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ABSTRACT

This document provides supplementary information for “Robust Fourier ptychographic structured illumi-
nation microscopy (FP-SIM) using only 3 patterns”. We discuss in detail the principles of FP-SIM, and
present more comparative simulations and experiments. In addition, we provide an introduction to the
open-source MATLAB code of FP-SIM and associated datasets, as well as the corresponding user guide
and demo results.
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S1. Forward model of structured illumination microscopy

Structured illumination microscopy (SIM) has become a widely available technique for insight into
biomedical research, benefiting from fast imaging speed and low phototoxicity and bleaching properties'.
Using spatially structured illumination patterns, SIM doubles the lateral resolution (~200 nm) of the
conventional microscope by modulating the high-frequency information of the sample into the system
detection passband.

In a typical linear fluorescence microscopy system, the observed image is the convolution of the
emitted fluorescence intensity (which is proportional to the excitation intensity) of the sample and the
point spread function (PSF) of the microscopy, which can be written as:

D(r) = [I(r) - S(r)]© H(r) (SD

where r represents the image spatial coordinate, S denotes the sample signal, I refers to the excitation
intensity, H is PSF, and ® represents convolution operation. For SIM, the illumination pattern / satisfies
the sinusoidal distribution, then D(r) can be rewritten as:

D(r) = {S(r)[1 +mcos(2mker)|} ©H(r) (S2)

where m and k., represent the illumination modulation depth and spatial frequency / wave vector, separately.
The Fourier spectrum of Eq. S2 can be expressed as:

D(K) = So()O(K) + 5 51 (k ke O(K) + 551 (K + k) O(K) (s3)

where k represents the frequency coordinate, ~ denotes the Fourier transform of the original object,
subscripts 0 and £1 are the orders of different spectrum components, and O is the optical transfer function
(OTF), which is the Fourier transform of PSF. It is easy to see from Eq. S3 that the £1-order spectrums
carry the sample information from its original position with +kex frequency. In other words, sinusoidally
structured illumination modulation enables the image spectrum to contain super-resolution information
beyond the diffraction limit, the extension of which is determined by the illumination wave vector. Since
the illumination pattern is also limited by the system OTF, kex is maximally close to the original cutoff
frequency, meaning that SIM can double the lateral resolution. In order to recover super-resolution
information from the original illumination image mixed with wide-field signals and high-frequency signals
outside the diffraction limit, it is necessary to separate the three (0- and +1-order) spectrum components
and reorganize them to their correct positions.
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S2. Conventional 9-frame SIM reconstruction algorithm

Demodulating high-frequency information from the original SIM image is a highly ill-posed inverse
problem, and the classical solution is to introduce at least two additional phase-shifting images and solve
for the three spectral components by linearly combining between raw SIM observations. Typically, the
three-step phase-shifting illumination images D,, (n = 1,2, 3) with phase shift ¢ = 27/3 can be represented
as (Fig. S1b and S1c):

Du(r) = {S(t)[1 + mcos(2mkey + (n— 1)@ + o)} © H(r) (S4)

where g represents the initial phase. Fig. Sla illustrates the optical setup for generating sinusoidal
structured illumination, where the +1-order diffraction light generated by the incident on a spatial light
modulator (SLM) displaying a high-frequency grating pattern interferes to produce an interference fringe
pattern (for a detailed description of the SIM system see Section S11). The Fourier spectrums of Eq. S4
can be expressed as (Fig. S1d):

Du(k) = Z0(K)S) (k — Koy )/ 27035001 1 0(k) S0 (K) + = O(K)S_ | (K + Koy e ET0=D/3+00] (g5)

2 2
Through the known phase shift ¢, the 0- and £1-order spectrum components can then be separated by:

-1 .

1
O(k)So(k) 1 %_M o Dy (k)
mO(K)S_j(k+kex)e /P | = |1 Le7i5 /¥ D> (k) (S6)
mO(k)S; (k — kex)e]"’o 1 Lo Lei¥ Ds(k)

For simplicity, we write Cg = O(K)So(K), C; = mO(K)S| (k— k) e/? and C_; = mO(k)S_1 (K+Key)e /®,
where C and C represent the wide-field and high-frequency information, respectively (Fig. Sle). How-
ever, the separated spectrum components carry the modulation depth . and initial phase e™/% associated
with the experimental environment, which will cause severe artifacts in the subsequent reconstruction
if not compensated”>. Moreover, the wave vector kex required for the spectrum reorganization is also
environment-sensitive and needs to be estimated a posteriori from the captured raw images. The iterative
cross-correlation method (COR) proposed by Gustafsson et al.® is one of the most widely used parameter
estimation approaches, which determines the wave vector with sub-pixel accuracy in the form of real-space
phase gradients, and on this basis calculates the initial phase and modulation by complex linear regression.
Taking the 1-order spectrum C; as an example, its spectrum peak can be easily located and C; can be fre-
quency shifted by the integer-pixel wave vector (the distance from the localized spectrum peak to the image
center, which can be written as k;,;. Note that k., can be decomposed into k;,; and k,;,, where k,,;, denotes
the residual sub-pixel component). The shifted C; can be rewritten as mO(k + ;)1 (k — Ky, )e/®. Then
we remove the OTF terms of Cy and C;:

0" (k)
oK)[*

0= Co = 8o(k) (S7)

Okt R >
mn
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where superscript * represents the complex conjugate, and the system OTF can be obtained by calibration
or numerical simulation. In fact, Cj; and C} are inherently and highly correlated, and their correlation value
will reach its maximum at a shift of ky,,. Such maximum correlation can be obtained by iterative search
in progressively finer steps around the peak of C:

Yk mg(’; (k)§1 (k — Kgup + k;ub)ej%

Cor(K., ) = - (S9)
b Yk [So(k)|?

Ko = argmax Cor(K,,,) (S10)
K €[-1,1]

where k!, represents the varying sub-pixel distance, Cor denotes the normalized cross-correlation value
of Cjy and C} at k! ,, and argmax is the operation to determine the maximum value. According to Fourier
frequency shift characteristics, the sub-pixel frequency shifts can be conveniently implemented by phase
shifting in real space. Then, Eq. S9 can be transformed into:

o Zk mSE; (r)Sl (r)e(j¢0+ksubr_k;ubr)

Cor(K.,,) = T So) (S11)

After accurately determining kg, and sub-pixel shifting C} to the correct position, the initial phase and

modulation depth can be obtained by complex linear regression:

Y mSy(r)S) ()e®
= ) S12
o= anglel = P (512
S8 (e <3
Yk [So(r)|?

where angle() is the operation that returns the phase. After estimating the initial phase, wave vector and
modulation depth, the three spectrum components can be precisely separated and reorganized (Fig. S1f).
For isotropic super-resolution, the same operation is performed on two other sets of SIM raw images with
fringe orientations rotating by 120 degrees (Fig. S1g). Therefore, the conventional SIM reconstruction
methods require at least 9 original illumination images to complete the super-resolution reconstruction.
Finally, the Wiener filter is used to weighted average the different spectrum components, and inverse
Fourier transform is conducted to obtain the super-resolution image:

S
Zl}q O(k+ C]ki,eX) |2 +w?

A(k)) (S14)

where .% ~! denotes the inverse Fourier transform, the subscript i represents the different directions of
the interference fringes / illumination patterns (i = 1,2, 3), the subscript ¢ is the order of the separated
spectrum (¢ = —1,0, 1), w is Wiener constant dependent on experience, and A is an apodization function
to suppress high-frequency artifacts.
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L1-L4: achromatic lenses FM: fluorescent interference filter block
PBS: polarization beam splitter  OBJ: object lens
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Figure S1. The principle of conventional 9-frame SIM reconstruction algorithm. a Schematic
diagram of the optical path of an interferometric SIM system, where the £ 1-order diffraction light
generated by the incident on a spatial light modulator (SLM) displaying a high-frequency grating pattern
interferes to produce an interference fringe pattern. b Comparison between the wide-field image and the
super-resolution image. ¢ Raw SIM image of a certain illumination orientation from the boxed region in b.
d The spectrum map of c. e Initially separated spectrum components. f Merged spectrum in a single

illumination direction. g Merged spectrum in three illumination directions
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S3. 3-frame Fourier ptychographic SIM reconstruction algorithm

Fourier ptychographic microscopy

Fourier ptychographic microscopy (FPM) is a wide-field, high-resolution computational microscopy
technology*, which can iteratively stitch together numerous large field-of-view, low-resolution images
obtained by illuminating the sample with plane waves at variable angles to produce a high-resolution
target image in Fourier space:

SPF(k) =Y {Pry[SP (), spi(r)] — SPf(K)} + SP¥(k) (S15)
[

Pty[SPF(K), = F{\/spi 7 [SP (k)] e (S16)
s

YA sl s |7 [SPFK)]

where SP represents the high-resolution target in FPM, k denotes the iteration times, the subscript / is the
[-th illumination angle, SP; represents a small subregion of SP corresponding to illumination angle [, sp;
is the low-resolution measurement obtained under illumination angle /, and Pty denotes the operation of
replacing the amplitude of the target with sp;. The initial guess of SP is usually the sample image (with
the phase field set to zero) acquired by the plane wave illumination at positive incidence. The iteration is
repeated until SP converges.

Fourier ptychographic structured illumination microscopy

FPM is essentially an optimization process to seek a high-resolution complex field solution of the object
with the constraint of multiple low-resolution images captured. We directly apply the idea of FPM to
SIM. Different from FPM which recovers both amplitude and phase, SIM mainly focuses on amplitude
/ intensity information. Therefore, the operation of Pty is discarded and the optimization procedure of
Fourier ptychographic SIM (FP-SIM) is written as follows with reference to Eq. S15:

Sk (r DecZ —H(r) ®S*(r)] + S(r) (S17)

where S represents the high-resolution target in SIM, i.e., the sample signal, the subscript i denotes the
i-th 1llumination orientation, D; is the low-resolution measurement obtained under illumination orienta-
tion i, i.e., the original SIM image, I; represents the illumination pattern corresponding to illumination
orientation i, and Dec denotes the deconvolution operation for weighted averaging of the different spec-
trum components. Similar to the operation Pty[SPF(k),sp;(r)] — SPf(k) in Eq. S15 in order to recover
the high-frequency information in a certain subregion of SP, the operation D;(r)/I;(r) — H(r) ® S¥(r)
implements the extension of the high-frequency component in the mixing spectrums, as shown in Fig.
S7. Compared to conventional 9-frame SIM reconstruction algorithm (Fig. S1), Fourier ptychographic
SIM reconstruction requires only one original measurement per illumination orientation, and the imaging
efficiency is improved by a factor of three while the photodamage is reduced by a factor of three. The
initial estimation and iteration termination condition for Eq. S17 are discussed in Sections S7-S9.
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S4. Super-resolution performance discussion of Fourier ptychographic
structured illumination microscopy

Unlike in FPM where each sub-aperture image is acquired separately, for SIM, images of different
sub-apertures (i.e., images corresponding to each spectrum component) are mixed. How to separate
and expand these sub-aperture spectrums is the key to achieving super-resolution reconstruction. In
conventional 9-frame SIM, spectrum separation is accomplished by acquiring additional phase-shifting
images and linearly combining them through Eq. S6, based on which spectrum recombination is then
achieved by hard-to-obtain illumination parameters. In this process, the step-by-step spectrum separation
and recombination will pass the error to the next step respectively, making it difficult to obtain the optimal
solution. In FP-SIM, spectrum extension is realized by the illumination inversion operation of D;(r)/I;(r).
As illustrated in Figs. S2a and S2b, such a simple operation in the real-space domain effectively shifts the
+1-order spectrum components and expands the spectrum support domain, which is more evident in the
spectrum difference image as shown in Fig. S2c. It should be noted that since the acquired illumination
patterns are not exactly consistent with the actual ones, accurate super-resolution information cannot
be obtained by one illumination inversion. With the data redundancy provided by a certain overlap rate
between different spectrum components, performing the above operations jointly on the raw SIM images
of different illumination orientations can realize the lateral isotropic spectrum expansion (detailed in
Section S5), of which the high-frequency components can be continuously increased and eventually
converged after several iterations (Figs. S2d - S2f). Since the above operations are performed under a
unified framework, the transmission of errors is avoided, which helps to obtain the optimal solution.
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Spectrum of
raw SIM image D; Spectrum of D; / |; Spectrum of (D;/ ;- D;)

cut-off frequency
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Figure S2. Schematic diagram of the principle of spectrum expansion achieved by FP-SIM. a The

spectrum map of the raw SIM image D; of a specific illumination orientation. Raw data are from Fig. 3 in

the main text. b The spectrum map of D;/I;. As seen in the blue dashed box, the +1-order spectrum

components are shifted and the spectrum support domain is expanded. ¢ The spectrum map of D;/I; — D;,

from which the enhancement of the high-frequency component can be seen more obviously. d The

spectrum map of 3} D; /1. By jointly performing the operation of D;/I; on the raw SIM images of different
1

illumination orientations, isotropic spectrum extension in the lateral direction can be achieved. e The
spectrum map of Y. [D;/l; —H © S¥] after 10 iterations. f The spectrum map of Y[Di/li—H® S¥] after 10

1 1
iterations in the theoretically effective support domain. After several iterations, the high-frequency
components will be continuously increased and eventually converged
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S5. Convergence discussion of Fourier ptychographic structured illumina-
tion microscopy

Next, we will analyze whether Eq. S17 contributes to the minimization of the optimization function (Eq. 1
in the main text). The main cost function of Eq. 1 in the main text can be defined as follows:

e=Y || /180)] - Di(r)]|, (S18)

where |||, indicates the /, vector norm, S is the approximate solution, and .27 [$(r)] can be further
represented as [I(r) - S(r)] © H(r). For [,-norm fidelity terms in fluorescence SIM, the dominant noise
source is photon shot noise, which follows a Poisson distribution. While a Poisson-likelihood fidelity
is physically accurate™®, the I, squared fidelity term is generally preferred over I; because it better
approximates the Poisson statistics for typical photon counts and enables stable, efficient optimization.
In contrast, /1 is more suitable for sparse or outlier-type noise, which is not dominant in fluorescence
SIM’. Consequently, many reconstruction algorithms adopt /» to achieve robust reconstruction with
computational simplicity>®°. In the case of l, norm, if the modulation of PSF is not considered, the
gradient of € with respect to S can be expressed as:

550y — 24(0) Y {Dec[Di(r)] ~ (r)S(r)} (S19)

i

To minimize the error of the loss function of Eq. S19, one can use fixed-point iteration by setting the
gradient to zero (d€/dS(r) = 0). For the simplest gradient descent method, the object function can
be updated based on the following equation, taking into account the expansion of the system detection
passband, by incorporating the illumination inversion step (D;/I;):

S (r) = $(r) +2aZ{Dec i(1)]/I(r) — S*(r)} (S20)

where o represents the step-size. If « is set to 0.5 and the deconvolution process for .o/ (ﬁ ) and D; in Eq.
S19 is operated in a joint manner, Eq. S17 can be approximately equivalent to Eq. S20:

ZaZ{Dec r)]/Li(r) — S*(r)} + S%(r) ~Decz )—H(r)oSKr)]+5x)  (S21)

It should be noted that the step size o = 0.5 provides a good balance between convergence stability
and speed: it avoids the oscillation or divergence that may occur with o = 1, while maintaining faster
convergence compared to smaller step sizes. Since there is at least 39.1% overlap between neighboring
sub-apertures, which is more than the aperture overlapping percentage in conventional FPM!'?, the resulting
data redundancy can provide guarantee for iterative convergence (Fig. S3). It should be noted that although
the above convex optimization theory based on gradient descent cannot fully analyze the non-convex super-
resolution reconstruction problem, such a solution has proven to be effective for practical applications in
conventional FPM!!. In addition, we used a series of preprocessing and regularization processes to further
ensure the convergence of FP-SIM, which are detailed in Sections S7-S9.
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Figure S3. Overlap of different Fourier-domain sub-apertures in SIM. Considering the most
extreme case, i.e., when the illumination frequency is matched to the system cutoff frequency, the overlap
ratio of adjacent sub-apertures is approximately 39.1%. In other cases, i.e., when the illumination
frequency is less than the system cutoff frequency, the overlap is greater than 39.1%.
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S6. Analysis on the uniqueness of the solution of Fourier ptychographic
structured illumination microscopy

The uniqueness of the solution for iterative reconstruction using only three SIM images has been demon-
strated, but the premise is that the illumination pattern is known'?. In our method, the illumination pattern
I has been acquired in advance, and under such conditions, if the system PSF is not considered, the only
unknown is the sample information S for a raw SIM image in a certain illumination orientation. Since SIM
images in different illumination orientations jointly contain the same unknown term, the use of a total of
three images is sufficient to ensure the uniqueness of the super-resolution solution. It should be noted that
despite the deviations between the extracted illumination pattern and the actual one, based on the above
discussions on super-resolution performance and convergence (Sections S4 and S5), a stable convergence
to a high-quality super-resolution solution can be achieved through iterations with the addition of a series
of preprocessing and regularization, as shown in Fig. 2 of the main text. See Sections S7-S9 for more
details on preprocessing and regularization.

Regarding the noise immunity, for the conventional 9-frame SIM reconstruction, the extended high-
frequency component in a certain illumination orientation is acquired by the three three-step phase-shifting
SIM images in that orientation. When performing spectrum merging, the diffraction-limited wide-field
information is jointly contributed by nine images in all illumination orientations, meaning that this
component has a higher signal-to-noise ratio (SNR), while the high-frequency components are still
contributed by only three images in their respective orientations. Although there are non-uniform overlaps
between the high-frequency components of different illumination orientations, these overlaps rarely assist
in improving the SNR, but instead cause problems for subsequent image reconstruction, resulting in a
non-uniform synthetic spectrum. In FP-SIM, all high-frequency components are co-contributed by three
SIM images, so it is actually comparable to the conventional 9-frame reconstruction method in terms of
SNR. In addition, since FP-SIM jointly solves the high-frequency information of the three illumination
orientations in a unified iterative framework, it facilitates a better overall performance compared with the
conventional scheme of solving them individually first and then merging them.
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S7. Preprocessing based on Richardson-Lucy deconvolution

Richardson-Lucy (RL) deconvolution'? is an iterative filtering algorithm specifically for Poisson noise,
which is derived from Bayesian theory according to the maximum likelihood (ML) principle. In statistical
probability, the conditional probability of estimating a clear image from a blurred version can be expressed
as:

p(glf)r(f) (S22)
p(8)

where p(g) represents the blurred image captured by a linear imaging system, p(f) denotes the ideal

p(flg) =

image, and p(g|f) is the PSF that causes blurring. Considering that the image pixels are independent of
each other, according to the Poisson statistical model, Eq. S22 can be rewritten as:

h(x,y) © f(x,y) ) e hben)of ()

S23
g(x,y)! (523

pelf)=T]

(x.y)

where f(x,y) represents the ideal image, i(x,y) denotes PSF, and g(x,y) is the blurred image. In order to
obtain the maximum conditional probability, according to ML, first take the logarithm of Eq. S23:

Inp(glf) =Y {g(x,y)Infa(x,y) ® f(x,y)] —In[h(x,y) © f(x,y)] — In[g(x,y)!]} (S24)
(x,)

Then, take the derivative of f(x,y) in Eq. S24 and set the result to O:

g(x,y)
(x,y) ®© f(x,y)

fen=|; )| 16) (525

where h(x,y) = h(—x,—y). By introducing the concept of iterative update in Eq. S25, the general form of
RL deconvolution is obtained:

) = |t ot | ) (526)
where f"T! and f* denote the estimated values of the ideal image in the n + 1-th and n-th iterations,
respectively, and f"*! will asymptotically converge to the ideal image according to the probability. In this
work, we use RL deconvolution to pre-process each original SIM image to remove some Poisson noises
as well as partial out-of-focus backgrounds, and set the default number of iterations to 5 for combined
efficiency and performance considerations'*.

It is worth mentioning that RL deconvolution can enhance the peaks of the first-order spectrum of the
raw illumination image when testing the sample with strong periodicity or under the TIRF-SIM mode'?,
which assists the illumination pattern extraction in FP-SIM (note that the spectrum peak can also be

obtained by means of calibration in advance, which is detailed in Section S12).
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S8. Centre-notched Hanning filter to obtain the initial estimate

In conventional iterative SIM algorithms, usually the wide-field image obtained by averaging the multi-step
phase-shifting image superposition is used as the initial estimate of the iteration, but this still introduces
image redundancy'>. In order to obtain a well-defined initial estimate of the super-resolution image while
minimizing the original acquisition frames, we use a centre-notched Hanning window function to extract a
high-contrast initial image directly from a single frame illumination image. The proposed centre-notched
Hanning filter is as follows (note that the orientation subscript is omitted here for simplicity):

|DTF (Hann)|" - |DTF (Hann)| W,y kK
H h = 1— S (R S27
antfiNorch max2|DTF (Hann))| =105 Gam, )1 (527)
1
Hann = 5[1 — cos(|Kex|7ry)] (528)

where Hanny,,., represents the used centre-notched Hanning filter, DT F denotes the discrete Fourier
transform operation, Hann is a regular Hanning window with the strongest attenuation at the 1-order
spectrum of the illumination image, superscript 7 is the transpose operation, Ws;, and Wy 4, denote the
strength and width of the central attenuation in the notch filter, r, is the spatial coordinate along the x-axis,
and ry € [—|Key|, |Kex|]- Here ke, can be replaced by the original cut-off frequency of the system, because
the illumination frequency is usually close to the cut-off frequency to maximize the super-resolution effect.
For the parameters of the notch filter, Wy;qm was fixed at 1, while Wsy, varied from O to 1 to control the
attenuation strength, with Wg, = 1 indicating the maximum notch effect'®. In fact, the main energy of the
illumination modulation in the spectrum map of the original SIM image is concentrated at the peak of
the 1-order spectrums. Therefore, a Hanning window with a passband capable of filtering the first-order
spectrums can be adopted to attenuate the illumination modulation while suppressing the ringing effect
caused by spectrum leakage. However, the Hanning window also attenuates the relatively high-frequency
information of the sample and amplifies the low-frequency signal. For this issue, a centre-notched filter
is compounded with the Hanning window to suppress some out-of-focus backgrounds, which indirectly
compensates for the high-frequency information of the sample. Figure S4 illustrates the original SIM
image and the initial estimations obtained by different filtering operations, where Fig. S4a is the original
full-field SIM image, and Fig. S4b is the magnified image from the boxed region in Fig. S4a, Fig. S4c is
the wide-field image acquired by averaging the multi-step phase-shifting original SIM images, Fig. S4d
is the original SIM image after RL deconvolution, and Fig. S4e and S4f are the initial estimates of the
iteration obtained from the regular Hanning window and the centre-notched Hanning window, respectively.
Compared to the wide-field image acquired by multi-step phase-shifting original SIM images, the initial
estimate obtained by the centre-notched Hanning window has better contrast and does not need to capture
additional phase-shifting images.
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Wide-field

’ Centre-notched
Hanning filtering

Figure S4. Original SIM image and initial estimation obtained by different filtering operations. a
The original full-field SIM image. The image is from the simulation data in Fig. 2 of the main text. b The
magnified image from the boxed region in a. ¢ The wide-field image acquired by averaging the multi-step
phase-shifting original SIM images. d The original SIM image after RL deconvolution. e The initial
estimate of the iteration obtained from the regular Hanning window. f The initial estimate of the iteration
obtained from the centre-notched Hanning window. Scale bars: 10 um (a); 1 um (b-f)
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S9. Regularization on target spectrum support

During the iterations, we impose a regularization constraint on the objective function so that it can converge
to the expectation faster and with fewer iterations, which is essential to normalize the originally ill-posed
inverse problem. In SIM, the extension of the sample high-frequency information is directly related to
the orientation and frequency of the illumination pattern, and the limit of the super-resolution spectrum
is theoretically the sum of the original cutoff frequency and the illumination frequency. Based on this
condition, the regularization term R(S) is defined as:

R[S(r)] = S(r) ©.F [Freng (k)] (S29)

0 if k > kcutoff + Kex

S30
1 else ( )

Frepg(k) = {
where k¢ Tepresents the original cutoff frequency and Fre,.e denotes the mask that constrains the
spectrum range. Note that k., in Eq. S30 is of integer-pixel accuracy. The regularization term effectively
avoids the overflow of the wrong spectrum and the generation of high-frequency noise in the iteration
process by limiting the spectrum range of the target function to a reasonable region, allowing it to rapidly
approximate toward the desired one. Figure S5 illustrates the spectrum maps and super-resolution images
before and after regularization. After 20 iterations without regularization, there is no effective increase in
the high-frequency detail of the target object; instead, it suffers from severe scattering noise (Fig. S5a).
After applying the regularization, the super-resolved signal outside the cutoff frequency is enhanced as
expected, and finally the objective function converges to a high-quality super-resolution result (Fig. S5b).

Note that the iteration of FP-SIM will be carried until a fixed point is reached, i.e. Sktl — gk which
can be monitored by the error map || S¥! — g* ||j7 (where || ||i indicates the [, vector norm). In practice,
the number of iterations is set directly by experience to 20. In addition, our regularization strategy does
not include an explicit parameter to balance the data fidelity term and the prior term, as the constraint is
intrinsically embedded in the reconstruction process itself.
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Figure S5. Spectrum maps and the corresponding super-resolution images with and without the
regularization. a The spectrum map and the corresponding super-resolution image without the
regularization, where al is the spectrum map after 20 iterations, a2 is the spectrum distribution curves of 1
and 20 iterations from the white dashed line in al, a3 is the super-resolution image corresponding to al,
and a4 is the magnified super-resolution image from the boxed region in a3. The data is from the
simulation data in Fig. 2 of the main text. b The spectrum map and the corresponding super-resolution
image with the regularization. Scale bars: 5 um (a3, b3); 1 um (a4, b4)
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$10. Comparative analysis of FP-SIM under different reduced-frame acqui-
sition schemes

Under regular illumination schemes, existing frame-reduced SIM reconstruction algorithms can generally
be categorized into two types. The first type extends the conventional 9-frame regression-based SIM
algorithm. By assuming that the zero-order spectral components, which represent wide-field information,
can be shared across different illumination orientations, the number of raw images required for SIM
reconstruction can be reduced from nine to seven!®17, Although the frame reduction is limited, this
category of methods provides relatively stable reconstruction performance. The second type abandons the
conventional nine-frame algorithmic paradigm. Representative methods in this category include iFP'>,
jRle, Bayesian estimation'8, and FD'?, which can further reduce the number of frames to four or even
three. However, all these approaches rely fundamentally on the accurate acquisition of illumination
parameters. In practice, such parameters are either estimated using the original phase-shifted dataset—thus
failing to achieve true frame reduction throughout the entire reconstruction pipeline—or assumed to be
known a priori, which limits their applicability in real experiments. Table S1 summarizes the principles
and implementation details of these frame-reduced methods. It is noteworthy that the core step of FD-SIM
corresponds to the Fourier-domain realization of the illumination inversion in our FP-SIM approach. Since
the illumination patterns cannot be accurately extracted in experiments, FD-SIM often fails to achieve
high-quality reconstruction through a one-step solution. In contrast, our proposed FP-SIM introduces
iterative updates combined with a series of preprocessing and regularization strategies, enabling stable
convergence toward a high-quality super-resolved solution. For details on the experimental comparison
between these frame-reduction methods and FP-SIM, see Section S11.

In regular illumination schemes, the minimal number of frames required by FP-SIM is three, i.e., one
raw image per illumination direction without phase shifting. To investigate the influence of reduced-frame
strategies, we gradually increased the frame number from 3 to 9 and evaluated reconstruction performance
under different acquisition schemes. As illustrated in Fig. S6, six cases were compared: (1) three directions
with three phase-shifted images each; (2) three directions with two phase-shifted images each; (3) two
directions with two phase-shifted images each and one direction with a single image; (4) one direction
with three phase-shifted images and the other two with only one image; (5) 3-frame FP-SIM plus an
additional widefield image; and (6) 3-frame FP-SIM (one image per direction). Figures S6a and S6b
present the reconstructed super-resolution images of simulated BPAE cells under these six conditions. The
reconstructed images exhibit only minor differences, which are not readily discernible at the visual level.
To quantitatively assess reconstruction fidelity, we calculated the structural similarity index (SSIM) and
peak signal-to-noise ratio (PSNR) with respect to the ground-truth image, as well as the rolling Fourier
ring correlation (rFRC) resolution?® (Figs. S6c and S6d). The results indicate that although reconstruction
quality improves with increasing frame numbers, the improvement is marginal. Specifically, when the
frame number increased from 3 to 9, the median SSIM improved by only 0.024, the median PSNR by
1.01 dB, and the mean rFRC-estimated resolution by 2.22 nm. These results suggest that while additional
frames can enhance reconstruction, the benefit is limited. In contrast, reducing the acquisition burden by a
factor of three offers a more favorable balance between photon efficiency and imaging practicality.
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Table S1. Implementation schemes of different frame-reduction SIM reconstruction methods

Frame-reduct

Iterations

Illumination parameter estim

Image reconstruction Remarks

ion method ation
7.SIM16 Non-iterative 3}?2;3?;22?&:2'25%?:;; A regression-based reconstruction Stable but limited
9 similar to conventional 9-frame SIM frame reduction
methods
Derived from multiple phase- . . o
7-LSSIM'7 Non-iterative shifted images via correlation A regression-based reconstruction Stable but limited
similar to conventional 9-frame SIM frame reduction
methods
Derived from multiple phase- . . - .
. . - - . . A reconstruction algorithm based Limited practical
- 19 -
FD-SIM Non-iterative shifted images via correlation on ordinary least squares technique performance
methods
h 15 200-500 Assumed to be known (initial A modified incoherent Fourier Valid only for
iFP-SIM . ; . e .
iterations phase unknown) ptychographic procedure brightfield imaging
jRL-SIM?2 100-300 Assumed to be known Ajoint Richardson-Lucy Sensitive to low SNR
iterations deconvolution algorithm
Bayesian Derived from multiple phase- o o
RS e : ’ . - A Bayesian inverse-problem Sensitive to
eshrgﬁ\t/ll?an for  Not specified shifted |margztsh\(/)|gscorrelatlon formulation approach modulation parameters
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Figure S6. FP-SIM reconstruction results under different reduced-frame acquisition strategies. a
Wide-field image of simulated BPAE cells and the corresponding super-resolution image reconstructed
using 3-frame FP-SIM. b Magnified views of the yellow-boxed region in a, showing the wide-field image
and super-resolution reconstructions obtained with different frame numbers. ¢ Quantitative evaluation of
FP-SIM reconstructions under different frame numbers in terms of SSIM, PSNR (with respect to the
ground truth), and rFRC resolution. d Median SSIM and PSNR values, together with the mean rFRC
resolution, corresponding to the results in ¢. Scale bars: 10 um (a); 2.5 um (b)
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S11. Supplementary simulations and experiments

Supplementary simulations

Here we provide more simulation results to further verify the effectiveness of FP-SIM. Figure S7a-S7e
illustrates the spectrum maps and the corresponding super-resolution images after different times of
iterations for 10 dBW Gaussian noise power of the simulation experiments (Fig. 2) in the main text. As
the iteration times increase, the high-frequency information of the sample exceeding the original cutoff
frequency is gradually enhanced and converges as the iteration times close to 20, while the details of
the super-resolution image are continuously refined, which also indirectly weakens the initial estimation
artifacts caused by the slight ringing effect (regions marked by yellow triangles, where the structure sizes
are smaller than the theoretical improved lateral resolution). Note that in order to compare the spectrum
variations for different times of iterations, the display threshold of the spectrum maps here is different
from the rest of the text. Although visually, the low-frequency component is significantly higher than
the recovered high-frequency one, the spectrum profile in Fig. S7el indicates that the high-frequency
information is significantly enhanced compared with the original, and the final converged spectrum profile
is already close to the distribution of the ideal super-resolution OTF. Regarding why the high-frequency
component looks weaker than the low-frequency, we think that since FP-SIM performs the gradual
recovery and enhancement of super-resolution information on the basis of the original wide-field image,
the low-frequency wide-field component still retains its original distribution, with higher energy density
than the high-frequency information recovered under certain constraints.

We also used the modified incoherent Fourier ptychographic method!® (iFP, a method for reducing
image acquisition) for the same simulation data. As shown in Fig. S7f, due to the lack of precise extraction
of the actual illumination parameters, which is particularly severe in the case of extremely dense gratings,
each iteration does not contribute to an effective resolution improvement despite the iterative compensation
of the illumination pattern, but instead leads to reconstruction artifacts. In addition, since iFP obtains
the initial estimate of uniform illumination by averaging multi-step phase-shifting images, it is inferior
in quality and efficiency (image redundancy) compared to our approach, in which the initial estimate is
obtained by RL deconvolution and a centre-notched Hanning filter from a single-frame raw SIM image.

To more intuitively demonstrate the advantages of FP-SIM, we performed super-resolution image recon-
struction of structured illumination images of simple ring structures using FP-SIM, iFP, the conventional
O-frame reconstruction algorithm (COR-based parameter estimation and Wiener deconvolution-based
image reconstruction, here we directly call it conventional 9-SIM method for the sake of simplicity), and
the high-fidelity SIM technique by point-spread-function engineering'# (Hifi-SIM, a state-of-the-art SIM
reconstruction algorithm), respectively (Fig. S8). Similar to the generation of the simulated data in Fig.
2 in the main text, an image of simple ring structures was used as the ground truth. We multiplied the
sinusoidal fringe patterns (with the frequency matching the cutoff frequency of a 0.85 NA objective)
with the ground truth. The modulated images were then convolved with a simulated OTF to simulate
the original SIM images acquired with a 40x 0.85 NA objective. Finally, Gaussian noises of different
powers were added to the simulated SIM images. In the noise-free case, the 9-frame reconstruction
algorithms (conventional 9-SIM and Hifi-SIM) obtained high-quality super-resolution reconstructions
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(Fig. S8c1-S8c3). For the iterative approaches, iFP failed to resolve the rings in detail (Fig. S8c4), while
FP-SIM optimized super-resolution images of comparable quality to the 9-frame reconstruction algorithms
through only 3 original illumination images (Fig. S8c5-S8c6). With the increase of the noise, the results
obtained by the conventional 9-SIM suffered from severe reconstruction artifacts (Fig. S8d-S8g). Although
Hifi-SIM alleviated these artifacts, the ring structure of the sample was still impaired. In contrast, FP-SIM
yielded relatively higher-quality reconstruction images at low signal-to-noise ratios (SNRs), performing
superior robustness to noise.

Supplementary experiments

Static experiments

First, quantification experiments on fluorescent microspheres are supplemented as shown in Fig. S10. The
experimental results indicate that FP-SIM achieves a lateral resolution of about 99.35 nm with only three
raw SIM images at 100, 1.45 NA objective and 525 nm fluorescence, which is slightly inferior to the
96.89 nm of conventional 9-SIM.

Next, based on the experimental data shown in Fig. 3 (BPAE cells acquired with our custom-built
system and microtubules from the publicly available BioSR dataset>!) in the main text, we performed
comparative studies under different frame-reduction strategies. Four representative approaches were
considered for reconstruction, including iFPL, jRLlZ, FD!°, and FP-SIM. The reconstructed super-
resolution images of BPAE mitochondria are presented in Figs. S11a and S11b. Results obtained by FD
and FP-SIM are more consistent with those from conventional 9-frame SIM, whereas iFP and jRL exhibit
pronounced artifacts. To quantitatively assess fidelity, we computed the structural similarity index (SSIM)
and peak signal-to-noise ratio (PSNR) with respect to the 9-frame SIM reconstructions (Fig. S11c). FP-
SIM achieved the best performance in both fidelity and noise-related metrics. In addition, rFRC resolution
analysis (Fig. S11d) shows that FP-SIM provides a resolution enhancement comparable to conventional
9-frame SIM. The reconstruction results of microtubules are further illustrated in Figs. S11e-S11h, where
FP-SIM also delivers superior overall performance relative to the alternative frame-reduction methods.
Subsequently, another set of comparative experiments was performed on BPAE cells acquired with our
custom-built SIM system (Fig. S12a). FP-SIM, iFP>, conventional 9-SIM, and Hifi-SIM'* were used to
perform super-resolution reconstruction of the measured data, respectively. The inability to accurately
estimate high-frequency illumination parameters and the effect of fluorescence noise on the actual imaging
resulted in iFP failing to resolve mitochondrial details (Fig. S12b1-S12b2). Thanks to the accurate
parameter estimation and professional image reconstruction steps as well as sufficient information sources,
the 9-frame reconstruction methods (conventional 9-SIM and Hifi-SIM) distinguished these fine structures,
but still with some noise-induced discontinuous granular artifacts whose size was below the theoretical
enhanced lateral resolution, even though Hifi-SIM suppressed some artifacts and provided higher contrast
(Fig. S12b3-S12b4). In contrast, FP-SIM extracted an initial estimate of the super-resolution image
with higher contrast and sharper detail than the wide-field image only from a single original illuminated
image through a series of preprocessing. With the simple and effective illumination parameter extraction,
artifact-free, higher-quality super-resolution image was acquired from one-third of the data required for
the 9-frame reconstruction methods with just a few (less than 15) iterations. In addition, we provided a
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set of reconstruction results using different methods (Hiﬁ—SIMM, FP-SIM and direct-SIM?2, which is an
improved SIM reconstruction method without any prior knowledge of illumination patterns and bypassing
the Wiener deconvolution procedures??) on microtubules of fixed COS-7 cells containing the severely
defocused background (labeled by BODIPY® FL goat anti-mouse IgG). Similarly, FP-SIM iteratively
solved the parameter estimation and image reconstruction tasks in a joint framework from only three
original observations, and acquired high-quality, artifact-free super-resolution images with better global
performance (Fig. S13).

To test the generality of FP-SIM, we supplement the reconstruction results using FP-SIM on SIM
images captured by N-SIM (a commercial microscope) under the TIRF mode. Figure S14 provides the
super-resolution results obtained by different methods for the autofluorescent ascaris sample and labeled
BPAE sample captured. For samples with mainly low-frequency information such as ascaris, FP-SIM still
performed high-quality super-resolution reconstruction, with results comparable to those of N-SIM (Fig.
S14a-S14c). For BPAE actin, which contained mainly high-frequency details, the N-SIM results suffered
from some image artifacts, while FP-SIM avoided these artifacts and yielded better global performance by
iteration (Fig. S14d-S14f).

We further evaluated the performance of FP-SIM under uneven illumination conditions using the
endoplasmic reticulum (ER) images from the publicly available BioSR dataset*!. Figures S15a1-S15a3
show the wide-field images obtained under each of the three illumination directions (averaged over the
three phase-shifted images in each direction), illustrating pronounced intensity non-uniformity, particularly
in the three regions of interest marked in the images. Averaging the images from all directions produces
a balanced wide-field image (Fig. S15a4). The super-resolution image obtained by the 9-frame SIM
(the ground truth provided in the BioSR dataset) also exhibit uniform intensity distribution (Fig. S15a5),
as they integrate information from all three illumination directions. Similarly, FP-SIM leverages a
reconstruction framework that iteratively incorporates images from all illumination directions, also
resulting in a final super-resolution image with balanced intensity comparable to that of the 9-frame
SIM (Fig. S15a6). Figures S15b-S15d present magnified views of the three regions of interest. For
comparison, we reconstructed the super-resolution images using only a single illumination direction, with
the corresponding results denoted as ‘Dn’ (n indicates the direction). When only one illumination direction
is used for reconstruction, the resulting super-resolution images show pronounced intensity imbalance. In
contrast, FP-SIM effectively mitigates this issue, yielding results with uniform intensity closely matching
the ground truth. To further quantify the performance, we calculated SSIM between the reconstructed
super-resolution images and the 9-frame SIM reference for the three regions of interest (Fig. S15¢). These
data demonstrate that FP-SIM effectively avoids the intensity imbalance caused by uneven illumination,
achieving reconstruction uniformity comparable to 9-frame SIM.

An additional comparison was performed between FP-SIM and RL'? as well as sparse deconvolution®3.
We used the BPAE mitochondria sample shown in Fig. 3 of the main text as the test specimen. Figures
S16 al-S16a4 present the wide-field image, the image after 20 iterations of RL deconvolution, the
image after 100 iterations of sparse deconvolution, and the FP-SIM reconstruction, respectively. For
clearer comparison, two regions of interest are enlarged in Figs. S16b and S16c¢. It can be seen that RL
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deconvolution yields only limited resolution improvement relative to wide-field imaging, whereas sparse
deconvolution and FP-SIM achieve more significant enhancement. However, sparse deconvolution suffers
from apparent detail loss in certain regions (highlighted by the arrows), despite its higher contrast. To
further quantify the performance, we evaluated the rFRC resolution of these reconstructions and computed
SSIM values relative to the conventional 9-frame SIM reference. The results demonstrate that both sparse
deconvolution and FP-SIM markedly improve resolution, but FP-SIM provides substantially higher fidelity,
producing results more consistent with the 9-frame SIM reference. It is worth noting that FP-SIM is not
inherently incompatible with RL or sparse deconvolution. In practice, RL deconvolution may serve as a
preprocessing step to suppress out-of-focus background prior to FP-SIM reconstruction, whereas sparse
deconvolution can be incorporated as a postprocessing module to further refine the reconstructed results
and enhance overall performance.

Live-cell dynamic experiments

We also supplement some live-cell experiments using FP-SIM. Figure S17 is a comparison of the wide-field
images and the super-resolution images acquired by FP-SIM at certain time points in Supplementary
Movie S1. As the imaging time increased, photobleaching became more severe and caused significant
degradation of SNRs of the original SIM images. Note that the wide-field images shown in Fig. S17
were averaged from multiple phase-shifting images, which somewhat suppressed the noise. Therefore, the
quality of the actual original SIM images was much worse. However, FP-SIM consistently maintained
high-quality reconstruction performance, validating its superior noise immunity. In contrast, the results of
Hifi-SIM show progressively more severe reconstruction artifacts (magnified images in the blue boxed
regions). Figure S18 provides the super-resolution reconstruction results of live COS-7 mitochondria
(labeled by MitoTracker’™ Green FM) at two specific time points obtained by PCA-SIM (structured
illumination microscopy based on principal component analysis, a fast, non-iterative, high-quality, artifact-
free, noise-robust SIM algorithm that allows real-time live-cell observation for complex experimental
scenarios”*) and FP-SIM . As can be seen from the results, FP-SIM achieves high-fidelity super-resolution
reconstructions with a slight improvement in quality (regions pointed by blue arrows) over PCA-SIM for
live cell data with low SNRs disturbed by severe out-of-focus background. These enhancements are due to
the fact that the motion of the mitochondria itself between the three frames is lower than in the case of 9
frames, indicating that FP-SIM can somewhat avoid the effect of sample motion on the reconstruction
results.

Time consumption of FP-SIM and real-time super-resolution imaging experiments

We ran the MATLAB code of FP-SIM through MATLAB R2016a using a Dell XPS 8930 computer
(Intel(R) Core(TM) 17-9700 CPU, NVIDIA GeForce GTX 1660 Ti) and listed the time consumption of
all super-resolution results in Tab. S2 (see Section S12 for the relevant open source code). The time
consumption of FP-SIM is mainly related to the resolution of the original image. Since most of the iterative
process of FP-SIM is performed pixel-by-pixel, it can be easily accelerated by GPU parallel processing.
To demonstrate this potential, we implemented a preliminary accelerated version of FP-SIM based on C++,
which can achieve real-time super-resolution imaging at about 3.75 frames per second at an original image
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resolution of 1024 x 1024, and 16.56 frames per second at a resolution of 512x512. Figure S19 shows the
real-time imaging scene and results. The complete dynamic results are detailed in Supplementary Movie
S2.
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Figure S7. Spectrum maps and the corresponding super-resolution images of the simulated SIM
data in the main text obtained by different iterative methods. a-e The spectrum maps and the
corresponding super-resolution images after different times of FP-SIM iterations for 10 dBW Gaussian
noise power of the simulation experiments in the main text, where al-d1 are the spectrum maps updated
by different iterations of FP-SIM, a2-d2 plot the spectrum distribution curves of the white dashed lines in
al-d1, and a3-d3 are the magnified super-resolution images corresponding to al-d1 from the boxed
regions in Fig. 2 of the main text. el and e2 are the spectrum distribution curves for different FP-SIM
iterations and the ground truth, respectively. f The spectrum map and the corresponding super-resolution
image obtained by IFP. Blue arrows point to regions where the artifacts caused by the ringing effect are
gradually eliminated and green arrows point to regions where detail enhancement is more apparent.
Experiments were repeated ten times independently with similar results. Scale bars: 1 um (a3-f3) 26/51
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Figure S8. Simulation results of different methods for SIM data of simple ring structures. a Wide
field image and the ground truth (bottom right). b Super-resolution image obtained by FP-SIM. ¢
Magnified wide-field image (top left), super-resolution images from the boxed regions in a obtained by
different methods (conventional 9-SIM, Hifi-SIM, IFP, and FP-SIM) and the ground-truth image. ‘Conv.’
represents ‘Conventional’. d Magnified wide-field image (left) and super-resolution images from the
boxed regions in a obtained by different methods (conventional 9-SIM, Hifi-SIM, and FP-SIM) when the
noise is 5 dBW. e Magnified wide-field image (left) and super-resolution images from the boxed regions
in a obtained by different methods (conventional 9-SIM, Hifi-SIM, and FP-SIM) when the noise is 15
dBW. f Magnified wide-field image (left) and super-resolution images from the boxed regions in a
obtained by different methods (conventional 9-SIM, Hifi-SIM, and FP-SIM) when the noise is 25 dBW. g
Intensity profiles along the light blue line in d-f. Experiments were repeated ten times independently with
similar results. Scale bars: 5 um (a-b); 1 um (bottom right of a, c-f)
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Figure S9. The home-built tri-color SIM microscope. a The schematic diagram of the tri-color SIM
system. b The actual diagram of the tri-color SIM system.
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Figure S10. Comparative experiments on super-resolution results of fluorescent microspheres with
60 nm radius. a Comparison of the wide-field image and the super-resolution image obtained by FP-SIM.
The wide-field image is displayed in the upper right triangle. The super-resolution image reconstructed by
FP-SIM is shown on the lower left. The raw SIM images with a resolution of 345x345 were captured
through a 100x objective (UPlanXApo 100x/1.45 Oil, Olympus, Japan). b Magnified wide-field image
and super-resolution images of fluorescent microspheres from the boxed regions in (a) obtained by
different methods (conventional 9-SIM and FP-SIM). ¢ Intensity profiles along the light blue line in b.
‘WF’ represents ‘Wide-field’. d Full width at half maximum of the fluorescence profiles of 10
microspheres in the reconstruction images of conventional 9-SIM and FP-SIM. Experiments were
repeated ten times independently with similar results. Scale bars: 1.5 um (a); 200 nm (b)
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Figure S11. Comparative experiments on fixed BPAE mitochondria measured with our
custom-built SIM system and microtubule samples from the BioSR dataset. a Wide-field image of
BPAE mitochondria and the corresponding super-resolution image reconstructed by FP-SIM. The raw
SIM images with a resolution of 1024 x 1024 were captured through a 100x objective (UPlanSApo
100x/1.40 Oil, Olympus, Japan). b Magnified view of the white-boxed region in a showing wide-field
and super-resolution images reconstructed using different methods (iFP'3, jRL'?, FD!?, FP-SIM and
conventional 9-SIM). ¢ SSIM and PSNR between the super-resolution images in a and b and the reference
O-frame SIM reconstructions. d rFRC resolution distribution of the super-resolution images in a and b
reconstructed using different methods. e Wide-field image of microtubules and the corresponding FP-SIM
super-resolution image. The raw SIM images with a resolution of 502x502 were captured through a
1.3NA objective. f Magnified view of the yellow-boxed region in e showing wide-field and
super-resolution images reconstructed using different methods. g SSIM and PSNR between the
super-resolution images in e and f and the reference 9-frame SIM reconstructions. h RSE distribution of
the super-resolution images in e and f reconstructed using different methods. Scale bars: 5 um (a); 1 um

(b); 2 um (e); 0.5 um (f)
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Figure S12. Comparative experiments on super-resolution results of a fixed BPAE cell sample with
DAPI-labeled nucleus, Alexa Fluor’¥ 568-labeled actin and MitoTracker’” Green FM-labeled
mitochondria. a Comparison of the wide-field image and the super-resolution image obtained by FP-SIM.
The wide-field image is displayed in the upper right triangle. The super-resolution image reconstructed by
FP-SIM is shown on the lower left. The raw SIM images with a resolution of 1024 x 1024 were captured
through a 100x objective (UPlanSApo 100x/1.40 Oil, Olympus, Japan). b Magnified wide-field image
(top left) and super-resolution images of mitochondria from the boxed regions in (a) obtained by different
methods (IFP, conventional 9-SIM, Hifi-SIM, and FP-SIM (the initial estimation and the final iteration
result)). ¢ Intensity profiles along the light blue line in b. Yellow arrows point to regions where
reconstruction differences are distinct. Experiments were repeated ten times independently with similar
results. Scale bars: 5 um (a); 500 nm (b)
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Figure S13. Comparative experiments on super-resolution results of microtubules of COS-7 cells
labeled by BODIPY® FL goat anti-mouse IgG. a Comparison of the wide-field image and the
super-resolution image obtained by FP-SIM. The wide-field image is displayed in the lower right triangle.
The super-resolution image reconstructed by FP-SIM is shown on the upper left. The raw SIM images
with a resolution of 1024 x 1024 were captured through a 100x objective (UPlanXApo 100x/1.45 Oil,
Olympus, Japan). b Magnified wide-field image and super-resolution images from the white boxed
regions in (a) obtained by different methods (direct-SIM, Hifi-SIM and FP-SIM). C Magnified wide-field
image and super-resolution images from the yellow boxed regions in (a) obtained by different methods.
Experiments were repeated ten times independently with similar results. Scale bars: 5 um (a); 1 um (b
and ¢)
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Wide-field

<
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Figure S14. Comparative experiments on super-resolution results of the samples captured by
N-SIM. a-c Wide-field image and super-resolution images of an autofluorescent ascaris obtained by
different methods (N-SIM and FP-SIM), where a2-c¢2 are the magnified images from the white boxed
regions in al-cl. d-f Wide-field image and super-resolution images of the BPAE actin obtained by
different methods, where d2-f2 are the magnified images from the white boxed regions in d1-f1. These
raw SIM images with the resolution of 1024 x 1024 were captured through a 100x objective (CFI
Apochromat TIRF 100x Oil, NA 1.49, Nikon, Japan) of N-SIM (Nikon, Japan). Note the data of the
ascaris sample is from our previous work>*. Yellow and blue arrows point to regions where reconstruction
differences are distinct. Experiments were repeated ten times independently with similar results. Scale
bars: 5 um (al-cl, d1-f1); 1 um (a2-c2); 500 nm (d2-f2)
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Figure S15. Experimental results of FP-SIM under uneven illumination from different directions.
al-a3 Wide-field images obtained from single illumination directions (averaged over three phase-shifted
frames). The raw SIM images with a resolution of 502x 502 were captured through a 1.3NA objective. a4
Wide-field image generated by averaging all illumination directions. a5 Ground-truth super-resolution
image from the BioSR dataset?!, obtained with 9-frame SIM. a6 Super-resolution image reconstructed by
FP-SIM. b-d Magnified regions of interest from a, comparing wide-field images and super-resolution
reconstructions from different methods (‘Dn’ denotes reconstruction using only the nth illumination
direction). e SSIM values between super-resolution reconstructions and the 9-frame SIM ground truth.
Scale bars: 3 um (a); 0.4 um (b-d)
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Figure S16. Comparison of FP-SIM with RL and sparse deconvolution on BPAE mitochondria
images acquired using the custom-built system. al-a4 Wide-field image, result after 20 iterations of RL
deconvolution, result after 100 iterations of sparse deconvolution, and super-resolution image
reconstructed by FP-SIM. b, ¢ Magnified views of the boxed regions in a obtained with different methods.
d Distributions of rFRC resolution and SSIM values of the results from different methods relative to the
conventional 9-frame SIM reference. Scale bars: 5 um (a); 1 um (b); 0.5 um (c)
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Figure S17. Super-resolution results of live COS-7 mitochondria labeled by PK Mito Red obtained
by FP-SIM at different time points. As the imaging time increased, photobleaching became more severe
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and caused significant degradation of SNRs of the original SIM images, while FP-SIM consistently
maintained high-quality reconstruction performance. In contrast, the results of Hifi-sim show

progressively more severe reconstruction artifacts. Scale bars: 1 um (magnified image); 3 um (full-field

image)
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Figure S18. Super-resolution results of live COS-7 mitochondria labeled by MitoTracker’" Green
FM obtained by different methods at two specific time points. a, d Comparison of wide-field images
and super-resolution images obtained by FP-SIM, where wide-field images are displayed in the bottom
left triangle and super-resolution images are shown on the upper right. The raw SIM images (from our
previous work?*, and recorded the mitochondrial dynamic tubulation (MDT) event) with the resolution of
512x512 were captured through a 60 x objective (UPlanXApo 60x/1.42 Oil, Olympus, Japan). b, e
Magnified wide-field image and super-resolution images obtained by PCA-SIM and FP-SIM from the
white boxed regions in (a) and (d). ¢, f Magnified wide-field image and super-resolution images obtained
by PCA-SIM and FP-SIM from the yellow boxed regions in (a) and (d). Yellow arrows point to regions
where reconstruction differences are distinct. Scale bars: 5 um (a, d); 1 um (b, e, f); 500 nm (c¢); 3 um (d)
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Table S2. Time consumption of FP-SIM for all super-resolution results

Raw image

No. resolution Timels Data source Sample type
Fig. 2 1024 x1024 24.8288+0.1947 Simulation Complex cell structures
. Mitochondria, actin and nucleus of
Fig. 3a-3e 1024%x1024 24.7055+0.2438 100X/1.4NA fixed BPAE cells
Fig. 4a-4g 1024%x1024 24.6099+0.2775 100X/1.4NA Mitochondria of fixed BPAE cells
Fig. 5 512x512 6.5159+0.1012 100X/1.4NA Mitochondria of live COS-7 cells
Fig. S8 1578x1578 68.7213+0.0149 Simulation Simple standard structures
. Mitochondria, actin and nucleus of
Fig. S12 1024x1024 24.7575+0.2691 100X/1.4NA fixed BPAE cells
Fig. S13 1024 %1024 24.9992+0.1813 100X/1.45NA Microtubules of COS-7 cells
. N-SIM . .
Fig. S14a 1024x1024 24.6498+0.3018 100X/1.49NA Fixed ascaris sample
Fig. S14b 1024x1024 24.6586+0.2709 N-SIM Actin of fixed BPAE cells
' ’ - 100X/1.49NA
Fig. S17 512x512 6.5159+0.1012 100X/1.4NA Mitochondria of live COS-7 cells
Fig. S18 512x512 6.5517+0.0836 60X/1.42NA Mitochondria of live COS-7 cells

39/51
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Figure S19. Real-time super-resolution results based on FP-SIM at different time points. a
Experimental scenes of real-time super-resolution imaging. b-d Wide-field images and super-resolution
images obtained by FP-SIM. The raw SIM images (BPAE mitochondria) with a resolution of 1024 x 1024
were captured through a 100 x objective (UPlanXApo 100x/1.45 Oil, Olympus, Japan). e-h Wide-field
images and super-resolution images obtained by FP-SIM. The raw SIM images (COS-7 microtubules)
with a resolution of 1024 x 1024 were captured through a 100x objective (UPlanXApo 100x/1.45 Oil,
Olympus, Japan). See Supplementary Movie S2 for complete super-resolution results. Scale bars: 10 um
(b-h)
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S$12. Supplementary MATLAB code and datasets for FP-SIM

We provide the open-source MATLAB code and associated dataset of FP-SIM, as well as the corresponding
user guide.

Overview of FP-SIM MATLAB code and dataset
Supplementary code and dataset contain two subfolds (the “func” folder and the “rawdata” folder), 1
TEXT file (*.txt) and 1 MATLAB file (*.m):

* The MATLARB file “main.m” is the main program that implements FP-SIM, and it contains image
preprocessing, illumination pattern extraction, initial target estimation, and iteration steps.

* The folder “func” contains the functions needed to run the MATLAB file “main.m”. The main
function files include the function “Reserve_Fringe.m” for extracting the illumination pattern, the
functions “NortchFilter.m” and “dtft.m” for generating the centre-notched Hanning window, and the

functions “SimOtfProvider.m”, “otfToVector.m” and “writeOtfVector.m” for generating simulated
PSF and OTF. These functions were adapted from HiFi-SIM'4,

* The folder “rawdata” provides the raw SIM images captured by our home-made SIM microscope
and other commercial SIM microscopes, and a text file (“para.txt”) describing the system parameters
of these data:

— “Ours” folder contains the raw SIM images collected by our home-made SIM microscope
through the 100x/1.4NA and 100x/1.44NA objective lenses (UPlanSApo 100x/1.40 Oil,
Olympus, Japan; UPlanXApo 100x/1.45 Oil):

* “Fixed” folder contains four subfolders, which are the raw SIM images of fixed samples:

In “1” subfolder, image files 405_1.tif, 488_1.tif and 561 _1.tif are the raw SIM images
(1024 x 1024 resolution) of a BPAE sample with DAPI-labeled nucleus, Alexa Fluor’™
488-labeled actin and MitoTracker Red”” CMXRos-labeled mitochondria. 405_1.tif are
the raw SIM images of the nucleus excited by 405 nm laser, 488_1.tif are the images of
actin excited by 488 nm laser, and 561 _1.tif are those of mitochondria excited by 561
nm laser. These images are the raw data for Fig. 3 in the main text.

In “2” subfolder, image files 561 _2 25.tif, 561 2 _50.tif and 561_2_100.tif are the raw
SIM images (1024 x 1024 resolution) of BPAE mitochondria, which were collected at
100%, 50% and 25% of the excitation power, respectively. These images are the raw
data for Fig. 4 in the main text.

In “3” subfolder, image files 405 _3.tif, 488 _3.tif and 561 3.tif are another set of the raw
SIM images (1024 x 1024 resolution) of the BPAE sample. These images are the raw
data for Fig. S9 in the supplementary information.
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In “4” subfolder, image file 488 4.tif is the raw SIM images (1024 x 1024 resolution)
of COS-7 microtubules labeled by BODIPY® FL goat anti-mouse IgG. These images
were excited by 488 nm laser, and are the raw data for Fig. S10 in the supplementary
information.

* “Live” folder contains the raw SIM images of live cells. In it, image files 561_5_1.tif and
561_5_600.tif are the raw SIM images (512x 512 resolution) of live COS-7 mitochondria
labeled by MitoTracker’™ Green FM obtained at the 1st and 600th time points. These
images are the raw data for Fig. 5 in the main text.

* “Simulation” folder contains the simulated SIM images raw.tif (1024 x 1024 resolution),
which are the raw data for Fig. 1 in the main text.

— “N-SIM” folder contains the raw SIM images (1024 x 1024 resolution) collected by N-SIM
(Nikon, Japan) through a 100x objective (CFI Apochromat TIRF 100x Oil, NA 1.49, Nikon,
Japan). In it, image files raw488.tif and SIM-reconstruction.tif are the original SIM images
and the super-resolution image obtained by N-SIM, respectively. The sample is the actin of
BPAE cells labeled by Alexa Fluor’™ 488. These images are the raw data for Fig. S9 in the
supplementary information.

* The file “License.txt” is our copyright notice for the code.
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“Open source code and dataset of FP-SIM” folder

“Fixed” folder
“Ours” folder “1" folder
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func rawdata License.txt main.m T
1 =] 561 1.4f
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Fixed R 4 = 561_2 50.4f
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Figure S20. The folder of the open source code and dataset of FP-SIM
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User guide for the first test demo

Read raw SIM images

When the demo code (“main.m”) is run, first the original SIM images are read and represented by the
variable “Raw” (Fig. S21). For generality, the read images are three-step phase-shifting illumination
patterns with three different illumination orientations (the subsequent reconstruction requires only three
SIM images, one for each orientation). The raw SIM images are then slightly edge-attenuated to prevent
edge-related artifacts by the function “importImages”.

%% Read raw SIN 1images
for 10 = 1:9
Raw(:,:,i0) = imread(’ . ‘\rawdata\Ours\Fized\1\561_1.tif",10);
end
WF9 = (sum(Raw, 3)/9);
Rawt0 = importImages (Raw) : % Edged pixel processing
[width, length, ill_num] = size(Rawt0)
reg=width:

Figure S21. Code for reading raw SIM images

%% Generate simulated PSF and OTF
param. size=[width width] ;

Magn = 100; % Magnification
param. micronsPerPixel=0, 063; % Pixel size
param. cvclesPerMicron=1/ (param. size (1) *param. micronsPerPixel) ;

param. Ni=1. 4, % NA

param. lambda = 607 ; % Wavelength

param. imgSize = width;

param. cutoff=1000/ (0. 5*¥param. lanbda/param. N&) ;

param. samplelateral=ceil (param. cutoff/param. cvelesPerNicron)+1;
param. nrBands=2 ;

param. attStrength=0;

param. 0tfProvider=Sim0tfProvider (param, param. NA, param. lanbda, 1) ;

psf=abs (otfZpsf ( (param. 0tfProvider. otf))) : % PSF
QTF=param. OtfProvider. otf: % OTF
% figure:imshow(0TF, (], border’, tight’

PSF=abs (otf2psf (OTF) ) ;

Figure S22. Code for generating PSF and OTF

Generate simulated PSF and OTF

Set system parameters to generate simulated PSF and OTF (Fig. S22). System parameters include
objective magnification, objective numerical aperture (NA), camera pixel size and wavelength of the
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excited fluorescence. Users can change these parameters to suit their system and samples.

Preprocess by RL deconvolution

Then the Richardson-Lucy deconvolution is applied to remove partial Poisson noise and out-of-focus

background, while enhancing the peaks of the first-order spectrum for the subsequent illumination pattern

extraction (Fig. S23). The preprocessed SIM images are represented by the variable “Ilraw”.

%% RL deconvolution
IIraw = deconvlucy(Rawt0, PSF, 5) ;
FRawt = zeros(size(IIraw)):
for i1 = 1:111_num
FRawt (:,:,11) = fftshift (fft2(IIraw(:.:,11)));
end
Rawt = IIraw;
Mask0 = zeros(width, width): Mask0(OTF "= 0) = 1;

Figure S23. Code for RL deconvolution-based preprocessing

lllumination pattern extraction

[llumination pattern extraction is achieved by the function “Reserve_Fringe” from the SIM images after

preprocessing in the previous step (Fig. S24). Regarding the localization of the integer-pixel peaks of each

spectrum component, we directly extract the image center for the 0-order spectrum. Then we use a notch
filter (variables “notch_filter1” and “notch_filter2”) to eliminate the influence of the 0-order spectrum
to locate the peaks of the 1-order spectrums. In the case of very low SNRs or other low illumination

pattern modulation, an empirical mask (variable “ex_mask’) can also be set based on advance calibration

to assist in the peak location (Fig. S25). The extracted illumination patterns are represented by the variable

“Friter”.

%% Illumination pattern extraction
_param,K,Friter, Plum_Mask] = Reserve_Fringe (Rawt, OTF, param) :

for 1 = 1:111 _num

OTF,0,0,0)0)):
end

Rawt (:,:,1) = 1fft2{(ifftshift (Viener_deconvZ (FRawt(:, :,1).*Mask0, ...

Figure S24. Code for illumination pattern extraction
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for 1 = 1:3
Spec_sto(:,:,1) = Spec_sto(:,:,1) .* notch_filterl .* ex_mask(:,:,1);
pic_temp = Spec_stol:,:.1):
max_templ = max(max(pic_temp)) ;
xposl(:,i), yposl(:,i)] = find(pic_temp == max_templ) :
notch_filter2(:,:,1i) = NfourierShift (notch_filterl, yposl(1l,i)=-cent0_v,...
zxposl(l,i)-cent0_x) ;
pic_temp = pic_temp .* notch_filter2(:,:,1).* ex_mask(:,:,1);:
max_temp2 = max (max (pic_temp)) ;
xpos2(:,1), wpos2(:,1)] = find(pic_temp == max_temp2) ;
xposl(:,1) = xposl1(;,1) = 1; yposl(:,1) = yposl(:,1) - 1; =pos2(:,1) =...

xpos2(:,1) = 1; ypos2(:,1) = wpos2(:,1) = 1;

Figure S25. Code for the localization of the integer-pixel peaks of 1-order spectrums

Generate the centre-notched Hanning window

The centre-notched Hanning window is then generated based on the peak distance between the +1-order
spectrum and the -1-order spectrum (Fig. S26). The generated filter window is represented by the variable
“NotchWin”.

%% Center—notched Hanning window

w_size = 2 ¥ reg;

w=1linspace (-pi,pi,w_size); wtick=[-1:0.5:1]; magtick=[0:0.5:1.1];
M=ceil (param. cutoff*2+1) : n=0:M; x=0.5*(1-cos((2*pi*n)/M)) :
X=dtft (x,n,w) ; magi=abs(X); magk=magX/max (mag¥) ;

X2=dtft(x,n, w); magi2=abs(X2): mag¥2=magX2/max (nag¥2) ;
HanWin=magX’ *magX2;

[(NorFilter2, NorFilter]=NortchFilter (param) ;

NotchWin=HanWin. *NorFilter2;

Figure S26. Code for generating the centre-notched Hanning window

Estimate the initial image

Before the initial estimation, the SIM images and the extracted illumination images are first doubled
in size to create sufficient sampling rate for the subsequent super-resolution. The SIM images and the
illumination patterns of two times the size are represented by the variables “IRaw” and “Frit”. Then the
initial super-resolution image is acquired directly from one SIM image using the centre-notched Hanning
window “NotchWin” obtained in the previous step (Fig. S27). The initial estimate is represented by the
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variable “lobj”.

%% Initial target estimation

0TFi_ini=twice_spectrum(0TF) ;

IRaw = zeros(2*width, 2*width, i11_num) ;

Frit = zeros(2%width, 2*width, 111_num) ;

for 1 = 1:111_num
Frit(:,:,1) = twice_space(Friter(:.:,1));
IRaw(:,:,1) = twice_space(Rawt(:,:,1));
Frit(:,:,1)=(1fft2(ifftshift ((fftshift(fft2((Frit(:,:,1)))).*. ..

conj (0TFi_ini)./(0TFi_ini. *conj (0TFi_1in1)+0.01))))):

end

Iobj=(ifft2(ifftshift ((fftshift (fft2((IRaw(:,:,1)+IRaw(:,:, 4)+. ..
IRaw(:,:,7))./3)).*NotchWin)))) ;

Figure S27. Code for obtaining an initial estimate of the super-resolved image

Iteration to reconstruct the super-resolution image

Finally, the initial estimate (“Iobj”), the illumination pattern (“Frit””) and the preprocessed SIM images
(“IRaw”) acquired by the above steps are used together for iteration (Fig. S28). Note that only one image
per illumination orientation (three images in total) is used for the iteration. The variable “Plum_Mask™ is the
regularization term to limit the target spectrum and ensure convergence. The variable “loop_num” is used
to set the iteration times. With each iteration, the updated super-resolution image and the corresponding
spectrum map are displayed (Fig. S29). The user can visually observe the changes in spectrum and the
resolution. Figure S30 shows the comparison of the final iterative super-resolution result and the wide-field

image.
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%% Iteration

loop_num = 20; % Number of

for 15 = 1:loop_num
dell=IRaw(:,:.1)./Frit(;,:,1)=-(ifft2(ifftshift (QTFi0. *fftshift...
(fft2(Iob3))))):
del2=IRaw(:,:,4)./Frit(:,:,4)-(1fft2(1fftshift (OTF10, *fftshift...
(££t2(Iob3j)id)):
deI3=IRaw(:,:, 7)./Frit(:,:, T)-(ifft2(ifftshift (0TFi0. *fftshift...
(££t2(Iobjl)))):
FdeIl=fftshift (fft2(dell)) :
FdeI2=fftshift (fft2(del2)) ;
Fdel3=fftshift (fft2(del3));
fftWiener=(ifft2 (fftshift (((Fdell. #¥conj (0TF10)+Fdel2. *..
con) (OTF10)+Fdel3. *conj (0TF10))./ (OTFi0. *conj (OTF10)+0.1)))));
Tobj=Iobj+fftWiener:
Iobj(Iobj < 0) = 0:
spec=fftshift (fft2(Iabj)):
spec = spec. ¥*Plum_Mask;
Iobj = (ifft2(ifftshift(spec)));
subplot (121) ;: imshow(Iobj, []1);title( Updated target’);
subplot (122) ; imshow(log (abs (spec)+1), [1) ;title ([ Loop Hum=", numZstr (i5)]);
pause (0, 000025) ;

end

Iobj=abs(Iohj) :

Iohj = (Iobj) = min(min((Icbj)));

4 4 Figure 1 -
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Updated target Loop Num=1 Updated target Loop Num=10

Figure S28. Code for iteratively acquiring the super-resolution image

Figure S29. The results of 1 iteration and 10 iterations
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Wide-field

Figure S30. Comparison of the final iterative super-resolution result and the wide-field image. a
Wide-field image. b Super-resolution image obtained by FP-SIM
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