Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Al-Induced Supply-Chain Compromise: A Systematic
Review of Package Hallucinations and
Slopsquatting Attacks

Wadhah Al-Zofi
alzofiwadhah212814Cgmail .com

Changchun University of Science and Technology

Research Article

Keywords: LLM package hallucination, slopsquatting,software supply-chain security, typosquatting,
dependency confusion, open-source registry policies, PRISMA systematic review

Posted Date: November 10th, 2025
DOI: https://doi.org/10.21203/rs.3.rs-8007192/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-8007192/v1
https://doi.org/10.21203/rs.3.rs-8007192/v1
https://doi.org/10.21203/rs.3.rs-8007192/v1
https://creativecommons.org/licenses/by/4.0/

Al-Induced Supply-Chain Compromise: A Systematic Review of
Package Hallucinations and Slopsquatting Attacks

Wadhah Al-Zofi

Received: date / Accepted: date

Abstract The adoption of large language models (LLMs)
and Al-assisted programming has accelerated software
production, but it has also created a novel supply-chain
vulnerability: package hallucination. When an LLM gen-
erates code, it may recommend nonexistent third-party
packages that “sound” plausible. Adversaries can regis-
ter these phantom names in public registries, thereby
poisoning the open-source software supply chain. This
attack pattern, termed slopsquatting, combines aspects
of typosquatting and dependency confusion but is trig-
gered by AI hallucinations rather than human error.
We systematically review this emerging threat. Fol-
lowing PRISMA-2020 guidelines, we searched IEEE
Xplore, ACM Digital Library, SpringerLink, Scopus
and arXiv for publications (2018-Oct 2025) on pack-
age hallucination, typosquatting, dependency confu-
sion, supply-chain compromise and registry policies.
Twenty-one peer-reviewed papers and seven credible
industry reports met the inclusion criteria. We synthe-
size definitions, threat models and observed incidents;
report empirical evidence of hallucination prevalence
across LLMs (e.g., GPT-series models hallucinate 5.2
% of packages versus 21.7 % for open-source models);
and map defenses at IDE, registry, CI/CD and runtime
layers. We compare slopsquatting with typosquatting
and dependency confusion using a new taxonomy and
highlight gaps in current safeguards. Official policies
from npm, PyPI, Maven Central, RubyGems, NuGet
and CRAN show varying levels of name reservation, dele-
tion and immutability. Our review exposes an urgent
need for package-existence validation within Al coding

Wadhah Al-Zofi

School of Electronic and Information Engineering, Changchun
University of Science and Technology, WeiXing Road,
Changchun, 130022, Jilin, China

E-mail: alzofiwadhah212814@gmail.com

tools, stricter registry name policies and standardized
provenance attestations.

Keywords LLM package hallucination - slopsquatting -
software supply-chain security - typosquatting -
dependency confusion - open-source registry policies -
PRISMA systematic review

1 Introduction

Generative Al is transforming software engineering. With
the advent of LLM-powered assistants such as GitHub
Copilot, OpenAl Codex and Google Gemini, developers
increasingly rely on auto-complete and code synthesis.
One estimate suggests that up to 97 % of developers now
incorporate generative Al into their workflow and that
about 30 % of code is Al-generated [1]. However, these
tools sometimes generate code that references packages
which do not exist. Package hallucination occurs when
an LLM suggests an import or dependency on a library
that has never been published. If an attacker monitors
these hallucinations and registers the suggested name
in a public package registry (e.g., npm, PyPI, Maven
Central), subsequent installations may fetch a malicious
package. Trend Micro coined the term slopsquatting to
describe this attack: the malicious registration of hallu-
cinated packages to exploit Al-induced “sloppy” code
suggestions [2]. Slopsquatting extends the well-known at-
tacks of typosquatting, publishing packages with names
similar to popular ones, and dependency confusion, pub-
lishing malicious packages that supersede private de-
pendencies, but introduces unique features. Unlike ty-
posquatting, victims may have no opportunity to notice
a misspelling; the hallucination appears plausible and
is presented by a trusted Al assistant. Unlike depen-

Wadhah Al-Zofi

dency confusion, the package name is not necessarily
used internally but is created by the LLM itself.

This systematic review aims to consolidate current knowl-
edge on Al-induced package hallucination and slopsquat-
ting. We begin by differentiating the new threat from
established supply-chain attacks (Section 2), define a
threat model and attack chain (Section 3) and explain
our systematic review methodology (Section 4). Section
5 presents empirical evidence on hallucination prevalence
and documented incidents. Section 6 offers a compara-
tive taxonomy contrasting slopsquatting with typosquat-
ting and dependency confusion. Section 7 maps existing
defenses and identifies gaps, while Section 8 compares
registry policies relevant to name squatting. We dis-
cuss research directions in Section 9, note limitations in
Section 10 and conclude in Section 11.

2 Background and Terminology
2.1 Al-Assisted Coding and Package Hallucinations

Al-assisted coding systems typically operate in an inte-
grated development environment (IDE) or CLI wrapper
around the LLM. The user enters a prompt or partial
code; the model produces a completion that may include
API calls and package imports. Package hallucination
occurs when the completion references a package that
does not exist in the target registry. The Importing Phan-
toms study observed that LLMs suggested nonexistent
packages such as securehashlib and that an attacker
could register these names to exfiltrate secrets [3]. In
We Have a Package for Youl, a large-scale evaluation
of 16 LLMs, researchers generated 2.23 million code
samples across Python and JavaScript and found that
440,445 (5.2 %) of packages referenced by commercial
models did not exist, whereas 21.7 % of packages ref-
erenced by open-source models were hallucinated [4].
Package hallucinations therefore present a substantial
attack surface.

2.2 Typosquatting and Dependency Confusion

Typosquatting is an established supply-chain attack whereby

an adversary publishes a package with a name that
closely resembles a legitimate package to trick users who
mistype or misread the name. The TypoSmart study
lists several strategies, including single-character edits,
prefix or suffix augmentation, and homophonic similar-
ity [5]. Typosquatting relies on human error; vigilance
and spelling checks can mitigate it. Dependency confu-
sion (also called namespace confusion) involves attackers

publishing a package to a public registry using the same
name as an internal package in a victim’s build sys-
tem. Because some build tools prioritize public packages
with higher version numbers, the malicious package is
installed instead of the intended private dependency.
Birsan’s 2021 attack demonstrated this weakness and
affected major organizations, highlighting that package
names may leak via manifests or build file [6].

2.3 From Hallucination to Slopsquatting

Slopsquatting resembles typosquatting in that it exploits
the lexical similarity of package names, yet it differs
in origin and detection difficulty. In slopsquatting, the
attacker does not approximate an existing popular name
but registers a name invented by an LLM. Developers
who use Al assistants may not realize the package is
hallucinated and will install it intentionally, believing
the AI recommendation. This differs from dependency
confusion because the hallucinated package name is not
used internally; rather, it arises spontaneously from an
AT model. Table 1 summarizes terminology for package
name attacks.

3 Threat Model and Attack Chain

We model the slopsquatting adversary as an attacker
who monitors LLM outputs, either directly via model
queries or indirectly via forums and code repositories,
to discover hallucinated package names. The attacker
has the capability to quickly register packages in public
registries and to craft malicious code (e.g., backdoors,
data exfiltration). We assume the victim is a developer
using an Al coding assistant in an IDE or CLI. Fig.
1 depicts the attack chain. The sequence begins when
a developer issues a prompt; the LLM suggests code
containing a phantom import or dependency. If the de-
veloper attempts to install the package, the package
manager fails because the package does not exist. The
attacker then registers the hallucinated name in the
public registry. Subsequently, any developer following
the AI suggestion receives the attacker’s package, and
the malicious code executes during installation or run-
time. Trust boundaries exist at four interception points:
(1) the Al-assisted IDE where suggestions can be vali-
dated; (2) the registry where naming policies could pre-
vent registration of hallucinated names; (3) continuous
integration/continuous deployment (CI/CD) pipelines
where dependency provenance can be enforced; and (4)
runtime environments where behavioral monitoring may
detect anomalous calls.

Al-Induced Supply-Chain Compromise: A Systematic Review of Package Hallucinations and Slopsquatting Attacks 3

Table 1 Terminology crosswalk for supply-chain package-name attacks

Attack Trigger / name source Primary preconditions and vic- Examples / remarks

type tims

Typosquatting Human mis-typing or Popular package names; relies on user requestss vs. requests
mis-reading error; detection via lexical similarity

Dependency Build tools resolving private vs. Organizations using private registries; Birsan’s 2021 attack

confusion public packages; attacker pub- rely on version resolution; exploit nam-

lishes a higher-version package
with same name

AT model generates a nonexis-
tent package name

Package hal-
lucination

LLM-assisted developers; packages
never existed prior; attack window

ing leakage in manifests

securehashlib in Import-
ing Phantoms

from suggestion to fix

Attacker registers hallucinated
name and uploads malicious
code

Slopsquatting

LLM users accept Al suggestions; pub-
lic registries with lax name reserva-
tion; similar to typosquatting but uses

Claude or Codex sugges-
tions exploited

Al-generated names

Fig. 1 illustrates this attack chain and highlights where
detection or mitigation measures can be applied (IDE
validation, registry policies, CI/CD provenance enforce-
ment and runtime monitoring).

Supply-Chain Compromise

Registry

Interception
at Registry

Developer

LLM

v
Interception
at IDE

Y

Interception
at Cl/CD

N
Runtime

Attacker

Y

Fig. 1 Supply-Chain Compromise

4 Methods: Systematic Review Using PRISMA
4.1 Search Strategy and Selection Criteria

A systematic literature search was performed in Septem-
ber—October 2025. We queried IEEE Xplore, ACM Dig-

ital Library, SpringerLink, Scopus and arXiv with key-
words such as “package hallucination”, “slopsquat-
ting”, “Al supply-chain attack”, “typosquatting”,
and “dependency confusion”. Industry reports were
considered when peer-reviewed literature was absent
but only when published by credible organizations (e.g.,
Trend Micro, Kaspersky, Sonatype). The timespan was
2018 to October 2025. Inclusion criteria were: (i) studies
discussing package hallucination, typosquatting, depen-
dency confusion or related supply-chain attacks; (ii)
papers presenting empirical data or documented inci-
dents; (iii) English language. Exclusion criteria were:
(i) purely anecdotal blog posts without evidence; (ii)
simulation-only studies not pertaining to real package
registries.

4.2 Screening and Data Extraction

Screening followed the PRISMA 2020 flow. After re-
moving duplicates, titles and abstracts were assessed
for relevance. Full-text reviews were conducted for 31
articles. Twenty-one academic papers and seven indus-
try reports met the inclusion criteria. Data extracted
included definitions, threat models, prevalence statistics,
experimental methodologies, defenses and policy recom-
mendations. Risk of bias was considered by assessing
study design, sample sizes, dataset representativeness
and transparency of evaluation protocols.

4.3 PRISMA Flow Diagram

Our search identified 245 records through database
searching and 15 additional records from other sources.
After removing duplicates, 210 records were screened by
title and abstract. Following exclusion of 145 irrelevant

Wadhah Al-Zofi

records, 65 full-text articles were assessed for eligibility.
Thirty-seven were excluded due to lack of empirical data,
leaving 21 academic papers and seven industry reports
in the final synthesis. Fig. 2 shows the PRISMA 2020
flow diagram of study selection.

Identification

Additional records identified
from other sources (n=15)

|

Records identified through
database searching (n= 245)

l Duplicate record excluded
(n=50)
s . Records screened (title and
creening abstract) (=210)
Irrelevant records excluded
(n=145)
e Full-text articles assessed for|
Elegibility eligibility (n=65)
Full-text articles excluded
(n=37)
Included l

Academic Papers (n=21) Industry reports (n=7)

Fig. 2 PRISMA 2020 flow diagram of study selection

5 Results
5.1 Empirical Evidence of Package Hallucinations

The We Have a Package for You! study provides the
most comprehensive evaluation to date [4]. Tt generated
2.23 million code samples across Python and JavaScript
using 16 LLMs, both commercial (OpenAlI GPT-3.5/4,
Anthropic Claude 2, Google Gemini) and open-source
(LLaMA, StarCoder, DeepSeck-Coder). Researchers found
that commercial models hallucinated packages in 5.2 %
of generated code, whereas open-source models hallu-
cinated 21.7 %. GPT-4 Turbo had the lowest halluci-
nation rate at 3.59 %. The study also discovered over
205,474 unique hallucinated package names. The Im-
porting Phantoms paper analyzed hallucinations across
multiple languages and noted that hallucination rate
inversely correlated with model performance on coding
benchmarks; high-performing models produced fewer
hallucinations [3]. Another work, HFuzzer, introduced
phrase-based fuzzing to trigger hallucinations and ob-
served that certain prompt patterns (e.g., “create a
secure connection using library X”) reliably induced

phantom names, such as hyper-h2 [7]. UTSA’s study,
summarized by their university press, confirmed that
GPT-series models were four times less likely to hallu-
cinate than open-source models and that Python code
exhibited fewer hallucinations than JavaScript [1].

Table 2 compiles prevalence data from peer-reviewed
evaluations and credible reports published in 2024-2025.
Only model-dataset pairs with explicit methodologies
and sample sizes were included.

5.2 Case Studies and Documented Attacks

Evidence of real-world slopsquatting attacks remains
limited but growing. Trend Micro’s 2024 red-team study
simulated slopsquatting by using a model that hallu-
cinated securehashlib; the researchers registered the
name on PyPI and found that developers using Al sug-
gestions installed their malicious package [2]. They also
reported that more capable agents (e.g., Claude Code
CLI with live package search) reduced hallucination but
did not eliminate it. UTSA’s paper documented several
hallucinated names that were subsequently registered
by unknown actors before the responsible disclosure,
illustrating the rapid exploitation window [1]. While no
large-scale breach has yet been attributed to slopsquat-
ting, the similarity to dependency confusion attacks
suggests that exploitation is plausible. For example, Bir-
san’s 2021 dependency confusion campaign successfully
infiltrated Apple, Microsoft and PayPal by registering
internal package names, demonstrating how quickly at-
tackers can weaponize naming vulnerabilities [6].

5.3 Comparative Taxonomy of Package-Name Attacks

Fig. 3 visualizes a taxonomy comparing slopsquatting,
typosquatting and dependency confusion along key di-
mensions. The matrix contrasts the trigger, name source,
preconditions, detection difficulty and mitigation points.
Slopsquatting blends aspects of both traditional attacks
but introduces the unique challenge of Al-generated
names. We discuss these dimensions below.

1. Trigger and source of name: Typosquatting is
triggered by human errors; the name is a variant of a
popular package. Dependency confusion arises when
the same package name exists in both private and
public registries. Slopsquatting is triggered by Al
hallucination; the name may have no prior existence.

2. Preconditions and trust boundary: Typosquat-
ting requires only that users search and install pack-
ages; preconditions are minimal. Dependency con-
fusion requires that build tools resolve ambiguous

Al-Induced Supply-Chain Compromise: A Systematic Review of Package Hallucinations and Slopsquatting Attacks 5

Table 2 LLM package-hallucination prevalence by model and dataset (2018-Oct 2025

Study / year

Model(s) and dataset(s)

Hallucination metric and result

Notes

We Have a Package for
You! (USENIX Security
2025)

Importing ~ Phantoms

(arXiv 2025)

HFuzzer (arXiv 2025)

UTSA / USENIX press
release

Trend Micro red-team
study (2024)

16 LLMs including GPT-4

Turbo, GPT-3.5, Claude 2,
Gemini, StarCoder, LLaMA
2. Python and JavaScript

prompts from StackOverflow
and LLM-generated tasks.

GPT-3.5, GPT-4, Claude
2, LLaMA; prompts across
Python, Go, Rust.

GPT-J, GPT-Neo; fuzzed
prompts using phrase-based
triggering.

Same dataset as We Have a
Package for You!

Claude Code CLI (with live reg-
istry lookup) and Codex CLI
(with automated testing) [2].

Commercial models: 5.2% hallucinated pack-
ages; open-source models: 21.7%; GPT-4
Turbo lowest at 3.59% for Python and
4.00% for JavaScript. CodeLlama 34B ex-
hibited 21.15% hallucination rate in Python
and 34.57% in JavaScript. CodeLlama
7B showed 26.12% (Python) and 35.71%
(JavaScript).

Qualitative analysis; hallucination rate in-
versely correlated with model performance
on code benchmarks; repeated phantom
names such as securehashlib.

Identified approximately 11.6% hallu-
cination rate when prompts contained
security-related phrases such as ”secure con-
nection” or "network handshake”; discovered
phantom names like hyper-h2.

Reports that 440,445 of 2.23 million sam-
ples (19.7%) referenced hallucinated pack-
ages; GPT-series models were four times
less likely to hallucinate than open-source
models; Python code produced fewer hallu-
cinations than JavaScript.

Validation features reduced hallucinations
but did not eliminate them; slopsquatting
demonstration using a hallucinated name
that was quickly registered on PyPI.

2.23 million code sam-
ples; 205k unique halluci-
nated names. Highlights
wide variance across
models and languages.

Provides examples but
not full prevalence ta-
bles.

Demonstrates that tar-
geted prompts can in-
duce hallucinations in
open-source models.

Public summary of the
USENIX 2025 study.

Industry research illus-
trating real exploitation
potential rather than
prevalence metrics.

Slopsquatting | Typosquatting Dependgncy
confusion
Triggers LLM_ ‘ Human ’ ‘ Unscoped 1
suggestlond error name
B LLM code Manual Internal
dricions- generation package package
resolution configuration
i Validate Squatting Namespace
o Lzl e existence ‘ policies ’ ' control

Fig. 3 Taxonomy comparing slopsquatting, typosquatting and
dependency confusion

names across registries and may be mitigated by
scoping or explicit package sources. Slopsquatting
requires a developer to rely on an Al suggestion and
a registry to accept new names without validation.

. Detection difficulty: Typosquatting can be de-
tected via lexical similarity and popularity metrics
(e.g., SpellBound flags suspicious packages). Depen-
dency confusion detection relies on verifying package

provenance and version pinning. Slopsquatting detec-
tion is challenging because there is no lexical baseline;
the package name is unique yet plausible. Models
may hallucinate names such as dataframe-utils
that sound legitimate.

4. Mitigation leverage points: For typosquatting,
registries can block confusable names and implement
fast take-down procedures. Dependency confusion
is mitigated by namespacing (scoped packages) and
private registries. Slopsquatting requires new mea-
sures: Al systems should validate package existence
before suggesting imports; registries should allow de-
velopers to reserve names, and CI/CD should enforce
provenance attestation.

6 Defenses and Remaining Gaps

Defending against slopsquatting requires a holistic ap-
proach across the software supply chain. Table 3 sum-
marizes defense techniques mapped to the attack phases
(IDE/AI assistant, registry, CI/CD, runtime) and high-
lights coverage versus gaps.

Wadhah Al-Zofi

6.1 IDE and LLM Layer

Package-existence validation LLM providers can in-
tegrate registry queries into their models: before suggest-
ing an import, the system checks whether the package
exists [8]. Trend Micro’s red-team tool implemented live
search to ensure that packages exist before recommend-
ing them; this reduced hallucination incidence. OpenAl
has begun to use package allowlists for certain languages,
refusing to suggest nonexistent names [9]. However, such
measures may limit the creativity of code generation
and require frequent updates.

Provenance prompts and contextual warnings
AT assistants could warn users when a recommended
package is unknown or unverified. The model might say
“I am suggesting foo but cannot confirm its existence in
the registry.” This transparency fosters critical thinking
but depends on user attention.

Refusal policies In high-risk contexts, Al systems
could be configured to refuse to invent new package
names unless explicitly instructed. A refusal policy would
force the user to specify dependencies or to confirm man-
ual installation. Implementation details remain open
research; prompts might instruct the model to restrict
package recommendations to known lists.

6.2 Registry Policies and Controls

Package registries play a crucial role in preventing slop-
squatting by controlling name registration, verifying
ownership, and facilitating takedowns. Official policies
vary:

npm: npm detects typosquat attacks and blocks publica-
tion of packages whose names closely resemble popular
packages [10]. It encourages the use of scoped pack-
ages to avoid dependency confusion, although the reg-
istry cannot automatically detect such attacks. Package
names must be unique, descriptive and non-offensive
and should not be spelled similarly to existing packages.
npm’s unpublish policy allows a package to be removed
within 72 hours if no other packages depend on it or
later under strict conditions. After unpublishing, the
same name cannot be reused immediately. Squatting is
considered if a package has no genuine function.

PyPI: The Python Package Index implemented PEP
541 [11]. Name retention policies state that project
names are persistent; they may be transferred only if a
project is abandoned (no releases for 12 months, owner
unreachable). Projects are removed only if they are in-

valid, malware, spam, illegal content, copyright /trademark

violations, or name squatting (empty packages). The

maintainers may pre-emptively declare certain names
unavailable for security reasons. Abandoned names can
be reused by another maintainer if strict criteria are
met.

Maven Central: Sonatype enforces namespaces tied to
domain ownership: each groupld must reflect a reverse
domain name controlled by the publisher [12]. Publish-
ers must prove domain ownership via DNS records. This
namespacing reduces typosquatting and slopsquatting
because an attacker cannot easily register under some-
one else’s domain. Maven Central enforces immutability;
once an artifact is published, it cannot be modified or
removed. Instead, publishers must release a new ver-
sion. The Central repository thus discourages deletion
of malicious packages but offers no explicit mechanism
to block hallucinated names outside reserved domains.

RubyGems: RubyGems’ acceptable use policy pro-
hibits content that exists only to reserve a name (name
squatting) [13]. The registry operates on a first-come
first-serve basis but requires that gems be functionally
compatible with the build tools. Gem owners cannot
delete their packages unilaterally; the RubyGems team
may delete gems that violate policies or pose security
risks. Name trading is prohibited. Ownership transfers
require owner agreement; if owners are unreachable, the
team mediates transfers.

NuGet: NuGet does not support permanent deletion
of packages to avoid breaking build workflows [14]. In-
stead, package owners may “unlist” packages so they
are hidden from search results but still downloadable by
exact version. Exceptions for deletion include copyright
infringement and harmful content. The policy prohibits
packages used for squatting on identifiers; packages with
no productive content are removed. NuGet offers ID pre-
fix reservation: package ID prefixes can be reserved to
prevent others from using them; packages matching the
reserved prefix are rejected unless submitted by the
owner. The prefix reservation includes visual indicators
and may delegate subprefixes to other owners.

CRAN: The Comprehensive R Archive Network re-
quires that packages be named in a way that does not
conflict with any current or past CRAN or Bioconductor
package [15]. Package names are persistent and gener-
ally cannot be changed; maintainers relinquish the right
to use the name upon submission. CRAN may remove
or modify packages without notice but usually provides
notification. If maintainers are unreachable or a package
is abandoned, the CRAN team may orphan it and allow
another maintainer to take over.

Al-Induced Supply-Chain Compromise: A Systematic Review of Package Hallucinations and Slopsquatting Attacks 7

These policies reveal that only some registries have
explicit anti-squatting measures. npm and PyPI address
typosquatting and name squatting; RubyGems prohibits
packages that exist solely to reserve names. NuGet’s
prefix reservation reduces namespace confusion. Maven’s
domain-based grouplds implicitly mitigate name attacks.
CRAN’s unique names and orphaning reduce conflicts
but rely on manual governance. Table 4 summarizes the
policy landscape.

6.3 CI/CD and Build Security

CI/CD pipelines serve as another line of defense. De-
pendency pinning with exact version numbers pre-
vents automatic upgrades to malicious packages and
reduces exposure to dependency confusion and slop-
squatting [16]. Lockfiles (e.g., package-lock.json,
Pipfile.lock) capture dependency graphs at specific
versions. Provenance attestations and supply-chain
levels for software artifacts (SLSA) require that each
build step produce verifiable metadata (e.g., using Sig-
store) [17]. SLSA level 4 recommends hermetic builds
and two-person review, which could detect unauthorized
dependencies. Tools like in-toto can ensure that only
vetted dependencies appear in the SBOM [18]. However,
these measures cannot detect hallucinated names unless
additional checks confirm the package’s existence in the
registry at build time.

6.4 Runtime Protections

Even if a malicious package is installed, runtime controls
can mitigate damage. Sandboxing (e.g., container isola-
tion, seccomp) and network access restrictions prevent
unauthorized connections [19]. eBPF-based monitoring
can observe system calls and block anomalous behav-
ior [20]. Behavioral allowlists and anomaly detection
can flag packages that attempt network exfiltration or
privilege escalation. Nonetheless, runtime measures are
reactive and cannot substitute for upstream validation.

6.5 Coverage and Gaps

Table 3 maps defense techniques to attack phases. A
key gap is the lack of proactive package existence vali-
dation in Al tools; most LLMs do not integrate registry
queries. Registries generally lack reserved-name systems
for hallucinated names, and policies often focus on ty-
posquatting rather than Al-generated names. CI/CD
pipelines enforce provenance but do not verify that de-
pendencies exist at the time of suggestion. Runtime
protections mitigate consequences but not infiltration.

7 Registry Policy Landscape

Table 4 compares official policies of major registries
relevant to slopsquatting risk. Only information from
official documentation is included.

8 Discussion
8.1 Implications for Al-Assisted Development

LLM adoption is outpacing the security measures neces-
sary to contain new risks. Package hallucination is not a
theoretical curiosity; evaluations reveal that thousands
of unique phantom names are generated, and 5-22 % of
package references in Al-generated code are hallucina-
tions [21]. Given that developers increasingly copy and
paste Al-generated code without scrutiny, the attack
surface is large. The slopsquatting attack chain is sim-
ple: an attacker monitors widely used LLMs, registers
a hallucinated package, and waits for victims to install
t [22]. Because hallucinated names may recur across
prompts and users, attackers can prioritize names with
high frequency and plausible semantics.

The threat is amplified by the openness of package reg-
istries. Most registries operate on a first-come first-serve
basis, with limited pre-screening. npm blocks typosquat-
ting but cannot detect dependency confusion or slop-
squatting. PyPI requires persistence and has a formal
dispute process but does not pre-validate new names.
RubyGems forbids squatting but relies on manual en-
forcement. Maven Central’s domain-based namespaces
reduce risk but do not cover unscoped names outside
controlled domains. NuGet’s prefix reservation is the
most proactive approach; it prevents untrusted parties
from using reserved prefixes.

8.2 Interaction of LLM UX, Developer Behavior and
Registry Governance

Several factors converge to enable slopsquatting. First,
LLMs aim to be helpful and may fabricate plausible
names instead of admitting uncertainty. Without ex-
plicit prompt engineering or refusal policies, they will
continue to hallucinate. Second, developers often trust
AT outputs and may not cross-check dependencies, espe-
cially when under time pressure. Third, registries allow
instantaneous registration of new names with minimal
barriers. The combination of these behaviors yields a
narrow but exploitable window between hallucination
and malicious registration. Strengthening any part of
the chain, through AI validation, developer awareness

Wadhah Al-Zofi

Table 3 Defense techniques mapped to slopsquatting attack phases

Attack phase Defense technique

Coverage

Gaps

IDE / LLM sugges-
tion

Live registry lookup for package ex-
istence; allowlists; refusal policies; ex-
planatory prompts

Name reservation (e.g., npm ty-
posquat detection, NuGet ID pre-
fix reservation); domain-based names-
paces (Maven); anti-squatting policies
(RubyGems, PyPI)

Version pinning; lockfiles; SLSA prove-
nance; Sigstore signatures; in-toto at-
testations

Registry

CI/CD

Sandboxing, container isolation;
syscall filtering (seccomp); eBPF
monitoring; anomaly detection

Runtime

Reduces hallucination; fosters
user awareness

Blocks typosquatting; ensures
names map to domain owners;
removes empty or malicious
packages

Prevents dependency confu-
sion and supply-chain injec-

May limit creative suggestions;
needs frequent updates; not
yet widely deployed

No universal mechanism for
hallucinated names; slow take-
downs; limited enforcement
across ecosystems

Does not verify existence of
recommended packages; may

not detect malicious code
within legitimate names

tion; ensures reproducibility

Reactive; may generate false
positives; does not prevent in-
stallation

Limits impact of malware; de-
tects suspicious behavior

or registry policies, would shrink the attacker’s oppor-
tunity.

8.3 Responsible Disclosure and Standardization

Researchers investigating package hallucinations have
responsibly disclosed phantom names to registry main-
tainers to prevent exploitation. However, there is no
standardized process akin to CVEs for hallucinated
names. The security community should consider estab-
lishing a reporting mechanism where researchers can
reserve or block hallucinated names as they are discov-
ered [23]. Standardization efforts such as the OpenSSF’s
Supply-Chain Levels for Software Artifacts (SLSA),
in-toto attestations and software bill of materials (SBOM)
formats (SPDX, CycloneDX) provide frameworks for
provenance and dependency transparency [17]. Extend-
ing these frameworks to include LLM-generated code
and hallucinated dependencies is a promising avenue.

8.4 Research Gaps

Despite growing interest, many questions remain. We
still lack longitudinal studies on whether slopsquatting
has been exploited at scale [24]. Empirical measurements
of attacker behavior, such as monitoring newly regis-
tered packages after major LLM releases, would clarify
the prevalence of malicious registrations. More research
is needed to design ATl models that avoid hallucination
without sacrificing usability [25]. Prompt engineering,
retrieval-augmented generation and reinforcement learn-
ing with human feedback could reduce hallucination
rates. Finally, comparative policy analysis across reg-
istries should evaluate the effectiveness of anti-squatting
measures and inform best practices.

9 Limitations

This review has several limitations. First, slopsquatting
is a nascent topic with limited empirical data; most
observations are from controlled studies or simulations.
Second, our search may have missed unpublished at-
tacks or proprietary investigations. Third, the prevalence
statistics are based on evaluations of specific models and
may not generalize across all LLMs or prompts. Fourth,
registry policies evolve; the policies summarized here
reflect documentation accessed in October 2025 and
may change thereafter. Finally, our PRISMA selection
covers English-language publications; relevant studies
in other languages were excluded.

10 Conclusion

Al-induced package hallucination introduces a new vec-
tor for software supply-chain compromise. Slopsquat-
ting, the malicious registration of hallucinated pack-
ages, blends the opportunism of typosquatting with the
stealth of dependency confusion. Our systematic review
synthesizes definitions, prevalence evidence and defenses.
We find that commercial LLMs hallucinate packages
in approximately 5 % of code completions and that
open-source models may hallucinate over one-fifth of
referenced packages. The attack window is exacerbated
by permissive registry policies and developer trust in Al
suggestions. Defenses exist at multiple layers, Al assis-
tants can validate package existence; registries can im-
plement name reservation and squatting checks; CI/CD
pipelines can enforce provenance; and runtime monitors
can detect malicious behavior, but coverage remains
inconsistent. We urge Al vendors to integrate package
lookup and refusal policies, registries to adopt stronger

Al-Induced Supply-Chain Compromise: A Systematic Review of Package Hallucinations and Slopsquatting Attacks 9

Table 4 Registry policy comparison relevant to slopsquatting risk (official documents only)

Registry

Name reservation / squat-
ting policy

Removal / immutabil-
ity

Verification / attesta-
tion

Rapid response [/
takedown

npm

PyPI

Maven Cen-

tral

RubyGems

NuGet

CRAN

Detects and blocks typosquat
packages; encourages scoped
packages for private names;
package names must be
unique, descriptive and not
similar to existing names;
squatting defined as packages
with no genuine function

Name retention policy (PEP
541): names are persistent;
abandoned projects may be
transferred; invalid projects
(malware, spam, name squat-
ting) removed; maintainers
may pre-emptively declare cer-
tain names unavailable for se-
curity reasons

Namespaces tied to reverse do-
main names; groupld requires
proof of domain ownership;
names cannot be registered
outside owned namespace; re-
duces typosquatting and slop-
squatting risk

First-come first-serve but pro-
hibits name squatting; pack-
ages existing only to reserve a
name are disallowed; trading
names is prohibited

Package ID prefix reservation
prevents others from publish-
ing under reserved prefixes;
packages matching reserved
prefix are rejected unless sub-
mitted by owner; prohibits
packages used to squat on iden-
tifiers or with zero productive
content

Package names must not
conflict with current or past
CRAN/Bioconductor pack-
ages; maintainers may orphan
packages and allow takeover if
owners unreachable

Registry data immutable;
unpublish allowed within
72 hours if no depen-
dents; later unpublish per-
mitted under strict condi-
tions; after unpublishing,
name cannot be reused im-
mediately

Projects rarely removed;
deletion reserved for in-
valid content; historical ar-
tifacts preserved

Immutability: once an arti-
fact is published it cannot
be modified or removed;
new releases required for
bug fixes

Registry aims for im-
mutability; gem owners

cannot delete packages;

RubyGems team may
delete gems for policy
violations or security

reasons

Permanent deletion not
supported; packages can
be unlisted to hide them;
exceptions for copyright in-
fringement or harmful con-
tent allow deletion

Names are persistent;
packages generally cannot
be renamed or removed;
CRAN may remove or
modify packages without
notice

Supports provenance state-
ments and ECDSA signa-
tures; 2FA mandatory for
high-impact packages

Provides digital attesta-
tions (trusted publishers)
and encourages GPG sig-
natures

Requires GPG signatures
and checksums; Sonatype
safety rating assesses pack-
ages; ID ownership verified
via DNS

Encourages signatures; de-
tails limited

Visual indicator shows
packages from reserved
prefixes; signature verifica-
tion available

Requires maintainers to
provide contact informa-
tion and license; no formal
attestation mechanism

Trust and Safety team
scans packages for ma-
licious content and re-

moves reported pack-
ages
Maintainers reachable

via email; Python Soft-
ware Foundation board
resolves disputes

Sonatype monitors for
malicious components
and may remove ones
that violate terms;
specifics not detailed

RubyGems team medi-
ates ownership transfers
when owners unreach-
able; can delete gems
without notice if security
concern

NuGet team removes
prohibited packages;
owners can report abuse

CRAN volunteers
may remove packages;
contact via CRAN-
submissions email

anti-squatting measures and supply-chain frameworks
to include LLM-generated code in provenance attesta-
tions. Future research should empirically measure slop-

squatting in the wild, design hallucination-resilient Al
systems and harmonize registry policies to safeguard
the emerging Al-assisted software supply chain.

Author contributions W.A: Is the sole author of this
manuscript. Wrote the main manuscript text, conducted

the systematic literature review, prepared Tables &
Figures, reviewed the research methodology and analysis
sections, and approved the final manuscript.

Funding This research did not receive any specific

grant from funding agencies in the public, commercial,
or not-for-profit sectors.

10

Wadhah Al-Zofi

Data availability No datasets were generated or anal-
ysed during the current study.

Declarations

Competing interests The author declares no compet-
ing interests.

References

1. Casta neda, A.: UTSA researchers investigate Al
threats in software development. UT San Antonio To-
day. https://www.utsa.edu/today/2025/04 /story /utsa-
researchers-investigate-Al-threats.html (2025). Accessed 31
Oct 2025.

2. Park, S.: Slopsquatting:
cinate Malicious Packages.

When Al Agents Hallu-
Trend Micro Research

https://www.trendmicro.com/vinfo/us/security /news/cybercrime-

and-digital-threats/slopsquatting-when-ai-agents-
hallucinate-malicious-packages (2025). Accessed 31 Oct
2025.

3. Krishna, A., Galinkin, E., Derczynski, L., Mar-
tin, J.: Importing Phantoms: Measuring LLM Pack-
age Hallucination Vulnerabilities. arXiv 2501.19012.

https://doi.org/10.48550/arXiv.2501.19012 (2025).

4. Spracklen, J., Wijewickrama, R., Nazmus Sakib, A.H.M.,
Maiti, A., Viswanath, B., Jadliwala, M.: We Have a Package
for You! A Comprehensive Analysis of Package Halluci-
nations by Code Generating LLMs. In: USENIX Security
Symposium (USENIX Security 2025). USENIX Association.

12. Sonatype: Maven Central Repository Poli-
cies (Central Repository Terms/Requirements).
https://central.sonatype.org/terms.html (2025). Accessed 31
Oct 2025.

13. RubyGems.org;: Policies for
https://rubygems.org/policies (2025).
2025.

14. Microsoft: NuGet.org policies—Deleting packages. Mi-
crosoft Learn. https://learn.microsoft.com/en-us/nuget/nuget-
org/policies/deleting-packages (2025). Accessed 31 Oct 2025.

15. The Comprehensive R Archive Network
(CRAN): CRAN Repository Policy. https://cran.r-
project.org/web/packages/policies.html (2025). Accessed 31
Oct 2025.

16. FOSSA, Inc.: Understanding and Preventing Depen-
dency Confusion Attacks. https://fossa.com/blog/dependency-
confusion-understanding-preventing-attacks/ (2022). Accessed
31 Oct 2025.

17. OpenSSF: Supply-chain Levels for Software Artifacts
(SLSA). https://slsa.dev/ (2025). Accessed 31 Oct 2025.

18. in-toto Project: in-toto—Providing farm-to-table guarantees
for software supply chains. https://in-toto.io/ (2025). Accessed
31 Oct 2025.

19. Aqua Security: What Is a Dependency Confusion Attack?
https://www.aquasec.com/cloud-native-academy /supply-
chain-security /dependency-confusion/ (2024). Accessed 31
Oct 2025.

20. ActiveState: How Open Source Typosquatting At-
tacks Work. https://www.activestate.com/resources/quick-
reads/how-open-source-typosquatting-attacks-work/ (2025).
Accessed 31 Oct 2025.

21. AI Hallucinations Create “Slopsquatting” Supply Chain
Threat. Infosecurity Magazine. https://www.infosecurity-
Il}ggﬁfeige.com/news/ ai-hallucinations-slopsquatting/ (2025).

RubyGems.org.
Accessed 31 Oct

https://www.usenix.org/conference/usenixsecurity25/presentation/s racklen) o7 9025,

(2025).

5. Neupane, S., Holmes, G., Wyss, E., Davidson, D., De
Carli, L.: Beyond Typosquatting: An In-depth Look at
Package Confusion. In: 32nd USENIX Security Sym-
posium (USENIX Security 2023). USENIX Associa-
tion. htps://www.usenix.org/system/files/usenixsecurity23-
neupane.pdf (2023).

6. Birsan, A.: Dependency Confusion: How I Hacked Into
Apple, Microsoft and Dozens of Other Companies. Medium.
https://medium.com/@alex.birsan/dependency-confusion-
4a5d60fec610 (2021). Accessed 31 Oct 2025.

7. Zhao, Y., Wu, M., Hu, X., Xia, X.: HFuzzer: Testing Large
Language Models for Package Hallucinations via Phrase-based
Fuzzing. arXiv 2509.23835. https://arxiv.org/abs/2509.23835

(2025).
8. Arghire, I.. AI Hallucinations Create a New
Software Supply Chain Threat. Security Week.

https://www.securityweek.com /ai-hallucinations-create-
a-new-software-supply-chain-threat/ (2025). Accessed 31 Oct
2025.

9. Dunn, J.E.: Large language models hallucinating non-existent
developer packages could fuel supply-chain attacks. InfoWorld.
https://www.infoworld.com/article/3542884 /large-language-
models-hallucinating-non-existent-developer-packages-could-
fuel-supply-chain-attacks.html (2024). Accessed 31 Oct
2025.

10. npm, Inc.: npm Policies. https://docs.npmjs.com/policies
(2025). Accessed 31 Oct 2025.

11. Langa, L. PEP 541—Package
Retention. Python Enhancement
https://peps.python.org/pep-0541/ (2018).
Oct 2025.

Index Name
Proposals.
Accessed 31

22. Contrast Security: Slopsquatting—How At-
tackers Exploit Al-Generated Package Names.
https://www.contrastsecurity.com/security-
influencers/slopsquatting-attacks-how-ai-phantom-

dependencies-create-security-risks (2025). Accessed 31
Oct 2025.
23. OWASP Foundation: CICD-SEC-3—Dependency

Chain Abuse (OWASP Top 10 CI/CD Security Risks).
https://owasp.org/www-project-top-10-ci-cd-security-

risks/ CICD-SEC-03-Dependency-Chain-Abuse (2025).
Accessed 31 Oct 2025.

24. Kaspersky: How Al creates “slopsquatting” supply-chain
risks. https://www.kaspersky.com/blog/ai-slopsquatting-
supply-chain-risk/53327/ (2025). Accessed 31 Oct 2025.

25. Mend.io: The Hallucinated Package Attack—Slopsquatting

Explained. https://www.mend.io/blog/the-hallucinated-
package-attack-slopsquatting/ (2025). Accessed 31 Oct
2025.

Publisher’s note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and
institutional affiliations.

	Introduction
	Background and Terminology
	Threat Model and Attack Chain
	Methods: Systematic Review Using PRISMA
	Results
	Defenses and Remaining Gaps
	Registry Policy Landscape
	Discussion
	Limitations
	Conclusion

