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1.Method
1.1Study design
This multicenter, prospective, longitudinal clinical trial aims to explore the dynamic changes involved in the transition from acute to chronic pain by assessing brain physiology and cognitive function. Additionally, the study investigates the impact of neuropathic pain on quality of life and cognitive abilities. A total of 2,000 participants will be enrolled, focusing on demographic factors such as age, gender, educational level, and medical history to analyze their influence on pain perception, emotional state, and cognitive outcomes. By integrating multiple assessment metrics and diverse participant demographics, the study provides insights into the multidimensional impact of pain and informs future clinical treatments.

1.2Participants
[bookmark: OLE_LINK253]In this study, we recruited 101 patients with neuropathic pain. For the analysis of patient-specific characteristics, Table 1 provides comprehensive details of all participants. Additional information, such as inclusion and exclusion criteria, surgical or psychological treatments, and medication durations, is specified in the repository files. The sample size was calculated prior to the study (details in Supplementary Data). We enrolled 101 patients with chronic pain (47 males and 54 females) with a mean age of 66.56±10.16 years (Table.1).
[bookmark: OLE_LINK254]A total of 43 individuals diagnosed with Not-neuropathic Pain and 101 Healthy Controls were enrolled. Table 2 delineates the comprehensive demographic and clinical characteristics of the patients with non-herpetic neuralgia. Supplementary details regarding inclusion and exclusion criteria, as well as information on surgical interventions, psychological therapies, and medication regimens, are documented in the supplementary materials. The cohort of 43 patients with non-herpetic neuralgia comprised 18 males and 25 females, with a mean age of 60.33 ± 16.52 years. The control group consisted of 101 healthy individuals, including 48 males and 43 females, with a mean age of 63.33 ± 10.30 years.
Body mass index (BMI) is limited to 45 or below to ensure participants are in suitable physical health. Participant heights range from 165 to 175 cm, while weights range from 50 to 76 kg, meeting the inclusion criteria.
Participants have educational levels ranging from elementary to middle school, allowing for the evaluation of cultural and educational influences on pain perception and management. All participants have a clinically confirmed diagnosis of neuropathic pain with a Visual Analog Scale (VAS) score ≥ 4.
Participants include middle-aged to elderly individuals, aged between 60 and 71 years, who are more susceptible to neuropathic and chronic pain. Both males and females are included. All patients provided written informed consent in accordance with the Declaration of Helsinki prior to the experiment. This study was approved by the Medical Ethics Committee of Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (No. XHEC-C-2023-073-1). This study has been registered in the Protocol Registration and Results System (PRS) of ClinicalTrials.gov (a global open clinical trial database maintained by the National Library of Medicine of the United States). The registration date is February 29, 2024, and the unique registration number allocated is NCT06290024. The public can use this registration number to inquire about the detailed information of the trial (Fig. S1).
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[bookmark: OLE_LINK290]Table.1 All figures were generated with the R software (http://www.R-project.org; Version 4.2.1). The criteria of statistical significance was set as a p-value < 0.05 or adjust p-value < 0.05. The parametric test of Student’s t-test and non-parametric of Mann–Whitney U test were performed to compare the differences between two groups. The adjust p value was calculated by the Benjamini-Hochberg correction and Chi-square test was used to analyze the categorical variables.
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[bookmark: OLE_LINK291]Fig. S1. The registration information for this clinical study

[bookmark: OLE_LINK241]1.3 Inclusion and Exclusion Criteria
Participants are eligible if they provide informed consent and have not participated in other drug or medical device trials in the three months prior to enrollment.
Exclusion criteria include:
· Poor physical condition preventing objective symptom reporting or completion of assessments.
· Severe comorbidities, including psychiatric disorders, cardiovascular disease, liver or kidney dysfunction, or malignancies.
· Pregnant or lactating women, or individuals planning pregnancy within one month after the trial.
· Allergic conditions or skin issues, particularly infections or wounds at EEG electrode sites.
· History of substance abuse or addiction.

[bookmark: OLE_LINK242][bookmark: OLE_LINK243]1.4 Sample Size and Observation Measures
[bookmark: OLE_LINK244]The study aims to enroll 2,000 patients, determined based on statistical power calculations to ensure sufficient reliability. Participants are divided into Groups NP, n-NP, and HC to compare pain and cognitive function differences.
Multiple assessment tools are used to analyze pain and cognitive function, including:
· Pain and Sleep Quality: Visual Analog Scale (VAS), Numeric Rating Scale (NRS), Douleur Neuropathique 4 (DN4), Pittsburgh Sleep Quality Index (PSQI), Athens Insomnia Scale (AIS).
· Cognitive Function: Montreal Cognitive Assessment (MoCA).
· Psychological Function: Barratt Impulsiveness Scale (BIS), General Anxiety Disorder (GAD-7), Patient Health Questionnaire (PHQ-9), Social Support Rating Scale (SSQ).

1.3 Data Collection and Follow-up
Data collection occurs on the day of enrollment and subsequently on days 3, 7 (± 3 days), 60, and 90, to monitor dynamic changes in pain and cognitive function. Adverse events are recorded and analyzed for their frequency and impact.
All participant data are kept confidential, and analyses are conducted anonymously. The study protocol has been approved by the relevant ethics committee, ensuring adherence to ethical standards.

[bookmark: OLE_LINK245][bookmark: OLE_LINK246]2.Recording
Participants were seated on adjustable chairs with their eyes approximately 67 cm away from the monitor (Dell, width: 54 cm, height: 30.375 cm, resolution: 1920 × 1080 pixels, vertical refresh rate: 60 Hz). They were instructed to read a novel while maintaining a stationary head position and keeping their gaze on the highlighted (red) Chinese characters moving across the screen at a programmed speed. EEG data were collected using the GSN-HydroCel-128 high-density mesh electrode cap with the EGI EEG system. The egi-pynetstation v1.0.1 software package was used to control the EGI system. Prior to recording, the experimenter positioned the Cz electrode (i.e., the center of the brain) for each participant using a soft tape measure to ensure alignment during each experimental run. The sampling rate during recording was 1 kHz. Throughout the experiment, the impedance of each electrode was maintained below 50 kΩ. The raw EEG data were exported on a macOS system in the Meta File Format (.mff) files.

3.Preprocessing
In the preprocessing phase of our electrophysiological study, we utilized MATLAB R2023b (Mathworks, Natick, MA) along with the EEGLAB v2023.1 toolbox (http://sccn.ucsd.edu/eeglab). To facilitate the importation of raw data in the mff format, the MFFMatlabIO4.1 plugin was employed, ensuring a seamless integration of the data acquisition system with our processing pipeline.
Preprocessing was performed separately for subjects in eyes-closed resting state. Initially, the data were filtered using EEGLAB's basic FIR filter implementation. A high-pass filter with a cutoff frequency of 0.5 Hz and a low-pass filter with a cutoff frequency of 75 Hz were applied. Furthermore, a 49-51 Hz notch filter was implemented to remove the electrical noise.	
After filtering, the datasets underwent a meticulous visual inspection by a trained researcher. Segments with pronounced fluctuations or significant artifacts were identified as "bad segments" and rejected from the time series. Additionally, channels exhibiting extensive and severe deviations were identified as "bad electrodes" and interpolated using the spherical method in EEGLAB. The latter situation is relatively rare and occurs randomly, which may be related to poor electrode contact.	
Following artifact rejection and electrodes interpolation, an Independent Component Analysis (ICA) was conducted within EEGLAB, and components representing muscle artifacts, eye movements and other physiological noise were automatically identified based on distinct topographies and time courses using the ADJUST 1.1.1 plugin with default settings.
Next, the overall data was re-referenced to bilateral mastoid electrodes while excluding two eye electrodes. Then, the overall data were downsampled from an original sampling rate of 500 Hz to 250 Hz using MATLAB's signal processing toolbox to optimize computational efficiency.               Finally,the preprocessed data were exported from EEGLAB in the .set files and further processed and analyzed in MATLAB. The preprocessing for all data followed the same process, and were completed by the same experienced researcher with necessary records kept.

4.Analysis
[bookmark: OLE_LINK247][bookmark: OLE_LINK37][bookmark: OLE_LINK35]Estimation of Resting-State EEG Oscillations.Preprocessed electroencephalogram (EEG) data were transformed into the frequency domain using MATLAB. Following detrend to remove linear trends, EEG signals were subjected to spectral analysis using the Fast Fourier Transform (FFT, Welch algorithm, 250Hz sampling rate, 50% overlap) , the number of FFT points (nfft) was set to 65536 based on the average duration of the EEG data segments. The achieved EEG spectrum ranged from 0 to 150 Hz with a fine frequency resolution of 0.0038 Hz. The average Spectral density is calculated for the six major frequency bands (δ: 0.5-4 Hz, θ: 4-8 Hz, low-α: 8-10 Hz, high-α: 10-13 Hz, β: 13-30 Hz, γ: 30-75 Hz). Tukey's Q post hoc test with ANOVA correction was applied between pairs of samples from three groups and the Q statistic was reported, with a positive q statistic representing a higher mean for the group appearing front in the subheading. The topoplot() function of EEGLAB was used for the mapping, using the built-in EGI 128 high-density electrode template. FDR correction was used for the intergroup test of each electrode in each frequency band in a 10-20 lead system.

4.1EEG source analysis
In this study, we used a standardized Low-Resolution Electromagnetic Tomography (sLORETA) method based on the Brainstorm toolbox to trace the EEG signals of the neuropathic pain group, the non-neuropathic pain group, and the healthy control group The EEG signals of the neuropathic pain group, the non-neuropathic pain group and the healthy control group were analyzed to explore the differences in cortical activity among the different groups and their association with neuropathic pain.

4.2 LASSO classification
First, we cut all the EEG time series of all the samples into 20s segments (in order from the beginning, discarding the segments with less than 20s at the end), and then calculate the average power (δ, θ, low-α, high-α, β, and γ) of each frequency band in the same way as in 3.1, thus obtaining the dataset we used for machine learning typing, which consists of a total of 3,125 samples (of which 1318 neuropathic pain, 552 non-neuropathic pain, and 1255 healthy controls), with each sample containing information about a certain 20s sub-segment of a given subject, and a feature space of 127 × 6, where 127 represents 127 EEG channels (excluding the two eye electrodes), and 6 represents the average power of the six frequency bands, for a total feature volume of 127 × 6 = 762.
In this study, we used 5-Fold Cross-Validation to determine the optimal λ value. Specifically, we randomly divided the dataset into five subsets, and sequentially used each subset as the validation set and the remaining subsets as the training set. Ultimately, we chose λ = 0.05, which is a value that ensures a relatively high cross-validation accuracy (above 75%) while being able to keep the percentage of non-zero-weighted features within a reasonable range (20%-30%). This not only retains enough discriminative features to support high-precision classification, but also “filters out” most of the spectral features that are not important enough for classification through feature selection. 
In terms of specific parameters, our LASSO model uses a LogisticRegression classifier from the sklearn library, which uses a The L1 penalty term and the corresponding liblinear iterative solver based on axis descent, the random seed is set to 42 to ensure repeatability, the regularization parameter is 0.05, and the maximum number of iterations is 1000 to ensure convergence.
The specific step of standardization is to calculate the mean and standard deviation for the power values of each frequency band in the training set separately. Let the power value of the jth frequency band in the training set be xij, where i denotes the sample index and j denotes the frequency band index. Then the formula for calculating the mean and standard deviation is:

Where N is the number of samples in the training set. And on the test set, we apply the normalized parameters obtained on the training set:

We quantify the feature importance by calculating the SHAP value of each feature of the trained Lasso Model (Shapley Additive Explanations) , and for each category, we only employ samples predicted by the model for that category, and we show the SHAP value of each feature for each class, to assess the magnitude and direction of the influence of different features on the model's ability to classify samples into specific categories. A positive SHAP value indicates that the larger the eigenvalue is, the more likely the model is to predict the sample as the category, and a negative SHAP value indicates the opposite. The absolute value of the Shap value reflects the importance of the feature.

4.3 Functional connectivity analysis
Weighted Phase Lag Index (wPLI, Weighted Phase Lag Index) is an index of brain functional connectivity based on phase synchronization, which can effectively reduce the influence of volumetric conduction effect and thus more accurately reflect the real connectivity between brain regions. wPLI is calculated by the following formula: 

where X(t) denotes the signal of two brain regions, Im(X(t)) denotes its imaginary part, and E denotes the expected value. wPLI takes the value in the range of [0, 1], and the more the value is, the more it will be. cross-spectral density, Im(X(t)) denotes its imaginary part, and E denotes the expected value. wPLI takes the value in the range of [0, 1], and the closer the value is to 1, the stronger the phase synchronization between the two brain regions; the closer the value is to 0, the weaker the phase synchronization is.
In this study, we used wPLI metrics to analyze the functional connectivity of the EEG signals and combined them with the Desikan-Killiany68 brain atlas to classify the brain regions.The Desikan-Killiany68 brain atlas is a partitioning method based on the anatomical structure of the cortex, which classifies the brain into 68 regions, with each region corresponds to a specific anatomical structure and function. We use the brainstorm implementation to map EEG signals to the Desikan-Killiany68 brain atlas, and then compute the wPLI functional connectivity index between two of the 68 regions.

Specifically, the calculation process of wPLI is as follows: first, the preprocessed EEG signals are time-frequency decomposed to extract the six frequency bands we delineated (δ, θ, low-α, high-α, β, γ). Then, the cross-spectral density of each pair of brain region signals in the target frequency band is calculated and its imaginary part is extracted. Finally, the wPLI value was calculated according to the above equation. In order to reduce the effect of random noise, we used the sliding window (1s, 50% overlap) method to smooth the wPLI values and calculated its average value as the final functional connectivity strength.
In order to more intuitively display the wPLI calculation results, we used BrainNet software to visualize the functional connectivity matrix. Specifically, we imported the computed wPLI matrix (.edge file) into BrainNet and combined it with Desikan-Killiany68 brain region nodes (.node file), and BrainMesh_ICBM152_tal brain space template (.nv file) to jointly draw the brain functional connectivity graph. Each node in the graph represents a brain region, and the connecting lines between the nodes indicate the functional connectivity strength, and the thickness and color of the connecting lines can indicate the magnitude of the wPLI value.

[bookmark: OLE_LINK248]4.4 Graph-Generative Networks (GGN) for Pain Recognition
To better assess pain from EEG data, we additionally construct a graph generating network (GGN) , a novel architecture designed to dynamically model brain functional connectivity. Unlike traditional statistical methods that often fail to capture complex spatiotemporal dynamics, the GGN learns to generate a sequence of functional connectivity graphs directly from scalp EEG signals. This approach allows for the explicit modeling of transient changes in connectivity patterns within and between brain lobes, which are critical biomarkers for differentiating pain states. The input to the GGN is a multi-channel EEG time-series, represented as a tensor ，where N is the number of EEG channels (nodes) , here 127 channels, T is the sequence consisting of sliding overlapping time windows, here 34 continuous time windows of length 2s, overlapping 0.5s (25%) , and T is the number of nodes, F is the characteristic dimension of each channel, here 48, representing the logarithmic PSD per 1 Hz range from 0-48 Hz. Initially, a Temporal Encoder processes this input to extract high-level temporal features, condensing the time-series information for each channel into a compact representation that serves as the input for subsequent modules. The GGN framework comprises two main modules: a Connectivity Graph Generator and a Spatial Decoder, which operate sequentially to transform raw EEG signals into pain state classifications.

The core of our model is the Connectivity Graph Generator, which constructs a dynamic brain connectivity graph by modeling inter-channel connectivity as a time-varying stochastic process. This module consists of three interconnected components. First, a Parameter Learner, realized as a Message-Passing Neural Network (MPNN), is utilized to learn the parameters of a Gaussian distribution for each potential edge in the graph by integrating the temporal features. Second, a Mixture of Gaussians Module uses these parameters to define a probability distribution for the existence of a connection between any two nodes, effectively modeling the uncertainty of functional brain connectivity. Third, to generate a discrete graph structure (i.e., an adjacency matrix ) from the learned probabilities, we employ a Gumbel-Softmax sampler. This technique provides a differentiable approximation to the sampling process, allowing gradients to flow through the graph generation module. The probability of an edge between node i and node j, 
 is used to sample a binary edge variable  according to the equation:


In this formulation,  are i.i.d. samples drawn from a Gumbel(0, 1) distribution and τ is a temperature parameter that controls the smoothness of the approximation.
Once a dynamic graph is generated, the Spatial Decoder is tasked with extracting discriminative spatial features. This module is built upon multiple attention-based graph convolutional layers. The attention mechanism allows the model to dynamically weight the importance of each node's neighbors when aggregating information, enhancing its ability to focus on key connectivity patterns relevant to pain. The feature update rule for a node i in a graph convolutional layer can be expressed as:

Here,  is the feature vector of node i,  is a learnable weight matrix,  is a non-linear activation function, and  is the neighborhood of node i. The attention coefficient  is computed based on the features of nodes i and j, modulating the information flow. After several layers of graph convolution, the resulting node-level representations are pooled into a single graph-level feature vector. This vector is fed into a final classification head, which consists of a two-layer fully connected network with a Rectified Linear Unit (ReLU) activation function. The output layer employs a Softmax function to produce a probability distribution over the different pain classes, given by:


In this equation,  is the logit for class c and C is the total number of classes. The model is optimized by minimizing a standard cross-entropy loss function.
Alternatively, for the task of predicting continuous pain intensity, the model architecture is adapted by replacing the final classification head with a regression head. This configuration is specifically applied to a cohort comprising patients with both neuropathic and non-neuropathic pain, where the objective is to predict their individual pain scores. The ground truth labels for this task are derived from standard clinical assessments such as the Numerical Rating Scale (NRS) or the Visual Analogue Scale (VAS). The regression head consists of a fully connected layer that outputs a single scalar value representing the predicted pain score. To train the model for this regression task, the network is optimized by minimizing the Mean Absolute Error (MAE) loss function, which measures the average magnitude of the errors between predicted and actual scores. The MAE is calculated as:

In this objective function, m represents the total number of samples, while  and  denote the true and predicted pain scores for the i-th sample, respectively. The use of MAE provides a robust optimization objective that is less sensitive to outliers than squared error metrics. The regression effect was evaluated by the square of the correlation coefficient () between the predicted value and the true value. The closer the  to 1, the better the effect.
When analyzing the interpretability of the GGN model, we load the optimal three-classification model trained on the training set. For a certain category, all the samples predicted to be that category in the test set are taken, and their connected graphs are saved respectively, after averaging the whole data, the brain regions were divided into parietal, occipital, frontal, left and right temporal lobes according to the electrode position, and the inter-regional connectivity map was obtained. In theory, connectivity within the same brain region should be stronger, and different types of samples should show different patterns of connectivity between brain regions.
[bookmark: OLE_LINK98]
5.Extended Results

5.1 Supplementary Spectral Analysis
5.1.1 Electrode-level statistics for detailed spectral power analysis
[bookmark: OLE_LINK269]Figure 2 presents the power spectral density (PSD) curves averaged across all electrodes for the neuropathic pain, non-neuropathic pain, and healthy control groups, covering the frequency range of 0.5-75 Hz. Notable power peaks were observed in the Alpha frequency band (8-13 Hz), followed by a gradual attenuation of power at higher frequencies. A 95% confidence interval analysis revealed significant differences among the three groups in the Theta band (4-8 Hz) and the low-Alpha band (8-10 Hz), with the neuropathic pain group showing greater power than the non-neuropathic pain group, followed by the healthy control group. Notably, near 20 Hz in the Beta band, both the non-neuropathic pain and healthy control groups exhibited smaller power peaks, whereas the neuropathic pain group lacked this feature.
We divided the spectrum into six frequency bands: δ (0.5-4 Hz), θ (4-8 Hz), low-α (8-10 Hz), high-α (10-13 Hz), β (13-30 Hz), and γ (30-75 Hz). Resting-state EEG data were then analyzed for the neuropathic pain, non-neuropathic pain, and healthy control groups, focusing on the frequency band average power across all electrodes. A one-way ANOVA of the mean power across the three groups revealed no significant differences in the δ, high-α, β, and γ bands (p > 0.05). In the theta band, significant differences were observed between at least two groups (F(2,241) = 7.874, p = 0.000487, η² = 0.0613). The FDR test indicated significant differences (FDR = 0.000374, Cohen's d = 0.554), particularly between neuropathic pain and non-neuropathic pain groups (Mean = 2.089, SD = 2.125, FDR = 0.0465, Cohen's d = 0.325). In the low-alpha band, significant differences were also found between at least two groups (F(2,241) = 6.302, p = 0.00215, η² = 0.0497), with a significant difference observed between the neuropathic pain group (Mean = 6.945, SD = 6.323) and healthy controls (Mean = 4.010, SD = 5.038) (FDR = 0.00148, Cohen's d = 0.513).

[bookmark: OLE_LINK272]From the distribution and statistical testing of peak alpha frequency（PAF）and peak power, it is evident that neuropathic pain patients exhibit significantly earlier PAF compared to healthy controls (FDR = 0.0000598, Cohen’s d=-0.604). Regarding peak power at PAF, neuropathic pain patients show significantly higher power compared to healthy controls (FDR = 0.0216, Cohen’s d=0.394).

[bookmark: OLE_LINK265][bookmark: OLE_LINK266][bookmark: OLE_LINK273][bookmark: OLE_LINK274][bookmark: OLE_LINK275][bookmark: OLE_LINK270][bookmark: OLE_LINK271][bookmark: OLE_LINK96][bookmark: OLE_LINK97]Fig.S2shows considerable differences in peak alpha frequency (PAF) across the groups. Specifically, the PAF occurs earlier in neuropathic pain patients, followed by non-neuropathic pain and then healthy controls. In terms of peak power (log-transformed), both neuropathic and non-neuropathic pain patients exhibit significantly higher values compared to healthy controls, with neuropathic pain slightly higher than non-neuropathic pain.
[bookmark: OLE_LINK99]From the distribution and statistical testing of PAF and peak power, it is evident that neuropathic pain patients exhibit significantly earlier PAF compared to healthy controls (FDR = 0.0000598, Cohen’s d=-0.604). Regarding peak power at PAF, neuropathic pain patients show significantly higher power compared to healthy controls (FDR = 0.0216, Cohen’s d=0.394).

[image: ]
Fig S2. (a-b) Box plots comparing PAF and corresponding peak power for individuals across the three groups.

5.1.2 Detailed brain topographic maps and statistical results of power spatial distribution in each frequency band
[bookmark: OLE_LINK279]The spatial distribution of mean power is depicted in the brain topography shown in Figure 3a. The results demonstrated that power in the theta band was generally higher in the neuropathic pain group than in the non-neuropathic pain and healthy control groups, particularly in the occipital lobe, with high power extending toward the parietal lobe and bilateral temporal lobes. The non-neuropathic pain group also showed increased theta power in the occipital lobe relative to the healthy control group. In the low-alpha band, the pain groups showed increased power in the occipital region, with the neuropathic pain group displaying more pronounced increases..
[bookmark: OLE_LINK280]ANOVA-corrected Tukey post-hoc comparisons between groups (Figure 3b) revealed that, in the theta band, the neuropathic pain group exhibited significantly higher power than the healthy control group in most regions (p < 0.05), especially in the posterior brain regions (occipital lobe, posterior aspects of the right and left temporal lobes) (p < 0.001). Additionally, the neuropathic pain group showed significantly higher power than the non-neuropathic pain group in parts of the prefrontal lobe (p < 0.05), while the prefrontal power in the non-neuropathic pain group was slightly lower than that of the healthy controls. In the low-alpha band, the neuropathic pain group showed significantly higher power than the healthy control group across the entire occipital lobe, as well as parts of the prefrontal, right, and left temporal lobes (p < 0.05), with particularly pronounced enhancement in electrodes located at Oz (p < 0.001). In contrast, the non-neuropathic pain group displayed significant enhancement only in the occipital lobe. In the high-α band, both pain groups exhibited a generalized decrease in power relative to the healthy controls, including reductions in frontal power and decreased power in the occipital and right temporal lobes in the neuropathic pain group. However, none of these reductions were statistically significant (p > 0.05), indicating a shift in alpha band power from high frequencies (10-13 Hz) to lower frequencies (8-10 Hz) in the pain groups.
Scatter plots showing electrode variability in the theta and low-alpha bands (Figure 3c) revealed significant enhancement in average power for most electrodes in the neuropathic pain group in the theta band (p < 0.05), with the most pronounced enhancement in the occipital lobe. On both occipital and parietal lobes, the enhancement was more consistent and synchronized, as indicated by the compact nature of the boxplot. In the frontal lobe, the mean power was significantly higher in the neuropathic pain group compared to the non-neuropathic pain group (p < 0.05), whereas the non-neuropathic pain group showed a general trend of decreased power relative to the healthy controls (p > 0.05). This suggests that prefrontal power in the theta frequency band may be a key marker distinguishing neuropathic from non-neuropathic pain. In the low-alpha band, approximately half of the electrodes in the neuropathic pain group exhibited significant enhancement relative to the control group (p < 0.05), with the enhancement being most pronounced in the occipital lobe. The non-neuropathic pain group showed a general decrease in frontal lobe power relative to the control group (p > 0.05), but none of these differences were significant compared to the neuropathic pain group.
For all 21 electrodes in the 10-20 System, In the δ, high-α, β, and γ bands, no electrodes showed significant differences in post-hoc comparisons (FDR > 0.05). In the theta band, significant enhancement was observed in the neuropathic pain group relative to healthy controls across all electrodes except T7 (FDR = 0.166) and Fp1 (FDR = 0.126). The most significant enhancements occurred at P7 (FDR = 0.0000166, Cohen's d = 0.657), O1 (FDR = 0.0000214, Cohen's d = 0.649), O2 (FDR = 0.0000464, Cohen's d = 0.623), P8 (FDR = 0.0000910, Cohen's d = 0.601), P3 (FDR = 0.000363, Cohen's d = 0.552), Oz (FDR = 0.000132, Cohen's d = 0.588), and P4 (FDR = 0.00102, Cohen's d = 0.513), all of which were located at the junction of the occipital and parietal lobes.
Additionally, five electrodes showed significant enhancement in the neuropathic pain group relative to the non-neuropathic pain group: Fpz (FDR = 0.0202, Cohen's d = 0.459), Fz (FDR = 0.0228, Cohen's d = 0.451), F4 (FDR = 0.0419, Cohen's d = 0.408), Fp2 (FDR = 0.0447, Cohen's d = 0.403), and F3 (FDR = 0.0488, Cohen's d = 0.396), all located in the prefrontal region. No significant differences were observed between the non-neuropathic pain and healthy control groups.
In the low-alpha band, the neuropathic pain group showed significant enhancement in 11 electrodes relative to the healthy controls. The most significant enhancements were at O1 (FDR = 0.0000542, Cohen's d = 0.618), Oz (FDR = 0.0000831, Cohen's d = 0.604), O2 (FDR = 0.00015, Cohen's d = 0.583), P7 (FDR = 0.000274, Cohen's d = 0.562), and Pz (FDR = 0.000863, Cohen's d = 0.519), all located at the occipital lobe and occipital-parietal junction. The non-neuropathic pain group showed significant enhancement only in the occipital lobe relative to healthy controls, particularly at O2 (FDR = 0.0114, Cohen's d = 0.497), O1 (FDR = 0.0132, Cohen's d = 0.488), Oz (FDR = 0.0137, Cohen's d = 0.485), P7 (FDR = 0.0281, Cohen's d = 0.437), and Pz (FDR = 0.0346, Cohen's d = 0.422), consistent with the neuropathic pain group's results. This suggests a shared enhancement of occipital and posterior parietal regions in both pain groups.

5.2 Machine Learning Classifier Details

The spectral information of resting-state EEG for neuropathic pain, non-neuropathic pain, and healthy controls included the average power at each electrode (127 electrodes in total) across six frequency bands (δ, θ, low-α, high-α, β, γ). Further feature importance analysis revealed that, within the theta band, the electrodes most important for distinguishing healthy samples were E118 (SHAP = 2.91, positive correlation) and E22 (SHAP = -2.76, negative correlation) (Figure 4a). In the low-alpha band, the electrodes most important for distinguishing neuropathic pain samples was E77 (SHAP = 12.03). The electrodes most important for distinguishing healthy samples in the low-alpha band were E77 (SHAP = 12.18) and E1 (SHAP = 7.24). In the high-alpha band, the electrodes most important for differentiating neuropathic pain samples were E118 (SHAP = -7.53).
The LASSO logistic regression algorithm was employed to sparsify and perform triple classification of the feature space. The experimental results (Figure 4b) demonstrated that the One-vs-Rest classification model achieved an overall accuracy of 83%. Specifically, the model reached an accuracy of 0.85, recall of 0.88, and F1-score of 0.86 for neuropathic pain samples; an accuracy of 0.94, recall of 0.49, and F1-score of 0.64 for non-neuropathic pain samples; and an accuracy of 0.79, recall of 0.79, and F1-score of 0.64 for healthy samples. The AUC (area under the ROC curve) for neuropathic pain relative to the other two categories was 0.685, for non-neuropathic pain relative to the other two categories was 0.605, and for healthy samples relative to the other two categories was 0.723. 
After feature sparsification, 107 features were retained out of a total of 762, representing 14.4% of the original features. The SHAP (Shapley Additive Explanations) feature interpretability analysis (Figure 4c) revealed that, among the 107 features identified by LASSO, the theta and low-alpha bands exhibited greater absolute SHAP values across more electrodes, with relative zeros positioned further away. The mean SHAP values for the non-zero weighted electrodes indicated that the low-alpha (Mean = 0.571, SD = 2.909) and theta (Mean = 0.518, SD = 1.191) bands were more important than other bands such as δ (Mean = 0.163, SD = 0.365), high-alpha (Mean = 0.337, SD = 1.981), β (Mean = 0.329, SD = 0.559), and γ (Mean = 0.348, SD = 0.632). This suggests that the model should place greater emphasis on the theta and low-alpha bands during decision-making, a finding consistent with our previous variability analysis.

[bookmark: OLE_LINK286]5.3 Comprehensive Functional Connectivity Results

[bookmark: OLE_LINK285]We applied the Desikan-Killiany atlas to partition the cerebral cortex into 68 distinct regions. The histogram depicting mean wPLI connectivity strength (Fig.5a) indicated that functional connectivity predominantly concentrated within the low-alpha and high-alpha frequency bands. Within both theta and low-alpha bands, the neuropathic pain (NP) group showed greater mean functional connectivity strength (theta: mean = 0.09, SD = 0.028; low-alpha: mean = 0.186, SD = 0.040) compared to the non-neuropathic pain (n-NP) group (theta: mean = 0.075, SD = 0.026; low-alpha: mean = 0.175, SD = 0.040) and healthy controls (HC) group(theta: mean = 0.0698, SD = 0.020; low-alpha: mean = 0.162, SD = 0.035). Conversely, within the high-alpha band, the non-neuropathic pain group demonstrated comparatively lower functional connectivity than the other two groups.
The difference analysis between the two groups shows, significant alterations in NP compared to HC, with notably greater disruptions than those observed in n-NP (Tukey’s post hoc test, with Bonferroni-corrected for all connections, p < 0.05). NP patients exhibited widespread connectivity changes across frequency bands (Number of significant connections, δ: 8; θ: 336; low-α: 38; high-α: 2; β: 9; γ: 19), whereas NNP patients showed fewer alterations (δ: 12; θ: 1; low-α: 1; high-α: 0; β: 3; γ: 6). The θ-band demonstrated the most pronounced differences, with 336 (14.75%) significantly enhanced connections in NP patients relative to HC—far exceeding those in other bands. All significant changes reflected increased connectivity compared to HC. Prominent examples included significantly strengthened connections between the left caudal anterior cingulate cortex and the right precuneus (p = 0.000011), between the right isthmus cingulate cortex and the left rostral middle frontal gyrus (p = 0.0000098), and between the left medial orbitofrontal cortex and the pars opercularis of the right inferior frontal gyrus (p = 0.000015).
In the low-alpha band, functional connectivity between the left inferior temporal gyrus and the left pericalcarine cortex was significantly enhanced in neuropathic pain patients relative to healthy controls (p = 0.000103). Additionally, in the high-alpha band, neuropathic pain patients exhibited significantly enhanced functional connectivity between the left inferior temporal gyrus and the left pericalcarine cortex (p = 0.00022), as well as between the left inferior temporal gyrus and the left lingual gyrus (p = 0.00053).
In the delta band, functional connectivity between the left caudal middle frontal gyrus and the right entorhinal cortex was significantly reduced in non-neuropathic pain patients relative to healthy controls (p = 0.00021). Similarly, connectivity between the left medial orbitofrontal cortex and the right superior temporal gyrus was significantly decreased (p = 0.00056).
Within the beta band, functional connectivity between the left parahippocampal gyrus and the right superior temporal gyrus was significantly attenuated in the non-neuropathic pain group compared to healthy controls (p = 0.00069). In the gamma band, neuropathic pain patients showed significantly reduced connectivity between the right cuneus and the left insula (p = 0.00051) and between the left fusiform gyrus and the left postcentral gyrus (p = 0.0005). In contrast, the non-neuropathic pain group demonstrated significantly enhanced connectivity between the left frontal pole and the left lateral orbitofrontal cortex (p = 0.0008).
Phase-amplitude coupling (PAC) analysis (Fig.5c) revealed distinct modulation patterns in neuropathic pain (NP) patients compared to non-neuropathic pain (n-NP) patients and healthy controls (HC). NP patients exhibited more extensive θ-band (4–8 Hz) modulation of γ-band activity (30–75 Hz) between occipital and frontal regions than either n-NP patients or HC.
[bookmark: OLE_LINK288][bookmark: OLE_LINK289]Relative to HC, pain patients (both NP and n-NP) showed decoupling in the right precuneus (R PreCu) and the right rostral middle frontal gyrus (R RoMF), while enhanced coupling was observed between the right insula (R Istcg) and left rostral middle frontal gyrus, as well as between the left caudal anterior cingulate (L CAcg), left precuneus, and left caudal anterior cingulate (Fig. S3).
[bookmark: OLE_LINK287]Notably, NP patients demonstrated stronger θ-γ coupling between the right precuneus and right occipital pole (R Op) compared to n-NP patients, whereas coupling between the right insula and left rostral middle frontal gyrus was attenuated in NP relative to n-NP.
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[bookmark: OLE_LINK276][bookmark: OLE_LINK282]Fig. S3. Brain maps showing the adjusted Tukey's Q-statistic of connectivity values between two groups of pain patients and healthy controls in various frequency bands, based on weighted PLI index. The drawn connections are only those with significant differences, with the thickness of edges reflects the order of Tukey's Q-statistic.

5.4 GGN Model Specifications and Extended Results
Considering that distinct pain types correspond to specific activity patterns in different brain regions and associated variations in interregional connectivity strength, we aimed to simultaneously model both regional activity and interregional connectivity using nodes and edges in graph-based networks. To achieve this, we developed a novel class of graph-generative networks (GGNs) designed to model the dynamic probability of functional connectivity among electrode nodes by capturing nonlinear spatial and temporal features inherent in high-density EEG signals. This approach facilitates accurate classification of pain episode types and intensity while simultaneously enhancing model interpretability (Fig. 6a).
The attention-based graph generative neural network exhibited exceptional effectiveness in classifying the three pain conditions (Fig.6b). Results demonstrated rapid convergence after approximately 40 training epochs, reaching near-perfect accuracy (~100%) for both training and validation datasets. Specifically, the overall classification accuracy was 98%. For individual categories, the model achieved 99% accuracy and 96% recall for non-neuropathic pain samples, 98% accuracy and 99% recall for neuropathic pain samples, and 97% accuracy and 99% recall for healthy controls. Thus, the model accurately differentiated among the three conditions, substantially outperforming the previously employed LASSO linear classifier, which relied solely on spectral features.

Regression analyses predicting pain intensity based on Numerical Rating Scale (NRS) and Visual Analog Scale (VAS) scores in patients (Fig. 6c) revealed strong correlations between model predictions and actual scores (R² = 0.961 for VAS, R² = 0.926 for NRS). These results indicate the model's robust capacity for accurately predicting pain intensity levels.
The probabilistic connectivity maps generated by the model (Fig. 6d) highlighted significant connectivity differences among the three sample groups. Notably, distinct connectivity patterns emerged between the parietal and frontal lobes and between the left temporal and occipital lobes, underscoring intergroup heterogeneity. Additionally, prominent connections along the diagonal axis of the connectivity matrix suggest the model assigns higher connectivity probabilities to closely positioned electrodes, aiding biological interpretability of the observed connectivity patterns.
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