the largest radius
of the ellipsoid DHi") (x0)B then we define the Lyapunov exponent of H, at xq as

A= lim l1ogr<">. (S15)
n—oco 1
Computationally the matrix JJT for J = DH, can become extremely ill conditioned and thus
various normalization methods have been introduced. We compute Lyapunov exponents with the
ChaosTools. j1 package (5) which uses the ‘H2’ method of (6) originally published by (7). For
additional details see (8).

Many solutions to the serial passage system given in definition (3) have convergent solutions in
sense that the values of Y (nt) converge to a fixed point in R” as n — oo, which corresponds to a
periodic solution of the discontinuous semi-flow Y (¢) for ¢+ > 0. But as we have seen empirically,
figure S4, these relationships do not display obviously convergent behavior. The relative abundances
can be recapitulated as in figure S8, and these solutions exist in regions of the parameter space that
display chaotic behavior.

Let us consider example 3 from figure S8, which has parameters Ilg of table S2. The orbits
of the discrete map do not display obviously convergent or periodic behavior. To test whether we
observe chaotic behavior, we can calculate the Lyapunov exponent. For example 3 from figure S8,
the Lyapunov exponent, calculated out to 100, 000 iterations, is approximately 0.117, indicating
chaotic trajectory. The first dimension, X1, is constant but X, and R; are highly variant resulting in
the high Lyapunov exponent.

We can observe the transition to chaos for this example by interpolating between a set of parame-
ters with convergent discrete map, I1; of table S1, and the parameters that fit the relative abundances
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of example 3, I1g. In figure S9(A) we simply perform a linear interpolation (1 — s)(IT;) + s(Ils)
for s € [0, 1] to produce a bifurcation diagram. Panel (A) of figure S9 shows the orbits of X3
for a particular value of s in the previously mentioned interpolation. In particular if {Xz(i)}l?’io is
the sequence of X, values generated by the discrete map with respect to a particular parameter
set, panel (A) plots the values XEIOOI) e ,X2(1100). This creates a classical bifurcation diagram,;
initially X, values converge to zero, then undergo a period doubling bifurcation and then have
chaotic orbits with isolated periodic regions which include period 3 orbits. Panel (B) plots the
approximate Lyapunov exponents of the discrete map at each interpolation point. This shows, as
one would expect, negative Lyapunov exponents for convergent and periodic regions and positive
Lyapunov exponents in the chaotic regions. Example system 1 is very similar to example system 3,
in the sense that the parameters I1s have positive Lyapunov exponent and the bifurcation diagram
when interpolating between I1; and I1s is very similar to figure S9.

The particulars of the bifurcation diagram or the Lyapunov exponent are not the same for all
examples. They differ in fact within a single example. The calibration procedure does not guarantee
a unique minimum and can produce different results when starting from different initial conditions
and choosing different sets in the parameter space. Figure S11 contains several bifurcation diagrams
related to example system 2 of figure S8. We provide separate calibrations of example system 2, one
using initial parameters I13 (Table S1) and producing parameters Il (Table S2), the result of which
is shown in panels (A) and (B) of figure S10. The second calibration, using Il4 (Table S1) as initial
parameters and producing parameters I1; (Table S2), is plotted in panels (C) and (D) of figure S10.
Two bifurcation diagrams presented in panels (A) and (C) of figure S11 both have parameter set 17
as the final parameter set, but they interpolate from initial sets I1; and II3, respectively. We can see
that, not surprisingly, taking different lines through the parameter space creates distinct bifurcation
diagram though they end at the same point. Parameter set I1g similarly recapitulates example 2 but
does not have positive Lyapunov exponent. The bifurcation diagram interpolating between I1; and
I1g is given in panel (E) of figure S11, and it shows the existence of chaotic regions, although set Ilg
(the rightmost region of the bifurcation diagram) falls in an isolated region of periodic dynamics
with period three. Thus the chaotic quality is not inherent when calibrating to specific culture lines,
but these variant coculture values lie near chaotic regions of the parameter space.

The dilution time parameter, 7, also plays a crucial role in the behavior of the discrete map.
Fixing the parameters to Ilg, and evaluating the orbits for values of 7 between 7 = 3 and 7 = 14
days we see a transition to chaos with 7 as the bifurcation parameter (figure S12), as we did in
figure S11. So, not only do the interactions result in a bifurcation, but the frequency of dilution also
determines the long term behavior of the orbits of the discrete map.

Chaos in the gLV model with resampling

So far we have demonstrated that a transition to chaotic behavior can be observed in a system where
(1) two species are involved in asymmetric crossfeeding (that is, where one species requires the
other in order to grow); where (2) growth equations are fully mediated by endogenous resource
concentrations; and (3) a process of serial transfers takes place introducing discontinuities into
the abundance and concentration trajectories. Note that the underlying gLV system in many cases
converges in the absence of serial transfers.

It turns out that the transition to chaotic behavior can be observed in simpler models that describe
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co-dynamics of two species in a resampled system. Consider a gL'V model with resampling, which
was studied in (9):

)'ng) _ blx(l) +Zk m x(l)xgj)
xi(j) — (]) +Zk Jaik X]((]) i(]) (S16)
= pald) 4 ey amkx,((j)x,(,{)

where b; and a;; are constants for all i and k, m is the number of interacting subpopulations, and
the superscript, j, numbers the “frame” (that is, the period of time between resamplings). The
initial conditions for each of these systems are given by setting x; to be proportional to the relative
abundance of x; at the terminal point of the previous frame,

5 (0

1
f1 X 1(<] )(tj 1)

(o) = v (S17)

where v is a constant that determines the volume of the transferred culture and x(!) (0) = xq is given.
Note that the system described by equations (S16) and (S17) corresponds to a serial transfer system
where the underlying dynamics are given by the gL'V equations and the instantaneous transfer
function ¢ is given by ¢;(x) = x;/ X ; x;.

Taking the simplest case of m = 2, the sequence

(o0, (20), j=1,2,..
can be described by a 1D map, as, for the m = 2 case, we must have xéj) (tji-1) =v— xij)(tj_l).
Definition 5. (gL.V Resampling Map) Define the map F; : [0, v] — [0, v] by
Fi(y) =[¢o Ut (y,v -y (S18)
where U is forward operator associated to the 2-dimensional gLV system

X1 =bix; + anx% + apx1xs

5 (S19)
X = boxy + azixoxy + anx;
and ¢ is the proportional resampling instantaneous transfer function defined by
v
¢((x1,x2)) = (x1,x2). (520)
X1+ X2

That is, F; takes a point y € [0, v], interprets it as the initial value of the first dimension of equation
(S19), assigns v — y as the initial value of the second dimension, evolves them forward according
to (S19) to time ¢, then applies the resampling map, and returns the value of the first dimension.
We refer to equation (S19) as the gLV system.
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We consider sequences generated by a fixed resampling time 7 € (0, c0). The set of points,
{yn};, defined by
Yn+1 = Fr(yn), for some yo € [0, v] (S21)

we call an orbit of F.

This is a convenient map to investigate with respect to its trajectories as it is one-dimensional.
It is continuous and maps a closed interval to itself, so it must have a fixed point. Indeed, F; has at
least two trivial fixed points, v and 0. In reality, F; often exhibits fixed points on the interior.

Below we present three examples of gLV systems that are characterized by different types of
behavior.

gLV System 1. Let us consider the system

%1 = 0.1x1 — 0.6x7 + 0.4x1x2
) (S22)
X2 = 0.2x2 + 0.2x2x1 — 0.5x5

with 7 = 1, v = 1, and let yp = 0.5. System (S22) has fixed points (0,0), (0,2/5), (1/6,0),
and (13/22,7/11), where the strictly positive fixed point is asymptotically stable. Some properties
of system (S22) are shown in panels (A), (B), and (C) of figure S13. We see the underlying gLV
system converges to its only stable fixed point in panel (A), and panel (B) indicates the location of
the interior fixed point of F;, the resampling map. The stable point of the underlying gLV system
and the fixed point of F; do not correspond to the same values. The fixed point of F: depends on
the value of T and the speed of the underlying gL'V dynamics. More specifically, if the gLV system
converges to (X, £7) and F; is convergent, then the larger 7 is the closer the fixed point of F; is to
the value £ /(%] + %2).

We see from panel (B) of figure S13 that not only does F; map [0, 1] to itself, but if one takes
a smaller interval containing the fixed point, say [0.25,0.75], then F; also maps this interval to
itself, thus F; must converge to its internal fixed point. This can be seen clearly in the orbits of F;
shown in figure S14.

gLV System 2. Next, we consider the following set of parameters for the gLV model:

X1 = 0.3247x; — 0.0038x7 + 1.1787xx2

) (S23)
i = 4.9591x; — 0.0432x5x; — 0.0541x

with 7 =1, v = 1, and yog = 0.5. Here we have the property that a2a;; < 0. The only stable fixed
point of equation (S23) is the nonzero point which is approximately (114.557, 0.096).

As before, the map has a single internal fixed point, call it , but in contrast to the previous
example, we have | D, F ()| > 1. Note that | D, F-(9)| > 1 implies that F cannot converge to this
internal fixed point from an arbitrary initial value in [0, 1]. This scenario gives rise to chaotic orbits
of the map F, with classical bifurcation phenomena. See figure S14 panel (B) for the initial orbits
of F;.

In figure S15 we keep the parameters of the gLV system as they are given by equation (S23),
except the parameters a1, and a,, which we vary in a given interval. Panel (A) shows the bifurcation

S11



diagram of F; resulting from varying a,; and holding all other parameters constant. The approximate
Lyapunov exponents appear below the corresponding orbit. In panel (B) of figure S15 we vary ay;
and hold all other parameters constant, and in panel (C) we vary a; and ap; simultaneously and
plot the sign the Lyapunov exponent, denoted as A. The green points indicate 4 > 0 and thus chaotic
trajectories; the gray points indicate 4 < 0.

gLV System 3. There are parameter sets, which have multiple internal fixed points, none of which
the resampling map will converge to. Consider the system

X1 = 0.4095x; + 0.0242x% - 0.407x1x2

, (S24)
ir = —0.4367x + 0.6013x2x) — 0.0083x3

with constants 7 = 24, v = 1, and yp = 0.5. The fixed points of this system are approximately
given by (0,0), (0, 52.5), (-16.9, 0), and (0.71, 1.048). The only stable fixed point is (-16.9, 0), but
definitionally, initial values must be nonnegative. As (0,0) is an unstable fixed point, any initial
values that start in the positive reals will stay positive but not converge to any of the positive
fixed points. Note that the map, F;, has five internal fixed points, for all of which the derivative
|DyF-(y)| > 1. This scenario too produces chaotic trajectories, see figure S14(C). In figure S16 we
plot a bifurcation diagram varying a1; and holding all other parameters constant.

Note that in each chaotic example the off diagonal interaction coefficients have opposite signs,
that is ajpaz; < 0. We have not observed chaotic solutions for the resampling map when this
inequality is reversed.
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Fig. S1: Overproducer fitness against wild-type E. coli K-12 in mM9 + 0.2% glucose. The
overproducer AmetJ E. coli strain was co-cultured with wild-type K-12 for a continuous 10-day
period (n = 12). Each strain was initiated from a single colony overnight in 2 mL of modified M9
minimal medium + 0.2% glucose grown for 18 hours. Cells were washed twice with fresh mMO9.
Into 10 mL of mM9 + 0.2% glucose, 100 puL of washed wild-type and 150 pL of washed mutant
strain AmetJ were aliquoted into each tube (the knockout strain has a higher perceived mortality
rate, therefore starting cell amounts were adjusted to achieve a 1:1 starting ratio). Each culture was
homogenized and 100 pL samples were taken from at days O, 1, 4, 7, and 10. Samples were serial
diluted and plated on tetrazolium agar to differentiate between strains, and overproducer selection
rate was calculated from the differences in its growth relative to wild-type using the difference in
their Malthusian parameters across each number of days (see methods). Error bars indicate +/- 95%
confidence intervals.
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Fig. S2: Death curves of the auxotroph and overproducer strains in monoculture conditions.
The overproducer AmetJ and auxotroph AmetB E. coli strains were cultured in isolation for a
continuous 20-day period. Each strain was initiated from a single colony overnight in 2 mL of
modified M9 minimal medium + 0.2% glucose grown for 18 hours. Cells were washed twice with
fresh mMO. Into 10 mL of mM9 + 0.2% glucose, 100 pL of washed strains were aliquoted into
each tube. Each culture (n =) was homogenized and 100 pL samples were taken every 2 days for 20
days. Additionally, the growth curve of each strain was manually collected by CFU plating every 2
hours until 12 hours of growth. Error bars indicate +/- 95% confidence intervals.
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Fig. S3: Measurements of extracellular glucose and L-methionine across an 18 hour period
in overproducer AmetJ monocultures. (A) Glucose measurements in millimolar concentration
across 18 hours (n=2). Samples were collected every 2 hours from O to 10 hours. Glucose became
undetectable by 10 hours (assay measurements were collected and quantified at hours 14 and
18 and yielded no positive measurements). Error bars indicate +/- 95% confidence intervals. (B)
L-methionine measurements in millimolar concentration across 18 hours (n=3). Samples were
collected every 2 hours from O to 10 hours, and at hours 14 and 18. See Methods for collection and
analysis methodology. Error bars indicate +/- 95% confidence intervals.
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Fig. S4: The empirical data for 3 serial dilution cultures. The blue dots are measurements of the
overproducer and the orange dots are the auxotroph. Panel (A) displays the relative abundance data
and panel (B) displays the absolute abundance data. Note that the absolute abundance data, panel
(B), is plotted on a log scale.
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Fig. S5: Initial calibrations, steps (1-4) of the section Calibration Methodology, of the model
(S6) to a 20-day batch coculture with unweighted loss functions. The left column, panels (A),
(B), and (C), are fitted using the residual sum of squares of the log-transform of the data, thus
weighting the smaller values heavily relative to the larger values and better capturing the behavior
for absolute abundance near the minimal measurements. The right column, panels (E), (F), and (G),
are calibrated using a standard residual sum of squares. This fits the larger values more closely but
overestimates the smaller values. The parameters that produced (A), (B), and (C) are I1; of table
S1, and the parameters that produced (D), (E), and (F), are I1,.
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Fig. S6: Initial calibrations, steps (1-4) of the section Calibration Methodology, of the model
(S6) to a 20-day batch coculture with weighted loss functions. Panels (A), (B), and (C), which
correspond to parameters I13, were generated with a weighted least squares where the final time,
t = 20, was given a weight of 100, for all data values and all other values were given a weight of
1. Panels (D), (E), and (F), which correspond to parameters I14, where generated with a weighted
log-transformed residual, where all times ¢ such that # > 10 were given a weight of 10 and given a
weight of 1 otherwise.
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Fig. S7: The trajectories of the dilution map, Y (7), as defined in (3) for model (S6), with
parameters I1; of table S1, fit to the underlying empirical data as shown in panels (C) and (D)
of figure SS5. Panel (A) shows the trajectories of X; and X, and panel (B) shows the trajectories
for Ry and R, for 0 < ¢ < 200 thus representing the evolution of the system over 20 dilutions.
Panel (C) is a line plot of only the values X;(10n-) forn = 0,1,2,...,20 and i = 1,2, i.e. the
absolute abundance values. Panel (D) is a line plot of the values X;(10n—)/ 2521 X;(10n-) for
n=12,...,20and i = 1,2, i.e. the relative abundance values. This is an example of a convergent
system, in the sense that the discrete map converges to a constant value.
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Fig. S8: Plots of the three calibration examples. The panel pairs (A, B), (C, D), and (E, F)
each display the results of calibration to relative abundance values via steps (1-7) of the section
Calibration Methodology. Dashed lines connect points which are CFU measurements of cultures.
Solid lines denote values obtained from simulating a calibrated system. The left-hand side, panels
(A), (C), and (E) display the relative abundance values and the right-hand side, panels (B), (D),
and (F), display absolute abundance values on a log scale. The pairs (A,B), (C, D), and (E, F)
correspond to parameters I1s, I1g, and I1g respectively.
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Bifurcation Diagram Example System 3
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Fig. S9: A bifurcation diagram of example system 3. Panel (A) displays the orbits of X, and
panel (B) is the Lyapunov exponent. We observe period doubling and the transition to chaos of the
discrete map with intertemporal dynamics defined by model (S6). The x-axis denotes the value of s
in an interpolation between parameter sets I, and I1,,4 of the form 1., (1 — s) + I1,,45 Where
s € [0, 1]. The parameters for panels (A) and (B) are I, = I1; and I1,,4 = Il5. For panels (C)
and (D) we have Il,,; = II; and I1,,; = Ils. The Lyapunov exponents, A, satisfy 4 > 0O for chaotic
regions and A < 0 for convergent and periodic regions.
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Fig. S10: Different calibrations of example 2. Panels (A, B) and (C, D) are distinct calibrations
of Example 2 corresponding to parameters Ils and I1; (Table S2) respectively. The parameter sets
I1s and I1; are the results of steps 5-7 of the section Calibration Methodology from initial points
I13 and I14 (Table S1) respectively.
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Bifurcation Diagram Example System 2, #1 Bifurcation Diagram Example System 2, #2
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Fig. S11: Bifurcation diagrams and Lyapunov exponent plots related to example 2. Panels (A)
and (B) are an interpolation between I1; and I17, (C) and (D) are an interpolation between I13 and
I17, and (E) and (F) are an interpolation between I1; and Ils. Panels (A) and (C) are both in log
scale for better legibility. Note that [T, s = 1 for panels (A) and (C) is chaotic, and I1g which is the
s = 1 orbit for panel (E) converges to a 3-cycle.
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Bifurcation Diagram in 7
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Fig. S12: Plots describing the transition to chaos of example 2 where the bifurcation param-
(time between transfers) as the bifurcation
parameter. Parameter set, I1g of table S2 is used. (A) The bifurcation diagram with 7 as the x-axis;
shown is the orbit of X, of the discrete map for values of 7 € [3, 14]. (B) The Lyapunov exponents
over the same values. Panels (C), (D), (E), and (F) are plots of the dilution map Y(¢) and the
associated discrete map over the course of 50 dilutions with 7 days dilution frequency. For each
of the panels (C), (D), (E), and (F) the sub-panels from top to bottom are the dilution map values
of X;(¢) and X,(¢) in blue and orange lines, the relative abundance of the discrete map values of
Xi(tn), X>(tn) in blue and orange dots, and the dilution map values of R;(¢) and R;(¢) in green

eter is sample frequency. Transition to chaos with 7

and purple lines.
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Fig. S13: The qualitative behavior of the gLV system and the resampling map. The top row,
(panels (A-C)) correspond to Example system (S22), the middle row, (D-F), correspond to example
system (S23) and the bottom row, (G-I), correspond to example system (S24). The left column,
(A), (D), and (G), are the trajectories of the respective underlying gLV system. The center column,
(B), (E), and (H), are the images of the respective resampling map, F;, and the right most column
shows the derivative of the resampling map. The internal fixed points are denoted as purple dots.
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(A) Orbits of gLV system 1 (B) Orbits of gLV system 2
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Fig. S14: The initial orbits of the resampling map, F;, for systems (S22), (S23), and (S24) from
left to right. Each panel contains 30 iterations of F; starting from 9 initial points, 0.1,0.2,...,0.9.
That is, they plot the sets {yo, ¥1, ..., y30} where y,+1 = F;(y,) with yo = 0.1,0.2,...,0.9. Panel
(A) corresponds to the initial orbits of the resampling map of gLV system 1 where we clearly see
the convergence of the resampling map to its fixed point. Panel (B) and (C) show the chaotic orbits
of gLV systems 2 and 3 respectively.

S25
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Fig. S15: Bifurcations of the resampling map with gLV system 1, equations (S23). Panel (A)
contains the orbits of F; on the top and the Lyapunov exponent on the bottom, as parameter a;;
changes from 0.25 to 2.5. Panel (B) similarly contains the orbits on top and Lyapunov exponent on
the bottom, for parameter a;; from -0.3 to 0.0. Specifically the portion of the orbits of F; displayed
are the 200 points from iterations 2001 to 2200. The bottom panel, (C), shows the sign of the
Lyapunov exponent, A, with gray indicating A < 0 and green indicating 4 > 0. In this panel both
ai, (horizontal axis) and a;; (vertical axis) are varied.
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Fig. S16: This figure contains the bifurcation diagram for the resampling map corresponding
to equation (S24) in which we vary a;;.
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Tables

[ m I, I3 I

b1 || 021.576289641760773 17.647004280307897 023.275038953066783 | 028.030945506538735
b1 || 000.49466546912470866 | 00.7151984174443384 000.5059225471404939 | 000.42361785985620026
by, || 000.004448801780818573 | 00.0044488027068634185 | 000.34999999997271225 | 000.17500000143600514
ki1 || 074.9999993816303 62.3225322298297 074.99999999987163 149.99999873100478
ka1 || 097.52877100977861 92.43942437853232 121.58594177518263 128.3931984360433
ko || 148.49902957352418 49.499726984899354 050.00000000037668 099.99999985842923
di || 000.44374501863818333 | 00.22065174178258318 | 000.24987681294756886 | 000.49975362587609146
dy | 000.2579156438584344 | 00.38500474945549484 | 000.3895826377760444 | 000.2203719385585063
Bii || 006.991543173649346 05.923338681634315 027.08576223466813 024.809972874387338
B2 || 002.713209008462893 01.3658907245351297 003.404517287005149 | 006.280633529917886
Bai || 001.21638912025012 01.6184461719807959 000.6868378558755645 | 000.34341892793905887
B2z || 000.020902885352629987 | 00.020902942999367922 | 010.08112524083857 010.93693621354907

Table S1: Parameter combinations that result from steps (1-4) of the section Calibration
Methodology. Loss functions used are unweighted log-transform, unweighted least squares, least

squares with a weight of 100 at # = 20 and 1 elsewhere, and weighted log-transform with a weight

of 10 for r > 10 and 1 elsewhere which correspond to I1y, Iy, I3, and I14 respectively.
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| s Is | 10, ITg
b1 || 038.71863840540505 002.1069766222304986 | 023.93199887080769 04.889020048624366,
by || 002.686875124309263 003.071832943915211 001.2888046697578246 | 01.650906058303704,
by, || 000.4995398153291667 | 000.30836276191300754 | 000.11322806476230424 | 01.1304589898282¢-11,
ki1 || 036.74618494623955 014.429657784664181 188.92468374966288 18.254673464768086,
ko || 046.46509804125519 148.79941534100308 045.204754408018786 69.72139555429486,
kyo || 088.44265672150951 009.901316969356856 087.46735945850776 33.23492697784605,
dy || 000.5197558544158776 | 000.3345484783901732 | 000.31926367897308894 | 00.33541105598322607,
dy || 002.2640541385518316 | 002.4846843720172713 | 000.47812535661954725 | 01.2124534052801628,
B11 || 119.8177333619479 014.74826752326542 028.53375002723319 41.09910705553466,
B2 || 028.33501530776103 005.7845614222681565 | 002.679753870132352 12.420788537544192,
B21 || 000.37152097226325376 | 000.23598031746348647 | 000.1355413722193278 | 00.7339000569511533,
B2z || 000.499768850928141 000.49986821663815784 | 034.478577367827654 04.319009014855137e-9

Table S2: Parameters that correspond the example dilution lines presented in figure S8.

Parameters I1s produce example 1 of figure S8, Il and I1; both correspond to example 2 and are

presented in figure S10, and I1g produces example 3 of figure S8.
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Movie S1. Generic example of ecotype co-dynamics across 25 dilutions under increasing
dilution intervals. Ecotype dynamics between the overproducer (blue, X;) and auxotroph (orange,
X>) across 25 dilutions as the dilution interval increases from 1 to 25 days. Top row indicates the
absolute abundance of each competitor. Second from top indicates the abundance of each competitor
at the time of dilution. Second from bottom indicates the relative frequency of each competitor
at the time of dilution. Bottom row indicates the concentrations of resources 1 (primary carbon
source) and 2 (secondary carbon sources) across a dilution period.
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