Supplementary Information

2 Drone-Based AI for Automated Bridge Defect Detection and Condition Assessment

3

1

4 Supplementary Table 1. SMART project Stage 1 Project Service Area¹

County	Population	Community	No. of	APP	Population in	% Population	# of	Population in	% Population
		Size	Census		APP	in APP	OA	OA	in OA
			Tracts						
Sedgwic	523,824	Large	124	53	176,418	33.7%	9	25,301	4.8%
k									
Saline	54,303	Midsized	12	3	12,993	23.9%	2	7,954	14.6%
Cowley	34,549	Rural	11	4	10,606	30.7%	2	7,904	22.9%
Cloud	9,032	Rural	4	0	0	0%	0	2,215	24.5%
Total	621,708	_	151	60	200,017	32.2%	13	43,374	7.0%

- Notes: APP = Area of Persistent Poverty; No. = Number, OA = Opportunity Zone
- 6 <u>USDOT Grant Location Verification map</u>
- 7 Community's Opportunity Zones map
- 8 **Supplementary Table 2.** Bridge Deficiency and Safety Information within the Project Service
- 9 Area²

County	No. of Bridges	No. of Structurally Deficient Bridges	% of Structurally Deficient Bridges	Bridges Not Meeting Traffic Safety Standards
Sedgwick	1,327	46	3.47%	30.17%
Saline	371	4	1.08%	51.15%
Cowley	339	21	6.19%	76.62%
Cloud	317	15	4.73%	65.06%
	Total = 2,354	Total = 86	Average = 3.87%	Average = 55.88%

Supplementary Table 3. Bridge Inventory and Condition Ratings from SMART Stage 1 AI-Based Field Inspections

Bridge	LAT 016 (deg)	LONG 017 (deg)	Age (Yr)	STRUCTU RE TYPE 043B	DECK COND 058	SUPER- STRUCTURE COND 059	SUB- STRUCTU RE COND 060	BRIDGE CONDITI ON RATING
Cowley Co. Bridge#1	37.041578	-96.395720	64	1	6	6	7	F
Cowley Co. Bridge#2	37.171949	-97.021492	68	2	5	5	6	F
Cowley Co. Bridge#3	37.243409	-96.523818	69	4	6	7	6	G
Cowley Co. Bridge#4	38.523742	-97.312357	41	2	6	7	7	G
Cowley Co. Bridge#5	37.171810	-96.582653	72	2	5	6	6	F
Sedgwick Co. Bridge#1	37.52594	-97.253046	72	2	4	6	6	P
Sedgwick Co. Bridge#2	37.30107	-97.461568	19	1	6	7	5	F
Sedgwick Co. Bridge#3	37.54224	-97.395552	26	1	4	6	6	P
Sedgwick Co. Bridge#4	37.47481	-97.394800	26	1	4	5	7	P
Sedgwick Co. Bridge#5	37.51215	-97.232186	68	2	6	8	7	F
Saline Co. Bridge#1	38.523438	-97.475464	62	3	6	7	7	F
Saline Co. Bridge#2	38.433614	-97.411324	27	1	7	7	7	G
Saline Co. Bridge#3	38.372852	-97.363754	65	4	6	6	6	F
Saline Co. Bridge#4	38.523742	-97.312357	41	2	6	6	7	F
Saline Co. Bridge#5	38.544885	-97.240350	40	2	7	7	7	G
Cloud Co. Bridge#1	39.312875	-97.364872	56	1	7	7	7	G
Cloud Co. Bridge#2	39.595249	-97.535747	5	1	8	8	8	G

Cloud Co. Bridge#3	40.000756	-97.545652	42	2	7	7	6	F
Cloud Co. Bridge#4	39.340070	-97.542383	70	2	7	7	7	G
Cloud Co. Bridge#5	39.593521	-97.555539	51	2	7	7	7	G

14 Supplementary Table 4. Visual Characteristics, Causes, and Examples of Concrete Defects

Considered in the SMART Stage 1 AI Inspection Project

13

15

Type of	Definition	Causes	Visual examples
Defect	Deminion	Causes	visual Campies
Crack	Separation or fracture in concrete that may occur before or after hardening, often appearing as visible lines of varying length and depth.	Plastic shrinkage due to rapid water loss, settlement over embedded items, drying shrinkage, thermal contraction, subgrade settlement, overloading, or long-term deterioration from freeze—thaw cycles, alkali—aggregate reactivity, sulfate attack, or reinforcement corrosion ³ .	Crack: 1
Alligator	A network of	Minor surface	
Cracks	fine, shallow	shrinkage due	
(ACrack)	surface	to rapid	
	cracks	drying, low	
	forming a	humidity,	
	chicken-wire	high	
	or map-like	temperature,	
	pattern;	direct sun, or	

typically
cosmetic
rather than
structural.

wind; poor curing practices; or surface treatments (e.g., dry cement dusting) that accelerate drying³.

Efflorescenc

A whitish crystalline deposit that appears on the surface of concrete, typically soon after construction; usually aesthetic rather than structural⁴.

Migration of soluble salts dissolved in moisture within the concrete to the surface, followed by evaporation of water; influenced by salt content in materials, moisture penetration, and drying conditions (temperature, humidity, wind) 3 .


Waterconcrete Corrosion (WConccor)

Surface damage to concrete that appears as erosion, abrasion, or general material loss, often presenting as washouts or planar corrosion defects that are visually difficult to distinguish.

Continuous exposure to running water (e.g., at bridge piers or abutment walls), freeze-thaw cycles, chemical attacks (acids, salts), or mechanical abrasion, all of which gradually wear away the concrete

surface⁵.

Spalling

A deeper surface defect of concrete characterized by localized breaking, flaking, or depression of the surface, often forming circular, oval, or elongated cavities.

Internal pressure or expansion within concrete, freeze-thaw cycles, chlorideinduced corrosion of reinforcing steel, improper joint design or construction, bond failure, mechanical

impact, or fire

		and weathering	
		effects ³ .	
Wetspot	A darker or moist area visible on the concrete surface where water accumulates or fails to drain properly; may indicate potential deterioration zones.	Blocked or damaged drainage, leaky joints, cracks in the deck, or retained water from recent rainfall. Persistent wet areas can accelerate damage by carrying deicing salts and increasing exposure to carbonation and chloride penetration ⁵ .	
Rust	A reddish to brownish discoloration on concrete surfaces caused by the oxidation of embedded reinforcemen t bars or nearby metallic elements.	Loss of the protective alkaline environment (pH > 9.5) due to carbonation, ingress of water and carbon dioxide through cracks or porous concrete, and chloride attack from deicing salts or marine exposure. These processes	

		T	
		depassivate	
		the steel,	
		leading to	
		oxidation and	
		rust staining	
		on the	
		surface.	
Exposed	Reinforcing	Concrete	
Rebars	steel that has	spalling from	
	become	reinforcement	
	visible and	corrosion	
	unprotected	products,	
	due to	carbonation,	
	spalling or	or cracking;	
	loss of	chloride	
	concrete	penetration in	
	cover,	coastal or	
	leaving it	deicing	
	directly	environments	
	exposed to	; inadequate	
	the	cover	
	atmosphere ⁶ .	thickness; and	
	aunosphere.	environmenta	
		1 factors	
		(temperature,	
		humidity,	
		marine salts)	
		that	
		accelerate	
		uniform	
		corrosion and	
		mechanical	
		property	
		degradation	
		of the steel ⁵ .	

17 References

16

18 1. Bureau, U. C. 2020 Census Results. https://www.census.gov/programs-surveys/decennial-census/decade/2020/2020-census-results.html.

FHWA. National Bridge Inspection Standards Regulations (NBIS). FHWA-2017-0047;
2022.

22 3. Portland Cement Association. Concrete Slab Surface Defects: Causes, Prevention, 23 Repair. Portland Cement Association (2001). Available at: 24 https://www.concreteisbetter.com/wp-content/uploads/2013/06/Slab-Surface-25 Prevention-Repair-a.pdf. (accessed 28 October 2025). 26 4. International Concrete Repair Institute. Concrete Repair Terminology. International 27 Concrete Repair Institute (2016). Available at: 28 https://www.icri.org/page/repairterminology. (accessed 28 October 2025). 29 5. Flotzinger, J., Rösch, P. J. & Braml, T. dacl10k: Benchmark for Semantic Bridge 30 Damage Segmentation. Papadopoulos, M. P., Apostolopoulos, C. A., Zervaki, A. D. & Haidemenopoulos, G. 31 6. 32 N. Corrosion of exposed rebars, associated mechanical degradation and correlation with accelerated corrosion tests. Constr Build Mater 25, 3367–3374 (2011). 33

34