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Experimental Section

Methods

Chemicals and Materials.

Cerous nitrate hexahydrate (Ce(NO3)3-6H20, 99.95%) were purchased from Aladdin,
sodium hydroxide (NaOH, =98%) were purchased from Aladdin. The water used in
all experiments was ultrapure (18.2 Q/cm).

Fabrication and testing of a gas sensor and experimental detail.

5 mg of samples are mixed with 50 pL of deionized water to obtain the corresponding
slurry. 5 pL of slurry was then dripped on an Pt interdigitated electrodes
(10 mm % 5 mm % 0.25 mm, AURORA technologies, China) to form a resistance-type
sensor. All the fabricated sensors were aged in air at 80 °C for 2 h. The gas-sensing
performance of the fabricated sensors was evaluated using an intelligent gas-sensing
analysis system (CGS-4TPs, Beijing Elite Tech Co., Ltd.). To produce test gases with
the necessary concentrations, a dynamic gas and liquid distribution system (DGL-III,
Beijing Elite Tech Co., Ltd, China) having three mass flow controllers was used. We
use nitrogen as the carrier gas, and control the gas flow of oxygen and nitrogen to
control the different oxygen concentrations in the reaction chamber. The interference
gas is injected into the reaction chamber through a syringe. The room where the
gas-sensitive analysis system is located is equipped with a constant temperature and
humidity air conditioning system, and the indoor humidity can be artificially
controlled by setting parameters. The response value (Sg) is defined as the ratio of

resistance in air (R,) to resistance in target gas (R,). The response time and recovery



time are defined as the time for the sensor to reach 90% of the final signal.

Characterization and measurements. X-ray diffraction (XRD) patterns were
recorded on a Bruker D8 X-ray powder diffractometer with Cu Ka radiation (A =
1.5418 A) at 30 kV and 10 mA with a scanning rate of 5° min™ in the 20 range of 10°
~ 80°. The HRTEM images were taken on a Talos F200i working at 200 kV and
JEOL JEM-2100F field emission transmission electron microscopy with an
accelerating voltage of 200 kV. The high-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM) images and Xray energy
dispersive spectroscopy (EDS) mapping was recorded on aberration-corrected TEM
(FEI Titan Cubed Themis G2 300) at an accelerating voltage of 300 kV. Si (Li) EDS
detector with a solid angle of 0.13 srad and Fiori number > 4000. 1.85 s/pixel and
gather a 460 pixel map, so the time of EDS acquisition will cost 851 seconds. The In
situ Fourier-transform infrared (In situ FT-IR) spectra were recorded on a Bruker
Vertex 70 FTIR spectrometer equipped with in situ reaction chamber. X-band electron
paramagnetic resonance (EPR) measurement was performed at room temperature
using a JEOL FA-200 EPR spectrometer. The X-ray photoelectron spectroscopy
(Axis Supra) measurements were operated with Al Ka radiation (1486.6 e¢V). Binding
energies (BE) were calibrated by setting the measured BE of C 1s to 284.8 eV. In situ
DRIFTS spectra were measured on a Nicolet-6700 FTIR spectrometer. The N
adsorption-desorption isotherms were measured using a BELSORP-max-II to estimate
specific surface area and pore size distribution by the Brunauer-Emmett-Teller (BET)

and Barrett-Joyner—Halenda (BJH) methods. The process Raman system employed in



this study was HORIBA. X-ray absorption fine spectra (XAFS) measurements were
measured on the B11 station in Shanghai Synchrotron Radiation Facility (SSRF). The
KPFM (Bruker MultiMode-8 surface potential mode) was used to characterize the
surface potential. The SCM-PIT-V2 model tip and AS-130VLR (“J” vertical) scanner
model was used, and the radius and elastic coefficient of tip were 35 nm and 3 N/m,
respectively. A 300 W Xe arc lamp irradiated at the sample to provide the light
condition. In this study, the samples were coated on highly oriented pyrolytic graphite
substrate. All the KPFM measurement was carried out at ambient conditions. The
contact potential difference (CPD) was defined as the difference between the work
function of the tip and the sample. The images were processed by first order flattening
to eliminate errors caused by sample tilt. The Fluoromax-4 spectrophotometer
(HORIBA Scientific, excited at A=325 nm) given the photoluminescence spectra (PL).
X-ray absorption data analysis

The obtained XAFS data was processed in Athena (version 0.9.26) for background,
pre-edge line and post-edge line calibrations. Then Fourier transformed fitting was
carried out in Artemis (version 0.9.26). The k2 weighting, k-range of 2-10 A and R
range of 1-3 A were used for the fitting of CeO- and Sample.

DFT calculations.

DFT calculations are carried out using the VASP code. The projector augmented-wave
(PAW) method and Perdew-Burke-Ernzerhof generalized gradient approximation
(GGA-PBE) ae used for the exchange correlation functionals. The energy cutoff of

400 eV is used. The molecular dynamics simulations are carried out in the canonical



ensemble (NVT) with the Nose-Hoover thermostat. The time step is set to 1 fs. All
initial amorphous structures are thermally equilibrated at ambient temperature for 25
ps. The energy and force on each ion are reduced below 10~ eV/atom and 0.01 eV/A,
respectively, and only the TI" point was sampled from the Brillouin zone. The
amorphous models were obtained by using the heat up process: from 0 to 900 K
within 25 ps to obtain the structural snapshots and total energy distributions at the
corresponding temperatures. The effect of core electrons on the density of valence
electrons was described using the projector augmented wave method. The kinetic
energy cutoff for the plane waves was set to 450 eV for all the calculations. To
consider the open-shell d-electrons, GGA+U schemes were implemented, employing
effective U values of 5.0 for Ce. The convergence tolerance of energy and force on
each atom during structure relaxation were less than 107° eV and 0.03 eV/A,
respectively. A set of Monkhorst—-Pack mesh K points of 2x2x1 and 4x4x1 is used to
sample the Brillouin zone for geometry optimization and electronic structural
calculations. A vacuum distance of 15 A was set to ensure sufficient vacuum and
avoid interactions between two periods. Further calculations were carried out to
determine the thermal and zero-point energy (ZPE) corrections at the I' point of
various intermediates adsorbed on the surface. The VASPKIT code was used for
postprocessing computational data obtained from VASP.

The adsorption energy can be evaluated by AGads, which is defined as

AEads = E(system+ gas) — E(system) —1/2 E ags,

in which E(system+ gas) and Esyseem) are the energies of all research systems with and



without gas adsorption, respectively. Eads represents the energy of adsorbed

intermediates.



II. Supplementary Figure
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Fig. S3. In-situ analysis of CeO:..
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Fig. S7. AC-TEM of CeO..
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Fig. S11. Experimental and fitting results of Fourier transformed extended
X-ray absorption fine structure (EXAFS) spectra of CeO,, CeO2-A, CeO--B and

CeO2-C.



Ce0, o CeO,A
—— Fit

FT K (k)
FT K3y (k)

CeO,B o CeO,C
—— Fit — Fit

FT Ky (k)
FT Ky (k)

0 2 4 6 0 2 4 6

R+a (A) R+a (A)
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Fig. S17. Response values dynamic curve of CeO., CeO.-A, Ce02-B and

Ce0O2-C under dark.
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under dark.
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Fig. S26. NAP-XPS analysis of CeOs..
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