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1 Overview

This supplementary document presents the methods underlying the indi-
vidual models for the short-term forecasts SI Sec. and updating the
reproduction number for the medium-term forecasts to account for pop-
ulation immunity due to infection SI Sec. We also present details of
the data and epidemiological parameters used SI Sec. |5| and the criteria
for including/excluding a country from the analysis SI Sec. Section SI

Sec. {4] presents the definitions of the epidemic.

Notation

Hereafter, D; and C; represent the number of reported COVID-19 deaths
and cases at time t respectively. Since we only used reported deaths to
estimate transmissibility, for ease of notation, we drop the superscript D
from RP and use R, to denote the instantaneous reproduction number with
respect to deaths at time t. R[t1,ts] is the reproduction number between
times t; and t5. The most recent estimate of transmissibility is denoted as
R7™". We use w to denote the serial interval distribution of deaths i.e. the
interval between the deaths of an infectee and their infector, where both
the infector and the infectee die. Estimated incidence of deaths at time ¢
is denoted by D,. T refers to last time point in the existing incidence time

series of cases or deaths.

2 Methods

2.1 RtIO

The first model relies on a well-established method [I] that assumes the
daily incidence of deaths is approximated with a Poisson process following

the renewal equation [2]:

t
D, ~ Poisson <Rt Z Dt_sws> (1)

s=1
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A standard approach to inferring recent transmissibility from an inci-
dence time series relies on the assumption that the effective reproduction
number is constant over a window (i.e. the “calibration window”) back
in time of size 7 time units (for example days or weeks) [3]. Adopting
a similar approach here, we estimated R, using only the data in a fixed
time-window (of 7 days) prior to the most recent observation to calibrate
the model. We estimated the average transmissibility R[T — 7+ 1,T] over
that time-window, but made no assumptions regarding the epidemiological
situation or transmissibility prior to this calibration window. Instead, we
jointly estimated (using Markov Chain Monte Carlo (MCMC)) combina-
tions of R[T —7+1,T] and the incidence of deaths prior to the calibration
window Dy for t = {1,2,...T — 7} that are consistent with the observed
deaths in the time window [T — 7+ 1,T].

The model likelihood is given by

L (<ﬁt> RIT —7+1,T]| Dp—rs1, .. .7DT)

ﬁ P(Ds\<ﬁt>,R[T—T+1,T],DT_T+1,...DS_1,> @

s=T—7+1
T s
— H Poisson (DS | R[T — 7+ 1,T] Z Dskwk>
s=T—7+1 k=1

where <Dt> —{D1,Ds,...Dr_,}and Dy = D, fort = T—7+1,...,T.
The most recent estimate of transmissibility R7"" in this model is
R[T — 7+ 1,T]. We then sampled sets of back-calculated early incidence
time series (131, . ..ZA)T_T) and reproduction numbers (R[T — 7 + 1,T))
from the joint posterior distribution obtained in the estimation process,

and projected future incidence ﬁTﬂ» for ¢ > 1 conditional on these as

follows:
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T+i—1

DTJrfL' ~ Poisson (R%urr E DTJri,kwk |R%urr7 Dl, e DT,.,-, .DT,TJrl7 [N DT,

k=1

-DT+17°"7-DT+i1>7

where ﬁt =Difort=T—-7+4+1,...,T.

During the period covered in the analysis, the epidemiological situation
in most countries was changing rapidly with public health measures being
reviewed weekly. At the same time, there was a strong ‘weekend effect’
in the observed data, with typically fewer deaths reported on Saturdays
and Sundays. We therefore assumed a fixed calibration window of 10 days
to incorporate the rapid dynamics and offset the lower reporting over the
weekend. We ran the MCMC for 10000 iterations. We sampled 1000 sets
of R and back-calculated incidence, and for each sampled set, we drew

10 stochastic realisations of the projected incidence of deaths.

2.2 APEestim

Similarly to Model 1, Model 2 relies on the renewal equation (SI Eq.|[1]) but
uses the full time series of observed deaths, and uses information theory to
optimise the choice of the calibration window i.e. the time-window of size
7 over which R[T — 7+ 1,T] is assumed to be constant in the estimation
process [4]. Choices of window size can influence the bias and variance of
resulting estimates of transmissibility [5]. We integrated over the entire
posterior distribution of R, (under a given window size), to obtain the

posterior predictive distribution of incidence at time ¢ + 1 as

P (Diy1 | D1,Ds,...Dy) = P (R,)P(Dyy1 | D1,Ds,...D¢,R,) dR,

Rt—7+1,t]

(4)

where R[t—7+1, t] represents the posterior distribution of R, assuming
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a window of length 7. We computed this distribution sequentially for
t € {1,2,...T — 1} and then evaluated every observed count of deaths
according to their likelihood under the posterior predictive distribution.
This allowed us to construct the accumulated predictive error (APE) for a

window length 7 and under a given serial interval distribution as [4]:

T-1
APE, = " —log P(D¢11 | Dy, Dy, ... Dy) (5)

t=1

Here, Dyy; is the observed number of deaths at time ¢ + 1. The opti-
mal window length 7* was then chosen as the window for which APFE. is
minimised, optimising the bias-variance trade-off (long windows reduce the
estimate variance but increase bias and short windows do the converse).

Again, forward projections were made assuming that transmissibility
over the projection horizon remains the same as that in the last 7* days.
That is, R$"" is set to be R[T — 7* + 1,T]. We then obtain forecasts of

deaths as

T+i—1
Dryi~ POiSSOﬂ(RF‘pMT E Dryipwi | D1,..., D, Dry,. ~-DT+i—1,>,
k=1

(6)

for i > 1. We drew 1000 samples from the posterior distribution of

RF"" and for each sampled value, simulated 10 forward trajectories.

2.3 DeCa

Models 1 (RtI0) and 2 (APEestim) use only the time series of deaths to
estimate R,. Model 3 exploits the signal from both the reported deaths
and cases to forecast deaths. We assumed that the delay 6 between a
case being reported and the case dying (for those who die) is distributed
according to a gamma distribution with mean p and standard deviation o.

Let fr be the probability mass function of a discretised gamma distribution.
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The cumulative number of reported cases at time ¢ weighted by the delay
distribution from case report to death, i fr(x | u,0)Ci_g, represents the
potential number of deaths at time ¢, if al(f cases were to die. The ratio p; of
the observed number of deaths to this quantity at time ¢ can be thought of
as an observed case fatality ratio. We assume that deaths are distributed

according to a binomial distribution:

D, ~ Binomial <Z fr(z | /L,O’)Ct_x,pt> . (7)
0

The model likelihood is given by

ﬁ(pl,pg,...,pT|Cl,...,CT,Dl,DQ...DT,,U,,O')

T
= HP(Dé | Ola---vcsvpsa/l70-)

s=1

T o]
= H Binomial <Z fl“(x | s U)Ct—w7 Pt | 017 s CS7pS7 M,O’) .

s=1 0

We obtained a posterior distribution for pi,ps, ..., pr using the con-
jugate beta prior for p; (using the R package binom [0]), assuming that
parameters of the delay distribution g and ¢ are known and fixed. The

forecasted number of deaths at time T + i for ¢ > 1 were then drawn from

a binomial distribution as

T+i-1
Dr.y; ~ Binomial ( Z fr(k | MaU)OTJrik,PT) : 9)
k=0

Note that the number of deaths at time T+ i depends on the number
of cases from the beginning of the epidemic to time 7'+ i for ¢ > 1. That
is, for forecasting deaths at time T + i, we need the number of cases at
time ¢t > T'. To augment the observed time series of cases, we assumed that
the cases in beyond T are distributed according to a gamma distribution

with mean and standard deviation of the observed cases in the last week,
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implicitly assuming no growth or decline in cases. We assessed the extent
to which this assumption affected our results (SI Sec. . Finally, to include
transmissibility estimates from this model in the ensemble, we estimated
RF" using the observed and median forecasted deaths D, ... Dr, ﬁTﬂ-
for ¢ > 1. using the R package EpiEstim [3].

We drew 10000 samples from the posterior distribution of pp and 10000
samples from a gamma distribution to augment the observed cases. We
then drew 10000 samples from a binomial distribution (eq. @[)) for each

pair of augmented cases trajectory and sampled pr.

2.4 Ensemble Model

We combined the estimates of R7", and the outputs of models RtIO,
APEestim, and DeCa into an unweighted ensemble model by sampling the
forecasts and reproduction number from each model described above. We
also explored building a weighted ensemble by weighting the contribution
of each model according to the relative error of the model in the previous
week, all previous weeks, across all countries, or estimating the weights
independently for each country. We did not find any substantial difference
in the performance of the unweighted and weighted ensembles (not shown
here). We therefore restricted our analyses to an unweighted ensemble
model.

We first drew 10000 samples from the posterior distribution of R7"™"
and forecasts from each model and then sampled each posterior distribution
with equal weight to build the ensemble posterior distribution of R and

corresponding forecasts.

3 Medium-term forecasts

Accounting for depletion of the susceptible population due to

naturally-acquired immunity

As the weighted reproduction number R}’ already accounts for the pop-

ulation immunity at time ¢, we first estimated an effective reproduction
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number Ry 11 , defined as the reproduction number if the entire population

were susceptible. That is,

refr = B (10)
bi

where RY is the weighted reproduction number at time t and p; is the
proportion of population that is susceptible to infection at time t. py is
given by 1 — Xt: I;/N where I; is the number of infections at time j and
N is the totajlzgopulation. In estimating the potential future population
immunity using this formulation, we only accounted for naturally acquired
immunity assuming that the immunity acquired after infection persists.
Since we were forecasting deaths (rather than infections), the true num-
ber of infections was estimated using a country-specific age-distribution
weighted Infection Fatality Ratio (IFR) (SI Sec. [6]).

We then incorporated the effect of a declining proportion of susceptible

population due to naturally acquired immunity as

Reri = Rf”Pfﬂ (11)

From the ensemble estimates of R$™, we first estimated R7. The

medium-term forecasts were then produced using the renewal equation (SI
Eq. [1) and the forecasts used to update the estimates of R ; for each

1 > 1 over the forecast horizon.

4 Epidemic Phase

At time t, we defined the epidemic phase in a country to be:

e ‘definitely growing’ if R{*"™ < 1 in less than 5% of the samples of the

posterior distribution;

o ‘likely growing’ if R{*"™" < 1 in less than 20% of the samples of the

posterior distribution;
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e ‘definitely decreasing’ if R{“™" > 1 in less than 5% of the samples of

the posterior distribution;

e ‘likely decreasing’ if R{*™ > 1 in less than 20% of the samples of the

posterior distribution;

e ‘indeterminate’ otherwise.

5 Data and epidemiological parameters

For the weekly analysis, we defined a country as having evidence of active
transmission if at least 100 deaths had been reported, and at least ten
deaths were observed in each of the past two weeks. Countries with large
variability in the reported deaths within each week over the analysis period
were excluded from the final analysis for this work (SI Sec. lists the full
exclusion criterion). Results for 81 countries were included in the work
presented here.

We assumed a gamma distributed serial interval with mean 6.48 days
and standard deviation of 3.83 days following [7]. For simplicity, we as-
sumed that the delay in reporting a death is the same as the delay from
onset to a case being reported. We assumed that the delay in reporting of
deaths follows a gamma distribution with mean of 10 days, and standard
deviation of 2 days. These figures are roughly consistent with an onset-to-
death delay of 15.9 days [8] and onset-to-diagnosis delay of 6.6-6.8 days
[9). The serial interval and delay distributions were discretised using R
package EpiEstim [3]. We used a country-specific population-adjusted IFR,
estimated using the IFR reported in the REACT study (SI Sec. @

5.1 Cleaning and pre-processing steps

We used the number of cases and deaths reported by the World Health
Organisation (WHO) in the COVID-19 situation report [I0]. If either the
number of cases or deaths was negative for any country in WHO data,

we used the corresponding figures from the data collated by the European
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Centre for Disease Prevention and Control [11] (if they were non-negative). 20
If both these sources reported negative numbers, we replaced the negative 20
count on a day with the average of the previous and subsequent 3 days. 20
The deaths time series for each country was then visually inspected and any s
anomalies (e.g. when a large number of deaths were reported on a single 20
day as a correction) were manually corrected using media reports or alter- 2o
native sources. A complete list of corrections applied to the data is available 20
on the github repository of this project (https://github.com/mrc-ide/ 20
covidl9-forecasts-orderly/blob/main/src/prepare_ecdc_data/prepare_

ecdc_data.R). on

5.2 Inclusion/Exclusion Criteria 212

For the analysis carried out every week, we defined a country as having a3
evidence of active transmission if at least 100 deaths had been reported in 2.
a country, and at least ten deaths were observed in the country in each s
of the past two weeks. Forecasts were produced every Monday for the 26
week ahead (Monday to Sunday) using data reported up to the previous 2w
day. Some countries were excluded from the analysis despite meeting these s
thresholds because the number of deaths per day did not allow reliable 219
inference. 20

For the summary presented in this manuscript, we included all coun- 22
tries in the weekly analysis except countries with average weekly coefficient 22
of variation (CV i.e. the ratio of standard deviation to the mean) of the re- 2
ported deaths between 8" March and 29*" November 2020 greater than 1.1 2
(the 60" quantile of the distribution of CV across all countries). This cri- 2
terion resulted in the exclusion of 53 countries. 81 countries were included 22

in the final analysis. 27
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https://github.com/mrc-ide/covid19-forecasts-orderly/blob/main/src/prepare_ecdc_data/prepare_ecdc_data.R
https://github.com/mrc-ide/covid19-forecasts-orderly/blob/main/src/prepare_ecdc_data/prepare_ecdc_data.R
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https://github.com/mrc-ide/covid19-forecasts-orderly/blob/main/src/prepare_ecdc_data/prepare_ecdc_data.R
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Figure 1. Number of countries included in the weekly reports from 80
March to 29*" November 2020. the number of countries included in the
weekly analysis grew from 2 in the first week (week starting 8" March
2020), to 94 in the last week of analysis included here (week starting 29"
November 2020). Note that some countries that were included in the weekly
reports have been excluded from the analysis presented in the manuscript
if the average weekly coefficient of variation of the reported deaths between
8" March and 29" November 2020 was greater than 1.1.
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6 Infection Fatality Ratio (IFR)

To obtain a IFR distribution, we used the reported deaths and the esti-
mated number of infections in age groups 15-44, 45-64, 65-74 years in the
United Kingdom [I2]. We first drew 10000 samples from a normal distri-
bution with mean the estimated mean number of infections and standard
deviation set to half the width of the 95% CI divided by 1.96. We divided
the reported number of deaths in the corresponding age groups by the esti-
mated number of infections to obtain age-disaggregated IFR distributions.
We then obtained a country-specific IFR distribution as a weighted sum
of the age-disaggregated IFR where the weights are the proportion of the

total population in each group in a country [13].
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Figure 2. Population adjusted IFR distribution. The solid dots indicate
the median estimate and the vertical bars represent the 95% Crl.
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7 Augmentation of observed cases for DeCa

In the DeCa model, forecasts of deaths at time ¢ rely on the number of cases
from the beginning of the time series to time ¢. We obtained a distribution
of cases in the week for which we are producing forecasts by sampling from
a gamma distribution with the mean and standard deviation equal to those
of the most recent week of data on cases. We illustrate this process and also
show that this does not influence the results under the chosen distribution

of delays from case report to death (SI2 Fig. |3).
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Figure 3. (a) The observed time series of cases (thick black line) is aug-
mented by sampling from a gamma distribution with the mean and stan-
dard deviation of the cases in the most recent week of data. The vertical
lines indicate the last week and the dashed horizontal line is the mean of
the cases in this period. The red line and the shaded area represent the
median and the 95% Crl of the sampled cases. (b) The probability distri-
bution of delays from case report to death. For a case reported at time t,
the probability of death within d days is the sum of probabilities from 0
to d. In particular, the probability that a case will die within a week (our
short-term forecast horizon) is the sum of probabilities to the left of the
horizontal line (7 days), which is approximately 2%.
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