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Section A: Features
These are the total features used in this study (see Ibarra-Hoyos, et al1.  for detailed definitions and calculation methods)
1. Thermodynamic Properties
· Mixing Enthalpy (Hmix): The enthalpy changes when constituent elements mix; relates to alloy- formation energy and phase stability.
· Mixing Entropy (Mix_Entropy): The configurational entropy due to multiple elements; stabilizes solid-solution phases.
· Strain Energy (Strain_Energy): Stored elastic energy in the lattice, often related to distortion and strengthening.
· Residual Strain (Residual_Strain): Remaining internal strain after processing or solidification.
2. Electronic Properties
· Average Valence Electron Concentration (VEC_avg): The mean number of valence electrons per atom; determines phase stability (e.g., FCC or BCC structure).
· Variance in Valence Electron Concentration (VEC_var): Variability of VEC among elements; indicates electronic heterogeneity.
· Average First Ionization Energy (Ion1_avg): Energy to remove the first electron; relates to bonding and chemical stability.
· Variance in First Ionization Energy (Ion1_var): Spread of first ionization energies among elements.
· Average Second Ionization Energy (Ion2_avg): Energy to remove the second electron; related to cation formation.
· Variance in Second Ionization Energy (Ion2_var): Variation in second ionization energy across alloy components.
· Average Third Ionization Energy (Ion3_avg): Energy to remove the third electron; linked to deeper electronic bonding strength.
· Variance in Third Ionization Energy (Ion3_var): Spread of third ionization energies among constituent elements.
· Electronegativity Mismatch (Electronegativity_mismatch): Difference in electronegativity between elements; influences bonding, charge transfer, and lattice distortion.
3. Structural and Atomic Geometry Properties
· Average Atomic Density (Atomic_Density_avg): Mean number of atoms per unit volume; connected to packing density and lattice parameter.
· Variance in Atomic Density (Atomic_Density_var): Variation in atomic density among elements; indicates distortion.
· Atomic Radius Mismatch (Radius_mismatch): Relative difference in atomic radii; affects solid-solution strengthening.
· Atomic Size Misfit (Atomic_size_misfit): Quantitative measure of atomic size differences; affects lattice strain.
· Mean Square Misfit (Mean_square_misfit): Squared measures of atomic size differences averaged over elements.
4. Mechanical and Elastic Properties
· Hill Average Shear Modulus (Shear_hill): Effective shear modulus computed using Hill’s average (between Voigt and Reuss bounds).
· Hill Average Young’s Modulus (Youngs_hill): Effective Young’s modulus estimated by Hill’s method.
· Hill Average Bulk Modulus (Bulk_hill): Effective bulk modulus (resistance to compression) based on Hill’s averaging.
· Poisson’s Ratio (Poisson): Ratio of lateral to axial strain; indicator of ductility and elasticity balance.
· Average Hardness (Hardness_avg): Mean hardness value from mechanical testing (e.g., Vickers or Rockwell).
· Hardness Variance (Hardness_var): Variability in hardness measurements; reflects microstructural uniformity.
5. Defect and Fault-Related Properties
· Weighted Stacking Fault Energy (SFE_weighted): Composition-weighted average stacking fault energy; affects dislocation behavior and deformation.
· Weighted Unstable Stacking Fault Energy (USF_weighted): Weighted average of unstable stacking fault energy; relates to slip and twinning tendencies.
· Weighted Diffusivity (D_weighted): Composition-weighted atomic diffusion coefficient; influences microstructural evolution and creep resistance.
6. Experimental or Categorical Identifiers
· Ratio of Testing Temperature and Melting Temperature (Test_Melt): Dimensionless ratio () indicating the homologous temperature during testing.
7. Compositional Features
· Elemental Composition and Ratios: Atomic fractions of each constituent element (e.g., Al, Cr, Nb) along with all unique pairwise ratios (e.g., Al/Cr, Al/Nb, Cr/Nb, …) and sums (e.g., Al+Cr, Cr+Nb, …), representing relative and combined elemental proportions in the alloy.

Section B: Features Selected. 
Table S1 | Final feature subsets selected for best-performing models. Feature subsets identified by each selection method and used in the top-performing models for (i) fracture strain classification and (ii) yield strength regression. For fracture strain classification, the QBoost-selected features yielded the highest accuracy when coupled with the Random Forest classifier. For yield strength regression, Q-MI–derived subsets achieved optimal performance after λ-tuning, while the Linear SVM performed best with features selected via Lasso regularization. Only the final subsets corresponding to the best models are listed here.
	Model
	Property
	Features

	QBoost 
	Fracture Strain
	, Poisson, Zr, Al+Mo, Al+V, Cr+Mo, Cu+Zr, Hf+Ti, Hf+Zr, Mn+Zr, Mo+Ni, Nb+Zr, Ta+Zr

	Q-MI 
	Yield Strength
	, Ion2_avg, Radius_mismatch, Atomic_size_misfit, Cr+Nb, Fe+Zr, Mn+Mo, Mn+Ta, Mo+V, Nb+Ta, Ta+Ti

	LASSO
	Yield Strength
	Hmix, , Ion2_var, Ion3_var, Electronegativity_mismatch, Radius_mismatch, Mix_Entropy, Al/Co, Al/Cu, Al/Hf, Al/Ta, Al/Zr, Co/Cr, Co/Mn, Co/Ti, Co/V, Cr/Mo, Cr/Nb, Cr/V, Fe/Nb, Fe/Ti, Hf/Mo, Hf/Ta, Hf/Ti, Hf/Zr, Mn/Ti, Mo/Ni, Mo/Ta, Mo/V, Mo/Zr, Nb/Ti, Nb/Zr, Ni/V, Ta/Ti, Ta/V, Ta/Zr, V/W, V/Zr, Al+Ta, Cr+Nb, Cr+Zr, Hf+Ta, Mn+Ta, Mo+Zr, Ni+Ta, Ni+Ti, W+Zr

	Q-MI 
	Yield Strength
	, Hardness_var, VEC_avg, Atomic_Density_avg, Ion1_var, Ion2_avg, Ion2_var, Ion3_var, Shear_hill, Youngs_hill, Poisson, Electronegativity_mismatch, Radius_mismatch, Residual_Strain, Mix_Entropy, Atomic_size_misfit, Mean_square_misfit, Mo, Nb, Ta, Nb/Ta, Ta/Zr, Al+Nb, Al+Ti, Co+Mo, Co+Ta, Cr+Nb, Cr+Ta, Cr+Ti, Cr+Zr, Cu+Mo, Cu+Ta, Fe+Nb, Fe+Ta, Fe+Zr, Hf+Nb, Mn+Mo, Mn+Ta, Mo+Ta, Mo+Ti, Mo+V, Mo+W, Mo+Zr, Nb+Ni, Nb+Ta, Nb+W, Nb+Zr, Ni+Ta, Ni+Zr, Ta+Ti, Ta+V, Ta+W, V+W



Section C: Machine Learning Model Implementation Details
The Random Forest (RF), Support Vector Machine (SVM), and feedforward Neural Network (NN) models were implemented in scikit-learn. Hyperparameter optimization was performed using exhaustive grid search with five-fold cross-validation, where the search range was adaptively scaled according to dataset size. The following grids were used:
· Small datasets 
 RF → n_estimators  max_depth  min_samples_split 
 SVM → kernel ∈ {linear, rbf}, C ∈ {0.1, 1, 3, 10}, ε ∈ {0.01, 0.1, 0.5}, γ ∈ {‘scale’, ‘auto’}
 NN → hidden_layer_sizes   learning_rate_init  tol , n_iter_no_change 
· Medium datasets 
 RF → n_estimators  max_depth  min_samples_split 
 SVM → kernel ∈ {linear, rbf}, C ∈ {0.1, 1, 3, 10,30}, ε ∈ {0.01, 0.1, 0.5,1.0}, γ ∈ {‘scale’, ‘auto’}
 NN → hidden_layer_sizes   learning_rate_init  tol , n_iter_no_change 
· Large datasets 
RF → n_estimators  max_depth  min_samples_split 
 SVM → kernel ∈ {linear, rbf}, C ∈ { 1, 3, 10,30,100}, ε ∈ {0.01, 0.1, 0.5,1.0}, γ ∈ {‘scale’, ‘auto’}
 NN → hidden_layer_sizes   learning_rate_init  tol , n_iter_no_change 
All MLPs used max_iter = 3000 and early_stopping = True. Input features were standardized via StandardScaler before training.
Regression models were scored using  and RMSE, and classification models via accuracy and weighted F1-score. The best hyperparameter combination and corresponding train/test metrics were recorded for all models. The NN models here were not used for final deployment but rather to identify the optimal network depth, width, and regularization scales prior to full TensorFlow retraining and QUBO-based pruning analysis.

Table S2 | Mutual Information parameters. Q-MI configurations that achieved the minimum QUBO energy across tested hyperparameter values. We examined batch sizes of and for both simulated annealing (SA) and quantum annealing (QA), while the complete problem set was also evaluated using SA.
Fracture Strain

	
	
	Q-MI Model

	0.01
	0.01
	QA K=50

	0.01
	0.1
	QA K =50

	0.1
	0.001
	QA K=50

	0.1
	0.01
	QA K=50




Yield Strength
	
	
	Q-MI Model

	0.01
	0.01
	SA K=20

	0.01
	0.1
	SA K =20

	0.1
	0.001
	QA K=100

	0.1
	0.01
	QA K=20





Section D: Quantum-Support Vector Machine-Regression Formulation

QUBO Formulation. The dual problem of the SVM regression, constructed to satisfy the KKT conditions, is given by
	
	
[bookmark: _Hlk210823970]s.t.    and 
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Binary Encoding. Each continuous dual variable,  and , is discretized into  binary variables using base- encoding:
[bookmark: _Hlk210823931]
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where
·  index over training examples
·  index over bits per variable
·  binary decision variable (qubit)
·  base of encoding (typically 2)
·  number of training examples


The term  identifies the binary variable for , while  accesses the bits of  
Substitution into the Dual Problem. After encoding, the difference between dual variables becomes
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Each component of the dual objective can then be expanded in terms of binary variables:
1. Kernel term (quadratic):
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2. Equality constraint penalty (quadratic):
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3. -insensitive tube (linear):
	
	
	6



4. Target term (linear):
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Since , all terms can be directly expressed in quadratic form.
QUBO Matrix Construction. Using composite indices, , where  for  and  for , the QUBO matrix elements are:
Off-diagonal terms:
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Diagonal terms:
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The resulting QUBO can then be directly mapped to a quantum annealer for optimization.

Section E: Quantum-Support Vector Machine-Regression Implementation
a) Combined-regressor
We adopted the combined-regressor approach analogous to the ensemble method of Willsch et al.2, in which multiple regressors trained on disjoint subsets of the data are averaged to form a composite predictor.
Two levels of averaging were performed:
1. Intra-split averaging: Within each data split, the D-Wave solver returns multiple near-optimal solutions corresponding to the lowest-energy configurations. These were averaged as
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where  is the number of accepted low-energy samples.
2. Inter-split averaging: To incorporate all available training data, the dataset was partitioned into  disjoint subsets. The coefficients and biases from each subset were averaged as
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The final combined regressor is therefore expressed as
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where  is the kernel function used in the QUBO formulation and denotes the complementary dual variables for the regression task.
However, this approach ultimately produced  values in the range of 0 – 0.1, indicating that no meaningful regression trend was captured. The poor performance arises from the inherent doubling of binary variables required to encode both  and in the regression formulation. This expansion significantly increases the number of qubits and, consequently, reduces the number of data points that can be embedded per batch. The resulting small effective training sets prevent the model from learning any statistical correlation, rendering the quantum regression approach currently unfeasible with existing hardware constraints.

Section F: Neural-Network-Pruning Formulation
Neural Network Architecture.  Each neuron within a feedforward neural network receives as input a set of activations  originating from the preceding layer. For the first layer,  corresponds to the raw input features, while for subsequent layers  represent the activation function by the previous layer. Each neuron computes a weighted linear combination of these inputs,  where  denotes the vector of synaptic weights and  the corresponding bias term. The scalar pre-activation value  is subsequently transformed by a nonlinear activation function,  to produce the neuron’s output, . In the present work, rectified linear units (ReLU) were used for all hidden layers, while the output layer employed a sigmoid activation for classification task and a linear activation for regression.
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Figure S1. Single neuron schematic.
The neural network thus maps an input vector, , from layer, , to an output activation vector, , according to 
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where  and  denote the weight matrix and bias vector connecting layers, and , respectively.
For a dataset containing  training samples, the quantities introduced above can be extended to matrix form for compact representation of layer-wise operation. The activation matrix of layer,  is
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where is the column, ,  represent the activation corresponding to the -training example. The corresponding pre-activation matrix  at layer  is then defined as
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where  is a column vector of ones used to broadcast the bias across all training samples.

Pruning Objective.  The objective of neuron pruning is to remove neurons that contribute the least to the representational power of the network, thereby creating a compact architecture that preserves performance. This serves two main purposes: (i) reducing computational and memory cost for deployment on resource-constrained hardware, and (ii) improving generalization by mitigating overfitting.
We determine which neurons to prune based on the following principles: 
1. Preservation of the current layer’s activations, ensuring that the reduced representation  remains close to the original 
2. Preservation of the next layer’s pre-activations, ensuring that the pruning of layer  does not significantly distort 
Pruning layer, , alters both  and the subsequent pre-activation matrix,   The pruning problem is thus formulated as a Quadratic Unconstrained Binary Optimization (QUBO) that minimizes deviation in both  and  simultaneously, while enforcing a constraint on the number of neurons retained.
A binary vector with encodes whether neuron, , is kept  or pruned  The goal is to find the optimal combination of  values that minimizes the total energy
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where  is a balancing parameter between intra- and inter-layer reconstruction.

(1) Preservation of the current layer’s activations.
Deviation within layer  is quantified via the Frobenius norm,
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Since pruning sets the activations of removed neurons to zero,  where  denotes elementwise multiplication along the neuron dimension. Expanding the expression yields
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where measures the total activation strength of neuron, , across all samples. Since  is constant, it can be dropped without affecting the optimization landscape, giving
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(2) Preservation of next layer pre-activations
Deviation in the next layer’s pre-activations is similarly computed as 
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The bias term of   cancels out, as it is unaffected by pruning. Expanding yields
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where
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encodes the interaction between neurons  and  as transmitted to the next layer. Expanding and simplifying, dropping constants, gives
	
	
	23



(3) Cardinality Constraint
To prune exactly  neurons, a quadratic penalty term is added:
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where the constant,  is omitted since it does not affect the optimization landscape.
(4) Final QUBO formulation
Combining the three energy terms yields the final QUBO expression:
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where the coefficients are
	
	

	26



The QUBO energy landscape defined by  and  encapsulates the trade-off between information preservation and model sparsity. Minimization of  is performed using either classical simulated annealing or quantum annealing, as described in the main text.

Section G: Neural Network Pruning Computational Implementation
All pruning experiments, both for fracture strain classification and yield strength regression, were carried out using a unified Python workflow implemented in TensorFlow 2.15, interfaced with D-Wave’s hybrid quantum annealing platform (dwave-system) and the dimod modeling framework. The scripts provide full reproducibility under fixed random seeds and deterministic TensorFlow kernels (TF_DETERMINISTIC_OPS=1).
Network Architecture and Training. Both models employed custom MaskedDense layers, which extend the standard dense layer by including a binary, non-trainable mask, , which enables explicit control of neuron activation during pruning.
· Fracture strain classification model: architecture (32,32,16,1) with ReLU activations in hidden layers and sigmoid output. Trained for 500 epochs (batch=32) using Adam optimizer  and binary cross-entropy loss.
· Yield strength regression model: architecture (64,64,32,1) with ReLU hidden layers and a linear output neuron. Trained for 600 epochs (batch = 32) with Adam optimizer and mean-squared-error (MSE) loss.


Layer-wise Pruning Protocol. After baseline training, specific layers were selected for pruning (). The procedure was identical for both tasks and executed following these steps:
(1) Extraction of activations: 
Compute  and  for the entire training set.
(2) QUBO construction:
Using the formalism,

with  and  defined from the preservation objectives.
(3) Automatic hyperparameter tuning:
The weighting coefficients,  and  are automatically inferred from the activation energies  and coupling matrix, , via median-based scaling. This process avoids manual hyperparameter sweeps while maintaining numerical balance between reconstruction and sparsity penalties
(4) Normalization and conditioning:
Each activation matrix is column-centered and -normalized by default to stabilize the matrix used in the QUBO construction 
(5) Annealing-based minimization:
The resulting QUBO is mapped to a dimod.BinaryQuadraticModel and solved by either:
· Quantum Annealing, on D-Wave’s Zephyr topology with 1000 reads and 100  anneal time per read; or
· Simulated Annealing ,using neal.SimulatedAnnealingSampler()as a classical baseline under identical read count.
(6) Mask application: 
The optimal binary vector, , minimizing  is applied to the corresponding MaskedDense layer, permanently deactivating pruned neurons
(7) Retraining:
The pruned network is recompiled and fine-tuned for 5 epochs (batch = 16) to allow minor weight adaptation. 

Layer Selection and Validation Strategy. To determine which layers and how many neurons to prune, multiple layer-neuron combinations were explored. For each candidate configuration, the model was re-trained for 5 epochs on the training and validation subsets only, and its loss function was monitored. The test set remained strictly unseen throughout this tuning process and was used only once for the final performance evaluation after selecting the optimal pruning configuration.
This procedure ensures that pruning decisions were based solely on training-validation behavior, preventing information leakage from the test data and yielding an unbiased measure of post-pruning generalization.



Table S3 | QUBO parameters and resulting energies for pruning optimization.
Summary of hyperparameters (, ) and final QUBO energy values obtained during neuron pruning for fracture strain classification and yield strength regression. Both Simulated Annealing (SA) and Quantum Annealing (QA) were performed under identical hyperparameter settings. In both cases, SA achieved slightly lower final energy minima compared to QA.

Fracture Strain
	Solver
	QUBO Energy
	
	

	SA
	13.91272
	0.094901
	0.376867

	QA
	18.0041
	0.094901
	0.376867



Yield Strength
	Solver
	QUBO Energy
	
	

	SA
	31.38308
	0.027573
	0.228062

	QA
	34.87828
	0.027573
	0.228062




[image: A graph of a graph
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Figure S2. Baseline neural-network training performance. Training and validation loss curves for the unpruned models prior to QUBO-based pruning. (Left) Fracture strain classification network trained for 500 epochs using binary cross-entropy loss. (Right) Yield strength regression network trained for 600 epochs using mean-squared-error loss. Both models show stable convergence. 


[image: A graph of energy
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Figure S3. Representative quantum annealing energy landscape. Distribution of solution occurrences as a function of source energy for a representative pruning QUBO. Each point corresponds to a sampled solution from the quantum annealer, with lower energies indicating better objective minimization. The configuration with the minimum energy was selected as the optimal pruning mask.
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Figure S4. Example of QUBO embedding on D-Wave quantum annealer. Representative visualization of the pruning QUBO mapped onto the D-Wave Zephyr topology. Each node represents a physical qubit, and connected chains encode logical variables used during the annealing process.

[image: A grid of blue and white squares
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Figure S5. Close-up view of QUBO embedding on D-Wave Zephyr topology. Magnified visualization of the pruning problem embedded onto the D-Wave Advantage quantum annealer. The dense inter-qubit connectivity of the Zephyr graph enables mapping of higher-order interactions between logical variables during annealing.

[image: ]
Figure S6. CALPHAD of Al8Cr32Fe50Ti2Mn2 (at. %) 




Table S4. Dataset comprising Yield Strength values (MPa) for BCC HEAs. The dataset includes columns for alloy composition, phase constitution, mechanical testing method, processing condition, testing temperature (°C), and corresponding yield strength values. In this context, "A" denotes alloys that have undergone Annealing, "AC" represents those in the As Cast condition, and "OTHER" refers to all other processing conditions. The mechanical testing method is specified as "C" for Compression testing.
	BCC Yield Strength Dataset

	Alloy
	Phases
	Mechanical Testing
	Processing Condition
	Test Temperature C
	Yield Strength (MPa)

	Al0.214Nb0.714Ta0.571Ti1V0.143Zr0.929
	BCC
	C
	OTHER
	25.0
	1965.0

	Al0.214Nb0.714Ta0.571Ti1V0.143Zr0.929
	BCC
	C
	OTHER
	800.0
	678.0

	Al0.214Nb0.714Ta0.571Ti1V0.143Zr0.929
	BCC
	C
	OTHER
	1000.0
	166.0

	Al0.214Nb0.714Ta0.714Ti1Zr0.929
	BCC
	C
	OTHER
	25.0
	1965.0

	Al0.214Nb0.714Ta0.714Ti1Zr0.929
	BCC
	C
	OTHER
	800.0
	362.0

	Al0.214Nb0.714Ta0.714Ti1Zr0.929
	BCC
	C
	OTHER
	1000.0
	236.0

	Al0.25Co1Cr1Cu1Fe1Mn1Ni1Ti1V1
	BCC
	C
	AC
	25.0
	1465.0

	Al0.25Cr0.5Nb0.5Ti1V0.25
	BCC
	C
	AC
	25.0
	1240.0

	Al0.25Mo1Nb1Ti1V1
	BCC
	C
	AC
	25.0
	1250.0

	Al0.25Nb1Ta1Ti1V1
	BCC
	C
	AC
	25.0
	1330.0

	Al0.2Mo1Ta1Ti1V1
	BCC
	C
	AC
	25.0
	1021.0

	Al0.333Nb0.667Ta0.533Ti1V0.133Zr0.667
	BCC
	C
	OTHER
	25.0
	2035.0

	Al0.333Nb0.667Ta0.533Ti1V0.133Zr0.667
	BCC
	C
	OTHER
	800.0
	796.0

	Al0.333Nb0.667Ta0.533Ti1V0.133Zr0.667
	BCC
	C
	OTHER
	1000.0
	220.0

	Al0.3Hf1Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25.0
	1188.0

	Al0.3Nb1Ta0.8Ti1.4V0.2Zr1.3
	BCC
	C
	OTHER
	25.0
	1965.0

	Al0.3Nb1Ta0.8Ti1.4V0.2Zr1.3
	BCC
	C
	OTHER
	800.0
	678.0

	Al0.3Nb1Ta0.8Ti1.4V0.2Zr1.3
	BCC
	C
	OTHER
	1000.0
	166.0

	Al0.4Hf0.6Nb1Ta1Ti1Zr1
	BCC
	C
	OTHER
	25.0
	1841.0

	Al0.4Hf0.6Nb1Ta1Ti1Zr1
	BCC
	C
	OTHER
	800.0
	796.0

	Al0.4Hf0.6Nb1Ta1Ti1Zr1
	BCC
	C
	OTHER
	1000.0
	298.0

	Al0.4Hf0.6Nb1Ta1Ti1Zr1
	BCC
	C
	OTHER
	1200.0
	89.0

	Al0.5Cr1Nb1Ti2V0.5
	BCC
	C
	AC
	25.0
	1240.0

	Al0.5Hf1Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25.0
	1302.0

	Al0.5Mo1Nb1Ti1V1
	BCC
	C
	AC
	25.0
	1625.0

	Al0.5Nb1Ta1Ti1V1
	BCC
	C
	AC
	25.0
	1014.0

	Al0.667Nb1Ta0.333Ti1Zr0.333
	BCC
	C
	OTHER
	25.0
	1280.0

	Al0.667Nb1Ta0.333Ti1Zr0.333
	BCC
	C
	OTHER
	800.0
	728.0

	Al0.667Nb1Ta0.333Ti1Zr0.333
	BCC
	C
	OTHER
	1000.0
	403.0

	Al0.6Mo1Ta1Ti1V1
	BCC
	C
	AC
	25.0
	962.0

	Al0.75Hf1Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25.0
	1415.0

	Al0.75Mo1Nb1Ti1V1
	BCC
	C
	AC
	25.0
	1260.0

	Al1.5Mo1Nb1Ti1V1
	BCC
	C
	AC
	25.0
	500.0

	Al1Co0.5Cr0.5Cu0.5Fe0.5Ni0.5
	BCC
	C
	AC
	25.0
	1620.0

	Al1Co0.5Cr0.5Cu0.5Fe0.5Ni0.5
	BCC
	C
	AC
	500.0
	1120.0

	Al1Co0.5Cr0.5Cu0.5Fe0.5Ni0.5
	BCC
	C
	AC
	600.0
	805.0

	Al1Co0.5Cr0.5Cu0.5Fe0.5Ni0.5
	BCC
	C
	AC
	700.0
	567.0

	Al1Co0.5Cr0.5Cu0.5Fe0.5Ni0.5
	BCC
	C
	AC
	800.0
	302.0

	Al1Co0.5Cr0.5Cu0.5Fe0.5Ni0.5
	BCC
	C
	AC
	900.0
	214.0

	Al1Co0.5Cr0.5Cu0.5Fe0.5Ni0.5
	BCC
	C
	AC
	1000.0
	116.0

	Al1Co0.5Cr0.5Cu0.5Fe0.5Ni0.5
	BCC
	C
	AC
	1100.0
	79.0

	Al1Co1Cr1Fe1Mo0.1Ni1
	BCC
	C
	AC
	25.0
	1804.0

	Al1Co1Cr1Fe1Nb0.1Ni1
	BCC
	C
	AC
	25.0
	1641.0

	Al1Co1Cr1Fe1Ni1
	BCC
	C
	AC
	25.0
	1184.6

	Al1Co1Fe1Ni1
	BCC
	C
	AC
	25.0
	964.0

	Al1Cr0.5Nb1Ti1V1
	BCC
	C
	A
	25.0
	1300.0

	Al1Cr0.5Nb1Ti1V1
	BCC
	C
	A
	600.0
	1005.0

	Al1Cr0.5Nb1Ti1V1
	BCC
	C
	A
	800.0
	640.0

	Al1Cr0.5Nb1Ti1V1
	BCC
	C
	A
	1000.0
	40.0

	Al1Cr1Mo1Nb1Ti1
	BCC
	C
	AC
	400.0
	1080.0

	Al1Cr1Mo1Nb1Ti1
	BCC
	C
	AC
	600.0
	1060.0

	Al1Cr1Mo1Nb1Ti1
	BCC
	C
	AC
	800.0
	860.0

	Al1Cr1Mo1Nb1Ti1
	BCC
	C
	AC
	1000.0
	594.0

	Al1Cr1Mo1Nb1Ti1
	BCC
	C
	AC
	1200.0
	105.0

	Al1Cr1Mo1Ti1
	BCC
	C
	A
	25.0
	1100.0

	Al1Cr1Mo1Ti1
	BCC
	C
	A
	400.0
	1070.0

	Al1Cr1Mo1Ti1
	BCC
	C
	A
	600.0
	1020.0

	Al1Cr1Mo1Ti1
	BCC
	C
	A
	800.0
	875.0

	Al1Cr1Mo1Ti1
	BCC
	C
	A
	1000.0
	375.0

	Al1Cr1Mo1Ti1
	BCC
	C
	A
	1200.0
	100.0

	Al1Mo1Nb1Ti1
	BCC
	C
	A
	25.0
	1100.0

	Al1Mo1Nb1Ti1
	BCC
	C
	A
	600.0
	520.0

	Al1Mo1Nb1Ti1
	BCC
	C
	A
	800.0
	500.0

	Al1Mo1Nb1Ti1
	BCC
	C
	A
	1000.0
	540.0

	Al1Mo1Nb1Ti1
	BCC
	C
	A
	1200.0
	200.0

	Al1Mo1Nb1Ti1V1
	BCC
	C
	AC
	25.0
	1375.0

	Al1Nb1.5Ta0.5Ti1.5Zr0.5
	BCC
	C
	OTHER
	25.0
	1280.0

	Al1Nb1.5Ta0.5Ti1.5Zr0.5
	BCC
	C
	OTHER
	800.0
	728.0

	Al1Nb1.5Ta0.5Ti1.5Zr0.5
	BCC
	C
	OTHER
	1000.0
	403.0

	Al1Nb1Ta1Ti1
	BCC
	C
	AC
	25.0
	1152.0

	Al1Nb1Ta1Ti1
	BCC
	C
	AC
	100.0
	740.0

	Al1Nb1Ta1Ti1
	BCC
	C
	AC
	200.0
	740.0

	Al1Nb1Ta1Ti1V1
	BCC
	C
	AC
	25.0
	993.0

	Al1Nb1Ti1V1
	BCC
	C
	A
	25.0
	1010.0

	Al1Nb1Ti1V1
	BCC
	C
	A
	600.0
	795.0

	Al1Nb1Ti1V1
	BCC
	C
	A
	800.0
	622.5

	Al1Nb1Ti1V1
	BCC
	C
	A
	1000.0
	134.0

	Cr1Mo1Nb1Ti1
	BCC
	C
	A
	25.0
	1630.0

	Cr1Mo1Nb1Ti1
	BCC
	C
	A
	200.0
	1268.0

	Cr1Mo1Nb1Ti1
	BCC
	C
	A
	400.0
	1115.0

	Cr1Mo1Nb1Ti1
	BCC
	C
	A
	600.0
	1062.0

	Cr1Mo1Nb1Ti1
	BCC
	C
	A
	800.0
	1058.0

	Hf0.25Nb0.125Ti1V0.5Zr0.5
	BCC
	C
	AC
	25.0
	1115.0

	Hf0.25Nb0.25Ti1V0.5Zr0.5
	BCC
	C
	AC
	25.0
	1065.0

	Hf0.25Nb0.25Ti1V0.5Zr0.5
	BCC
	C
	AC
	600.0
	718.0

	Hf0.25Nb0.25Ti1V0.5Zr0.5
	BCC
	C
	AC
	800.0
	135.0

	Hf0.25Nb0.375Ti1V0.5Zr0.5
	BCC
	C
	AC
	25.0
	1025.0

	Hf0.25Nb0.5Ti1V0.5Zr0.5
	BCC
	C
	AC
	25.0
	980.0

	Hf0.25Nb0.5Ti1V0.5Zr0.5
	BCC
	C
	AC
	600.0
	859.0

	Hf0.25Nb0.5Ti1V0.5Zr0.5
	BCC
	C
	AC
	800.0
	195.0

	Hf0.25Ti1V0.5Zr0.5
	BCC
	C
	AC
	25.0
	1160.0

	Hf0.25Ti1V0.5Zr0.5
	BCC
	C
	AC
	600.0
	405.0

	Hf0.25Ti1V0.5Zr0.5
	BCC
	C
	AC
	800.0
	85.0

	Hf0.26Nb1Ta1Ti0.578Zr0.416
	BCC
	C
	AC
	25.0
	845.0

	Hf0.26Nb1Ta1Ti0.578Zr0.416
	BCC
	C
	AC
	60.0
	795.0

	Hf0.26Nb1Ta1Ti0.578Zr0.416
	BCC
	C
	AC
	100.0
	765.0

	Hf0.26Nb1Ta1Ti0.578Zr0.416
	BCC
	C
	AC
	200.0
	650.0

	Hf0.26Nb1Ta1Ti0.578Zr0.416
	BCC
	C
	AC
	300.0
	590.0

	Hf0.4Nb1.54Ta1.54Ti0.89Zr0.64
	BCC
	C
	AC
	20.0
	822.0

	Hf0.4Nb1.54Ta1.54Ti0.89Zr0.64
	BCC
	C
	AC
	60.0
	795.0

	Hf0.4Nb1.54Ta1.54Ti0.89Zr0.64
	BCC
	C
	AC
	100.0
	765.0

	Hf0.4Nb1.54Ta1.54Ti0.89Zr0.64
	BCC
	C
	AC
	200.0
	650.0

	Hf0.4Nb1.54Ta1.54Ti0.89Zr0.64
	BCC
	C
	AC
	300.0
	590.0

	Hf0.5Mo0.5Nb1Ti1Zr1
	BCC
	C
	AC
	25.0
	1176.0

	Hf0.5Nb0.5Ta0.5Ti1.5Zr1
	BCC
	C
	AC
	25.0
	903.0

	Hf0.5Nb0.667Ta0.333Ti1Zr0.833
	BCC
	C
	OTHER
	-268.8
	2283.333333333333

	Hf0.5Nb0.667Ta0.333Ti1Zr0.833
	BCC
	C
	OTHER
	-196.0
	1850.0

	Hf0.5Nb0.667Ta0.333Ti1Zr0.833
	BCC
	C
	OTHER
	-153.0
	1520.0

	Hf0.5Nb0.667Ta0.333Ti1Zr0.833
	BCC
	C
	OTHER
	-103.0
	1333.333333333333

	Hf0.5Nb0.667Ta0.333Ti1Zr0.833
	BCC
	C
	OTHER
	-43.0
	1133.333333333333

	Hf0.5Nb0.667Ta0.333Ti1Zr0.833
	BCC
	C
	OTHER
	25.0
	1046.666666666667

	Hf0.5Nb0.667Ta0.333Ti1Zr0.833
	BCC
	C
	OTHER
	72.0
	900.0

	Hf0.75Nb1Ta0.5Ti1.5Zr1.25
	BCC
	C
	OTHER
	-268.8
	2230.0

	Hf0.75Nb1Ta0.5Ti1.5Zr1.25
	BCC
	C
	OTHER
	-196.0
	1815.0

	Hf0.75Nb1Ta0.5Ti1.5Zr1.25
	BCC
	C
	OTHER
	-153.0
	1595.0

	Hf0.75Nb1Ta0.5Ti1.5Zr1.25
	BCC
	C
	OTHER
	-103.0
	1375.0

	Hf0.75Nb1Ta0.5Ti1.5Zr1.25
	BCC
	C
	OTHER
	-43.0
	1190.0

	Hf0.75Nb1Ta0.5Ti1.5Zr1.25
	BCC
	C
	OTHER
	25.0
	1125.0

	Hf0.75Nb1Ta0.5Ti1.5Zr1.25
	BCC
	C
	OTHER
	72.0
	1030.0

	Hf0.75Nb1Ta0.5Ti1.5Zr1.25
	BCC
	C
	OTHER
	-268.8
	2390.0

	Hf0.75Nb1Ta0.5Ti1.5Zr1.25
	BCC
	C
	OTHER
	-196.0
	1920.0

	Hf0.75Nb1Ta0.5Ti1.5Zr1.25
	BCC
	C
	OTHER
	-153.0
	1370.0

	Hf0.75Nb1Ta0.5Ti1.5Zr1.25
	BCC
	C
	OTHER
	-103.0
	1250.0

	Hf0.75Nb1Ta0.5Ti1.5Zr1.25
	BCC
	C
	OTHER
	-43.0
	1020.0

	Hf0.75Nb1Ta0.5Ti1.5Zr1.25
	BCC
	C
	OTHER
	25.0
	890.0

	Hf0.75Nb1Ta0.5Ti1.5Zr1.25
	BCC
	C
	OTHER
	72.0
	640.0

	Hf1Mo0.25Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25.0
	1112.0

	Hf1Mo0.5Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25.0
	1317.0

	Hf1Mo0.5Nb1Ti1V0.5
	BCC
	C
	AC
	25.0
	1260.0

	Hf1Mo0.5Nb1Ti1V0.5
	BCC
	C
	AC
	1000.0
	368.0

	Hf1Mo0.5Nb1Ti1V0.5
	BCC
	C
	AC
	1200.0
	60.0

	Hf1Mo0.75Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25.0
	1373.0

	Hf1Mo1Nb1Ta1Ti1
	BCC
	C
	AC
	25.0
	1369.0

	Hf1Mo1Nb1Ta1Ti1
	BCC
	C
	AC
	800.0
	822.0

	Hf1Mo1Nb1Ta1Ti1
	BCC
	C
	AC
	1000.0
	778.0

	Hf1Mo1Nb1Ta1Ti1
	BCC
	C
	AC
	1200.0
	699.0

	Hf1Mo1Nb1Ta1Ti1
	BCC
	C
	AC
	1400.0
	367.0

	Hf1Mo1Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25.0
	1512.0

	Hf1Mo1Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	800.0
	1007.0

	Hf1Mo1Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	1000.0
	814.0

	Hf1Mo1Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	1200.0
	556.0

	Hf1Mo1Nb1Ta1Zr1
	BCC
	C
	AC
	25.0
	1524.0

	Hf1Mo1Nb1Ta1Zr1
	BCC
	C
	AC
	800.0
	1005.0

	Hf1Mo1Nb1Ta1Zr1
	BCC
	C
	AC
	1000.0
	927.0

	Hf1Mo1Nb1Ta1Zr1
	BCC
	C
	AC
	1200.0
	694.0

	Hf1Mo1Nb1Ta1Zr1
	BCC
	C
	AC
	1400.0
	278.0

	Hf1Mo1Nb1Ti1Zr1
	BCC
	C
	A
	25.0
	1575.0

	Hf1Mo1Nb1Ti1Zr1
	BCC
	C
	A
	800.0
	825.0

	Hf1Mo1Nb1Ti1Zr1
	BCC
	C
	A
	1000.0
	635.0

	Hf1Mo1Nb1Ti1Zr1
	BCC
	C
	A
	1200.0
	187.0

	Hf1Mo1Ta1Ti1Zr1
	BCC
	C
	AC
	25.0
	1600.0

	Hf1Mo1Ta1Ti1Zr1
	BCC
	C
	AC
	800.0
	1045.0

	Hf1Mo1Ta1Ti1Zr1
	BCC
	C
	AC
	1000.0
	855.0

	Hf1Mo1Ta1Ti1Zr1
	BCC
	C
	AC
	1200.0
	404.0

	Hf1Nb1Ta1Ti1
	BCC
	C
	A
	25.0
	847.0

	Hf1Nb1Ta1Ti1
	BCC
	C
	A
	200.0
	610.0

	Hf1Nb1Ta1Ti1
	BCC
	C
	A
	600.0
	473.0

	Hf1Nb1Ta1Ti1Zr1
	BCC
	C
	OTHER
	25.0
	929.0

	Hf1Nb1Ta1Ti1Zr1
	BCC
	C
	OTHER
	400.0
	790.0

	Hf1Nb1Ta1Ti1Zr1
	BCC
	C
	OTHER
	600.0
	675.0

	Hf1Nb1Ta1Ti1Zr1
	BCC
	C
	OTHER
	800.0
	535.0

	Hf1Nb1Ta1Ti1Zr1
	BCC
	C
	OTHER
	1000.0
	295.0

	Hf1Nb1Ta1Ti1Zr1
	BCC
	C
	OTHER
	1200.0
	92.0

	Hf1Nb1Ta1Zr1
	BCC
	C
	AC
	25.0
	1315.0

	Hf1Nb1Ti1V1Zr1
	BCC
	C
	A
	25.0
	1171.0

	Hf1Nb1Ti1Zr1
	BCC
	C
	AC
	25.0
	1000.0

	Hf1Nb1Ti1Zr1
	BCC
	C
	AC
	800.0
	303.0

	Hf1Nb1Ti1Zr1
	BCC
	C
	AC
	1000.0
	154.0

	Mo0.1Nb1Ti1V0.3Zr1
	BCC
	C
	A
	25.0
	932.0

	Mo0.333Nb0.333Ti0.333V1Zr0.333
	BCC
	C
	AC
	25.0
	1418.0

	Mo0.3Nb1Ti1V0.3Zr1
	BCC
	C
	A
	25.0
	1312.0

	Mo0.3Nb1Ti1V1Zr1
	BCC
	C
	A
	25.0
	1289.0

	Mo0.5Nb0.5Ti0.5V1Zr0.5
	BCC
	C
	AC
	25.0
	1538.0

	Mo0.5Nb1Ti1V0.3Zr1
	BCC
	C
	A
	25.0
	1301.0

	Mo0.5Nb1Ti1V1Zr1
	BCC
	C
	A
	25.0
	1473.0

	Mo0.667Nb0.667Ti0.667V1Zr0.667
	BCC
	C
	AC
	25.0
	1735.0

	Mo0.7Nb1Ti1V0.3Zr1
	BCC
	C
	A
	25.0
	1436.0

	Mo0.7Nb1Ti1V1Zr1
	BCC
	C
	A
	25.0
	1706.0

	Mo1.3Nb1Ti1V0.3Zr1
	BCC
	C
	AC
	25.0
	1603.0

	Mo1.3Nb1Ti1V1Zr1
	BCC
	C
	AC
	25.0
	1496.0

	Mo1.5Nb1Ti1V0.3Zr1
	BCC
	C
	AC
	25.0
	1576.0

	Mo1Nb0.588Ti0.588V0.588Zr0.588
	BCC
	C
	A
	25.0
	1645.0

	Mo1Nb0.5Ti0.5V0.5Zr0.5
	BCC
	C
	A
	25.0
	1765.0

	Mo1Nb0.667Ti0.667V0.2Zr0.667
	BCC
	C
	A
	25.0
	1576.0

	Mo1Nb0.667Ti0.667V0.667Zr0.667
	BCC
	C
	A
	25.0
	1603.0

	Mo1Nb0.769Ti0.769V0.231Zr0.769
	BCC
	C
	A
	25.0
	1603.0

	Mo1Nb0.769Ti0.769V0.769Zr0.769
	BCC
	C
	A
	25.0
	1496.0

	Mo1Nb1Ta1Ti0.25W1
	BCC
	C
	AC
	25.0
	1109.0

	Mo1Nb1Ta1Ti0.5W1
	BCC
	C
	AC
	25.0
	1211.0

	Mo1Nb1Ta1Ti0.75W1
	BCC
	C
	AC
	25.0
	1304.0

	Mo1Nb1Ta1Ti1
	BCC
	C
	A
	25.0
	1210.0

	Mo1Nb1Ta1Ti1
	BCC
	C
	A
	60.0
	1071.0

	Mo1Nb1Ta1Ti1
	BCC
	C
	A
	100.0
	1029.0

	Mo1Nb1Ta1Ti1
	BCC
	C
	A
	200.0
	868.0

	Mo1Nb1Ta1Ti1
	BCC
	C
	A
	300.0
	732.0

	Mo1Nb1Ta1Ti1
	BCC
	C
	A
	400.0
	685.0

	Mo1Nb1Ta1Ti1
	BCC
	C
	A
	600.0
	593.0

	Mo1Nb1Ta1Ti1
	BCC
	C
	A
	800.0
	564.0

	Mo1Nb1Ta1Ti1
	BCC
	C
	A
	1000.0
	539.0

	Mo1Nb1Ta1Ti1V1
	BCC
	C
	AC
	25.0
	1400.0

	Mo1Nb1Ta1Ti1V1W1
	BCC
	C
	AC
	25.0
	1515.0

	Mo1Nb1Ta1Ti1V1W1
	BCC
	C
	AC
	600.0
	973.0

	Mo1Nb1Ta1Ti1V1W1
	BCC
	C
	AC
	800.0
	791.3

	Mo1Nb1Ta1Ti1V1W1
	BCC
	C
	AC
	1000.0
	752.8666666666667

	Mo1Nb1Ta1Ti1V1W1
	BCC
	C
	AC
	1200.0
	659.0

	Mo1Nb1Ta1Ti1W1
	BCC
	C
	AC
	25.0
	1380.333333333333

	Mo1Nb1Ta1Ti1W1
	BCC
	C
	AC
	600.0
	689.0

	Mo1Nb1Ta1Ti1W1
	BCC
	C
	AC
	800.0
	674.0

	Mo1Nb1Ta1Ti1W1
	BCC
	C
	AC
	1000.0
	620.0

	Mo1Nb1Ta1Ti1W1
	BCC
	C
	AC
	1200.0
	586.0

	Mo1Nb1Ta1V1
	BCC
	C
	A
	25.0
	1525.0

	Mo1Nb1Ta1V1W1
	BCC
	C
	OTHER
	25.0
	1246.0

	Mo1Nb1Ta1V1W1
	BCC
	C
	OTHER
	600.0
	862.0

	Mo1Nb1Ta1V1W1
	BCC
	C
	OTHER
	800.0
	846.0

	Mo1Nb1Ta1V1W1
	BCC
	C
	OTHER
	1000.0
	842.0

	Mo1Nb1Ta1V1W1
	BCC
	C
	OTHER
	1200.0
	735.0

	Mo1Nb1Ta1V1W1
	BCC
	C
	OTHER
	1400.0
	656.0

	Mo1Nb1Ta1V1W1
	BCC
	C
	OTHER
	1600.0
	477.0

	Mo1Nb1Ta1W1
	BCC
	C
	AC
	25.0
	1027.0

	Mo1Nb1Ta1W1
	BCC
	C
	AC
	600.0
	561.0

	Mo1Nb1Ta1W1
	BCC
	C
	AC
	800.0
	552.0

	Mo1Nb1Ta1W1
	BCC
	C
	AC
	1000.0
	548.0

	Mo1Nb1Ta1W1
	BCC
	C
	AC
	1200.0
	506.0

	Mo1Nb1Ta1W1
	BCC
	C
	AC
	1400.0
	421.0

	Mo1Nb1Ta1W1
	BCC
	C
	AC
	1600.0
	405.0

	Mo1Nb1Ti1
	BCC
	C
	OTHER
	25.0
	1100.0

	Mo1Nb1Ti1
	BCC
	C
	OTHER
	1000.0
	504.0

	Mo1Nb1Ti1
	BCC
	C
	OTHER
	1200.0
	324.0

	Mo1Nb1Ti1V0.25Zr1
	BCC
	C
	AC
	25.0
	1776.0

	Mo1Nb1Ti1V0.3Zr1
	BCC
	C
	A
	25.0
	1455.0

	Mo1Nb1Ti1V0.5Zr1
	BCC
	C
	AC
	25.0
	1647.0

	Mo1Nb1Ti1V0.75Zr1
	BCC
	C
	AC
	25.0
	1708.0

	Mo1Nb1Ti1V1
	BCC
	C
	AC
	25.0
	1200.0

	Mo1Nb1Ti1V1Zr1
	BCC
	C
	A
	25.0
	1779.0

	Mo1Nb1Ti1Zr1
	BCC
	C
	AC
	25.0
	1592.0

	Mo1Ta1Ti1V1
	BCC
	C
	AC
	25.0
	1221.0

	Nb0.5Ti0.5V1Zr0.5
	BCC
	C
	OTHER
	25.0
	918.0

	Nb0.5Ti0.5V1Zr0.5
	BCC
	C
	OTHER
	600.0
	571.0

	Nb0.5Ti0.5V1Zr0.5
	BCC
	C
	OTHER
	800.0
	240.0

	Nb0.5Ti0.5V1Zr0.5
	BCC
	C
	OTHER
	1000.0
	72.0

	Nb1Ta0.3Ti1Zr1
	BCC
	C
	OTHER
	25.0
	882.0

	Nb1Ta0.3Ti1Zr1
	BCC
	C
	OTHER
	1000.0
	274.0

	Nb1Ta0.3Ti1Zr1
	BCC
	C
	OTHER
	1200.0
	102.0

	Nb1Ta1Ti1
	BCC
	C
	OTHER
	25.0
	573.0

	Nb1Ta1Ti1
	BCC
	C
	OTHER
	100.0
	486.0

	Nb1Ta1Ti1
	BCC
	C
	OTHER
	200.0
	378.0

	Nb1Ta1Ti1
	BCC
	C
	OTHER
	300.0
	314.0

	Nb1Ta1Ti1
	BCC
	C
	OTHER
	400.0
	232.0

	Nb1Ta1Ti1
	BCC
	C
	OTHER
	600.0
	222.0

	Nb1Ta1Ti1
	BCC
	C
	OTHER
	800.0
	210.0

	Nb1Ta1Ti1
	BCC
	C
	OTHER
	1000.0
	160.0

	Nb1Ta1Ti1V1
	BCC
	C
	AC
	25.0
	1028.5

	Nb1Ta1Ti1V1W1
	BCC
	C
	AC
	25.0
	1420.0

	Nb1Ta1Ti1W1
	BCC
	C
	A
	25.0
	1054.0

	Nb1Ta1Ti1W1
	BCC
	C
	A
	100.0
	968.0

	Nb1Ta1Ti1W1
	BCC
	C
	A
	200.0
	869.0

	Nb1Ta1Ti1W1
	BCC
	C
	A
	300.0
	754.0

	Nb1Ta1Ti1W1
	BCC
	C
	A
	400.0
	627.0

	Nb1Ta1Ti1W1
	BCC
	C
	A
	600.0
	596.0

	Nb1Ta1Ti1W1
	BCC
	C
	A
	800.0
	564.0

	Nb1Ta1Ti1W1
	BCC
	C
	A
	1000.0
	459.0

	Nb1Ti1V0.3Zr1
	BCC
	C
	A
	25.0
	866.0

	Nb1Ti1V1Zr1
	BCC
	C
	OTHER
	25.0
	1105.0

	Nb1Ti1V1Zr1
	BCC
	C
	OTHER
	600.0
	834.0

	Nb1Ti1V1Zr1
	BCC
	C
	OTHER
	800.0
	187.0

	Nb1Ti1V1Zr1
	BCC
	C
	OTHER
	1000.0
	58.0

	Nb1Ti1Zr1
	BCC
	C
	AC
	25.0
	1223.0

	Nb1Ti1Zr1
	BCC
	C
	AC
	800.0
	462.0

	Nb1Ti1Zr1
	BCC
	C
	AC
	1000.0
	218.0




Table S5. Dataset comprising fracture strain values (%) for BCC HEAs. The dataset includes columns for alloy composition, phase constitution, mechanical testing method, processing condition, testing temperature (°C), and corresponding yield strength values. In this context, "A" denotes alloys that have undergone Annealing, "AC" represents those in the As Cast condition, and "OTHER" refers to all other processing conditions. The mechanical testing method is specified as "C" for Compression testing.
	BCC Fracture Strain Dataset

	Alloy
	Phases
	Mechanical Testing
	Processing Condition
	Test Temperature C
	Fracture Strain (%)

	Al0.214Nb0.714Ta0.571Ti1V0.143Zr0.929
	BCC
	C
	OTHER
	25
	5.0

	Al0.214Nb0.714Ta0.714Ti1Zr0.929
	BCC
	C
	OTHER
	25
	5.0

	Al0.25Co1Cr1Cu1Fe1Mn1Ni1Ti1V1
	BCC
	C
	AC
	25
	2.0

	Al0.25Mo1Nb1Ti1V1
	BCC
	C
	AC
	25
	13.0

	Al0.2Mo1Ta1Ti1V1
	BCC
	C
	AC
	25
	7.0

	Al0.333Nb0.667Ta0.533Ti1V0.133Zr0.667
	BCC
	C
	OTHER
	25
	5.0

	Al0.3Hf1Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25
	50.0

	Al0.3Nb1Ta0.8Ti1.4V0.2Zr1.3
	BCC
	C
	AC
	25
	5.0

	Al0.3Nb1Ta0.8Ti1.4V0.2Zr1.3
	BCC
	C
	AC
	800
	50.0

	Al0.3Nb1Ta0.8Ti1.4V0.2Zr1.3
	BCC
	C
	AC
	1000
	50.0

	Al0.3Nb1Ta1Ti1.4Zr1.3
	BCC
	C
	AC
	25
	5.0

	Al0.3Nb1Ta1Ti1.4Zr1.3
	BCC
	C
	AC
	800
	50.0

	Al0.3Nb1Ta1Ti1.4Zr1.3
	BCC
	C
	AC
	1000
	50.0

	Al0.4Hf0.6Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25
	10.0

	Al0.4Hf0.6Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	800
	50.0

	Al0.4Hf0.6Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	1000
	50.0

	Al0.5Hf1Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25
	46.0

	Al0.5Mo1Nb1Ti1V1
	BCC
	C
	AC
	25
	11.0

	Al0.5Nb1Ta0.8Ti1.5V0.2Zr1
	BCC
	C
	AC
	25
	4.5

	Al0.5Nb1Ta0.8Ti1.5V0.2Zr1
	BCC
	C
	AC
	800
	50.0

	Al0.5Nb1Ta0.8Ti1.5V0.2Zr1
	BCC
	C
	AC
	1000
	50.0

	Al0.667Nb1Ta0.333Ti1Zr0.333
	BCC
	C
	OTHER
	25
	4.0

	Al0.667Nb1Ta0.333Ti1Zr0.333
	BCC
	C
	OTHER
	800
	12.0

	Al0.6Mo1Ta1Ti1V1
	BCC
	C
	AC
	25
	4.0

	Al0.75Hf1Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25
	30.0

	Al0.75Mo1Nb1Ti1V1
	BCC
	C
	AC
	25
	8.0

	Al1.5Co1Cr1Fe1Ni1Ti1
	BCC
	C
	AC
	25
	10.0

	Al1Co1Cr1Cu1Ni1Ti1
	BCC
	C
	AC
	25
	8.0

	Al1Co1Cr1Fe1Mo0.1Ni1
	BCC
	C
	AC
	25
	9.0

	Al1Co1Cr1Fe1Nb0.1Ni1
	BCC
	C
	AC
	25
	17.0

	Al1Co1Cr1Fe1Ni1
	BCC
	C
	AC
	25
	25.0

	Al1Co1Cr1Fe1Ni1Ti0.5
	BCC
	C
	AC
	25
	23.0

	Al1Co1Cr1Fe1Ni1Ti1
	BCC
	C
	AC
	25
	9.0

	Al1Cr0.5Nb1Ti1V1
	BCC
	C
	A
	25
	0.8

	Al1Cr0.5Nb1Ti1V1
	BCC
	C
	A
	600
	2.5

	Al1Cr1Fe1Mo0.2Ni1
	BCC
	C
	AC
	25
	29.0

	Al1Cr1Fe1Mo0.5Ni1
	BCC
	C
	AC
	25
	13.0

	Al1Cr1Fe1Ni1
	BCC
	C
	AC
	25
	29.0

	Al1Cr1Mo1Nb1Ti1
	BCC
	C
	AC
	400
	2.0

	Al1Cr1Mo1Nb1Ti1
	BCC
	C
	AC
	600
	3.0

	Al1Cr1Mo1Nb1Ti1
	BCC
	C
	AC
	800
	2.0

	Al1Cr1Mo1Nb1Ti1
	BCC
	C
	AC
	1000
	15.0

	Al1Cr1Mo1Nb1Ti1
	BCC
	C
	AC
	1200
	24.0

	Al1Mo0.5Nb1Ta0.5Ti1Zr1
	BCC
	C
	AC
	25
	10.0

	Al1Mo1Nb1Ti1V1
	BCC
	C
	AC
	25
	3.0

	Al1Nb1.5Ta0.5Ti1.5Zr0.5
	BCC
	C
	AC
	25
	4.0

	Al1Nb1Ti1V1
	BCC
	C
	A
	25
	5.1

	Al1Nb1Ti1V1
	BCC
	C
	A
	600
	12.25

	Al2Co1Cr1Cu1Fe1Mn1Ni1Ti1V1
	BCC
	C
	AC
	25
	2.0

	Al2Co1Cr1Fe1Ni1Ti1
	BCC
	C
	AC
	25
	5.0

	Co1Cr1Mo1Nb1Ti0.4
	BCC
	C
	AC
	25
	5.0

	Cr1Fe1Ni1Ti0.4
	BCC
	C
	AC
	25
	6.5

	Hf0.24Nb0.23Ti0.38V0.15
	BCC
	C
	AC
	25
	20.6

	Hf0.5Mo0.5Nb1Ti1Zr1
	BCC
	C
	AC
	25
	25.0

	Hf0.5Mo1Nb1Ti1Zr1
	BCC
	C
	AC
	25
	12.09

	Hf0.5Nb0.5Ta0.5Ti1.5Zr1
	BCC
	C
	AC
	25
	18.8

	Hf1.5Mo1Nb1Ti1Zr1
	BCC
	C
	AC
	25
	16.83

	Hf1Mo0.25Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25
	50.0

	Hf1Mo0.5Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25
	50.0

	Hf1Mo0.5Nb1Ti1V0.5
	BCC
	C
	AC
	25
	35.0

	Hf1Mo0.5Nb1Ti1V0.5
	BCC
	C
	AC
	1000
	35.0

	Hf1Mo0.5Nb1Ti1V0.5
	BCC
	C
	AC
	1200
	35.0

	Hf1Mo0.75Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25
	50.0

	Hf1Mo1.5Nb1Ti1Zr1
	BCC
	C
	AC
	25
	10.83

	Hf1Mo1Nb0.5Ti1Zr1
	BCC
	C
	AC
	25
	13.02

	Hf1Mo1Nb1.5Ti1Zr1
	BCC
	C
	AC
	25
	23.97

	Hf1Mo1Nb1Ta1Ti1
	BCC
	C
	AC
	25
	27.0

	Hf1Mo1Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25
	12.0

	Hf1Mo1Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	800
	23.0

	Hf1Mo1Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	1000
	30.0

	Hf1Mo1Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	1200
	30.0

	Hf1Mo1Nb1Ti0.5Zr1
	BCC
	C
	AC
	25
	12.08

	Hf1Mo1Nb1Ti1.5Zr1
	BCC
	C
	AC
	25
	28.98

	Hf1Mo1Nb1Ti1Zr0.5
	BCC
	C
	AC
	25
	18.02

	Hf1Mo1Nb1Ti1Zr1
	BCC
	C
	AC
	25
	10.12

	Hf1Mo1Nb1Ti1Zr1.5
	BCC
	C
	AC
	25
	16.09

	Hf1Mo1Ta1Ti1Zr1
	BCC
	C
	AC
	25
	4.0

	Hf1Mo1Ta1Ti1Zr1
	BCC
	C
	AC
	800
	19.0

	Hf1Mo1Ta1Ti1Zr1
	BCC
	C
	AC
	1000
	30.0

	Hf1Mo1Ta1Ti1Zr1
	BCC
	C
	AC
	1200
	30.0

	Hf1Nb1Ta1Ti1Zr1
	BCC
	C
	AC
	25
	50.0

	Hf1Nb1Ta1Zr1
	BCC
	C
	AC
	25
	21.6

	Hf1Nb1Ti1V1Zr1
	BCC
	C
	AC
	25
	29.6

	Hf1Nb1Ti1Zr1
	BCC
	C
	AC
	25
	52.0

	Hf1Nb1Ti1Zr1
	BCC
	C
	AC
	800
	51.0

	Hf1Nb1Ti1Zr1
	BCC
	C
	AC
	1000
	51.0

	Mo0.1Nb1Ti1V0.3
	BCC
	C
	AC
	25
	45.0

	Mo0.1Nb1Ti1V0.3Zr1
	BCC
	C
	AC
	25
	45.0

	Mo0.333Nb0.333Ti0.333V1Zr0.333
	BCC
	C
	AC
	25
	24.0

	Mo0.3Nb1Ti1V0.3
	BCC
	C
	AC
	25
	50.0

	Mo0.3Nb1Ti1V0.3Zr1
	BCC
	C
	AC
	25
	50.0

	Mo0.3Nb1Ti1V1Zr1
	BCC
	C
	AC
	25
	42.0

	Mo0.5Nb0.5Ti0.5V1Zr0.5
	BCC
	C
	AC
	25
	23.0

	Mo0.5Nb1Ti1V0.3
	BCC
	C
	AC
	25
	43.0

	Mo0.5Nb1Ti1V0.3Zr1
	BCC
	C
	AC
	25
	43.0

	Mo0.5Nb1Ti1V1Zr1
	BCC
	C
	AC
	25
	32.0

	Mo0.667Nb0.667Ti0.667V1Zr0.667
	BCC
	C
	AC
	25
	20.0

	Mo0.7Nb1Ti1V0.3
	BCC
	C
	AC
	25
	27.0

	Mo0.7Nb1Ti1V0.3Zr1
	BCC
	C
	AC
	25
	26.6

	Mo0.7Nb1Ti1V1Zr1
	BCC
	C
	AC
	25
	32.0

	Mo1.0Nb1Ti1V0.3Zr1
	BCC
	C
	AC
	25
	25.0

	Mo1.3Nb1Ti1V0.3
	BCC
	C
	AC
	25
	20.0

	Mo1.3Nb1Ti1V0.3Zr1
	BCC
	C
	AC
	25
	20.0

	Mo1.3Nb1Ti1V1Zr1
	BCC
	C
	AC
	25
	30.0

	Mo1.3Nb1Ti1V1Zr1
	BCC
	C
	AC
	25
	30.0

	Mo1.5Nb1Ti1V0.3
	BCC
	C
	AC
	25
	8.0

	Mo1.5Nb1Ti1V0.3Zr1
	BCC
	C
	AC
	25
	8.0

	Mo1.5Nb1Ti1V1Zr1
	BCC
	C
	AC
	25
	20.0

	Mo1.7Nb1Ti1V1Zr1
	BCC
	C
	AC
	25
	15.0

	Mo1Nb1Ta1Ti0.25W1
	BCC
	C
	AC
	25
	2.5

	Mo1Nb1Ta1Ti0.5W1
	BCC
	C
	AC
	25
	5.9

	Mo1Nb1Ta1Ti0.75W1
	BCC
	C
	AC
	25
	8.4

	Mo1Nb1Ta1Ti1V1
	BCC
	C
	AC
	25
	30.0

	Mo1Nb1Ta1Ti1V1W1
	BCC
	C
	AC
	25
	10.6

	Mo1Nb1Ta1Ti1W1
	BCC
	C
	AC
	25
	14.1

	Mo1Nb1Ta1V1
	BCC
	C
	A
	25
	21.0

	Mo1Nb1Ta1V1W1
	BCC
	C
	AC
	25
	2.0

	Mo1Nb1Ta1V1W1
	BCC
	C
	AC
	600
	13.0

	Mo1Nb1Ta1V1W1
	BCC
	C
	AC
	800
	17.0

	Mo1Nb1Ta1V1W1
	BCC
	C
	AC
	1000
	19.0

	Mo1Nb1Ta1V1W1
	BCC
	C
	AC
	1200
	7.5

	Mo1Nb1Ta1V1W1
	BCC
	C
	AC
	1400
	40.0

	Mo1Nb1Ta1V1W1
	BCC
	C
	AC
	1600
	40.0

	Mo1Nb1Ta1W1
	BCC
	C
	AC
	25
	2.0

	Mo1Nb1Ta1W1
	BCC
	C
	AC
	600
	40.0

	Mo1Nb1Ta1W1
	BCC
	C
	AC
	800
	40.0

	Mo1Nb1Ta1W1
	BCC
	C
	AC
	1000
	40.0

	Mo1Nb1Ta1W1
	BCC
	C
	AC
	1200
	40.0

	Mo1Nb1Ta1W1
	BCC
	C
	AC
	1400
	40.0

	Mo1Nb1Ta1W1
	BCC
	C
	AC
	1600
	40.0

	Mo1Nb1Ta1W1
	BCC
	C
	OTHER
	25
	7.5

	Mo1Nb1Ti1V0.25Zr1
	BCC
	C
	AC
	25
	30.0

	Mo1Nb1Ti1V0.3
	BCC
	C
	AC
	25
	25.0

	Mo1Nb1Ti1V0.5Zr1
	BCC
	C
	AC
	25
	28.0

	Mo1Nb1Ti1V0.75Zr1
	BCC
	C
	AC
	25
	29.0

	Mo1Nb1Ti1V1
	BCC
	C
	AC
	25
	26.0

	Mo1Nb1Ti1V1.5Zr1
	BCC
	C
	AC
	25
	20.0

	Mo1Nb1Ti1V1Zr1
	BCC
	C
	AC
	25
	26.0

	Mo1Nb1Ti1V2Zr1
	BCC
	C
	AC
	25
	23.0

	Mo1Nb1Ti1V3Zr1
	BCC
	C
	AC
	25
	24.0

	Mo1Nb1Ti1Zr1
	BCC
	C
	AC
	25
	34.0

	Mo1Ta1Ti1V1
	BCC
	C
	AC
	25
	10.0

	Mo2Nb1Ti1V1Zr1
	BCC
	C
	AC
	25
	12.0

	Nb1Ta1Ti1V1
	BCC
	C
	OTHER
	25
	28.56666666666667

	Nb1Ta1Ti1V1W1
	BCC
	C
	AC
	25
	20.0

	Nb1Ta1V1W1
	BCC
	C
	AC
	25
	12.0

	Nb1Ta1V1W1
	BCC
	C
	AC
	25
	12.0

	Nb1Ti1V0.3Zr1
	BCC
	C
	AC
	25
	45.0

	Nb1Ti1V1Zr1
	BCC
	C
	AC
	25
	50.0

	Nb1Ti1V2Zr1
	BCC
	C
	AC
	25
	50.0

	Nb1Ti1Zr1
	BCC
	C
	AC
	25
	48.0

	Nb1Ti1Zr1
	BCC
	C
	AC
	800
	51.0

	Nb1Ti1Zr1
	BCC
	C
	AC
	1000
	51.0
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Supplementary   Information     Diego Ibarra Hoyos¹*, Peter Connors 2 , Ho   Jang ¹, Nathan Grain 3 , Israel Klich 1 , Gia - Wei Chern 1 ,   Peter K. Liaw 3 ,  John R. Scully 2,4   , Joseph Poon 1,2,*   From Quantum Annealing to Alloy Discovery:  Towards Accelerated Design of High - Entropy Alloys .     ¹ Department of Physics, University of Virginia, Charlottesville, VA 22904 , USA   2   Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA  22904 , USA   3   Department of Materials Science and Engineering, the University of Tennessee, Knoxville, TN  37996, USA   4 Center for Electrochemical Science and Engineering, University of Virginia, Charlottesville, VA  22904, USA   *Corresponding author. Email:  di8pd@virginia.edu   (D.I.H.),  sjp9x@virginia.edu   (J.P.)       Section  A : Features   These are the total features used in this study (see  Ibarra - Hoyos, et al 1 .    for detailed definitions and  calculation methods)   1. Thermodynamic Properties      Mixing Enthalpy (Hmix): The enthalpy  changes   when constituent elements mix; relates to alloy -   formation energy and phase stability.      Mixing Entropy (Mix_Entropy): The configurational entropy due to multiple elements; stabilizes  solid - solution phases.      Strain Energy (Strain_Energy): Stored elastic energy in the lattice, often related to distortion and  strengthening.      Residual Strain (Residual_Strain): Remaining internal strain after processing or solidification.   2. Electronic Properties      Average Valence Electron Concentration (VEC_avg): The mean number of valence electrons per  atom; determines phase stability (e.g., FCC or BCC structure).      Variance in Valence Electron Concentration (VEC_var): Variability of VEC among elements; 

