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Supporting Discussion

Supporting Discussion 1: Analysis of sequence-dependent chemical shifts

H1 and H3 in G*T and G+°dU: In the G-T and G+>"dU wobble pairs, the H3 imino proton of T/°"dU
experiences an upfield shift when positioned beneath a 5' purine neighbor, due to ring current
induced shielding that reduces the local magnetic field shifting the resonance upfield (Fig. S3A,
top). Conversely, when the 5' neighbor is a pyrimidine, H3 residues near the edge of the aromatic
ring, leading to a downfield shift as ring currents increase the local magnetic field shifting the
resonance downfield (Fig. S3A, top). The guanine H1 imino proton exhibits the opposite pattern:
it shifts downfield when the 5' neighbor of T/°"dU is a purine because it resides near the edge of
the partner pyrimidine and upfield when the 5' neighbor of T/°FdU is a pyrimidine since it resides
beneath its 5' purine neighbor. For both T/°FdU(H3) and G(H1) protons, the 3' neighbor has little
effect on the chemical shift, as each proton always lies at the periphery of a purine base (Fig.

S3A, bottom).

F5in G*°*FdU: Similar to FdU(H3), the F5 chemical shift in the G+°"dU wobble primarily depends
on the identity of the 5' neighbor (Fig. S4A) but exhibits a weaker and opposite sequence
dependence, shifting downfield when the 5' neighbor is a purine (p = 0.02). This reversed trend
arises from distinct ring currents at the F5 position (Fig. S4A): whereas H3 resides beneath
adjacent bases and experiences shielding, the F5 lies at their periphery, where stronger purine
ring currents induce deshielding and consequently larger downfield shifts. A weaker dependence
is observed with the 3' neighbor, where F5 shifts slightly downfield in the presence of purines (p

= 0.05), likely reflecting greater spatial separation between the 3' base and the F5 atom.

F5 in anionic G*°"dU: The F5 chemical shift in anionic G+°"dU- strongly depends on the 5'

neighbor of °FdU (Fig. S4B), shifting upfield when the 5' neighbor is a purine (p = 0.001). This
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trend cannot readily be explained by ring currents in a B-form helix (Fig. S4B) and likely reflects
additional contributions from deprotonation and possibly conformational changes in neighboring
base pairs (bps). In an ideal Watson-Crick geometry, F5 lies near the periphery of the 5'
neighboring base irrespective of its identity; the larger purine base would normally cause greater
ring current deshielding producing a downfield shift. The observed upfield shift therefore suggests
a structural or electrostatic perturbation unique to the anionic state. Because the anionic WC-like
G+°FdU- carries a negative charge on the *FdU(N3), it might also modify stacking interactions with
the 5' purine causing it to shift towards the fluorine atom, altering the ring currents experienced

by the *FdU(F5) and leading to the observed upfield chemical shift (see Fig. S4C).

Supporting Discussion 2: Fingerprinting cancer mutational signatures using sequence-
specific GT-

When G serves as the template during replication i.e. G(template)dTTP, it is flanked by 5' and 3'
neighboring bases, whereas incoming dTTP only experiences its 5' neighbor. The position
normally occupied by the 3' neighbor is instead occupied by a polymerase side chain typically a
tyrosine or phenylalanine residue that stacks against the nascent bp. Conversely, when T is the
template (T(template)«dGTP), the templating T experiences both its 5' and 3' neighbors, whereas
the incoming dGTP only experiences its 5' neighbor. Thus, for signatures dominated by nucleotide
misincorporation (e.g. SBS14), we would expect the G+T~ fingerprint to manifest as sequence-
specific misincorporation of T(template)«dGTP, giving rise to T>C substitutions, noting that T>C
will also have contributions from A(template)«dCTP misincorporation which cannot currently be
accounted for in this work. The sequence-specificity of dG(template)edTTP is harder to predict
without fingerprints measured within the polymerase context. Nevertheless, a sequence
dependence similar to the GT~ fingerprint could still emerge due to extension past the lesion,

when the 3' neighbor comes into play, or through proofreading and repair processes’'=.
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Figure S1. Sequence dependence of imino 'H chemical shifts in GeT and G+*"dU wobble

pairs. 1D 'H spectra showing sequence-dependent changes in the imino proton chemical shifts

for (A) unmodified and (B) 5F modified duplexes. Shown on the left are the secondary structures

of the 16 DNA hairpin constructs, with varying trinucleotide sequence contexts. Z-Z' and W-W'

represent the four Watson-Crick (A-T, T-A, G-C and C-G) neighbors.
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Figure S2. NMR spectra and resonance assignments of DNA duplexes and additional CSPs.

(A) 1D 'H imino, 2D 'H-'H NOESY, and 2D 'H-*C HSQC spectra used in assigning the

resonances of the DNA hairpins examined in this study. 2D 'H-'"H NOESY spectra were measured

for all 16 unmodified (G-T, black) and 9 modified (G+°"dU, pink) hairpin constructs. 2D 'H-"*C

HSQC spectra are shown for three unmodified (GTA, ATT and CTG) and four modified (GTA,

ATT, CTG and TTG) sequences. Black arrows indicate chemical-shift changes arising from the

5F substitution. All spectra were collected at 600 MHz, 25 mM NaCl, pH 6.8 and T = 1 °C. (B)

Chemical shift perturbations (CSPs) between 5F-modified and unmodified sequences measured

for sugar and base carbons and protons of the central G-T/*"dU mismatch and its immediate 5'

and 3' neighbors in three sequence contexts (GTA, ATT and CTG).
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Figure S3. Analysis of imino proton chemical shifts in the GeT/°*dU wobble ground state.
(A) Heatmaps showing sequence-specific *fdU(H3) (left, top) and G(H1) (left, bottom) imino 'H
chemical shifts (Aw = w(seq) - w(ref); reference = CTA sequence context) in the G+**dU mismatch.
Aw values are color-coded. Division into two groups by the 5' neighbor is statistically significant
based on Wilcoxon rank-sum test (p = 10 for FdU(H3), p = 0.05 for G(H1). Also shown are
structural models for a GT/*"dU wobble base pair in different trinucleotide sequence contexts.
The central base pair (bp) is colored in turquoise. The bps on the 5' and 3' of T/°"dU are colored
pink and blue, respectively. The neighbors of T/°FdU are denoted Y = pyrimidine and R = purine.
Imino protons are shown in grey spheres. Dashed ellipses highlight nearby nucleobases that exert
ring-current effects on the imino proton chemical shifts (pink, bases responsible for the 5'-neighbor
dependence; black, purine bases contributing to the insensitivity of imino proton chemical shifts
to the 3'-neighbor; see Supporting Discussion). (B) Testing additivity of imino chemical shifts for
T(H3) (left) and G(H1) (right) protons in the G+T wobble ground state, by comparing the CSP (Aw)
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arising from changing both Watson-Crick neighbors with the sum of contributions from changing
the individual 3' and 5' neighbors. The black line indicates the y=x line with slope one. Shown are
fit to a linear model (black, dashed) with the region encompassing the 95% confidence intervals
for slope and y-intercept shaded in grey, as well as the root-mean-square deviation (RMSD), and
the Pearson correlation coefficient (fpearson). (C) Testing chemical shift additivity for *"dU(H3) (left)
and G(H1) (right) in the G+*"dU wobble ground state by comparing the CSP (Aw) arising from
changing both Watson-Crick neighbors with the sum of contributions from changing the individual
3' and 5' neighbors. The black line indicates the y=x line with slope one. Shown are fit to a linear
model (black, dashed) with the region encompassing the 95% confidence intervals for slope and
y-intercept shaded in grey, as well as the root-mean-square deviation (RMSD), and the Pearson

correlation coefficient (fpearson)-
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Figure S4. Analysis of 5F chemical shifts in the G*>*dU wobble and anionic WC-like G***dU".
(A) (left) Heatmaps showing sequence-specific **dU(F5) '°F chemical shifts (Aw = w(seq) - w(ref);
reference = CTA sequence context) for the G+*"dU wobble and anionic WC-like G+*fdU~. Aw
values are color-coded. In both cases, division into two groups by the 5' neighbor is statistically
significant based on Wilcoxon rank-sum test (p = 0.02 and p = 0.001, respectively). Also shown
are idealized structural models for the (top) G+°"dU wobble (top) and WC-like G+°"dU~ (bottom)
using A-*"dU as mimic in different trinucleotide sequence contexts. The central base pair (bp) is
colored in turquoise (top) or orange (bottom). The bps on the 5' and 3' of **dU are colored pink

and blue, respectively. The neighbors of *"dU are denoted Y = pyrimidine and R = purine. The
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fluorine atom is shown in green spheres. Dashed ellipses highlight key nucleobases that exert
ring-current effects, leading to the dependence of the 5FdU (F5) chemical shift on the 5’ neighbor
(see Supporting Discussion). Also shown are tests of chemical shift additivity for **dU(F5) in (top)
G+°FdU (top) and (bottom) WC-like G=*"dU~. Additivity was assessed by comparing the CSP (Aw)
arising from changing both Watson-Crick neighbors with the sum of contributions from changing
the individual 3' and 5' neighbors. The black line indicates the y=x line with slope one. Shown are
fit to a linear model (black, dashed) with the region encompassing the 95% confidence intervals
for slope and y-intercept shaded in grey, as well as the root-mean-square deviation (RMSD), and
the Pearson correlation coefficient (fpearson). (C) Proposed displacement of 5' neighbors to adjust
stacking interactions with the anionic thymine. Unfavorable interactions with anionic base cause
a larger displacement of the purine 5' neighbor relative to the pyrimidine 5' neighbor. This
displacement results in ring currents (pink dashed ellipses) that can explain the observed **dU(F5)

shifts in the anionic WC-like G+*"dU".
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Figure S5. Chemical shift fingerprinting approach to rule out the anionic inverted wobble
conformation. °G+°"dU (*°G = isoguanosine) was used as a mimic of the inverted wobble (top
left) and G-C (top right) / A-*"dU (bottom) as a mimic of the Watson-Crick base pair. (A) 1D 'H
spectra measured at pH = 6.8 and T = 1 °C showing the imino resonances for conformational
mimics in four representative sequence contexts GTA, ATT, CTG and TTG. For the A-*"dU
Watson-Crick mimic, the 5FdU(H3)---A(H2) NOE cross peak is also shown (bottom right),
indicating that the A->"dU base pair forms a Watson-Crick base pair. (B) 2D "H-"*C HSQC spectra
showing the aromatic (C2H2//C6H6/C8H8) and sugar (C1'H1' and C4'H4'C4'") regions for the
conformational mimics; the G+°"dU wobble ground state (pH 6.8); and the anionic G+°fdU~ (pH
>210.0). Black arrows indicate chemical-shift changes with increasing pH. All spectra were

measured at 600 MHz or 700 MHz, and T = 1 °C.
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Figure S6. Detection of anionic WC-like G***dU- using pH-dependent '°F NMR. (A) 1D "°F
NMR spectra for all 16 DNA hairpins containing a central G+**dU (in pink) in sixteen different
trinucleotide sequence contexts (in grey). Z-Z' and W-W' represent the four Watson-Crick (A-T,
T-A, G-C and C-G) neighbors. Shown are the spectra (light brown lines) overlaid with fits to two
(black, orange) or three (black, orange, teal) Lorentzian lines (see Methods). The relative
populations of the wobble and anionic G+**dU~ conformations are indicated. (B) 1D "*F NMR
spectra measured for two representative sequence contexts (GTA and TTT) at two pH conditions.
Peaks were fit to Lorentzian line shapes (see Methods) to determine the relative populations of
the wobble and anionic G+**dU~ conformations. The pK.?*® values are consistent across the two
pH conditions. (C) 1D "*F NMR spectra for two representative sequence contexts (CTC and ATC)
measured at varying temperatures. Comparable pK:**" values were obtained between 1°C and

20°C.
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Figure S7. Conformational fingerprinting cancer mutational signatures. Shown are the
cancer mutational signatures from the Catalogue of Somatic Mutations in Cancer (COSMIC)*
database, along with their histogram correlation with the conformational fingerprints of rare
mutagenic states. Also shown are the proposed mechanisms for mutations arising from these
rare mutagenic states based on the aetiologies of the mutational signatures, as well as the cancer
types linked to these signatures. The similarities with conformational propensities were calculated
using Jensen-Shannon divergence (JSD). (A) C>T substitution from SBS3 (grey) correlates with
W(C-like anionic G*T~ propensity (brown). (B) T>A substitution from SBS22a (grey) correlates with

A(syn)-T Hoogsteen propensity (blue).
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conformations. Comparing the populations of WC-like anionic G+T~ state (orange filled circles)
obtained using '°F NMR with WC-like anionic GT- (light brown open circles) previously measured
by R1, at high pH and 10 °C°® and WC-like tautomeric states G*"'sT and G+T°" (teal open circles)
previously measured by R1, at pH 6.9 and 10 °C® as a function of trinucleotide sequence context.
The WC-like anionic G*T~ population was adjusted according to the energetic offset of ¢ = AG°cont

(anion, F5) — AG®con (anion) = -3.4 kcal/mol and interpolated to pH 7.6. The available sequence
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dependent tautomeric state population spans the teal rectangle. In certain sequence contexts
such as CTT, CTC, GTT, GTC, and TTC and at pH 7.6, G*T~ achieves populations comparable

to or even exceeding the populations of the tautomeric states.
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Table S1. Oligonucleotides sequences used in this study. The central base pair in each construct

is in bold.
Trinucleotide
Central .
. Sequence Experiments Sequence (5' - 3')
base pair Context
GT GTC "H NMR GCAGTCGCGAAGCGGCTGC
GT GTT "H NMR GCAGTTGCGAAGCAGCTGC
GT GTA "H NMR GCAGTAGCGAAGCTGCTGC
GT GTG "H NMR GCAGTGGCGAAGCCGCTGC
GT ATC "H NMR GCAATCGCGAAGCGGTTGC
GT ATT "H NMR GCAATTGCGAAGCAGTTGC
GT ATA "H NMR GCAATAGCGAAGCTGTTGC
GT ATG "H NMR GCAATGGCGAAGCCGTTGC
GT TTC "H NMR GCATTCGCGAAGCGGATGC
GT TTT "H NMR GCATTTGCGAAGCAGATGC
GT TTA "H NMR GCATTAGCGAAGCTGATGC
GT TTG "H NMR GCATTGGCGAAGCCGATGC
GT CTC "H NMR GCACTCGCGAAGCGGGTGC
GT CTT "H NMR GCACTTGCGAAGCAGGTGC
GT CTA "H NMR GCACTAGCGAAGCTGGTGC
GT CTG "H NMR GCACTGGCGAAGCCGGTGC
19
G+°Fdu GTC 15 Il:l“\I\:E GCAG*dUCGCGAAGCGGCTGC
19
G+°Fdu GTT 15 Il:l“\I\:E GCAG*dUTGCGAAGCAGCTGC
19
G+°Fdu GTA 15 Il:l“\I\:E GCAG*dUAGCGAAGCTGCTGC
19
G+°Fdu GTG 15 Il:l“\I\:E GCAG*dUGGCGAAGCCGCTGC
19
G+°Fdu ATC 15 Il:l“\I\:E GCAA*¥dUCGCGAAGCGGTTGC
19
G-°fdu ATT 15 Il:l“\I\:E GCAAS¥dUTGCGAAGCAGTTGC
19
G-°fdu ATA 15 Il:l“\I\:E GCAA¥dUAGCGAAGCTGTTGC
19
G+°Fdu ATG 15 Il:l“\I\:E GCAA*¥dUGGCGAAGCCGTTGC
19
G+°Fdu TTC 15 Il:l“\I\:E GCAT**dUCGCGAAGCGGATGC
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“F NMR,

G+Fdu TTT H NMR GCAT**dUTGCGAAGCAGATGC
5F "F NMR, 5F
G->"duU TTA H NMR GCAT*"dUAGCGAAGCTGATGC
o F NMR, o
Ge>"duU TTG H NMR GCAT*"dUGGCGAAGCCGATGC
o F NMR, o
G->"duU CTC H NMR GCAC>"dUCGCGAAGCGGGTGC
5F "F NMR, 5F
G->"duU CTT H NMR GCAC>"dUTGCGAAGCAGGTGC
o F NMR, o
G->"duU CTA H NMR GCAC>"dUAGCGAAGCTGGTGC
o F NMR, o
Ge>"duU CTG H NMR GCAC>"dUGGCGAAGCCGGTGC
G-C GCA 'H NMR GCAGCAGCGAAGCTGCTGC
G-C ACT 'H NMR GCAACTGCGAAGCAGTTGC
G-C CCG 'H NMR GCACCGGCGAAGCCGGTGC
G-C TCG 'H NMR GCATCGGCGAAGCCGATGC
A-FdU GTA 'H NMR GCAG°*"dUAGCGAAGCTACTGC
A-FdU ATT "H NMR GCAA*dUTGCGAAGCAATTGC
A-FdU CTG 'H NMR GCAC*dUGGCGAAGCCAGTGC
A-FdU TTG 'H NMR GCAT**dUGGCGAAGCCAATGC
SoGe*FdU GTA 'H NMR GCAG*dUAGCGAAGCT*°GCTGC
SoG«5FdU ATT 'H NMR GCAA*dUTGCGAAGCA®°GTTGC
SoGe*FdU CTG 'H NMR GCAC*dUGGCGAAGCC*°GGTGC
SoGe*FdU TTG 'H NMR GCAT**dUGGCGAAGCC*°GATGC
G-C/IT GTC strand 1 UV melting CAGCAG(CIT)CGCGC
G-C/IT GTC strand 2 UV melting GCGCGGCTGCTG
G<C/T GTT strand 1 UV melting CAGCAG(CIT)TGCGC
G<C/T GTT strand 2 UV melting GCGCAGCTGCTG
G<C/T GTA strand 1 UV melting CAGCAG(CIT)AGCGC
G<C/T GTA strand 2 UV melting GCGCTGCTGCTG
G-C/IT GTG strand 1 UV melting CAGCAG(CIT)GGCGC
G-C/IT GTG strand 2 UV melting GCGCCGCTGCTG
GC/T ATC strand 1 UV melting CAGCAA(CIT)CGCGC
G<C/T ATC strand 2 UV melting GCGCGGTTGCTG
G-C/IT ATT strand 1 UV melting CAGCAA(CIT)TGCGC
G-C/IT ATT strand 2 UV melting GCGCAGTTGCTG
G-C/IT ATA strand 1 UV melting CAGCAA(CIT)AGCGC
G-C/IT ATA strand 2 UV melting GCGCTGTTGCTG
G<C/T ATG strand 1 UV melting CAGCAA(CIT)GGCGC
G<C/T ATG strand 2 UV melting GCGCCGTTGCTG

25




G<C/T TTC strand 1 UV melting CAGCAT(CIT)CGCGC
G<C/T TTC strand 2 UV melting GCGCGGATGCTG
G-C/IT TTT strand 1 UV melting CAGCAT(CIT)TGCGC
G-C/IT TTT strand 2 UV melting GCGCAGATGCTG
G-C/IT TTA strand 1 UV melting CAGCAT(CIT)AGCGC
G-C/IT TTA strand 2 UV melting GCGCTGATGCTG
G<C/T TTG strand 1 UV melting CAGCAT(CIT)GGCGC
G<C/T TTG strand 2 UV melting GCGCCGATGCTG
G-C/IT CTC strand 1 UV melting CAGCAC(CIT)CGCGC
G-C/IT CTC strand 2 UV melting GCGCGGGTGCTG
GC/T CTT strand 1 UV melting CAGCAC(CIT)TGCGC
GC/T CTT strand 2 UV melting GCGCAGGTGCTG
GC/T CTA strand 1 UV melting CAGCAC(CIT)AGCGC
GC/T CTA strand 2 UV melting GCGCTGGTGCTG
G-C/IT CTG strand 1 UV melting CAGCAC(CIT)GGCGC
G-C/IT CTG strand 2 UV melting GCGCCGGTGCTG
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Table S2. List of spin-lock powers (w1/2r in Hz) and offsets (Qew/2n in Hz) used in the off-

resonance °N R, experiment for GTA at pH 8.5 T=1 °C.

Nucleus w1/21r (Hz), [Qer/21r (HZ)]

500, [-1749.0, -1590.0, -1431.0, -1272.0, -1113.0, -954.0, -795.0, -636.0, -477.0, -318.0,
-159.0, -10.0, 10.0, 159.0, 318.0, 477.0, 636.0, 795.0, 954.0, 1113.0, 1272.0, 1431.0,
1590.0, 1749.0]
800, [-2805.0, -2550.0, -2295.0, -2040.0, -1785.0, -1530.0, -1275.0, -1020.0, -765.0,
-510.0, -255.0, -10.0, 10.0, 255.0, 510.0, 765.0, 1020.0, 1275.0, 1530.0, 1785.0, 2040.0,
2295.0, 2550.0, 2805.0]
1200, [-4202.0, -3820.0, -3438.0, -3056.0, -2674.0, -2292.0, -1910.0, -1528.0, -1146.0,

G(N1) -764.0, -382.0, -10.0, 10.0, 382.0, 764.0, 1146.0, 1528.0, 1910.0, 2292.0, 2674.0,
3056.0, 3438.0, 3820.0, 4202.0]
1500, [-5247.0, -4770.0, -4293.0, -3816.0, -3339.0, -2862.0, -2385.0, -1908.0, -1431.0,
-954.0, -477.0, -10.0, 10.0, 477.0, 954.0, 1431.0, 1908.0, 2385.0, 2862.0, 3339.0,
3816.0, 4293.0, 4770.0, 5247.0]
2000, [-6996.0, -6360.0, -5724.0, -5088.0, -4452.0, -3816.0, -3180.0, -2544.0, -1908.0,
-1272.0, -636.0, -10.0, 10.0, 636.0, 1272.0, 1908.0, 2544.0, 3180.0, 3816.0, 4452.0,
5088.0, 5724.0, 6360.0, 6996.0]
500, [-2001.0, -1914.0, -1827.0, -1740.0, -1653.0, -1566.0, -1479.0, -1392.0, -1305.0,
-1218.0, -1131.0, -1044.0, -957.0, -870.0, -783.0, -696.0, -609.0, -522.0, -435.0, -348.0,
-261.0, -174.0, -87.0, -10.0, 10.0, 87.0, 174.0, 261.0, 348.0, 435.0, 522.0, 609.0, 696.0,

T(N3) 783.0, 870.0, 957.0, 1044.0, 1131.0, 1218.0, 1305.0, 1392.0, 1479.0, 1566.0, 1653.0,

1740.0, 1827.0, 1914.0, 2001.0]
800, [-3197.0, -3058.0, -2919.0, -2780.0, -2641.0, -2502.0, -2363.0, -2224.0, -2085.0,

-1946.0, -1807.0, -1668.0, -1529.0, -1390.0, -1251.0, -1112.0, -973.0, -834.0, -695.0,
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-5566.0, -417.0, -278.0, -139.0, -10.0, 10.0, 139.0, 278.0, 417.0, 556.0, 695.0, 834.0,
973.0, 1112.0, 1251.0, 1390.0, 1529.0, 1668.0, 1807.0, 1946.0, 2085.0, 2224.0, 2363.0,
2502.0, 2641.0, 2780.0, 2919.0, 3058.0, 3197.0]

1200, [-4807.0, -4598.0, -4389.0, -4180.0, -3971.0, -3762.0, -3553.0, -3344.0, -3135.0,
-2926.0, -2717.0, -2508.0, -2299.0, -2090.0, -1881.0, -1672.0, -1463.0, -1254.0, -1045.0,
-836.0, -627.0, -418.0, -209.0, -10.0, 10.0, 209.0, 418.0, 627.0, 836.0, 1045.0, 1254.0,
1463.0, 1672.0, 1881.0, 2090.0, 2299.0, 2508.0, 2717.0, 2926.0, 3135.0, 3344.0, 3553.0,
3762.0, 3971.0, 4180.0, 4389.0, 4598.0, 4807.0]

1500, [-6003.0, -5742.0, -5481.0, -5220.0, -4959.0, -4698.0, -4437.0, -4176.0, -3915.0,
-3654.0, -3393.0, -3132.0, -2871.0, -2610.0, -2349.0, -2088.0, -1827.0, -1566.0, -1305.0,
-1044.0, -783.0, -522.0, -261.0, -10.0, 10.0, 261.0, 522.0, 783.0, 1044.0, 1305.0, 1566.0,
1827.0, 2088.0, 2349.0, 2610.0, 2871.0, 3132.0, 3393.0, 3654.0, 3915.0, 4176.0, 4437.0,
4698.0, 4959.0, 5220.0, 5481.0, 5742.0, 6003.0]

2000, [-8004.0, -7656.0, -7308.0, -6960.0, -6612.0, -6264.0, -5916.0, -5568.0, -5220.0,
-4872.0, -4524.0, -4176.0, -3828.0, -3480.0, -3132.0, -2784.0, -2436.0, -2088.0, -1740.0,
-1392.0, -1044.0, -696.0, -348.0, -10.0, 10.0, 348.0, 696.0, 1044.0, 1392.0, 1740.0,
2088.0, 2436.0, 2784.0, 3132.0, 3480.0, 3828.0, 4176.0, 4524.0, 4872.0, 5220.0, 5568.0,
5916.0, 6264.0, 6612.0, 6960.0, 7308.0, 7656.0, 8004.0]

2500, [-10005.0, -9570.0, -9135.0, -8700.0, -8265.0, -7830.0, -7395.0, -6960.0, -6525.0,
-6090.0, -5655.0, -5220.0, -4785.0, -4350.0, -3915.0, -3480.0, -3045.0, -2610.0,
-2175.0, -1740.0, -1305.0, -870.0, -435.0, -10.0, 10.0, 435.0, 870.0, 1305.0, 1740.0,
2175.0, 2610.0, 3045.0, 3480.0, 3915.0, 4350.0, 4785.0, 5220.0, 5655.0, 6090.0,

6525.0, 6960.0, 7395.0, 7830.0, 8265.0, 8700.0, 9135.0, 9570.0, 10005.0]
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Table S3. Exchange parameters obtained from fitting '°N R, data in GTA at pH 8.5, 4 °C. GS
corresponds to the G*T wobble ground state, ES1 corresponds to the tautomeric WC-like state
G®eT and GT°™ in rapid equilibrium, and ES2 corresponds to anionic WC-like G*T-. Red y? is

the reduced y? obtained from fitting the R, data.

Parameter CTAPHS.S
G(N1) T(N3)
Pes1 (%) 0.08 £ 0.01
Pes2 (%) 0.06 + 0.01
kexcsest (™) 1400 £ 500

41000 + 4000

Kex.cs:es2 (87)

3-state Kexes2es2 (™) 2000 + 1000
Shared
Fitting Awes1 (ppm) 35.8+0.7 18.7+0.7
Awes2 (ppm) 2120 66 £ 3
Ri (s™) 1.81+0.02 1.90 + 0.02
Rz (s™) 7.8+0.2 6.3+0.8
Reduced 2 0.99
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Table S4. Single-base substitution (SBS) cancer mutational signatures from the Catalogue of

Somatic Mutations in Cancer (COSMIC) database* showing strong similarities to the anionic

Watson-Crick-like anionic GeT- probability distribution obtained from '°F NMR measurements.

Similarity assessed using the Jensen-Shannon Divergence (JSD <0.090, p-value <0.05, false

discovery rate (FDR) <5%).

T;Z'::::)Onn I\g?g:::funrzl Aetiology JSD p-value FDR (%)
C>T SBS23 Unknown 0.051 0.00006 0.5
Exposure to

C>T SBS11 alkylating agents, 0.072 0.0006 2.5
temozolomide treatment
Defective homologous

C>T SBS3 recombination-based 0.079 0.001 3.2

DNA damage repair
C>T SBS40c Unknown 0.089 0.002 4.9
Concurrent polymerase epsilon
T>A SBS14 mutation and defective DNA 0.065 0.0003 25

mismatch repair
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Table S5. Single-base substitution (SBS) cancer mutational signatures from the Catalogue of

Somatic Mutations in Cancer (COSMIC) database* showing strong similarities to the A(syn)-T

Hoogsteen probability distribution obtained from NMR measurements®. Similarity assessed using

the Jensen-Shannon Divergence (JSD <0.090, p-value <0.05, false discovery rate (FDR) <5%).

T;Z::::)onn Ig::z:funrzl Aetiology JSD p-value FDR (%)
T>A SBS92 Tobacco smoking 0.025 0.000006 0.05
T>A SBS42 Exposure to haloalkanes 0.032 0.00004 0.2
T>A SBS4 Tobacco smoking 0.062 0.002 2.6
T>A SBS19 Unknown 0.069 0.003 2.6
T>A SBS25 Chemotherapy treatment 0.071 0.004 2.6
T>A SBS29 Tobacco chewing 0.075 0.005 3.1
T>A SBS22a Aristolochic acid exposure 0.081 0.008 3.9
T>C SBS89 Unknown 0.028 0.00002 0.1
T>C SBS26 Defective DNA mismatch repair 0.030 0.00003 0.1
T>C SBS10c Defective PolD1 proofreading 0.039 0.0001 0.4
T>C SBS5 Unknown (clock-like signature) 0.042 0.0002 0.4
T>C SBS6 Defective DNA mismatch repair 0.044 0.0003 0.5
T>C SBS44 Defective DNA mismatch repair 0.049 0.0005 0.6
T>C SBS98 Unknown 0.049 0.0005 0.6
T>C SBS25 Chemotherapy treatment 0.050 0.0006 0.6
T>C SBS40b Unknown 0.051 0.0006 0.6
T>C SBS42 Exposure to haloalkanes 0.057 0.001 0.9
T>C SBS36 Defective base excision repair 0.057 0.001 0.9
T>C SBS4 Tobacco smoking 0.061 0.002 1.1
T>C SBS40a Unknown 0.065 0.003 1.3
T>C SBS92 Tobacco smoking 0.076 0.006 2.4

Concurrent polymerase epsilon
T>C SBS14 mutation and defective DNA 0.081 0.008 29
mismatch repair
T>C SBS19 Unknown 0.086 0.01 3.8
T>G SBS92 Tobacco smoking 0.042 0.0002 1.4
T>G SBS9%4 Unknown 0.050 0.0005 1.4
T>G SBS97 Unknown 0.051 0.0007 1.4
T>G SBS36 Defective base excision repair 0.055 0.001 1.7
Defective homologous
T>G SBS3 recombination-based 0.058 0.001 1.7
DNA damage repair
T>G SBS4 Tobacco smoking 0.066 0.003 2.6
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T>G SBS96 Unknown 0.075 0.006 3.8
T>G SBS24 Exposure to aflatoxin 0.080 0.008 4.5
T>G SBS22b Aristolochic acid exposure 0.082 0.009 4.5
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Table S6. Experimental single-base substitution (SBS) mutational signatures from the Catalogue

of Somatic Mutations in Cancer (COSMIC) database* for exposure of human tissue to

benzo[alpyrene (BaP) or aristolochic acid (AA-I and AA-Il), showing strong similarities to the

A(syn)-T Hoogsteen probability distribution obtained from NMR measurements®. Similarity

assessed for T>A, T>C, and T>G substitutions using the Jensen-Shannon Divergence (JSD

<0.090, p-value <0.05, false discovery rate (FDR) <5%). Greyed out rows indicate failure to pass

one of the thresholds.

Experimental

Transition mutation

JSD

p-value

FDR (%)

Experimental

Signature Study

T>A 0.046 0.0003 1.6

BaP T>C 0.075 0.006 2.5 Mingard et al.’
T>G 0.051 0.0006 22
T>A 0.073 0.005 3.4

BaP T>C 0.064 0.002 1.3 Kucab et al.®
G
T>A 0.081 0.009 4.2

BaP T>C 0.091 0.02 4.7 Zhivagui et al.®
T>G 0.075 0.006 5.1
T>A 0.065 0.003 3.0

AA-| T>C Lu etal.’
G
T>A 0.073 0.005 3.5

AA-| T>C 0.090 0.01 4.6 Kucab et al.®
T>G 0.067 0.003 4.2
T>A 0.057 0.001 3.0

AA-II T>C 0.066 0.003 1.3 Kucab et al.®
G
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