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Supporting Discussion 

Supporting Discussion 1: Analysis of sequence-dependent chemical shifts  

H1 and H3 in G•T and G•5FdU: In the G•T and G•5FdU wobble pairs, the H3 imino proton of T/5FdU 

experiences an upfield shift when positioned beneath a 5' purine neighbor, due to ring current 

induced shielding that reduces the local magnetic field shifting the resonance upfield (Fig. S3A, 

top). Conversely, when the 5' neighbor is a pyrimidine, H3 residues near the edge of the aromatic 

ring, leading to a downfield shift as ring currents increase the local magnetic field shifting the 

resonance downfield (Fig. S3A, top). The guanine H1 imino proton exhibits the opposite pattern: 

it shifts downfield when the 5' neighbor of T/5FdU is a purine because it resides near the edge of 

the partner pyrimidine and upfield when the 5' neighbor of T/5FdU is a pyrimidine since it resides 

beneath its 5' purine neighbor. For both T/5FdU(H3) and G(H1) protons, the 3' neighbor has little 

effect on the chemical shift, as each proton always lies at the periphery of a purine base (Fig. 

S3A, bottom). 

	

F5 in G•5FdU: Similar to 5FdU(H3), the F5 chemical shift in the G•5FdU wobble primarily depends 

on the identity of the 5' neighbor (Fig. S4A) but exhibits a weaker and opposite sequence 

dependence, shifting downfield when the 5' neighbor is a purine (p = 0.02). This reversed trend 

arises from distinct ring currents at the F5 position (Fig. S4A): whereas H3 resides beneath 

adjacent bases and experiences shielding, the F5 lies at their periphery, where stronger purine 

ring currents induce deshielding and consequently larger downfield shifts. A weaker dependence 

is observed with the 3' neighbor, where F5 shifts slightly downfield in the presence of purines (p 

= 0.05), likely reflecting greater spatial separation between the 3' base and the F5 atom. 

	

F5 in anionic G•5FdU-: The F5 chemical shift in anionic G•5FdU- strongly depends on the 5' 

neighbor of 5FdU (Fig. S4B), shifting upfield when the 5' neighbor is a purine (p = 0.001). This 
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trend cannot readily be explained by ring currents in a B-form helix (Fig. S4B) and likely reflects 

additional contributions from deprotonation and possibly conformational changes in neighboring 

base pairs (bps). In an ideal Watson-Crick geometry, F5 lies near the periphery of the 5' 

neighboring base irrespective of its identity; the larger purine base would normally cause greater 

ring current deshielding producing a downfield shift. The observed upfield shift therefore suggests 

a structural or electrostatic perturbation unique to the anionic state. Because the anionic WC-like 

G•5FdU- carries a negative charge on the 5FdU(N3), it might also modify stacking interactions with 

the 5' purine causing it to shift towards the fluorine atom, altering the ring currents experienced 

by the 5FdU(F5) and leading to the observed upfield chemical shift (see Fig. S4C). 

	

Supporting Discussion 2: Fingerprinting cancer mutational signatures using sequence-

specific G•T- 

When G serves as the template during replication i.e. G(template)•dTTP, it is flanked by 5' and 3' 

neighboring bases, whereas incoming dTTP only experiences its 5' neighbor. The position 

normally occupied by the 3' neighbor is instead occupied by a polymerase side chain typically a 

tyrosine or phenylalanine residue that stacks against the nascent bp. Conversely, when T is the 

template (T(template)•dGTP), the templating T experiences both its 5' and 3' neighbors, whereas 

the incoming dGTP only experiences its 5' neighbor. Thus, for signatures dominated by nucleotide 

misincorporation (e.g. SBS14), we would expect the G•T- fingerprint to manifest as sequence-

specific misincorporation of T(template)•dGTP, giving rise to T>C substitutions, noting that T>C 

will also have contributions from A(template)•dCTP misincorporation which cannot currently be 

accounted for in this work. The sequence-specificity of dG(template)•dTTP is harder to predict 

without fingerprints measured within the polymerase context. Nevertheless, a sequence 

dependence similar to the G•T- fingerprint could still emerge due to extension past the lesion, 

when the 3' neighbor comes into play, or through proofreading and repair processes1-3. 	
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Figure S1. Sequence dependence of imino 1H chemical shifts in G•T and G•5FdU wobble 

pairs. 1D 1H spectra showing sequence-dependent changes in the imino proton chemical shifts 

for (A) unmodified and (B) 5F modified duplexes. Shown on the left are the secondary structures 

of the 16 DNA hairpin constructs, with varying trinucleotide sequence contexts. Z-Z' and W-W' 

represent the four Watson-Crick (A-T, T-A, G-C and C-G) neighbors. 
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Figure S2. NMR spectra and resonance assignments of DNA duplexes and additional CSPs. 

(A) 1D 1H imino, 2D 1H-1H NOESY, and 2D 1H-13C HSQC spectra used in assigning the 

resonances of the DNA hairpins examined in this study. 2D 1H-1H NOESY spectra were measured 

for all 16 unmodified (G•T, black) and 9 modified (G•5FdU, pink) hairpin constructs. 2D 1H-13C 

HSQC spectra are shown for three unmodified (GTA, ATT and CTG) and four modified (GTA, 

ATT, CTG and TTG) sequences. Black arrows indicate chemical-shift changes arising from the 

5F substitution. All spectra were collected at 600 MHz, 25 mM NaCl, pH 6.8 and T = 1 ºC. (B) 

Chemical shift perturbations (CSPs) between 5F-modified and unmodified sequences measured 

for sugar and base carbons and protons of the central G•T/5FdU mismatch and its immediate 5' 

and 3' neighbors in three sequence contexts (GTA, ATT and CTG).  
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Figure S3. Analysis of imino proton chemical shifts in the G•T/5FdU wobble ground state. 

(A) Heatmaps showing sequence-specific 5FdU(H3) (left, top) and G(H1) (left, bottom) imino 1H 

chemical shifts (Δ⍵	=	⍵(seq) - ⍵(ref); reference = CTA sequence context) in the G•5FdU mismatch. 

Δ⍵ values are color-coded. Division into two groups by the 5' neighbor is statistically significant 

based on Wilcoxon rank-sum test (p = 10-4 for 5FdU(H3), p = 0.05 for G(H1). Also shown are 

structural models for a G•T/5FdU wobble base pair in different trinucleotide sequence contexts. 

The central base pair (bp) is colored in turquoise. The bps on the 5' and 3' of T/5FdU are colored 

pink and blue, respectively. The neighbors of T/5FdU are denoted Y = pyrimidine and R = purine. 

Imino protons are shown in grey spheres. Dashed ellipses highlight nearby nucleobases that exert 

ring-current effects on the imino proton chemical shifts (pink, bases responsible for the 5′-neighbor 

dependence; black, purine bases contributing to the insensitivity of imino proton chemical shifts 

to the 3′-neighbor; see Supporting Discussion). (B) Testing additivity of imino chemical shifts for 

T(H3) (left) and G(H1) (right) protons in the G•T wobble ground state, by comparing the CSP (Δ⍵) 
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arising from changing both Watson-Crick neighbors with the sum of contributions from changing 

the individual 3' and 5' neighbors. The black line indicates the y=x line with slope one. Shown are 

fit to a linear model (black, dashed) with the region encompassing the 95% confidence intervals 

for slope and y-intercept shaded in grey, as well as the root-mean-square deviation (RMSD), and 

the Pearson correlation coefficient (rpearson). (C) Testing chemical shift additivity for 5FdU(H3) (left) 

and G(H1) (right) in the G•5FdU wobble ground state by comparing the CSP (Δ⍵) arising from 

changing both Watson-Crick neighbors with the sum of contributions from changing the individual 

3' and 5' neighbors. The black line indicates the y=x line with slope one. Shown are fit to a linear 

model (black, dashed) with the region encompassing the 95% confidence intervals for slope and 

y-intercept shaded in grey, as well as the root-mean-square deviation (RMSD), and the Pearson 

correlation coefficient (rpearson). 
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Figure S4. Analysis of 5F chemical shifts in the G•5FdU wobble and anionic WC-like G•5FdU–. 

(A) (left) Heatmaps showing sequence-specific 5FdU(F5) 19F chemical shifts (Δ⍵	=	⍵(seq) - ⍵(ref); 

reference = CTA sequence context) for the G•5FdU wobble and anionic WC-like G•5FdU–. Δ⍵ 

values are color-coded. In both cases, division into two groups by the 5' neighbor is statistically 

significant based on Wilcoxon rank-sum test (p = 0.02 and p = 0.001, respectively). Also shown 

are idealized structural models for the (top) G•5FdU wobble (top) and WC-like G•5FdU– (bottom) 

using A-5FdU as mimic in different trinucleotide sequence contexts. The central base pair (bp) is 

colored in turquoise (top) or orange (bottom). The bps on the 5' and 3' of 5FdU are colored pink 

and blue, respectively. The neighbors of 5FdU  are denoted Y = pyrimidine and R = purine. The 
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fluorine atom is shown in green spheres. Dashed ellipses highlight key nucleobases that exert 

ring-current effects, leading to the dependence of the 5FdU (F5) chemical shift on the 5′ neighbor 

(see Supporting Discussion). Also shown are tests of chemical shift additivity for 5FdU(F5) in (top) 

G•5FdU (top) and (bottom) WC-like G•5FdU–. Additivity was assessed by comparing the CSP (Δ⍵) 

arising from changing both Watson-Crick neighbors with the sum of contributions from changing 

the individual 3' and 5' neighbors. The black line indicates the y=x line with slope one. Shown are 

fit to a linear model (black, dashed) with the region encompassing the 95% confidence intervals 

for slope and y-intercept shaded in grey, as well as the root-mean-square deviation (RMSD), and 

the Pearson correlation coefficient (rpearson). (C) Proposed displacement of 5' neighbors to adjust 

stacking interactions with the anionic thymine. Unfavorable interactions with anionic base cause 

a larger displacement of the purine 5' neighbor relative to the pyrimidine 5' neighbor. This 

displacement results in ring currents (pink dashed ellipses) that can explain the observed 5FdU(F5) 

shifts in the anionic WC-like G•5FdU–. 
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Figure S5. Chemical shift fingerprinting approach to rule out the anionic inverted wobble 

conformation. isoG•5FdU (isoG = isoguanosine) was used as a mimic of the inverted wobble (top 

left) and G-C (top right) / A-5FdU (bottom) as a mimic of the Watson-Crick base pair. (A) 1D 1H 

spectra measured at pH = 6.8 and T = 1 °C showing the imino resonances for conformational 

mimics in four representative sequence contexts GTA, ATT, CTG and TTG. For the A-5FdU 

Watson-Crick mimic, the 5FdU(H3)···A(H2) NOE cross peak is also shown (bottom right), 

indicating that the A-5FdU base pair forms a Watson-Crick base pair. (B) 2D 1H-13C HSQC spectra 

showing the aromatic (C2H2//C6H6/C8H8) and sugar (C1'H1' and C4'H4'C4') regions for the 

conformational mimics; the G•5FdU wobble ground state (pH 6.8); and the anionic G•5FdU– (pH 

≥10.0). Black arrows indicate chemical-shift changes with increasing pH. All spectra were 

measured at 600 MHz or 700 MHz, and T = 1 °C.  
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Figure S6. Detection of anionic WC-like G•5FdU– using pH-dependent 19F NMR. (A) 1D 19F 

NMR spectra for all 16 DNA hairpins containing a central G•5FdU (in pink) in sixteen different 

trinucleotide sequence contexts (in grey). Z-Z' and W-W' represent the four Watson-Crick (A-T, 

T-A, G-C and C-G) neighbors. Shown are the spectra (light brown lines) overlaid with fits to two 

(black, orange) or three (black, orange, teal) Lorentzian lines (see Methods). The relative 

populations of the wobble and anionic G•5FdU– conformations are indicated. (B) 1D 19F NMR 

spectra measured for two representative sequence contexts (GTA and TTT) at two pH conditions. 

Peaks were fit to Lorentzian line shapes (see Methods) to determine the relative populations of 

the wobble and anionic G•5FdU– conformations. The pKa
app values are consistent across the two 

pH conditions. (C) 1D 19F NMR spectra for two representative sequence contexts (CTC and ATC) 

measured at varying temperatures. Comparable pKa
app values were obtained between 1°C and 

20°C. 
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Figure S7. Conformational fingerprinting cancer mutational signatures. Shown are the 

cancer mutational signatures from the Catalogue of Somatic Mutations in Cancer (COSMIC)4 

database, along with their histogram correlation with the conformational fingerprints of rare 

mutagenic states. Also shown are the proposed mechanisms for mutations arising from these 

rare mutagenic states based on the aetiologies of the mutational signatures, as well as the cancer 

types linked to these signatures. The similarities with conformational propensities were calculated 

using Jensen-Shannon divergence (JSD). (A) C>T substitution from SBS3 (grey) correlates with 

WC-like anionic G•T- propensity (brown). (B) T>A substitution from SBS22a (grey) correlates with 

A(syn)-T Hoogsteen propensity (blue). 
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Figure S8. Comparing the relative populations of anionic and tautomeric WC-like G•T 

conformations. Comparing the populations of WC-like anionic G•T– state (orange filled circles) 

obtained using 19F NMR with WC-like anionic G•T– (light brown open circles) previously measured 

by R1r at high pH and 10 °C5 and WC-like tautomeric states Genol•T and G•Tenol (teal open circles) 

previously measured by R1r at pH 6.9 and 10 °C5 as a function of trinucleotide sequence context. 

The WC-like anionic G•T– population was adjusted according to the energetic offset of c = ΔG°conf 

(anion, F5) – ΔG°conf (anion) = -3.4 kcal/mol and interpolated to pH 7.6. The available sequence 
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dependent tautomeric state population spans the teal rectangle. In certain sequence contexts 

such as CTT, CTC, GTT, GTC, and TTC and at pH 7.6, G•T- achieves populations comparable 

to or even exceeding the populations of the tautomeric states. 
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Table S1. Oligonucleotides sequences used in this study. The central base pair in each construct 

is in bold. 

Central 
base pair 

Trinucleotide 
Sequence 
Context 

Experiments Sequence (5ʹ – 3ʹ) 

G•T GTC 1H NMR GCAGTCGCGAAGCGGCTGC 
G•T GTT 1H NMR GCAGTTGCGAAGCAGCTGC 
G•T GTA 1H NMR GCAGTAGCGAAGCTGCTGC 
G•T GTG 1H NMR GCAGTGGCGAAGCCGCTGC 
G•T ATC 1H NMR GCAATCGCGAAGCGGTTGC 
G•T ATT 1H NMR GCAATTGCGAAGCAGTTGC 
G•T ATA 1H NMR GCAATAGCGAAGCTGTTGC 
G•T ATG 1H NMR GCAATGGCGAAGCCGTTGC 
G•T TTC 1H NMR GCATTCGCGAAGCGGATGC 
G•T TTT 1H NMR GCATTTGCGAAGCAGATGC 
G•T TTA 1H NMR GCATTAGCGAAGCTGATGC 
G•T TTG 1H NMR GCATTGGCGAAGCCGATGC 
G•T CTC 1H NMR GCACTCGCGAAGCGGGTGC 
G•T CTT 1H NMR GCACTTGCGAAGCAGGTGC 
G•T CTA 1H NMR GCACTAGCGAAGCTGGTGC 
G•T CTG 1H NMR GCACTGGCGAAGCCGGTGC 

G•5FdU GTC 
19F NMR, 
1H NMR GCAG5FdUCGCGAAGCGGCTGC 

G•5FdU GTT 
19F NMR, 
1H NMR GCAG5FdUTGCGAAGCAGCTGC 

G•5FdU GTA 
19F NMR, 
1H NMR GCAG5FdUAGCGAAGCTGCTGC 

G•5FdU GTG 
19F NMR, 
1H NMR GCAG5FdUGGCGAAGCCGCTGC 

G•5FdU ATC 
19F NMR, 
1H NMR GCAA5FdUCGCGAAGCGGTTGC 

G•5FdU ATT 
19F NMR, 
1H NMR GCAA5FdUTGCGAAGCAGTTGC 

G•5FdU ATA 
19F NMR, 
1H NMR GCAA5FdUAGCGAAGCTGTTGC 

G•5FdU ATG 
19F NMR, 
1H NMR GCAA5FdUGGCGAAGCCGTTGC 

G•5FdU TTC 
19F NMR, 
1H NMR GCAT5FdUCGCGAAGCGGATGC 
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G•5FdU TTT 
19F NMR, 
1H NMR GCAT5FdUTGCGAAGCAGATGC 

G•5FdU TTA 
19F NMR, 
1H NMR GCAT5FdUAGCGAAGCTGATGC 

G•5FdU TTG 
19F NMR, 
1H NMR GCAT5FdUGGCGAAGCCGATGC 

G•5FdU CTC 
19F NMR, 
1H NMR GCAC5FdUCGCGAAGCGGGTGC 

G•5FdU CTT 
19F NMR, 
1H NMR GCAC5FdUTGCGAAGCAGGTGC 

G•5FdU CTA 
19F NMR, 
1H NMR GCAC5FdUAGCGAAGCTGGTGC 

G•5FdU CTG 
19F NMR, 
1H NMR GCAC5FdUGGCGAAGCCGGTGC 

G-C GCA 1H NMR GCAGCAGCGAAGCTGCTGC 
G-C ACT 1H NMR GCAACTGCGAAGCAGTTGC 
G-C CCG 1H NMR GCACCGGCGAAGCCGGTGC 
G-C TCG 1H NMR GCATCGGCGAAGCCGATGC 

A-5FdU GTA 1H NMR GCAG5FdUAGCGAAGCTACTGC 
A-5FdU ATT 1H NMR GCAA5FdUTGCGAAGCAATTGC 
A-5FdU CTG 1H NMR GCAC5FdUGGCGAAGCCAGTGC 
A-5FdU TTG 1H NMR GCAT5FdUGGCGAAGCCAATGC 

isoG•5FdU GTA 1H NMR GCAG5FdUAGCGAAGCTisoGCTGC 
isoG•5FdU ATT 1H NMR GCAA5FdUTGCGAAGCAisoGTTGC 
isoG•5FdU CTG 1H NMR GCAC5FdUGGCGAAGCCisoGGTGC 
isoG•5FdU TTG 1H NMR GCAT5FdUGGCGAAGCCisoGATGC 

G•C/T GTC strand 1 UV melting CAGCAG(C/T)CGCGC 
G•C/T GTC strand 2 UV melting GCGCGGCTGCTG 
G•C/T GTT strand 1 UV melting CAGCAG(C/T)TGCGC 
G•C/T GTT strand 2 UV melting GCGCAGCTGCTG 
G•C/T GTA strand 1 UV melting CAGCAG(C/T)AGCGC 
G•C/T GTA strand 2 UV melting GCGCTGCTGCTG 
G•C/T GTG strand 1 UV melting CAGCAG(C/T)GGCGC 
G•C/T GTG strand 2 UV melting GCGCCGCTGCTG 
G•C/T ATC strand 1 UV melting CAGCAA(C/T)CGCGC 
G•C/T ATC strand 2 UV melting GCGCGGTTGCTG 
G•C/T ATT strand 1 UV melting CAGCAA(C/T)TGCGC 
G•C/T ATT strand 2 UV melting GCGCAGTTGCTG 
G•C/T ATA strand 1 UV melting CAGCAA(C/T)AGCGC 
G•C/T ATA strand 2 UV melting GCGCTGTTGCTG 
G•C/T ATG strand 1 UV melting CAGCAA(C/T)GGCGC 
G•C/T ATG strand 2 UV melting GCGCCGTTGCTG 
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G•C/T TTC strand 1 UV melting CAGCAT(C/T)CGCGC 
G•C/T TTC strand 2 UV melting GCGCGGATGCTG 
G•C/T TTT strand 1 UV melting CAGCAT(C/T)TGCGC 
G•C/T TTT strand 2 UV melting GCGCAGATGCTG 
G•C/T TTA strand 1 UV melting CAGCAT(C/T)AGCGC 
G•C/T TTA strand 2 UV melting GCGCTGATGCTG 
G•C/T TTG strand 1 UV melting CAGCAT(C/T)GGCGC 
G•C/T TTG strand 2 UV melting GCGCCGATGCTG 
G•C/T CTC strand 1 UV melting CAGCAC(C/T)CGCGC 
G•C/T CTC strand 2 UV melting GCGCGGGTGCTG 
G•C/T CTT strand 1 UV melting CAGCAC(C/T)TGCGC 
G•C/T CTT strand 2 UV melting GCGCAGGTGCTG 
G•C/T CTA strand 1 UV melting CAGCAC(C/T)AGCGC 
G•C/T CTA strand 2 UV melting GCGCTGGTGCTG 
G•C/T CTG strand 1 UV melting CAGCAC(C/T)GGCGC 
G•C/T CTG strand 2 UV melting GCGCCGGTGCTG 
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Table S2. List of spin-lock powers (⍵1/2p in Hz) and offsets (Ωeff/2p in Hz) used in the off-

resonance 15N R1ρ experiment for GTA at pH 8.5 T= 1 °C. 

Nucleus ⍵1/2π (Hz), [Ωeff/2π (Hz)] 

G(N1) 

500, [-1749.0, -1590.0, -1431.0, -1272.0, -1113.0, -954.0, -795.0, -636.0, -477.0, -318.0, 

-159.0, -10.0, 10.0, 159.0, 318.0, 477.0, 636.0, 795.0, 954.0, 1113.0, 1272.0, 1431.0, 

1590.0, 1749.0] 

800, [-2805.0, -2550.0, -2295.0, -2040.0, -1785.0, -1530.0, -1275.0, -1020.0, -765.0,  

-510.0, -255.0, -10.0, 10.0, 255.0, 510.0, 765.0, 1020.0, 1275.0, 1530.0, 1785.0, 2040.0, 

2295.0, 2550.0, 2805.0] 

1200, [-4202.0, -3820.0, -3438.0, -3056.0, -2674.0, -2292.0, -1910.0, -1528.0, -1146.0,  

-764.0, -382.0, -10.0, 10.0, 382.0, 764.0, 1146.0, 1528.0, 1910.0, 2292.0, 2674.0, 

3056.0, 3438.0, 3820.0, 4202.0] 

1500, [-5247.0, -4770.0, -4293.0, -3816.0, -3339.0, -2862.0, -2385.0, -1908.0, -1431.0,  

-954.0, -477.0, -10.0, 10.0, 477.0, 954.0, 1431.0, 1908.0, 2385.0, 2862.0, 3339.0, 

3816.0, 4293.0, 4770.0, 5247.0] 

2000, [-6996.0, -6360.0, -5724.0, -5088.0, -4452.0, -3816.0, -3180.0, -2544.0, -1908.0,  

-1272.0, -636.0, -10.0, 10.0, 636.0, 1272.0, 1908.0, 2544.0, 3180.0, 3816.0, 4452.0, 

5088.0, 5724.0, 6360.0, 6996.0] 

T(N3) 

500, [-2001.0, -1914.0, -1827.0, -1740.0, -1653.0, -1566.0, -1479.0, -1392.0, -1305.0,  

-1218.0, -1131.0, -1044.0, -957.0, -870.0, -783.0, -696.0, -609.0, -522.0, -435.0, -348.0,  

-261.0, -174.0, -87.0, -10.0, 10.0, 87.0, 174.0, 261.0, 348.0, 435.0, 522.0, 609.0, 696.0, 

783.0, 870.0, 957.0, 1044.0, 1131.0, 1218.0, 1305.0, 1392.0, 1479.0, 1566.0, 1653.0, 

1740.0, 1827.0, 1914.0, 2001.0] 

800, [-3197.0, -3058.0, -2919.0, -2780.0, -2641.0, -2502.0, -2363.0, -2224.0, -2085.0,  

-1946.0, -1807.0, -1668.0, -1529.0, -1390.0, -1251.0, -1112.0, -973.0, -834.0, -695.0,  
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-556.0, -417.0, -278.0, -139.0, -10.0, 10.0, 139.0, 278.0, 417.0, 556.0, 695.0, 834.0, 

973.0, 1112.0, 1251.0, 1390.0, 1529.0, 1668.0, 1807.0, 1946.0, 2085.0, 2224.0, 2363.0, 

2502.0, 2641.0, 2780.0, 2919.0, 3058.0, 3197.0] 

1200, [-4807.0, -4598.0, -4389.0, -4180.0, -3971.0, -3762.0, -3553.0, -3344.0, -3135.0,  

-2926.0, -2717.0, -2508.0, -2299.0, -2090.0, -1881.0, -1672.0, -1463.0, -1254.0, -1045.0, 

-836.0, -627.0, -418.0, -209.0, -10.0, 10.0, 209.0, 418.0, 627.0, 836.0, 1045.0, 1254.0, 

1463.0, 1672.0, 1881.0, 2090.0, 2299.0, 2508.0, 2717.0, 2926.0, 3135.0, 3344.0, 3553.0, 

3762.0, 3971.0, 4180.0, 4389.0, 4598.0, 4807.0] 

1500, [-6003.0, -5742.0, -5481.0, -5220.0, -4959.0, -4698.0, -4437.0, -4176.0, -3915.0,  

-3654.0, -3393.0, -3132.0, -2871.0, -2610.0, -2349.0, -2088.0, -1827.0, -1566.0, -1305.0, 

-1044.0, -783.0, -522.0, -261.0, -10.0, 10.0, 261.0, 522.0, 783.0, 1044.0, 1305.0, 1566.0, 

1827.0, 2088.0, 2349.0, 2610.0, 2871.0, 3132.0, 3393.0, 3654.0, 3915.0, 4176.0, 4437.0, 

4698.0, 4959.0, 5220.0, 5481.0, 5742.0, 6003.0] 

2000, [-8004.0, -7656.0, -7308.0, -6960.0, -6612.0, -6264.0, -5916.0, -5568.0, -5220.0,  

-4872.0, -4524.0, -4176.0, -3828.0, -3480.0, -3132.0, -2784.0, -2436.0, -2088.0, -1740.0, 

-1392.0, -1044.0, -696.0, -348.0, -10.0, 10.0, 348.0, 696.0, 1044.0, 1392.0, 1740.0, 

2088.0, 2436.0, 2784.0, 3132.0, 3480.0, 3828.0, 4176.0, 4524.0, 4872.0, 5220.0, 5568.0, 

5916.0, 6264.0, 6612.0, 6960.0, 7308.0, 7656.0, 8004.0] 

2500, [-10005.0, -9570.0, -9135.0, -8700.0, -8265.0, -7830.0, -7395.0, -6960.0, -6525.0, 

-6090.0, -5655.0, -5220.0, -4785.0, -4350.0, -3915.0, -3480.0, -3045.0, -2610.0,  

-2175.0, -1740.0, -1305.0, -870.0, -435.0, -10.0, 10.0, 435.0, 870.0, 1305.0, 1740.0, 

2175.0, 2610.0, 3045.0, 3480.0, 3915.0, 4350.0, 4785.0, 5220.0, 5655.0, 6090.0, 

6525.0, 6960.0, 7395.0, 7830.0, 8265.0, 8700.0, 9135.0, 9570.0, 10005.0] 
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Table S3. Exchange parameters obtained from fitting 15N R1ρ data in GTA at pH 8.5, 4 °C. GS 

corresponds to the G•T wobble ground state, ES1 corresponds to the tautomeric WC-like state 

Genol•T and G•Tenol in rapid equilibrium, and ES2 corresponds to anionic WC-like G•T-. Red c2 is 

the reduced c2 obtained from fitting the R1ρ data.  

 Parameter 
GTA pH 8.5 

G(N1) T(N3) 

3-state 
Shared 
Fitting 

pES1 (%) 0.08 ± 0.01 

pES2 (%) 0.06 ± 0.01 

kex,GS:ES1 (s-1) 1400 ± 500 

kex,GS:ES2 (s-1) 41000 ± 4000 

kex,ES2:ES2 (s-1) 2000 ± 1000 

ΔωES1 (ppm) 35.8 ± 0.7 18.7 ± 0.7 

ΔωES2 (ppm) 2 ± 20 66 ± 3 

R1 (s-1) 1.81 ± 0.02 1.90 ± 0.02 

R2 (s-1) 7.8 ± 0.2 6.3 ± 0.8 

Reduced c2 0.99 
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Table S4. Single-base substitution (SBS) cancer mutational signatures from the Catalogue of 

Somatic Mutations in Cancer (COSMIC) database4 showing strong similarities to the anionic 

Watson-Crick-like anionic G•T- probability distribution obtained from 19F NMR measurements. 

Similarity assessed using the Jensen-Shannon Divergence (JSD ≤0.090, p-value <0.05, false 

discovery rate (FDR) <5%). 

Transition 
mutation 

Mutational 
Signature Aetiology JSD p-value FDR (%) 

C>T SBS23 Unknown 0.051 0.00006 0.5 

C>T SBS11 
Exposure to 

alkylating agents, 
temozolomide treatment 

0.072 0.0006 2.5 

C>T SBS3 
Defective homologous 
recombination-based 
DNA damage repair 

0.079 0.001 3.2 

C>T SBS40c Unknown 0.089 0.002 4.9 

T>A SBS14 
Concurrent polymerase epsilon 

mutation and defective DNA 
mismatch repair 

0.065 0.0003 2.5 
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Table S5. Single-base substitution (SBS) cancer mutational signatures from the Catalogue of 

Somatic Mutations in Cancer (COSMIC) database4 showing strong similarities to the A(syn)-T 

Hoogsteen probability distribution obtained from NMR measurements6. Similarity assessed using 

the Jensen-Shannon Divergence (JSD ≤0.090, p-value <0.05, false discovery rate (FDR) <5%).  

Transition 
mutation 

Mutational 
Signature Aetiology JSD p-value FDR (%) 

T>A SBS92 Tobacco smoking 0.025 0.000006 0.05 
T>A SBS42 Exposure to haloalkanes 0.032 0.00004 0.2 
T>A SBS4 Tobacco smoking 0.062 0.002 2.6 
T>A SBS19 Unknown 0.069 0.003 2.6 
T>A SBS25 Chemotherapy treatment 0.071 0.004 2.6 
T>A SBS29 Tobacco chewing 0.075 0.005 3.1 
T>A SBS22a Aristolochic acid exposure 0.081 0.008 3.9 
T>C SBS89 Unknown 0.028 0.00002 0.1 
T>C SBS26 Defective DNA mismatch repair 0.030 0.00003 0.1 
T>C SBS10c Defective PolD1 proofreading 0.039 0.0001 0.4 
T>C SBS5 Unknown (clock-like signature) 0.042 0.0002 0.4 
T>C SBS6 Defective DNA mismatch repair 0.044 0.0003 0.5 
T>C SBS44 Defective DNA mismatch repair 0.049 0.0005 0.6 
T>C SBS98 Unknown 0.049 0.0005 0.6 
T>C SBS25 Chemotherapy treatment 0.050 0.0006 0.6 
T>C SBS40b Unknown 0.051 0.0006 0.6 
T>C SBS42 Exposure to haloalkanes 0.057 0.001 0.9 
T>C SBS36 Defective base excision repair 0.057 0.001 0.9 
T>C SBS4 Tobacco smoking 0.061 0.002 1.1 
T>C SBS40a Unknown 0.065 0.003 1.3 
T>C SBS92 Tobacco smoking 0.076 0.006 2.4 

T>C SBS14 
Concurrent polymerase epsilon 

mutation and defective DNA 
mismatch repair 

0.081 0.008 2.9 

T>C SBS19 Unknown 0.086 0.01 3.8 
T>G SBS92 Tobacco smoking 0.042 0.0002 1.4 
T>G SBS94 Unknown 0.050 0.0005 1.4 
T>G SBS97 Unknown 0.051 0.0007 1.4 
T>G SBS36 Defective base excision repair 0.055 0.001 1.7 

T>G SBS3 
Defective homologous 
recombination-based 
DNA damage repair 

0.058 0.001 1.7 

T>G SBS4 Tobacco smoking 0.066 0.003 2.6 
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T>G SBS96 Unknown 0.075 0.006 3.8 
T>G SBS24 Exposure to aflatoxin 0.080 0.008 4.5 
T>G SBS22b Aristolochic acid exposure 0.082 0.009 4.5 
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Table S6. Experimental single-base substitution (SBS) mutational signatures from the Catalogue 

of Somatic Mutations in Cancer (COSMIC) database4 for exposure of human tissue to 

benzo[a]pyrene (BaP) or aristolochic acid (AA-I and AA-II), showing strong similarities to the 

A(syn)-T Hoogsteen probability distribution obtained from NMR measurements6. Similarity 

assessed for T>A, T>C, and T>G substitutions using the Jensen-Shannon Divergence (JSD 

≤0.090, p-value <0.05, false discovery rate (FDR) <5%). Greyed out rows indicate failure to pass 

one of the thresholds. 

Experimental 
Signature Transition mutation JSD p-value FDR (%) Experimental 

Study 

BaP 
T>A 0.046 0.0003 1.6 

Mingard et al.7 T>C 0.075 0.006 2.5 
T>G 0.051 0.0006 2.2 

BaP 
T>A 0.073 0.005 3.4 

Kucab et al.8 T>C 0.064 0.002 1.3 
T>G    

BaP 
T>A 0.081 0.009 4.2 

Zhivagui et al.9 T>C 0.091 0.02 4.7 
T>G 0.075 0.006 5.1 

AA-I 
T>A 0.065 0.003 3.0 

Lu et al.10 T>C    
T>G    

AA-I 
T>A 0.073 0.005 3.5 

Kucab et al.8 T>C 0.090 0.01 4.6 
T>G 0.067 0.003 4.2 

AA-II 
T>A 0.057 0.001 3.0 

Kucab et al.8 T>C 0.066 0.003 1.3 
T>G    
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