Supplementary information

Aqueous synthesis of $Na_{3-2x}Sb_{1-x}W_xS_{4-x}I_x$ solid-state electrolytes with ultrahigh ionic conductivity

Yuxin Shao^{1,2,3,#}, Chengwei Gao^{1,2,3,#},*,Chengmiao He^{1,2,3},Zipeng Liu^{1,2,3}, Lanlan Xing^{1,2,3},
Zhenyu Zhang^{1,2,3}, Shiliang Kang^{1,2,3}, Linling Tan^{1,2,3}, Qing Jiao^{1,2,3}, Ying Xie^{1,2,3}, Yanfei
Zhang⁴, Baoan Song^{1,2,3}, Shixun Dai^{1,2,3}, Yuanzheng Yue^{5,*}, Changgui Lin^{1,2,3,*}

¹Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, China

²Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China

³Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China

E-mails: C. W. Gao (gaochengwei@nbu.edu.cn), Y. Z. Yue (yy@bio.aau.dk); C. G. Lin (linchanggui@nbu.edu.cn)

⁴ School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

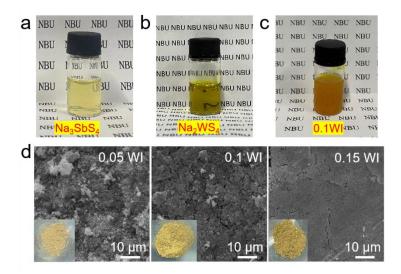
⁵ Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark

Supplementary Figure 1-3 are synthesis and structure of the Na₃SbS₄, Na₃SbS_{4-x}I_x and Na_{3-2x}Sb_{1-x}W_xS_{4-x}I_x (x=0.05, 0.1, 0.15) SSEs.

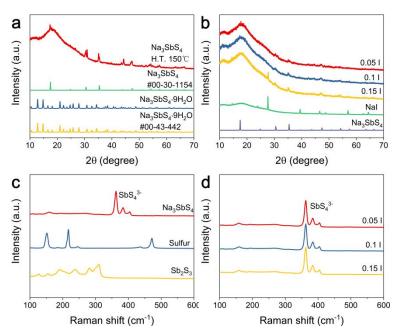
Supplementary Table 1 is the crystallographic data for the prepared $Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1}$.

Supplementary Table 2-3 are the EDS and ICP-MS data for the prepared $Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1}$.

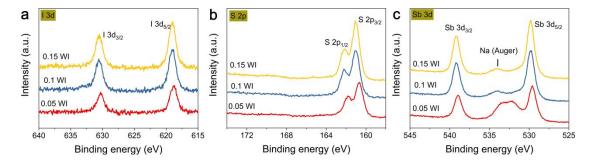
Supplementary Figure 4 is the apparent density of Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1} SSEs.


Supplementary Figure 5-6 are conduction characteristics of the Na₃SbS₄, Na₃SbS_{4-x} I_x and Na_{3-2x}Sb_{1-x} W_x S_{4-x} I_x (x=0.05, 0.1,0.15) SSEs.

Supplementary Figure 7-8 are chemical stability characteristic of the Na_{3-2x}Sb_{1-x}W_xS_{4-x}I_x (x=0.05, 0.1,0.15), Na₃SbS₄, Na₃PS₄ and Li₆PS₅Cl.


Supplementary Table 4 is the summary of chemical stability characteristic for the Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1}, Na₃SbS₄, Na₃PS₄ and Li₆PS₅Cl.

Supplementary Figure 9-11 are solid-state battery performance of $Na_{3-2x}Sb_{1-x}W_xS_{4-x}I_x$ (x=0.05, 0.1,0.15) SSEs.


Supplementary Figure 12 is the element mapping of Na, Sb, S, W, I, Ti of the aqueous synthesis anode.

Supplementary Figure 1. Optical images of the precursor aqueous solutions of **a** Na₃SbS₄, **b** Na₂WS₄ and **c** 0.1WI. **d** Backscattered electron (BSE) images of Na_{3-2x}Sb_{1-x}W_xS_{4-x}I_x SSEs (x=0.05, 0.1,0.15) with a scale bar of 10 μ m. The insert shows the heat-treated powders optical images.

Supplementary Figure 2. a-b XRD patterns of $Na_3SbS_4 \cdot 9H_2O$, Na_3SbS_4 and $Na_3SbS_{4-x}I_x$ (x=0.05, 0.1, 0.15) prepared by the aqueous phase method. **c-d** Raman spectra of Na_3SbS_4 , sulfur, Sb_2S_3 and $Na_{3-2x}SbS_{4-x}I_x$ (x=0.05, 0.1, 0.15).

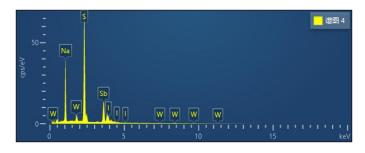

Supplementary Figure 3. XPS core levels of **a** I 3d, **b** S 2p and **c** Sb 3d of $Na_{3-2x}Sb_{1-x}W_xS_{4-x}I_x$ SSEs (x=0.05, 0.1,0.15).

Table S1. Crystallographic data for the prepared Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1}.

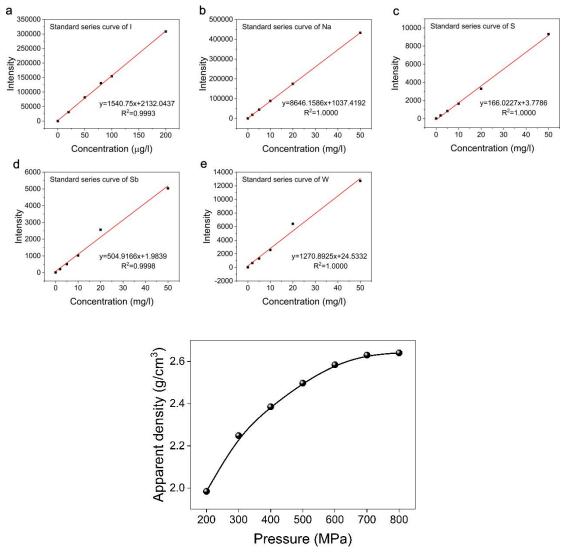
Crystal System		Cubic	Lattice Parameter		a = 7.199198 Å	
Space Group		<i>I</i> -43m (No. 217)	Volume, Z		$V = 373.123 \text{ Å}^3, Z$ = 2	
Atoms						
хуzВ	Wyckoff	Occupancy	X	у	Z	$\mathrm{B}/\mathrm{\mathring{A}}^2$
/ Å2						
Na	6 <i>b</i>	0.933	0	0	1/2	
Sb	2 <i>a</i>	0.9	0	0	0	
W	2 <i>a</i>	0.1	0	0	0	
S	8 <i>c</i>	0.975	0.191947(1)	0.191947(1)	0.191947(1)	
I	8 <i>c</i>	0.025	0.191947(1)	0.191947(1)	0.191947(1)	

 $R_{\rm wp} = 0.0238, R_{\rm p} = 0.0353$

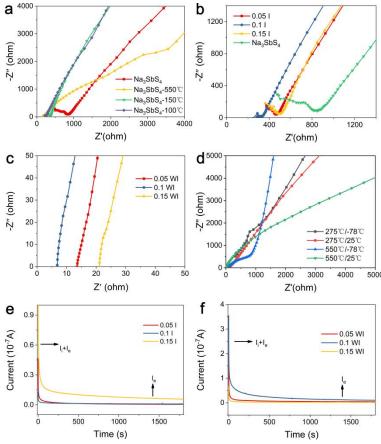
Table S2. EDS (Energy Dispersive Spectrometer) data for the Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1} SSE.

Element	Series	Weight wt. %	Atomic at. %	Error
Na	K-series	19.96	37.20	0.18
Sb	L-series	35.79	12.59	0.30
W	L-series	5.13	1.20	0.22
S	L-series	35.85	47.90	0.24

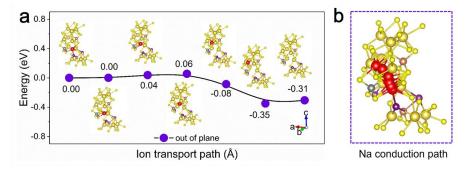
I	K-series	3 27	1 10	0.03
1	17-201102	3.21	1.10	0.0.5

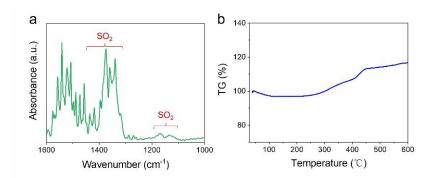

Wigh	Consta	Eleme	Test	Diluti	Element	Element	Elemen
t m ₀	nt	nt	solution	on	concentrat	content C_x	t
(g)	volum		element	factor	ion C ₁ in	(ug/kg)	content
	$e V_0$		concentrati	$\int f$	the		W (%)
	(ml)		on C_0		original		
			(ug/L)		digestion		
					solution		
					(ug/L)		
0.055	25	I	184.7691	500	92384.525	41316871.6	4.1317
9					0	458	%
0.055	25	I	187.3601	500	93680.040	41896261.1	4.1896
9					0	807	%
0.055	25	I	185.8926	500	92946.295	41568110.4	4.1568
9					0	651	%
0.045	25	Na	35.4451	10	354.4505	193900.726	19.3901
7						5	%
0.045	25	Na	35.4212	10	354.2124	193770.459	19.3770
7						0	%
0.045	25	Na	35.5059	10	355.0586	194233.354	19.4233
7						9	%
0.045	25	S	5.9626	100	596.2628	326183.126	32.6183
7						0	%
0.045	25	S	6.0781	100	607.8101	332500.072	33.2500
7						8	%
0.045	25	S	6.0054	100	600.5418	328523.942	32.8524
7						2	%
0.045	25	Sb	6.0316	100	603.1640	329958.433	32.9958
7						3	%
0.045	25	Sb	6.0747	100	607.4650	332311.288	33.2311
1				1			

0.045	25	Sb	6.0782	100	607.8247	332508.024	33.2508
7						6	%
0.045	25	W	1.2379	100	123.7877	67717.5870	6.7718
7							%
0.045	25	W	1.2560	100	125.6025	68710.3364	6.8710
7							%
0.045	25	W	1.2531	100	125.3067	68548.5498	6.8549
7							%

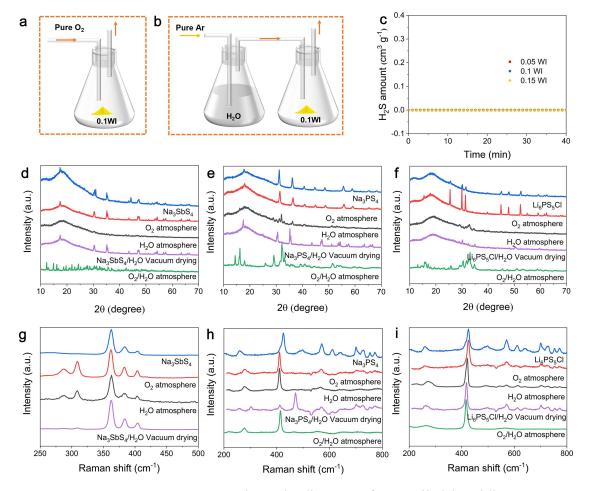

$$C_x = C_0 * f * 10^{-3} / m_0 * 10^{-3} = C_1 * V_0$$
 (1)

$$w = C_x / 10^9 * 100\% \tag{2}$$


The corresponding standard series curves of I, Na, S, Sb and W, respectively are shown below.

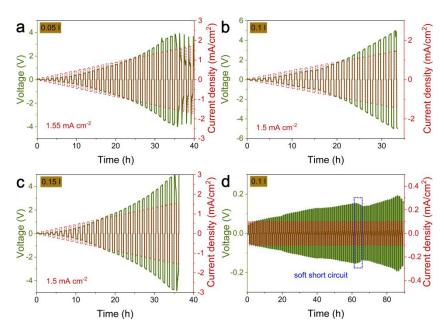

Supplementary Figure 4. Apparent density of $Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1}$ SSEs. The apparent density area at ~2.6 g cm-3 when the pressure ≥ 700 MPa.

Supplementary Figure 5. a Nyquist plots of Na₃SbS₄ were cold pressed at 720 MPa, annealed at 550 °C, 150°C and 100 °C, respectively. The yellow curve of Na₃SbS₄ was prepared by solid phase method. **b-c** Nyquist plots of Na₃SbS_{4-x}I_x and Na_{3-2x}Sb_{1-x}W_xS_{4-x}I_x SSEs (x=0.05, 0.1 ,0.15), respectively. **d** Nyquist plots of Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1} at -78 °C and room temperature (25 °C) after heat treatment at 275 °C and 550 °C, respectively. **e-f** Direct current polarization curves of Na_{3-2x}SbS_{4-x}I_x and Na_{3-2x}Sb_{1-x}W_xS_{4-x}I_x SSEs (x=0.05, 0.1 ,0.15), respectively.


Supplementary Figure 6. a Activation energy barriers for sodium ion migration and **b** the theoretically obtained structure model for the ground state of the $Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1}$ and with the marked sodium ion migration path corresponding.

Supplementary Figure 7. a FTIR spectra of Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1} in the pure oxygen atmosphere, the formation of SO₂ is evidenced by the bands at 1450-1300 and 1150 cm⁻¹. **b** The corresponding TG of TG-IR at a heating rate of 10 °C/min.

Table S4. Summary of the enthalpies, Gibbs Energies and bond energy of Formation for Sb-O, Sb-S, W-O, W-S, P-O and P-S at 298.15 K, respectively.


Bond	$\Delta_{\rm f} { m H}^{\circ} ({ m kJ/mol})$	$\Delta_{\rm f} { m G}^{\circ} ({ m kJ/mol})$	Bond
			Energy(kJ/mol)
Sb-O (Sb ₂ O ₃)	-708.8	-831.0	372.0 (84)
Sb-S (Sb ₂ S ₃)	-174.9	-174.9	379.0
W-O (WO ₃)	-842.9	-764.1	635.0 (25)
W-S (WS ₂)	-243.1	-23.0	440.0
P-O (P ₂ O ₅)	-2984.0	-2697.7	596.0
P-O (P ₂ S ₅)	-1770.0	-1506	346.0 (17)

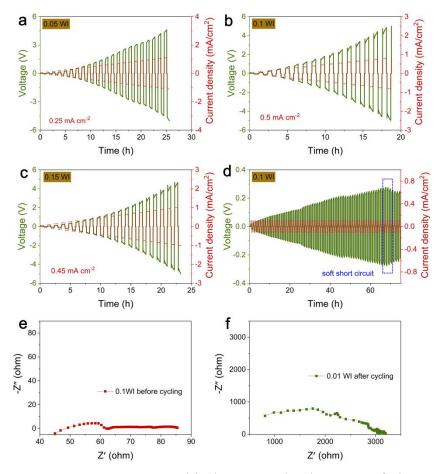
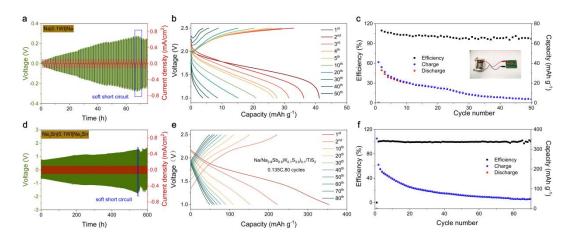
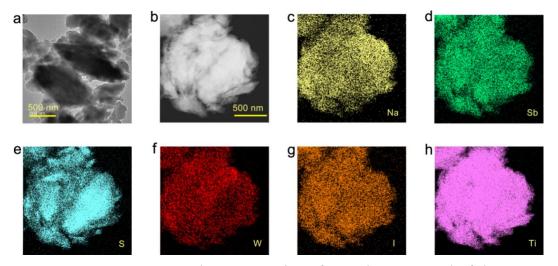

Supplementary Figure 8. a-b Schematic diagram of controlled humidity exposure experiments with continuous O₂ and H₂O purging for 12 h. c The amount of H₂S released by Na_{3-2x}Sb_{1-x}W_xS_{4-x}I_x SSEs (x=0.05, 0.1,0.15) exposed to moist air for 40 min. **d-f** XRD and **g-i** Raman spectroscopy before and after exposure experiments in specific atmosphere of Na₃SbS₄, Na₃PS₄ and Li₆PS₅Cl, respectively.

Table S5. Summary of O₂, H₂O and the mixture of O₂/H₂O stability of several typical chalcogenide electrolytes.


Atmosphere	0.1WI	Na ₃ SbS ₄	Na ₃ PS ₄	Li ₆ PS ₅ Cl
O_2	X	X	$\sqrt{}$	\checkmark
H ₂ O	√	√	X	$\sqrt{}$
O ₂ /H ₂ O	X	X	X	X

Supplementary Figure 9. a-c Critical current density tests of the Na|SSEs|Na symmetric cells at step-increased current densities at room temperature where SSEs are Na₃SbS_{4-x}I_x (x=0.05, 0.1, 0.15), respectively. The time for each charge and discharge step is 0.5 h. The step size for the current increase is 0.05 mA cm⁻². **d** Galvanostatic sodium striping/plating cycling of the Na|Na_{2.8}SbS_{3.9}I_{0.1}|Na symmetric cells at 0.1 mA cm⁻² at room temperature. The time for each striping and plating segment is 0.5 h.



Supplementary Figure 10. a-c Critical current density tests of the Na|SSEs|Na symmetric cells at step-increased current densities at room temperature where SSEs are Na_{3-2x}Sb_{1-x}W_xS_{4-x}I_x (x=0.05, 0.1, 0.15), respectively. **d** Galvanostatic sodium striping/plating cycling of the Na|Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1}|Na symmetric cells at 0.1 mA cm⁻². **e-f** Nyquist plots of Na|Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1}|Na before and after cycling.

Supplementary Figure 11. a and **d** Galvanostatic sodium striping/plating cycling of the Na|Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1}|Na and Na₃Sn|Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1}|Na₃Sn symmetric cells at 0.1 mA cm⁻². **b** Galvanostatic voltage profile and **c** galvanostatic cycling

performance of the Na|Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1}|TiS₂ full cell. The insert is a light bulb demonstration after the battery is assembled. **e** Galvanostatic voltage profile and **f** galvanostatic cycling performance of the Na₃Sn|Na_{2.8}Sb_{0.9}W_{0.1}S_{3.9}I_{0.1}|TiS₂ full cell.

Supplementary Figure 12. Element mapping of Na, Sb, S, W, I, Ti of the aqueous synthesis anode.