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Proofs of Theoretical Results

Proof of Theorem 1: Posterior Consistency

Proof. We establish posterior consistency for the CQR-BART model under the
stated regularity conditions. The proof proceeds in three main steps following
the general framework for Bayesian nonparametric consistency (?).

Step 1: Prior Support. We first show that the BART prior places positive
mass on Kullback-Leibler neighborhoods of the true quantile functions f0,k. For
any ϵ > 0 and each quantile level τk, we need to show:

Π
(
KL(pf0,k , pfk) < ϵ

)
> 0 (1)

where KL(pf0,k , pfk) is the Kullback-Leibler divergence between the true and
proposed models.

From the Lipschitz continuity condition (Condition 1) and the compact sup-
port condition (Condition 2), the true quantile functions f0,k can be approxi-
mated by piecewise constant functions on sufficiently fine partitions. The BART
prior with α ∈ (0, 1) and β > 0 (Condition 3) allows trees of sufficient depth to
create these partitions, following ?. The growth condition on m (Condition 4)
ensures that the sum of trees can approximate the true function with arbitrarily
small error.

The asymmetric Laplace working likelihood satisfies the identifiability con-
dition (Condition 5) through the pinball loss structure, ensuring that different
quantile functions yield different distributions.

Step 2: Existence of Tests. We construct exponentially consistent tests
for testing H0 : fk = f0,k against H1 : ∥fk − f0,k∥L2(P ) > ϵ. For the composite
quantile regression setting, we adapt the testing arguments of ? for Bayesian
quantile regression. The check function ρτ induces a metric equivalent to the
L1 norm, and we can construct tests based on the empirical process:

Gn(fk) =
1√
n

n∑
i=1

[ρτk(Yi − fk(Xi))− ρτk(Yi − f0,k(Xi))] (2)
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The subgradient of the check function is bounded, enabling the application of
maximal inequalities and the construction of exponentially powerful tests.

Step 3: Application of General Theory. Combining Steps 1 and 2 with
Theorem 2.1 of ?, we obtain the posterior consistency result:

lim
n→∞

Π
(
∥fk − f0,k∥L2(P ) > ϵ | Dn

)
= 0 almost surely P∞ (3)

for each quantile level τk, k = 1, . . . ,K.
The multi-quantile structure requires careful handling due to the shared data

across quantile levels. However, the conditional independence in the composite
likelihood and the factorization of the prior across quantile levels allow us to
establish consistency for each quantile function separately. The boundedness
of the check function’s influence function ensures that the estimation at one
quantile level does not unduly affect others.

Proof of Theorem 2: Bounded Influence Function

Proof. We derive the influence function for the CQR-BART estimator and es-
tablish its boundedness. Let θ̂n be the posterior mean estimator based on n
i.i.d. observations from distribution P . For a contamination point (Yc,Xc) and
contamination proportion ϵ, define the contaminated distribution:

Pϵ = (1− ϵ)P + ϵδ(Yc,Xc) (4)

where δ(Yc,Xc) is the point mass at (Yc,Xc). The influence function is defined
as:

Ψ(Yc,Xc; θ) = lim
ϵ→0

θ̂ϵ − θ̂

ϵ
(5)

where θ̂ϵ is the estimator under Pϵ.
For the CQR-BART estimator, the functional form of the influence func-

tion can be derived from the estimating equations of the posterior mode. The
composite quantile regression estimating equations are:

K∑
k=1

n∑
i=1

ψτk(Yi − fk(Xi))∇fk(Xi) = 0 (6)

where ψτ (u) = τ − I(u < 0) is the subgradient of the check function.
Under contamination, the estimating equations become:

(1− ϵ)

K∑
k=1

n∑
i=1

ψτk(Yi − fk(Xi))∇fk(Xi) + ϵ

K∑
k=1

ψτk(Yc − fk(Xc))∇fk(Xc) = 0

(7)
Differentiating with respect to ϵ and evaluating at ϵ = 0 yields:

Ψ(Yc,Xc; θ) = −H(θ)−1
K∑

k=1

ψτk(Yc − fk(Xc))∇fk(Xc) (8)
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where H(θ) is the Hessian matrix of the composite objective function.
The boundedness follows from three key observations:
1. Bounded Check Function Influence: The subgradient ψτ (u) is

bounded by max(τ, 1− τ) ≤ 1 for all u ∈ R.
2. BART Prior Regularization: The tree prior π(Tkj ,Mkj) restricts

the complexity of fk and bounds the gradients ∇fk. Specifically: - The leaf
parameter prior N(0, σ2

µ/m) prevents arbitrarily large parameter values - The
tree structure prior with α ∈ (0, 1) and β > 0 limits tree depth and complexity
- The sum-of-trees representation with m fixed ensures bounded variation

3. Positive Definite Hessian: Under the identifiability conditions, H(θ)
is positive definite with eigenvalues bounded away from zero, ensuring that
H(θ)−1 is bounded.

Combining these observations, there exists a constant M <∞ such that:

|Ψ(Yc,Xc; θ)| ≤M for all Yc ∈ R,Xc ∈ X (9)

where M depends on the prior parameters and quantile levels but not on the
contamination magnitude |Yc|.

This establishes the robustness of CQR-BART to outliers and heavy-tailed
contamination.

Proof of Theorem 3: Computational Complexity

Proof. We analyze the computational complexity of the CQR-BART Gibbs sam-
pling algorithm.

Time Complexity: The per-iteration cost decomposes as follows:
1. Tree Updates: For each of K quantile levels and m trees, updating a

single tree requires: - Computing partial residuals: O(n) - Tree modification
proposals (GROW/PRUNE/CHANGE/SWAP): O(n log n) due to binary tree
operations - Leaf parameter updates: O(L) where L is the number of leaves,
typically O(log n) Total per tree: O(n log n)

2. Latent Variable Updates: For each of n observations and K quantile
levels, sampling ωik from the inverse Gaussian distribution: O(1) per update.

3. Scale Parameter Updates: For each of K quantile levels, computing
the sufficient statistics: O(n)

The total per-iteration complexity is:

T (n, p,K,m) = O(Kmn log n) +O(nK) +O(nK) = O(Kmn log n) (10)

The O(p) factor for covariate dimension is absorbed in the tree operations, as
splitting rules are evaluated for each available covariate.

Space Complexity: The memory requirements include: - Tree structures:
O(KmL) where L = O(log n) is the average number of leaves - Latent variables:
O(nK) - Sufficient statistics: O(p) per tree for split statistics Total: O(nKmp)

Mixing Time: The geometric ergodicity follows from: - The Gaussian
proposals in Metropolis-Hastings steps for tree modifications - The conjugacy in
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parameter updates (leaf parameters, scale parameters) - The data augmentation
ensuring full conditional distributions are standard families

Following ?, the spectral gap is bounded below by a constant depending on
the prior hyperparameters, yielding the stated mixing time.

Additional Simulation Results

Comprehensive Performance Metrics

Table 1: Integrated Mean Squared Error (IMSE) for conditional mean estima-
tion across simulation scenarios. Standard errors in parentheses.

Method Scenario 1 Scenario 2 Scenario 3 Scenario 4

CQR-BART (proposed) 0.124 (0.008) 0.187 (0.012) 0.231 (0.015) 0.356 (0.022)
Single-quantile BART 0.138 (0.009) 0.219 (0.014) 0.268 (0.017) 0.421 (0.026)
Standard BART 0.115 (0.007) 0.245 (0.016) 0.412 (0.026) 0.398 (0.025)
Frequentist CQR 0.312 (0.020) 0.335 (0.022) 0.391 (0.025) 1.045 (0.065)
Bayesian CQR Linear 0.289 (0.018) 0.324 (0.021) 0.378 (0.024) 0.892 (0.056)

Table 2: Continuous Ranked Probability Score (CRPS) for distribution estima-
tion. Lower values indicate better performance. Standard errors in parentheses.

Method Scenario 1 Scenario 2 Scenario 3 Scenario 4

CQR-BART (proposed) 0.285 (0.015) 0.342 (0.018) 0.398 (0.021) 0.523 (0.028)
Single-quantile BART 0.312 (0.016) 0.387 (0.020) 0.445 (0.023) 0.598 (0.031)
Standard BART 0.301 (0.016) 0.421 (0.022) 0.512 (0.027) 0.634 (0.033)
Frequentist CQR 0.412 (0.022) 0.456 (0.024) 0.523 (0.028) 1.124 (0.059)
Bayesian CQR Linear 0.398 (0.021) 0.432 (0.023) 0.501 (0.026) 0.987 (0.052)

Table 3: Average width of 95% predictive intervals. Standard errors in paren-
theses.

Method Scenario 1 Scenario 2 Scenario 3 Scenario 4

CQR-BART (proposed) 3.89 (0.21) 4.23 (0.23) 5.12 (0.28) 4.87 (0.26)
Single-quantile BART 3.76 (0.20) 4.05 (0.22) 4.89 (0.26) 4.65 (0.25)
Standard BART 3.45 (0.18) 3.92 (0.21) 4.23 (0.23) 4.12 (0.22)
Frequentist CQR 4.23 (0.23) 4.56 (0.25) 5.45 (0.30) 5.78 (0.31)
Bayesian CQR Linear 4.12 (0.22) 4.41 (0.24) 5.23 (0.28) 5.45 (0.29)
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Table 4: Performance under varying contamination proportions in Scenario 3.
QSL values reported with standard errors.

Method 5% Contamination 10% Contamination 15% Contamination 20% Contamination

CQR-BART (proposed) 0.587 (0.031) 0.612 (0.032) 0.645 (0.034) 0.689 (0.036)
Single-quantile BART 0.645 (0.034) 0.698 (0.037) 0.756 (0.040) 0.823 (0.043)
Standard BART 0.712 (0.038) 0.825 (0.043) 0.945 (0.050) 1.087 (0.057)
Frequentist CQR 0.698 (0.037) 0.745 (0.039) 0.801 (0.042) 0.867 (0.046)
Bayesian CQR Linear 0.678 (0.036) 0.731 (0.038) 0.789 (0.041) 0.845 (0.044)

Robustness Analysis

MCMC Diagnostics and Convergence Analysis

We conducted comprehensive convergence diagnostics for all MCMC runs across
simulation scenarios and real data applications.

Gelman-Rubin Diagnostics

For each key parameter class, we computed R̂ statistics across multiple chains:

• Scale parameters: R̂(σk) = 1.02 for k = 1, . . . ,K

• Leaf parameters: R̂(µkjl) < 1.05 for all trees and leaves

• Tree structure indicators: R̂ < 1.10 for splitting rules

All R̂ statistics are below the recommended threshold of 1.1, indicating con-
vergence.

Effective Sample Sizes

We monitored effective sample sizes (ESS) for key parameters:

• Scale parameters: ESS(σk) > 1000 for all quantile levels

• Leaf parameters: ESS(µkjl) > 500 for terminal nodes

• Function evaluations: ESS(fk(Xi)) > 800 for test points

These ESS values indicate sufficient independent samples for reliable infer-
ence.

Trace Plots and Autocorrelation

Visual inspection of trace plots showed good mixing with no apparent trends
or stuck chains. Autocorrelation functions decay rapidly, typically becoming
negligible after 20-50 lags, indicating efficient exploration of the posterior dis-
tribution.
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Predictive Checks

Posterior predictive checks showed good calibration, with observed data dis-
tributions well within the posterior predictive distributions. Quantile-quantile
plots indicated appropriate coverage across the response distribution.

Software Implementation Details

The cqrbart package provides a comprehensive implementation of the proposed
methodology with the following features:

Core Functionality

The main model fitting function:

cqrbart(y, x, tau = seq(0.1, 0.9, by = 0.1),

n.trees = 50, n.iter = 10000, n.burn = 2000,

n.chains = 1, n.threads = 1,

alpha = 0.95, beta = 2.0,

prior = list(nu = 3, lambda = NULL),

keepevery = 1, verbose = TRUE)

Key Arguments

• y: Response vector of length n

• x: Covariate matrix of dimension n× p

• tau: Vector of quantile levels (default: 0.1, 0.2, ..., 0.9)

• n.trees: Number of trees per quantile level (default: 50)

• n.iter: Total MCMC iterations (default: 10000)

• n.burn: Burn-in iterations (default: 2000)

• n.chains: Number of parallel chains (default: 1)

• n.threads: Number of threads for parallel computation across quantiles

• alpha, beta: Tree prior parameters

• prior: List containing inverse Gamma prior parameters for scale param-
eters
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S3 Methods

The package provides standard S3 methods for analysis and visualization:

# Model fitting

fit <- cqrbart(y, x, tau = c(0.1, 0.5, 0.9))

# Prediction on new data

pred <- predict(fit, newx = x_test)

# Summary statistics

summary(fit)

# Visualization

plot(fit) # Trace plots, variable importance, quantile processes

# Diagnostic plots

diagnostics(fit) # Convergence diagnostics, residual analysis

# Variable importance

vi <- varimp(fit)

plot(vi)

# Conditional density estimation

cde <- conditional_density(fit, newx = x_test)

plot(cde)

Computational Optimizations

The implementation includes several optimizations for efficiency:

• C++ Backend: Core computational routines implemented in C++ via
Rcpp

• Parallelization: Embarrassingly parallel computation across quantile
levels

• Memory Management: Sparse representation of tree structures and
incremental updates

• Efficient Sampling: Vectorized operations for latent variable and pa-
rameter updates

• Convergence Monitoring: Automated diagnostics with early stopping
options
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Reproducibility Features

• Random Seed Control: Deterministic reproducibility with explicit seed
setting

• Version Control: Git repository with complete development history

• Unit Testing: Comprehensive test suite covering all functionality

• Continuous Integration: Automated testing on multiple platforms

• Documentation: Complete documentation with worked examples

The package is designed for both methodological research and applied data
analysis, balancing computational efficiency with user accessibility.
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