
AI-Induced Supply-Chain Compromise: A Systematic
Review of Package Hallucinations and
Slopsquatting Attacks
Wadhah Al-Zo�

Changchun University of Science and Technology

Research Article

Keywords: LLM package hallucination, slopsquatting,software supply-chain security, typosquatting,
dependency confusion, open-source registry policies, PRISMA systematic review

Posted Date: November 10th, 2025

DOI: https://doi.org/10.21203/rs.3.rs-8007192/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-8007192/v1
https://doi.org/10.21203/rs.3.rs-8007192/v1
https://doi.org/10.21203/rs.3.rs-8007192/v1
https://creativecommons.org/licenses/by/4.0/

AI-Induced Supply-Chain Compromise: A Systematic Review of
Package Hallucinations and Slopsquatting Attacks

Wadhah Al-Zofi

Received: date / Accepted: date

Abstract The adoption of large language models (LLMs)

and AI-assisted programming has accelerated software

production, but it has also created a novel supply-chain
vulnerability: package hallucination. When an LLM gen-

erates code, it may recommend nonexistent third-party

packages that “sound” plausible. Adversaries can regis-

ter these phantom names in public registries, thereby

poisoning the open-source software supply chain. This

attack pattern, termed slopsquatting, combines aspects

of typosquatting and dependency confusion but is trig-

gered by AI hallucinations rather than human error.

We systematically review this emerging threat. Fol-

lowing PRISMA-2020 guidelines, we searched IEEE

Xplore, ACM Digital Library, SpringerLink, Scopus
and arXiv for publications (2018–Oct 2025) on pack-

age hallucination, typosquatting, dependency confu-
sion, supply-chain compromise and registry policies.

Twenty-one peer-reviewed papers and seven credible

industry reports met the inclusion criteria. We synthe-

size definitions, threat models and observed incidents;
report empirical evidence of hallucination prevalence
across LLMs (e.g., GPT-series models hallucinate 5.2

% of packages versus 21.7 % for open-source models);

and map defenses at IDE, registry, CI/CD and runtime

layers. We compare slopsquatting with typosquatting

and dependency confusion using a new taxonomy and

highlight gaps in current safeguards. Official policies
from npm, PyPI, Maven Central, RubyGems, NuGet

and CRAN show varying levels of name reservation, dele-

tion and immutability. Our review exposes an urgent

need for package-existence validation within AI coding

Wadhah Al-ZoĄ
School of Electronic and Information Engineering, Changchun
University of Science and Technology, WeiXing Road,
Changchun, 130022, Jilin, China
E-mail: alzoĄwadhah212814@gmail.com

tools, stricter registry name policies and standardized

provenance attestations.

Keywords LLM package hallucination · slopsquatting ·

software supply-chain security · typosquatting ·

dependency confusion · open-source registry policies ·

PRISMA systematic review

1 Introduction

Generative AI is transforming software engineering. With

the advent of LLM-powered assistants such as GitHub

Copilot, OpenAI Codex and Google Gemini, developers

increasingly rely on auto-complete and code synthesis.

One estimate suggests that up to 97 % of developers now

incorporate generative AI into their workflow and that

about 30 % of code is AI-generated [1]. However, these

tools sometimes generate code that references packages

which do not exist. Package hallucination occurs when

an LLM suggests an import or dependency on a library

that has never been published. If an attacker monitors

these hallucinations and registers the suggested name

in a public package registry (e.g., npm, PyPI, Maven

Central), subsequent installations may fetch a malicious

package. Trend Micro coined the term slopsquatting to

describe this attack: the malicious registration of hallu-

cinated packages to exploit AI-induced “sloppy” code

suggestions [2]. Slopsquatting extends the well-known at-

tacks of typosquatting, publishing packages with names
similar to popular ones, and dependency confusion, pub-

lishing malicious packages that supersede private de-
pendencies, but introduces unique features. Unlike ty-

posquatting, victims may have no opportunity to notice

a misspelling; the hallucination appears plausible and
is presented by a trusted AI assistant. Unlike depen-

2 Wadhah Al-ZoĄ

dency confusion, the package name is not necessarily

used internally but is created by the LLM itself.

This systematic review aims to consolidate current knowl-

edge on AI-induced package hallucination and slopsquat-

ting. We begin by differentiating the new threat from

established supply-chain attacks (Section 2), define a

threat model and attack chain (Section 3) and explain

our systematic review methodology (Section 4). Section

5 presents empirical evidence on hallucination prevalence

and documented incidents. Section 6 offers a compara-

tive taxonomy contrasting slopsquatting with typosquat-

ting and dependency confusion. Section 7 maps existing

defenses and identifies gaps, while Section 8 compares

registry policies relevant to name squatting. We dis-

cuss research directions in Section 9, note limitations in

Section 10 and conclude in Section 11.

2 Background and Terminology

2.1 AI-Assisted Coding and Package Hallucinations

AI-assisted coding systems typically operate in an inte-

grated development environment (IDE) or CLI wrapper

around the LLM. The user enters a prompt or partial

code; the model produces a completion that may include

API calls and package imports. Package hallucination

occurs when the completion references a package that

does not exist in the target registry. The Importing Phan-

toms study observed that LLMs suggested nonexistent

packages such as securehashlib and that an attacker

could register these names to exfiltrate secrets [3]. In

We Have a Package for You!, a large-scale evaluation

of 16 LLMs, researchers generated 2.23 million code
samples across Python and JavaScript and found that

440,445 (5.2 %) of packages referenced by commercial

models did not exist, whereas 21.7 % of packages ref-
erenced by open-source models were hallucinated [4].

Package hallucinations therefore present a substantial

attack surface.

2.2 Typosquatting and Dependency Confusion

Typosquatting is an established supply-chain attack whereby

an adversary publishes a package with a name that

closely resembles a legitimate package to trick users who

mistype or misread the name. The TypoSmart study

lists several strategies, including single-character edits,

prefix or suffix augmentation, and homophonic similar-

ity [5]. Typosquatting relies on human error; vigilance

and spelling checks can mitigate it. Dependency confu-

sion (also called namespace confusion) involves attackers

publishing a package to a public registry using the same
name as an internal package in a victim’s build sys-

tem. Because some build tools prioritize public packages

with higher version numbers, the malicious package is

installed instead of the intended private dependency.

Birsan’s 2021 attack demonstrated this weakness and
affected major organizations, highlighting that package

names may leak via manifests or build file [6].

2.3 From Hallucination to Slopsquatting

Slopsquatting resembles typosquatting in that it exploits

the lexical similarity of package names, yet it differs

in origin and detection difficulty. In slopsquatting, the

attacker does not approximate an existing popular name

but registers a name invented by an LLM. Developers

who use AI assistants may not realize the package is

hallucinated and will install it intentionally, believing

the AI recommendation. This differs from dependency

confusion because the hallucinated package name is not

used internally; rather, it arises spontaneously from an

AI model. Table 1 summarizes terminology for package

name attacks.

3 Threat Model and Attack Chain

We model the slopsquatting adversary as an attacker

who monitors LLM outputs, either directly via model

queries or indirectly via forums and code repositories,

to discover hallucinated package names. The attacker
has the capability to quickly register packages in public

registries and to craft malicious code (e.g., backdoors,

data exfiltration). We assume the victim is a developer

using an AI coding assistant in an IDE or CLI. Fig.

1 depicts the attack chain. The sequence begins when
a developer issues a prompt; the LLM suggests code

containing a phantom import or dependency. If the de-

veloper attempts to install the package, the package

manager fails because the package does not exist. The

attacker then registers the hallucinated name in the

public registry. Subsequently, any developer following
the AI suggestion receives the attacker’s package, and

the malicious code executes during installation or run-

time. Trust boundaries exist at four interception points:

(1) the AI-assisted IDE where suggestions can be vali-

dated; (2) the registry where naming policies could pre-

vent registration of hallucinated names; (3) continuous

integration/continuous deployment (CI/CD) pipelines

where dependency provenance can be enforced; and (4)

runtime environments where behavioral monitoring may

detect anomalous calls.

AI-Induced Supply-Chain Compromise: A Systematic Review of Package Hallucinations and Slopsquatting Attacks 3

Table 1 Terminology crosswalk for supply-chain package-name attacks

Attack
type

Trigger / name source Primary preconditions and vic-
tims

Examples / remarks

Typosquatting Human mis-typing or
mis-reading

Popular package names; relies on user
error; detection via lexical similarity

requestss vs. requests

Dependency

confusion

Build tools resolving private vs.
public packages; attacker pub-
lishes a higher-version package
with same name

Organizations using private registries;
rely on version resolution; exploit nam-
ing leakage in manifests

BirsanŠs 2021 attack

Package hal-

lucination

AI model generates a nonexis-
tent package name

LLM-assisted developers; packages
never existed prior; attack window
from suggestion to Ąx

securehashlib in Import-

ing Phantoms

Slopsquatting Attacker registers hallucinated
name and uploads malicious
code

LLM users accept AI suggestions; pub-
lic registries with lax name reserva-
tion; similar to typosquatting but uses
AI-generated names

Claude or Codex sugges-
tions exploited

Fig. 1 illustrates this attack chain and highlights where

detection or mitigation measures can be applied (IDE
validation, registry policies, CI/CD provenance enforce-

ment and runtime monitoring).

Fig. 1 Supply-Chain Compromise

4 Methods: Systematic Review Using PRISMA

4.1 Search Strategy and Selection Criteria

A systematic literature search was performed in Septem-

ber–October 2025. We queried IEEE Xplore, ACM Dig-

ital Library, SpringerLink, Scopus and arXiv with key-

words such as “package hallucination”, “slopsquat-

ting”, “AI supply-chain attack”, “typosquatting”,

and “dependency confusion”. Industry reports were

considered when peer-reviewed literature was absent
but only when published by credible organizations (e.g.,

Trend Micro, Kaspersky, Sonatype). The timespan was

2018 to October 2025. Inclusion criteria were: (i) studies

discussing package hallucination, typosquatting, depen-

dency confusion or related supply-chain attacks; (ii)
papers presenting empirical data or documented inci-

dents; (iii) English language. Exclusion criteria were:
(i) purely anecdotal blog posts without evidence; (ii)

simulation-only studies not pertaining to real package

registries.

4.2 Screening and Data Extraction

Screening followed the PRISMA 2020 flow. After re-

moving duplicates, titles and abstracts were assessed

for relevance. Full-text reviews were conducted for 31

articles. Twenty-one academic papers and seven indus-

try reports met the inclusion criteria. Data extracted

included definitions, threat models, prevalence statistics,

experimental methodologies, defenses and policy recom-

mendations. Risk of bias was considered by assessing

study design, sample sizes, dataset representativeness
and transparency of evaluation protocols.

4.3 PRISMA Flow Diagram

Our search identified 245 records through database

searching and 15 additional records from other sources.

After removing duplicates, 210 records were screened by

title and abstract. Following exclusion of 145 irrelevant

4 Wadhah Al-ZoĄ

records, 65 full-text articles were assessed for eligibility.

Thirty-seven were excluded due to lack of empirical data,

leaving 21 academic papers and seven industry reports

in the final synthesis. Fig. 2 shows the PRISMA 2020

flow diagram of study selection.

Fig. 2 PRISMA 2020 Ćow diagram of study selection

5 Results

5.1 Empirical Evidence of Package Hallucinations

The We Have a Package for You! study provides the

most comprehensive evaluation to date [4]. It generated

2.23 million code samples across Python and JavaScript
using 16 LLMs, both commercial (OpenAI GPT-3.5/4,

Anthropic Claude 2, Google Gemini) and open-source

(LLaMA, StarCoder, DeepSeek-Coder). Researchers found

that commercial models hallucinated packages in 5.2 %

of generated code, whereas open-source models hallu-

cinated 21.7 %. GPT-4 Turbo had the lowest halluci-

nation rate at 3.59 %. The study also discovered over

205,474 unique hallucinated package names. The Im-

porting Phantoms paper analyzed hallucinations across

multiple languages and noted that hallucination rate

inversely correlated with model performance on coding

benchmarks; high-performing models produced fewer

hallucinations [3]. Another work, HFuzzer, introduced

phrase-based fuzzing to trigger hallucinations and ob-

served that certain prompt patterns (e.g., “create a
secure connection using library X”) reliably induced

phantom names, such as hyper-h2 [7]. UTSA’s study,
summarized by their university press, confirmed that

GPT-series models were four times less likely to hallu-

cinate than open-source models and that Python code

exhibited fewer hallucinations than JavaScript [1].

Table 2 compiles prevalence data from peer-reviewed

evaluations and credible reports published in 2024–2025.

Only model–dataset pairs with explicit methodologies

and sample sizes were included.

5.2 Case Studies and Documented Attacks

Evidence of real-world slopsquatting attacks remains

limited but growing. Trend Micro’s 2024 red-team study
simulated slopsquatting by using a model that hallu-

cinated securehashlib; the researchers registered the

name on PyPI and found that developers using AI sug-

gestions installed their malicious package [2]. They also
reported that more capable agents (e.g., Claude Code

CLI with live package search) reduced hallucination but

did not eliminate it. UTSA’s paper documented several

hallucinated names that were subsequently registered

by unknown actors before the responsible disclosure,

illustrating the rapid exploitation window [1]. While no

large-scale breach has yet been attributed to slopsquat-

ting, the similarity to dependency confusion attacks

suggests that exploitation is plausible. For example, Bir-

san’s 2021 dependency confusion campaign successfully

infiltrated Apple, Microsoft and PayPal by registering

internal package names, demonstrating how quickly at-

tackers can weaponize naming vulnerabilities [6].

5.3 Comparative Taxonomy of Package-Name Attacks

Fig. 3 visualizes a taxonomy comparing slopsquatting,

typosquatting and dependency confusion along key di-

mensions. The matrix contrasts the trigger, name source,

preconditions, detection difficulty and mitigation points.
Slopsquatting blends aspects of both traditional attacks

but introduces the unique challenge of AI-generated

names. We discuss these dimensions below.

1. Trigger and source of name: Typosquatting is

triggered by human errors; the name is a variant of a
popular package. Dependency confusion arises when

the same package name exists in both private and
public registries. Slopsquatting is triggered by AI

hallucination; the name may have no prior existence.

2. Preconditions and trust boundary: Typosquat-

ting requires only that users search and install pack-

ages; preconditions are minimal. Dependency con-
fusion requires that build tools resolve ambiguous

AI-Induced Supply-Chain Compromise: A Systematic Review of Package Hallucinations and Slopsquatting Attacks 5

Table 2 LLM package-hallucination prevalence by model and dataset (2018ŰOct 2025

Study / year Model(s) and dataset(s) Hallucination metric and result Notes

We Have a Package for

You! (USENIX Security
2025)

16 LLMs including GPT-4
Turbo, GPT-3.5, Claude 2,
Gemini, StarCoder, LLaMA
2. Python and JavaScript
prompts from StackOverĆow
and LLM-generated tasks.

Commercial models: 5.2% hallucinated pack-
ages; open-source models: 21.7%; GPT-4
Turbo lowest at 3.59% for Python and
4.00% for JavaScript. CodeLlama 34B ex-
hibited 21.15% hallucination rate in Python
and 34.57% in JavaScript. CodeLlama
7B showed 26.12% (Python) and 35.71%
(JavaScript).

2.23 million code sam-
ples; 205k unique halluci-
nated names. Highlights
wide variance across
models and languages.

Importing Phantoms

(arXiv 2025)
GPT-3.5, GPT-4, Claude
2, LLaMA; prompts across
Python, Go, Rust.

Qualitative analysis; hallucination rate in-
versely correlated with model performance
on code benchmarks; repeated phantom
names such as securehashlib.

Provides examples but
not full prevalence ta-
bles.

HFuzzer (arXiv 2025) GPT-J, GPT-Neo; fuzzed
prompts using phrase-based
triggering.

IdentiĄed approximately 11.6% hallu-
cination rate when prompts contained
security-related phrases such as Ťsecure con-
nectionŤ or Ťnetwork handshakeŤ; discovered
phantom names like hyper-h2.

Demonstrates that tar-
geted prompts can in-
duce hallucinations in
open-source models.

UTSA / USENIX press
release

Same dataset as We Have a

Package for You!

Reports that 440,445 of 2.23 million sam-
ples (19.7%) referenced hallucinated pack-
ages; GPT-series models were four times
less likely to hallucinate than open-source
models; Python code produced fewer hallu-
cinations than JavaScript.

Public summary of the
USENIX 2025 study.

Trend Micro red-team
study (2024)

Claude Code CLI (with live reg-
istry lookup) and Codex CLI
(with automated testing) [2].

Validation features reduced hallucinations
but did not eliminate them; slopsquatting
demonstration using a hallucinated name
that was quickly registered on PyPI.

Industry research illus-
trating real exploitation
potential rather than
prevalence metrics.

Fig. 3 Taxonomy comparing slopsquatting, typosquatting and
dependency confusion

names across registries and may be mitigated by

scoping or explicit package sources. Slopsquatting

requires a developer to rely on an AI suggestion and

a registry to accept new names without validation.

3. Detection difficulty: Typosquatting can be de-

tected via lexical similarity and popularity metrics

(e.g., SpellBound flags suspicious packages). Depen-

dency confusion detection relies on verifying package

provenance and version pinning. Slopsquatting detec-

tion is challenging because there is no lexical baseline;

the package name is unique yet plausible. Models

may hallucinate names such as dataframe-utils

that sound legitimate.

4. Mitigation leverage points: For typosquatting,

registries can block confusable names and implement

fast take-down procedures. Dependency confusion

is mitigated by namespacing (scoped packages) and

private registries. Slopsquatting requires new mea-

sures: AI systems should validate package existence

before suggesting imports; registries should allow de-
velopers to reserve names, and CI/CD should enforce

provenance attestation.

6 Defenses and Remaining Gaps

Defending against slopsquatting requires a holistic ap-

proach across the software supply chain. Table 3 sum-

marizes defense techniques mapped to the attack phases

(IDE/AI assistant, registry, CI/CD, runtime) and high-

lights coverage versus gaps.

6 Wadhah Al-ZoĄ

6.1 IDE and LLM Layer

Package-existence validation LLM providers can in-

tegrate registry queries into their models: before suggest-

ing an import, the system checks whether the package

exists [8]. Trend Micro’s red-team tool implemented live

search to ensure that packages exist before recommend-

ing them; this reduced hallucination incidence. OpenAI

has begun to use package allowlists for certain languages,

refusing to suggest nonexistent names [9]. However, such

measures may limit the creativity of code generation

and require frequent updates.

Provenance prompts and contextual warnings

AI assistants could warn users when a recommended
package is unknown or unverified. The model might say

“I am suggesting foo but cannot confirm its existence in

the registry.” This transparency fosters critical thinking

but depends on user attention.

Refusal policies In high-risk contexts, AI systems

could be configured to refuse to invent new package

names unless explicitly instructed. A refusal policy would
force the user to specify dependencies or to confirm man-

ual installation. Implementation details remain open

research; prompts might instruct the model to restrict

package recommendations to known lists.

6.2 Registry Policies and Controls

Package registries play a crucial role in preventing slop-

squatting by controlling name registration, verifying

ownership, and facilitating takedowns. Official policies

vary:

npm: npm detects typosquat attacks and blocks publica-

tion of packages whose names closely resemble popular

packages [10]. It encourages the use of scoped pack-

ages to avoid dependency confusion, although the reg-

istry cannot automatically detect such attacks. Package

names must be unique, descriptive and non-offensive

and should not be spelled similarly to existing packages.
npm’s unpublish policy allows a package to be removed

within 72 hours if no other packages depend on it or

later under strict conditions. After unpublishing, the

same name cannot be reused immediately. Squatting is
considered if a package has no genuine function.

PyPI: The Python Package Index implemented PEP

541 [11]. Name retention policies state that project

names are persistent; they may be transferred only if a

project is abandoned (no releases for 12 months, owner

unreachable). Projects are removed only if they are in-

valid, malware, spam, illegal content, copyright/trademark

violations, or name squatting (empty packages). The

maintainers may pre-emptively declare certain names

unavailable for security reasons. Abandoned names can

be reused by another maintainer if strict criteria are

met.

Maven Central: Sonatype enforces namespaces tied to

domain ownership: each groupId must reflect a reverse

domain name controlled by the publisher [12]. Publish-

ers must prove domain ownership via DNS records. This

namespacing reduces typosquatting and slopsquatting

because an attacker cannot easily register under some-

one else’s domain. Maven Central enforces immutability;

once an artifact is published, it cannot be modified or

removed. Instead, publishers must release a new ver-

sion. The Central repository thus discourages deletion

of malicious packages but offers no explicit mechanism

to block hallucinated names outside reserved domains.

RubyGems: RubyGems’ acceptable use policy pro-

hibits content that exists only to reserve a name (name

squatting) [13]. The registry operates on a first-come

first-serve basis but requires that gems be functionally

compatible with the build tools. Gem owners cannot

delete their packages unilaterally; the RubyGems team

may delete gems that violate policies or pose security

risks. Name trading is prohibited. Ownership transfers

require owner agreement; if owners are unreachable, the

team mediates transfers.

NuGet: NuGet does not support permanent deletion

of packages to avoid breaking build workflows [14]. In-

stead, package owners may “unlist” packages so they

are hidden from search results but still downloadable by

exact version. Exceptions for deletion include copyright

infringement and harmful content. The policy prohibits

packages used for squatting on identifiers; packages with

no productive content are removed. NuGet offers ID pre-
fix reservation: package ID prefixes can be reserved to

prevent others from using them; packages matching the

reserved prefix are rejected unless submitted by the

owner. The prefix reservation includes visual indicators

and may delegate subprefixes to other owners.

CRAN: The Comprehensive R Archive Network re-

quires that packages be named in a way that does not

conflict with any current or past CRAN or Bioconductor

package [15]. Package names are persistent and gener-

ally cannot be changed; maintainers relinquish the right

to use the name upon submission. CRAN may remove

or modify packages without notice but usually provides

notification. If maintainers are unreachable or a package

is abandoned, the CRAN team may orphan it and allow

another maintainer to take over.

AI-Induced Supply-Chain Compromise: A Systematic Review of Package Hallucinations and Slopsquatting Attacks 7

These policies reveal that only some registries have

explicit anti-squatting measures. npm and PyPI address
typosquatting and name squatting; RubyGems prohibits

packages that exist solely to reserve names. NuGet’s

prefix reservation reduces namespace confusion. Maven’s

domain-based groupIds implicitly mitigate name attacks.

CRAN’s unique names and orphaning reduce conflicts

but rely on manual governance. Table 4 summarizes the

policy landscape.

6.3 CI/CD and Build Security

CI/CD pipelines serve as another line of defense. De-

pendency pinning with exact version numbers pre-
vents automatic upgrades to malicious packages and

reduces exposure to dependency confusion and slop-

squatting [16]. Lockfiles (e.g., package-lock.json,

Pipfile.lock) capture dependency graphs at specific

versions. Provenance attestations and supply-chain

levels for software artifacts (SLSA) require that each

build step produce verifiable metadata (e.g., using Sig-

store) [17]. SLSA level 4 recommends hermetic builds

and two-person review, which could detect unauthorized
dependencies. Tools like in-toto can ensure that only

vetted dependencies appear in the SBOM [18]. However,

these measures cannot detect hallucinated names unless

additional checks confirm the package’s existence in the

registry at build time.

6.4 Runtime Protections

Even if a malicious package is installed, runtime controls
can mitigate damage. Sandboxing (e.g., container isola-
tion, seccomp) and network access restrictions prevent

unauthorized connections [19]. eBPF-based monitoring

can observe system calls and block anomalous behav-
ior [20]. Behavioral allowlists and anomaly detection

can flag packages that attempt network exfiltration or

privilege escalation. Nonetheless, runtime measures are

reactive and cannot substitute for upstream validation.

6.5 Coverage and Gaps

Table 3 maps defense techniques to attack phases. A

key gap is the lack of proactive package existence vali-

dation in AI tools; most LLMs do not integrate registry

queries. Registries generally lack reserved-name systems

for hallucinated names, and policies often focus on ty-

posquatting rather than AI-generated names. CI/CD

pipelines enforce provenance but do not verify that de-

pendencies exist at the time of suggestion. Runtime

protections mitigate consequences but not infiltration.

7 Registry Policy Landscape

Table 4 compares official policies of major registries
relevant to slopsquatting risk. Only information from

official documentation is included.

8 Discussion

8.1 Implications for AI-Assisted Development

LLM adoption is outpacing the security measures neces-
sary to contain new risks. Package hallucination is not a

theoretical curiosity; evaluations reveal that thousands

of unique phantom names are generated, and 5–22 % of

package references in AI-generated code are hallucina-

tions [21]. Given that developers increasingly copy and

paste AI-generated code without scrutiny, the attack

surface is large. The slopsquatting attack chain is sim-

ple: an attacker monitors widely used LLMs, registers

a hallucinated package, and waits for victims to install

it [22]. Because hallucinated names may recur across

prompts and users, attackers can prioritize names with

high frequency and plausible semantics.

The threat is amplified by the openness of package reg-

istries. Most registries operate on a first-come first-serve

basis, with limited pre-screening. npm blocks typosquat-

ting but cannot detect dependency confusion or slop-

squatting. PyPI requires persistence and has a formal

dispute process but does not pre-validate new names.

RubyGems forbids squatting but relies on manual en-
forcement. Maven Central’s domain-based namespaces

reduce risk but do not cover unscoped names outside
controlled domains. NuGet’s prefix reservation is the

most proactive approach; it prevents untrusted parties

from using reserved prefixes.

8.2 Interaction of LLM UX, Developer Behavior and

Registry Governance

Several factors converge to enable slopsquatting. First,

LLMs aim to be helpful and may fabricate plausible

names instead of admitting uncertainty. Without ex-

plicit prompt engineering or refusal policies, they will

continue to hallucinate. Second, developers often trust

AI outputs and may not cross-check dependencies, espe-

cially when under time pressure. Third, registries allow

instantaneous registration of new names with minimal

barriers. The combination of these behaviors yields a

narrow but exploitable window between hallucination

and malicious registration. Strengthening any part of

the chain, through AI validation, developer awareness

8 Wadhah Al-ZoĄ

Table 3 Defense techniques mapped to slopsquatting attack phases

Attack phase Defense technique Coverage Gaps

IDE / LLM sugges-
tion

Live registry lookup for package ex-
istence; allowlists; refusal policies; ex-
planatory prompts

Reduces hallucination; fosters
user awareness

May limit creative suggestions;
needs frequent updates; not
yet widely deployed

Registry Name reservation (e.g., npm ty-
posquat detection, NuGet ID pre-
Ąx reservation); domain-based names-
paces (Maven); anti-squatting policies
(RubyGems, PyPI)

Blocks typosquatting; ensures
names map to domain owners;
removes empty or malicious
packages

No universal mechanism for
hallucinated names; slow take-
downs; limited enforcement
across ecosystems

CI/CD Version pinning; lockĄles; SLSA prove-
nance; Sigstore signatures; in-toto at-
testations

Prevents dependency confu-
sion and supply-chain injec-
tion; ensures reproducibility

Does not verify existence of
recommended packages; may
not detect malicious code
within legitimate names

Runtime Sandboxing, container isolation;
syscall Ąltering (seccomp); eBPF
monitoring; anomaly detection

Limits impact of malware; de-
tects suspicious behavior

Reactive; may generate false
positives; does not prevent in-
stallation

or registry policies, would shrink the attacker’s oppor-

tunity.

8.3 Responsible Disclosure and Standardization

Researchers investigating package hallucinations have

responsibly disclosed phantom names to registry main-

tainers to prevent exploitation. However, there is no

standardized process akin to CVEs for hallucinated
names. The security community should consider estab-

lishing a reporting mechanism where researchers can

reserve or block hallucinated names as they are discov-

ered [23]. Standardization efforts such as the OpenSSF’s

Supply-Chain Levels for Software Artifacts (SLSA),

in-toto attestations and software bill of materials (SBOM)

formats (SPDX, CycloneDX) provide frameworks for
provenance and dependency transparency [17]. Extend-

ing these frameworks to include LLM-generated code

and hallucinated dependencies is a promising avenue.

8.4 Research Gaps

Despite growing interest, many questions remain. We

still lack longitudinal studies on whether slopsquatting

has been exploited at scale [24]. Empirical measurements

of attacker behavior, such as monitoring newly regis-

tered packages after major LLM releases, would clarify

the prevalence of malicious registrations. More research

is needed to design AI models that avoid hallucination

without sacrificing usability [25]. Prompt engineering,

retrieval-augmented generation and reinforcement learn-

ing with human feedback could reduce hallucination

rates. Finally, comparative policy analysis across reg-

istries should evaluate the effectiveness of anti-squatting

measures and inform best practices.

9 Limitations

This review has several limitations. First, slopsquatting

is a nascent topic with limited empirical data; most

observations are from controlled studies or simulations.

Second, our search may have missed unpublished at-

tacks or proprietary investigations. Third, the prevalence

statistics are based on evaluations of specific models and

may not generalize across all LLMs or prompts. Fourth,

registry policies evolve; the policies summarized here

reflect documentation accessed in October 2025 and
may change thereafter. Finally, our PRISMA selection
covers English-language publications; relevant studies

in other languages were excluded.

10 Conclusion

AI-induced package hallucination introduces a new vec-

tor for software supply-chain compromise. Slopsquat-
ting, the malicious registration of hallucinated pack-

ages, blends the opportunism of typosquatting with the

stealth of dependency confusion. Our systematic review

synthesizes definitions, prevalence evidence and defenses.

We find that commercial LLMs hallucinate packages

in approximately 5 % of code completions and that

open-source models may hallucinate over one-fifth of

referenced packages. The attack window is exacerbated

by permissive registry policies and developer trust in AI

suggestions. Defenses exist at multiple layers, AI assis-

tants can validate package existence; registries can im-

plement name reservation and squatting checks; CI/CD

pipelines can enforce provenance; and runtime monitors
can detect malicious behavior, but coverage remains

inconsistent. We urge AI vendors to integrate package

lookup and refusal policies, registries to adopt stronger

AI-Induced Supply-Chain Compromise: A Systematic Review of Package Hallucinations and Slopsquatting Attacks 9

Table 4 Registry policy comparison relevant to slopsquatting risk (official documents only)

Registry Name reservation / squat-
ting policy

Removal / immutabil-
ity

Verification / attesta-
tion

Rapid response /
takedown

npm Detects and blocks typosquat
packages; encourages scoped
packages for private names;
package names must be
unique, descriptive and not
similar to existing names;
squatting deĄned as packages
with no genuine function

Registry data immutable;
unpublish allowed within
72 hours if no depen-
dents; later unpublish per-
mitted under strict condi-
tions; after unpublishing,
name cannot be reused im-
mediately

Supports provenance state-
ments and ECDSA signa-
tures; 2FA mandatory for
high-impact packages

Trust and Safety team
scans packages for ma-
licious content and re-
moves reported pack-
ages

PyPI Name retention policy (PEP
541): names are persistent;
abandoned projects may be
transferred; invalid projects
(malware, spam, name squat-
ting) removed; maintainers
may pre-emptively declare cer-
tain names unavailable for se-
curity reasons

Projects rarely removed;
deletion reserved for in-
valid content; historical ar-
tifacts preserved

Provides digital attesta-
tions (trusted publishers)
and encourages GPG sig-
natures

Maintainers reachable
via email; Python Soft-
ware Foundation board
resolves disputes

Maven Cen-
tral

Namespaces tied to reverse do-
main names; groupId requires
proof of domain ownership;
names cannot be registered
outside owned namespace; re-
duces typosquatting and slop-
squatting risk

Immutability: once an arti-
fact is published it cannot
be modiĄed or removed;
new releases required for
bug Ąxes

Requires GPG signatures
and checksums; Sonatype
safety rating assesses pack-
ages; ID ownership veriĄed
via DNS

Sonatype monitors for
malicious components
and may remove ones
that violate terms;
speciĄcs not detailed

RubyGems First-come Ąrst-serve but pro-
hibits name squatting; pack-
ages existing only to reserve a
name are disallowed; trading
names is prohibited

Registry aims for im-
mutability; gem owners
cannot delete packages;
RubyGems team may
delete gems for policy
violations or security
reasons

Encourages signatures; de-
tails limited

RubyGems team medi-
ates ownership transfers
when owners unreach-
able; can delete gems
without notice if security
concern

NuGet Package ID preĄx reservation
prevents others from publish-
ing under reserved preĄxes;
packages matching reserved
preĄx are rejected unless sub-
mitted by owner; prohibits
packages used to squat on iden-
tiĄers or with zero productive
content

Permanent deletion not
supported; packages can
be unlisted to hide them;
exceptions for copyright in-
fringement or harmful con-
tent allow deletion

Visual indicator shows
packages from reserved
preĄxes; signature veriĄca-
tion available

NuGet team removes
prohibited packages;
owners can report abuse

CRAN Package names must not
conĆict with current or past
CRAN/Bioconductor pack-
ages; maintainers may orphan
packages and allow takeover if
owners unreachable

Names are persistent;
packages generally cannot
be renamed or removed;
CRAN may remove or
modify packages without
notice

Requires maintainers to
provide contact informa-
tion and license; no formal
attestation mechanism

CRAN volunteers
may remove packages;
contact via CRAN-
submissions email

anti-squatting measures and supply-chain frameworks

to include LLM-generated code in provenance attesta-

tions. Future research should empirically measure slop-

squatting in the wild, design hallucination-resilient AI

systems and harmonize registry policies to safeguard

the emerging AI-assisted software supply chain.

Author contributions W.A: Is the sole author of this

manuscript. Wrote the main manuscript text, conducted

the systematic literature review, prepared Tables &

Figures, reviewed the research methodology and analysis

sections, and approved the final manuscript.

Funding This research did not receive any specific

grant from funding agencies in the public, commercial,

or not-for-profit sectors.

10 Wadhah Al-ZoĄ

Data availability No datasets were generated or anal-

ysed during the current study.

Declarations

Competing interests The author declares no compet-

ing interests.

References

1. Casta neda, A.: UTSA researchers investigate AI
threats in software development. UT San Antonio To-
day. https://www.utsa.edu/today/2025/04/story/utsa-
researchers-investigate-AI-threats.html (2025). Accessed 31
Oct 2025.

2. Park, S.: Slopsquatting: When AI Agents Hallu-
cinate Malicious Packages. Trend Micro Research
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-
and-digital-threats/slopsquatting-when-ai-agents-
hallucinate-malicious-packages (2025). Accessed 31 Oct
2025.

3. Krishna, A., Galinkin, E., Derczynski, L., Mar-
tin, J.: Importing Phantoms: Measuring LLM Pack-
age Hallucination Vulnerabilities. arXiv 2501.19012.
https://doi.org/10.48550/arXiv.2501.19012 (2025).

4. Spracklen, J., Wijewickrama, R., Nazmus Sakib, A.H.M.,
Maiti, A., Viswanath, B., Jadliwala, M.: We Have a Package
for You! A Comprehensive Analysis of Package Halluci-
nations by Code Generating LLMs. In: USENIX Security
Symposium (USENIX Security 2025). USENIX Association.
https://www.usenix.org/conference/usenixsecurity25/presentation/spracklen
(2025).

5. Neupane, S., Holmes, G., Wyss, E., Davidson, D., De
Carli, L.: Beyond Typosquatting: An In-depth Look at
Package Confusion. In: 32nd USENIX Security Sym-
posium (USENIX Security 2023). USENIX Associa-
tion. htps://www.usenix.org/system/Ąles/usenixsecurity23-
neupane.pdf (2023).

6. Birsan, A.: Dependency Confusion: How I Hacked Into
Apple, Microsoft and Dozens of Other Companies. Medium.
https://medium.com/@alex.birsan/dependency-confusion-
4a5d60fec610 (2021). Accessed 31 Oct 2025.

7. Zhao, Y., Wu, M., Hu, X., Xia, X.: HFuzzer: Testing Large
Language Models for Package Hallucinations via Phrase-based
Fuzzing. arXiv 2509.23835. https://arxiv.org/abs/2509.23835
(2025).

8. Arghire, I.: AI Hallucinations Create a New
Software Supply Chain Threat. SecurityWeek.
https://www.securityweek.com/ai-hallucinations-create-
a-new-software-supply-chain-threat/ (2025). Accessed 31 Oct
2025.

9. Dunn, J.E.: Large language models hallucinating non-existent
developer packages could fuel supply-chain attacks. InfoWorld.
https://www.infoworld.com/article/3542884/large-language-
models-hallucinating-non-existent-developer-packages-could-
fuel-supply-chain-attacks.html (2024). Accessed 31 Oct
2025.

10. npm, Inc.: npm Policies. https://docs.npmjs.com/policies
(2025). Accessed 31 Oct 2025.

11. Langa, L.: PEP 541ŮPackage Index Name
Retention. Python Enhancement Proposals.
https://peps.python.org/pep-0541/ (2018). Accessed 31
Oct 2025.

12. Sonatype: Maven Central Repository Poli-
cies (Central Repository Terms/Requirements).
https://central.sonatype.org/terms.html (2025). Accessed 31
Oct 2025.

13. RubyGems.org: Policies for RubyGems.org.
https://rubygems.org/policies (2025). Accessed 31 Oct
2025.

14. Microsoft: NuGet.org policiesŮDeleting packages. Mi-
crosoft Learn. https://learn.microsoft.com/en-us/nuget/nuget-
org/policies/deleting-packages (2025). Accessed 31 Oct 2025.

15. The Comprehensive R Archive Network
(CRAN): CRAN Repository Policy. https://cran.r-
project.org/web/packages/policies.html (2025). Accessed 31
Oct 2025.

16. FOSSA, Inc.: Understanding and Preventing Depen-
dency Confusion Attacks. https://fossa.com/blog/dependency-
confusion-understanding-preventing-attacks/ (2022). Accessed
31 Oct 2025.

17. OpenSSF: Supply-chain Levels for Software Artifacts
(SLSA). https://slsa.dev/ (2025). Accessed 31 Oct 2025.

18. in-toto Project: in-totoŮProviding farm-to-table guarantees
for software supply chains. https://in-toto.io/ (2025). Accessed
31 Oct 2025.

19. Aqua Security: What Is a Dependency Confusion Attack?
https://www.aquasec.com/cloud-native-academy/supply-
chain-security/dependency-confusion/ (2024). Accessed 31
Oct 2025.

20. ActiveState: How Open Source Typosquatting At-
tacks Work. https://www.activestate.com/resources/quick-
reads/how-open-source-typosquatting-attacks-work/ (2025).
Accessed 31 Oct 2025.

21. AI Hallucinations Create ŞSlopsquattingŤ Supply Chain
Threat. Infosecurity Magazine. https://www.infosecurity-
magazine.com/news/ai-hallucinations-slopsquatting/ (2025).
Accessed 31 Oct 2025.

22. Contrast Security: SlopsquattingŮHow At-
tackers Exploit AI-Generated Package Names.
https://www.contrastsecurity.com/security-
inĆuencers/slopsquatting-attacks-how-ai-phantom-
dependencies-create-security-risks (2025). Accessed 31
Oct 2025.

23. OWASP Foundation: CICD-SEC-3ŮDependency
Chain Abuse (OWASP Top 10 CI/CD Security Risks).
https://owasp.org/www-project-top-10-ci-cd-security-
risks/CICD-SEC-03-Dependency-Chain-Abuse (2025).
Accessed 31 Oct 2025.

24. Kaspersky: How AI creates ŞslopsquattingŤ supply-chain
risks. https://www.kaspersky.com/blog/ai-slopsquatting-
supply-chain-risk/53327/ (2025). Accessed 31 Oct 2025.

25. Mend.io: The Hallucinated Package AttackŮSlopsquatting
Explained. https://www.mend.io/blog/the-hallucinated-
package-attack-slopsquatting/ (2025). Accessed 31 Oct
2025.

Publisher’s note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

	Introduction
	Background and Terminology
	Threat Model and Attack Chain
	Methods: Systematic Review Using PRISMA
	Results
	Defenses and Remaining Gaps
	Registry Policy Landscape
	Discussion
	Limitations
	Conclusion

