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1 Overview 21

This supplementary document presents the methods underlying the indi- 22

vidual models for the short-term forecasts SI Sec. 2, and updating the 23

reproduction number for the medium-term forecasts to account for pop- 24

ulation immunity due to infection SI Sec. 3. We also present details of 25

the data and epidemiological parameters used SI Sec. 5 and the criteria 26

for including/excluding a country from the analysis SI Sec. 5.2. Section SI 27

Sec. 4 presents the definitions of the epidemic. 28

Notation 29

Hereafter, Dt and Ct represent the number of reported COVID-19 deaths 30

and cases at time t respectively. Since we only used reported deaths to 31

estimate transmissibility, for ease of notation, we drop the superscript D 32

from RDt and use Rt to denote the instantaneous reproduction number with 33

respect to deaths at time t. R[t1, t2] is the reproduction number between 34

times t1 and t2. The most recent estimate of transmissibility is denoted as 35

RcurrT . We use ω to denote the serial interval distribution of deaths i.e. the 36

interval between the deaths of an infectee and their infector, where both 37

the infector and the infectee die. Estimated incidence of deaths at time t 38

is denoted by D̂t. T refers to last time point in the existing incidence time 39

series of cases or deaths. 40

2 Methods 41

2.1 RtI0 42

The first model relies on a well-established method [1] that assumes the 43

daily incidence of deaths is approximated with a Poisson process following 44

the renewal equation [2]: 45

Dt ∼ Poisson

(
Rt

t∑
s=1

Dt−sωs

)
(1)
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A standard approach to inferring recent transmissibility from an inci- 46

dence time series relies on the assumption that the effective reproduction 47

number is constant over a window (i.e. the “calibration window”) back 48

in time of size τ time units (for example days or weeks) [3]. Adopting 49

a similar approach here, we estimated Rt using only the data in a fixed 50

time-window (of τ days) prior to the most recent observation to calibrate 51

the model. We estimated the average transmissibility R[T − τ + 1, T ] over 52

that time-window, but made no assumptions regarding the epidemiological 53

situation or transmissibility prior to this calibration window. Instead, we 54

jointly estimated (using Markov Chain Monte Carlo (MCMC)) combina- 55

tions of R[T − τ + 1, T ] and the incidence of deaths prior to the calibration 56

window D̂t for t = {1, 2, . . . T − τ} that are consistent with the observed 57

deaths in the time window [T − τ + 1, T ]. 58

The model likelihood is given by

L
(〈
D̂t

〉
, R[T − τ + 1, T ] | DT−τ+1, . . . , DT

)
=

T∏
s=T−τ+1

P
(
Ds |

〈
D̂t

〉
, R[T − τ + 1, T ], DT−τ+1, . . . Ds−1,

)

=

T∏
s=T−τ+1

Poisson

(
Ds | R[T − τ + 1, T ]

s∑
k=1

Ds−kωk

) (2)

where
〈
D̂t

〉
= {D1, D2, . . . DT−τ} and D̂t = Dt for t = T−τ+1, . . . , T . 59

The most recent estimate of transmissibility RcurrT in this model is 60

R[T − τ + 1, T ]. We then sampled sets of back-calculated early incidence 61

time series (D̂1, . . . D̂T−τ ) and reproduction numbers (R[T − τ + 1, T ]) 62

from the joint posterior distribution obtained in the estimation process, 63

and projected future incidence D̂T+i for i ≥ 1 conditional on these as 64

follows: 65
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D̂T+i ∼ Poisson
(
RcurrT

T+i−1∑
k=1

DT+i−kωk |RcurrT , D̂1, . . . D̂T−τ , DT−τ+1, . . . DT ,

D̂T+1, . . . , D̂T+i−1

)
,

(3)

where D̂t = Dt for t = T − τ + 1, . . . , T . 66

During the period covered in the analysis, the epidemiological situation 67

in most countries was changing rapidly with public health measures being 68

reviewed weekly. At the same time, there was a strong ‘weekend effect’ 69

in the observed data, with typically fewer deaths reported on Saturdays 70

and Sundays. We therefore assumed a fixed calibration window of 10 days 71

to incorporate the rapid dynamics and offset the lower reporting over the 72

weekend. We ran the MCMC for 10000 iterations. We sampled 1000 sets 73

of RcurrT and back-calculated incidence, and for each sampled set, we drew 74

10 stochastic realisations of the projected incidence of deaths. 75

2.2 APEestim 76

Similarly to Model 1, Model 2 relies on the renewal equation (SI Eq. 1) but 77

uses the full time series of observed deaths, and uses information theory to 78

optimise the choice of the calibration window i.e. the time-window of size 79

τ over which R[T − τ + 1, T ] is assumed to be constant in the estimation 80

process [4]. Choices of window size can influence the bias and variance of 81

resulting estimates of transmissibility [5]. We integrated over the entire 82

posterior distribution of Rt (under a given window size), to obtain the 83

posterior predictive distribution of incidence at time t+ 1 as 84

P (Dt+1 | D1, D2, . . . Dt) =

∫
R[t−τ+1,t]

P (Rt)P (Dt+1 | D1, D2, . . . Dt, Rt) dRt

(4)

where R[t−τ+1, t] represents the posterior distribution of Rt assuming 85
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a window of length τ . We computed this distribution sequentially for 86

t ∈ {1, 2, . . . T − 1} and then evaluated every observed count of deaths 87

according to their likelihood under the posterior predictive distribution. 88

This allowed us to construct the accumulated predictive error (APE) for a 89

window length τ and under a given serial interval distribution as [4]: 90

APEτ =

T−1∑
t=1

− logP (Dt+1 | D1, D2, . . . Dt) (5)

Here, Dt+1 is the observed number of deaths at time t + 1. The opti- 91

mal window length τ∗ was then chosen as the window for which APEτ is 92

minimised, optimising the bias-variance trade-off (long windows reduce the 93

estimate variance but increase bias and short windows do the converse). 94

Again, forward projections were made assuming that transmissibility 95

over the projection horizon remains the same as that in the last τ∗ days. 96

That is, RcurrT is set to be R[T − τ∗ + 1, T ]. We then obtain forecasts of 97

deaths as 98

D̂T+i ∼ Poisson
(
RcurrT

T+i−1∑
k=1

DT+i−kωk | D1, . . . , DT , D̂T+1, . . . D̂T+i−1,

)
,

(6)

for i ≥ 1. We drew 1000 samples from the posterior distribution of 99

RcurrT and for each sampled value, simulated 10 forward trajectories. 100

2.3 DeCa 101

Models 1 (RtI0) and 2 (APEestim) use only the time series of deaths to 102

estimate Rt. Model 3 exploits the signal from both the reported deaths 103

and cases to forecast deaths. We assumed that the delay δ between a 104

case being reported and the case dying (for those who die) is distributed 105

according to a gamma distribution with mean µ and standard deviation σ. 106

Let fΓ be the probability mass function of a discretised gamma distribution. 107
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The cumulative number of reported cases at time t weighted by the delay 108

distribution from case report to death,
∞∑
0
fΓ(x | µ, σ)Ct−x, represents the 109

potential number of deaths at time t, if all cases were to die. The ratio ρt of 110

the observed number of deaths to this quantity at time t can be thought of 111

as an observed case fatality ratio. We assume that deaths are distributed 112

according to a binomial distribution: 113

Dt ∼ Binomial

( ∞∑
0

fΓ(x | µ, σ)Ct−x, ρt

)
. (7)

The model likelihood is given by 114

L (ρ1, ρ2, . . . , ρT | C1, . . . , CT , D1, D2 . . . DT , µ, σ)

=

T∏
s=1

P (Ds | C1, . . . , Cs, ρs, µ, σ)

=

T∏
s=1

Binomial

( ∞∑
0

fΓ(x | µ, σ)Ct−x, ρt | C1, . . . Cs, ρs, µ, σ

)
.

(8)

We obtained a posterior distribution for ρ1, ρ2, . . . , ρT using the con- 115

jugate beta prior for ρt (using the R package binom [6]), assuming that 116

parameters of the delay distribution µ and σ are known and fixed. The 117

forecasted number of deaths at time T + i for i ≥ 1 were then drawn from 118

a binomial distribution as 119

D̂T+i ∼ Binomial

(
T+i−1∑
k=0

fΓ(k | µ, σ)CT+i−k, ρT

)
. (9)

Note that the number of deaths at time T + i depends on the number 120

of cases from the beginning of the epidemic to time T + i for i ≥ 1. That 121

is, for forecasting deaths at time T + i, we need the number of cases at 122

time t > T . To augment the observed time series of cases, we assumed that 123

the cases in beyond T are distributed according to a gamma distribution 124

with mean and standard deviation of the observed cases in the last week, 125
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implicitly assuming no growth or decline in cases. We assessed the extent 126

to which this assumption affected our results (SI Sec. 7). Finally, to include 127

transmissibility estimates from this model in the ensemble, we estimated 128

RcurrT using the observed and median forecasted deaths D1, . . . DT , D̂T+i 129

for i ≥ 1. using the R package EpiEstim [3]. 130

We drew 10000 samples from the posterior distribution of ρT and 10000 131

samples from a gamma distribution to augment the observed cases. We 132

then drew 10000 samples from a binomial distribution (eq. (9)) for each 133

pair of augmented cases trajectory and sampled ρT . 134

2.4 Ensemble Model 135

We combined the estimates of RcurrT , and the outputs of models RtI0, 136

APEestim, and DeCa into an unweighted ensemble model by sampling the 137

forecasts and reproduction number from each model described above. We 138

also explored building a weighted ensemble by weighting the contribution 139

of each model according to the relative error of the model in the previous 140

week, all previous weeks, across all countries, or estimating the weights 141

independently for each country. We did not find any substantial difference 142

in the performance of the unweighted and weighted ensembles (not shown 143

here). We therefore restricted our analyses to an unweighted ensemble 144

model. 145

We first drew 10000 samples from the posterior distribution of RcurrT 146

and forecasts from each model and then sampled each posterior distribution 147

with equal weight to build the ensemble posterior distribution of RcurrT and 148

corresponding forecasts. 149

3 Medium-term forecasts 150

Accounting for depletion of the susceptible population due to 151

naturally-acquired immunity 152

As the weighted reproduction number Rwt already accounts for the pop-

ulation immunity at time t, we first estimated an effective reproduction
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number Refft , defined as the reproduction number if the entire population

were susceptible. That is,

Refft =
Rwt
pSt

(10)

where Rwt is the weighted reproduction number at time t and pSt is the 153

proportion of population that is susceptible to infection at time t. pSt is 154

given by 1 −
t∑

j=0

Ij/N where Ij is the number of infections at time j and 155

N is the total population. In estimating the potential future population 156

immunity using this formulation, we only accounted for naturally acquired 157

immunity assuming that the immunity acquired after infection persists. 158

Since we were forecasting deaths (rather than infections), the true num- 159

ber of infections was estimated using a country-specific age-distribution 160

weighted Infection Fatality Ratio (IFR) (SI Sec. 6). 161

We then incorporated the effect of a declining proportion of susceptible 162

population due to naturally acquired immunity as 163

RSt+i = Refft pSt+i (11)

From the ensemble estimates of RcurrT , we first estimated RST . The 164

medium-term forecasts were then produced using the renewal equation (SI 165

Eq. 1) and the forecasts used to update the estimates of RST+i for each 166

i ≥ 1 over the forecast horizon. 167

4 Epidemic Phase 168

At time t, we defined the epidemic phase in a country to be: 169

• ‘definitely growing’ if Rcurrt < 1 in less than 5% of the samples of the 170

posterior distribution; 171

• ‘likely growing’ if Rcurrt < 1 in less than 20% of the samples of the 172

posterior distribution; 173
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• ‘definitely decreasing’ if Rcurrt > 1 in less than 5% of the samples of 174

the posterior distribution; 175

• ‘likely decreasing’ if Rcurrt > 1 in less than 20% of the samples of the 176

posterior distribution; 177

• ‘indeterminate’ otherwise. 178

5 Data and epidemiological parameters 179

For the weekly analysis, we defined a country as having evidence of active 180

transmission if at least 100 deaths had been reported, and at least ten 181

deaths were observed in each of the past two weeks. Countries with large 182

variability in the reported deaths within each week over the analysis period 183

were excluded from the final analysis for this work (SI Sec. 5.2 lists the full 184

exclusion criterion). Results for 81 countries were included in the work 185

presented here. 186

We assumed a gamma distributed serial interval with mean 6.48 days 187

and standard deviation of 3.83 days following [7]. For simplicity, we as- 188

sumed that the delay in reporting a death is the same as the delay from 189

onset to a case being reported. We assumed that the delay in reporting of 190

deaths follows a gamma distribution with mean of 10 days, and standard 191

deviation of 2 days. These figures are roughly consistent with an onset-to- 192

death delay of 15.9 days [8] and onset-to-diagnosis delay of 6.6–6.8 days 193

[9]. The serial interval and delay distributions were discretised using R 194

package EpiEstim [3]. We used a country-specific population-adjusted IFR 195

estimated using the IFR reported in the REACT study (SI Sec. 6). 196

5.1 Cleaning and pre-processing steps 197

We used the number of cases and deaths reported by the World Health 198

Organisation (WHO) in the COVID-19 situation report [10]. If either the 199

number of cases or deaths was negative for any country in WHO data, 200

we used the corresponding figures from the data collated by the European 201
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Centre for Disease Prevention and Control [11] (if they were non-negative). 202

If both these sources reported negative numbers, we replaced the negative 203

count on a day with the average of the previous and subsequent 3 days. 204

The deaths time series for each country was then visually inspected and any 205

anomalies (e.g. when a large number of deaths were reported on a single 206

day as a correction) were manually corrected using media reports or alter- 207

native sources. A complete list of corrections applied to the data is available 208

on the github repository of this project (https://github.com/mrc-ide/ 209

covid19-forecasts-orderly/blob/main/src/prepare_ecdc_data/prepare_210

ecdc_data.R). 211

5.2 Inclusion/Exclusion Criteria 212

For the analysis carried out every week, we defined a country as having 213

evidence of active transmission if at least 100 deaths had been reported in 214

a country, and at least ten deaths were observed in the country in each 215

of the past two weeks. Forecasts were produced every Monday for the 216

week ahead (Monday to Sunday) using data reported up to the previous 217

day. Some countries were excluded from the analysis despite meeting these 218

thresholds because the number of deaths per day did not allow reliable 219

inference. 220

For the summary presented in this manuscript, we included all coun- 221

tries in the weekly analysis except countries with average weekly coefficient 222

of variation (CV i.e. the ratio of standard deviation to the mean) of the re- 223

ported deaths between 8th March and 29th November 2020 greater than 1.1 224

(the 60th quantile of the distribution of CV across all countries). This cri- 225

terion resulted in the exclusion of 53 countries. 81 countries were included 226

in the final analysis. 227
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Figure 1. Number of countries included in the weekly reports from 8th

March to 29th November 2020. the number of countries included in the
weekly analysis grew from 2 in the first week (week starting 8th March
2020), to 94 in the last week of analysis included here (week starting 29th

November 2020). Note that some countries that were included in the weekly
reports have been excluded from the analysis presented in the manuscript
if the average weekly coefficient of variation of the reported deaths between
8th March and 29th November 2020 was greater than 1.1.
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6 Infection Fatality Ratio (IFR) 228

To obtain a IFR distribution, we used the reported deaths and the esti- 229

mated number of infections in age groups 15-44, 45-64, 65-74 years in the 230

United Kingdom [12]. We first drew 10000 samples from a normal distri- 231

bution with mean the estimated mean number of infections and standard 232

deviation set to half the width of the 95% CI divided by 1.96. We divided 233

the reported number of deaths in the corresponding age groups by the esti- 234

mated number of infections to obtain age-disaggregated IFR distributions. 235

We then obtained a country-specific IFR distribution as a weighted sum 236

of the age-disaggregated IFR where the weights are the proportion of the 237

total population in each group in a country [13]. 238
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Figure 2. Population adjusted IFR distribution. The solid dots indicate
the median estimate and the vertical bars represent the 95% CrI.
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7 Augmentation of observed cases for DeCa 239

In the DeCa model, forecasts of deaths at time t rely on the number of cases 240

from the beginning of the time series to time t. We obtained a distribution 241

of cases in the week for which we are producing forecasts by sampling from 242

a gamma distribution with the mean and standard deviation equal to those 243

of the most recent week of data on cases. We illustrate this process and also 244

show that this does not influence the results under the chosen distribution 245

of delays from case report to death (SI2 Fig. 3). 246
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Figure 3. (a) The observed time series of cases (thick black line) is aug-
mented by sampling from a gamma distribution with the mean and stan-
dard deviation of the cases in the most recent week of data. The vertical
lines indicate the last week and the dashed horizontal line is the mean of
the cases in this period. The red line and the shaded area represent the
median and the 95% CrI of the sampled cases. (b) The probability distri-
bution of delays from case report to death. For a case reported at time t,
the probability of death within d days is the sum of probabilities from 0
to d. In particular, the probability that a case will die within a week (our
short-term forecast horizon) is the sum of probabilities to the left of the
horizontal line (7 days), which is approximately 2%.
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