

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16

17

18
19
20
21
22
23
24

Supplementary Materials for

Solid–Solid Catalysis in Sustainable Alloy Synthesis

Xinren Chen, Baptiste Bienvenu, Tingting Yang, Baptiste Gault,

Shaolou Wei*, Xuyang Zhou* and Dierk Raabe*

This PDF file includes:

25

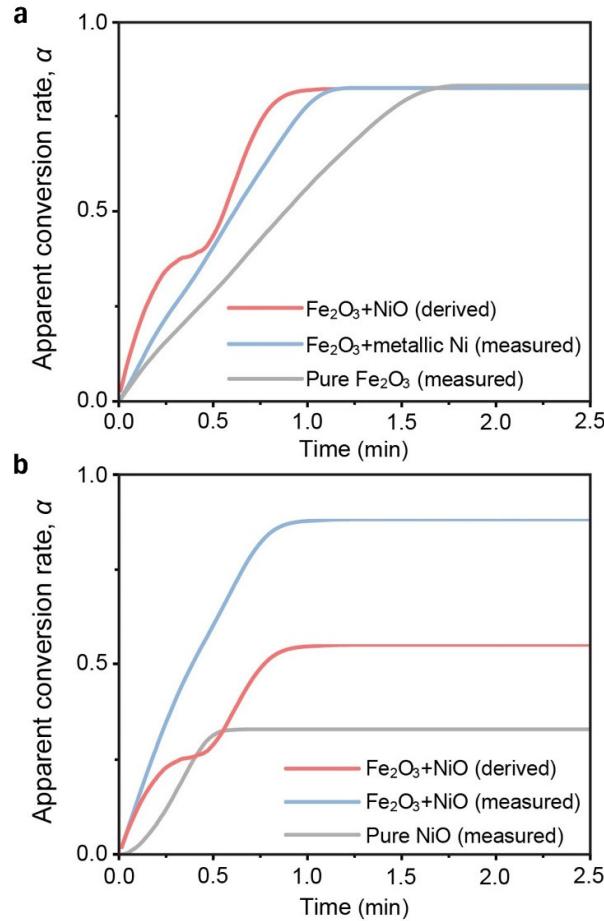
26

27 **Supplementary Tables:**

28

H_P (eV)	DFT GGA-PBE	DFT metaGGA-r ² SCAN
Ni / Fe	-0.23	-0.79
Ni / Fe ₂ O ₃	+1.26	+1.60
Ni / Fe ₃ O ₄	+0.56	-0.12
Ni / FeO	+0.55	-0.26
NiO / Fe	-0.36	-0.40
NiO / Fe ₂ O ₃	+1.15	+1.99
NiO / Fe ₃ O ₄	+0.42	+0.27
NiO / FeO	+0.26	+0.13

29 **Table S1.** DFT-predicted partitioning enthalpies H_P between metallic Ni, Fe, and their respective oxides, namely
 30 NiO, Fe₂O₃, Fe₃O₄ and FeO. Results of both DFT GGA-PBE and metaGGA-r²SCAN are indicated.

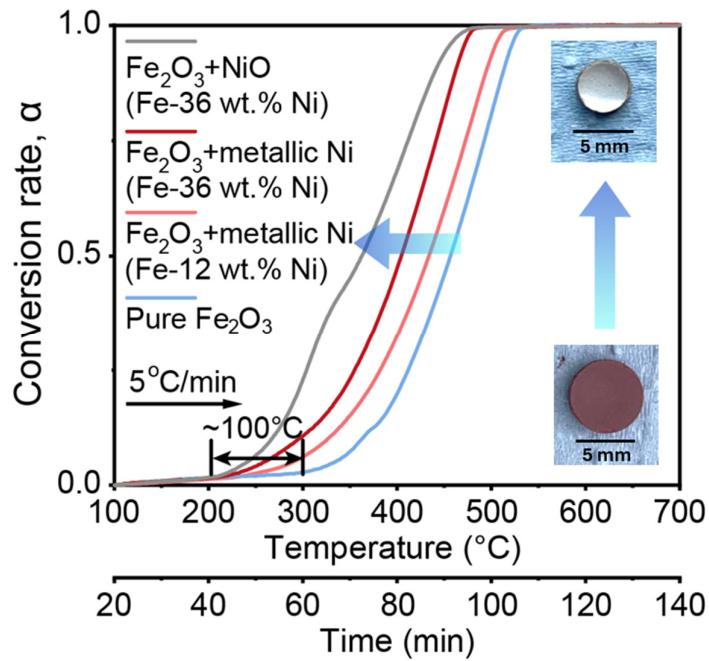

31

H_P (eV)	DFT GGA-PBE	DFT metaGGA-r ² SCAN
Bulk Ni/FeO	+0.55	-0.26
{111} _{Fe}	+0.28	+0.25
{111} _O	+0.19	-0.21

32 **Table S2.** DFT-predicted partitioning enthalpies H_P for the two bulk FCC Ni and FeO, as well as at the {111}
 33 interface between FCC Ni and FeO. Results of both DFT GGA-PBE and metaGGA-r²SCAN are indicated, for
 34 both the Fe and O-terminated configuration of the interface

35 **Supplementary Figures:**

36


37

38 **Fig. S1.** (a) Measured reduction of pure NiO and $\text{Fe}_2\text{O}_3 + \text{NiO}$ (Fe-36Ni wt.%) at 700 °C under a 10 L/h H_2 flow, 39 together with the derived contribution of Fe_2O_3 reduction obtained by subtracting the scaled portion of NiO 40 reduction from the $\text{Fe}_2\text{O}_3 + \text{NiO}$ curve. (b) Comparison of measured reduction kinetics of pure Fe_2O_3 and Fe_2O_3 41 + metallic Ni (Fe-36 wt.% Ni) with the derived contribution of Fe_2O_3 reduction for $\text{Fe}_2\text{O}_3 + \text{NiO}$ (Fe-36Ni wt.%), 42 where the influence of NiO reduction is subtracted, serving as the reference for Fig. 1b.

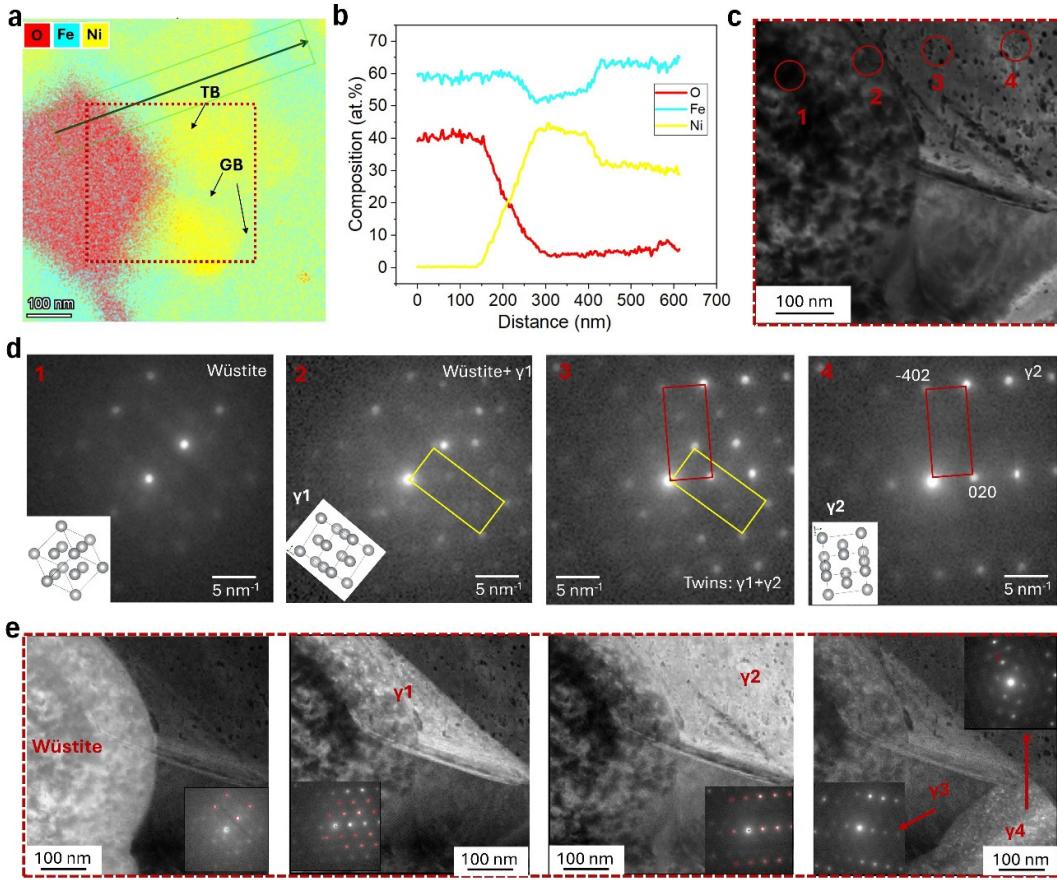
43

44

45

46

47

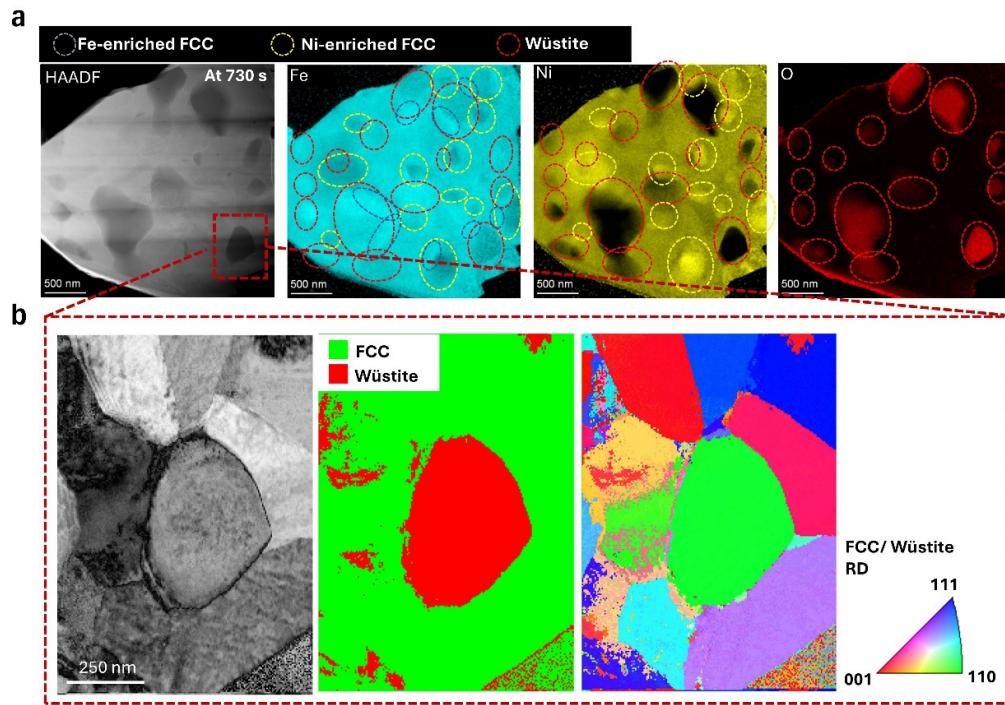

48 **Fig. S2.** Conversion curves of Fe_2O_3 reduction (bulk sample) during continuous heating to 700°C under 10 L/h
 49 H_2 flow: Ni and NiO addition lowers the reduction temperature and accelerates the reaction. Insets show the
 50 morphology of the samples before and after reduction.

51

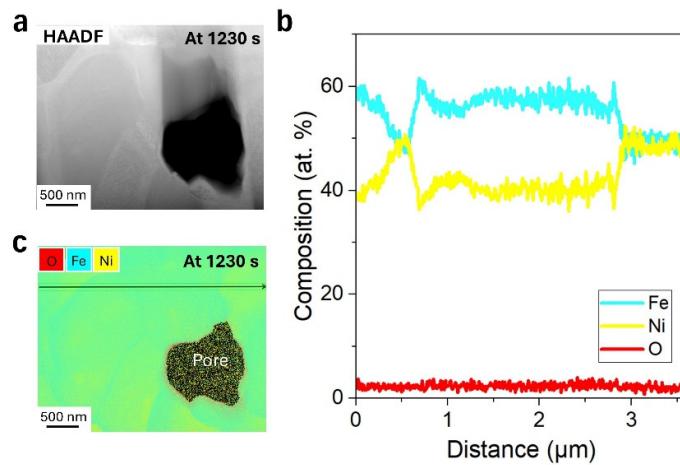
52

53

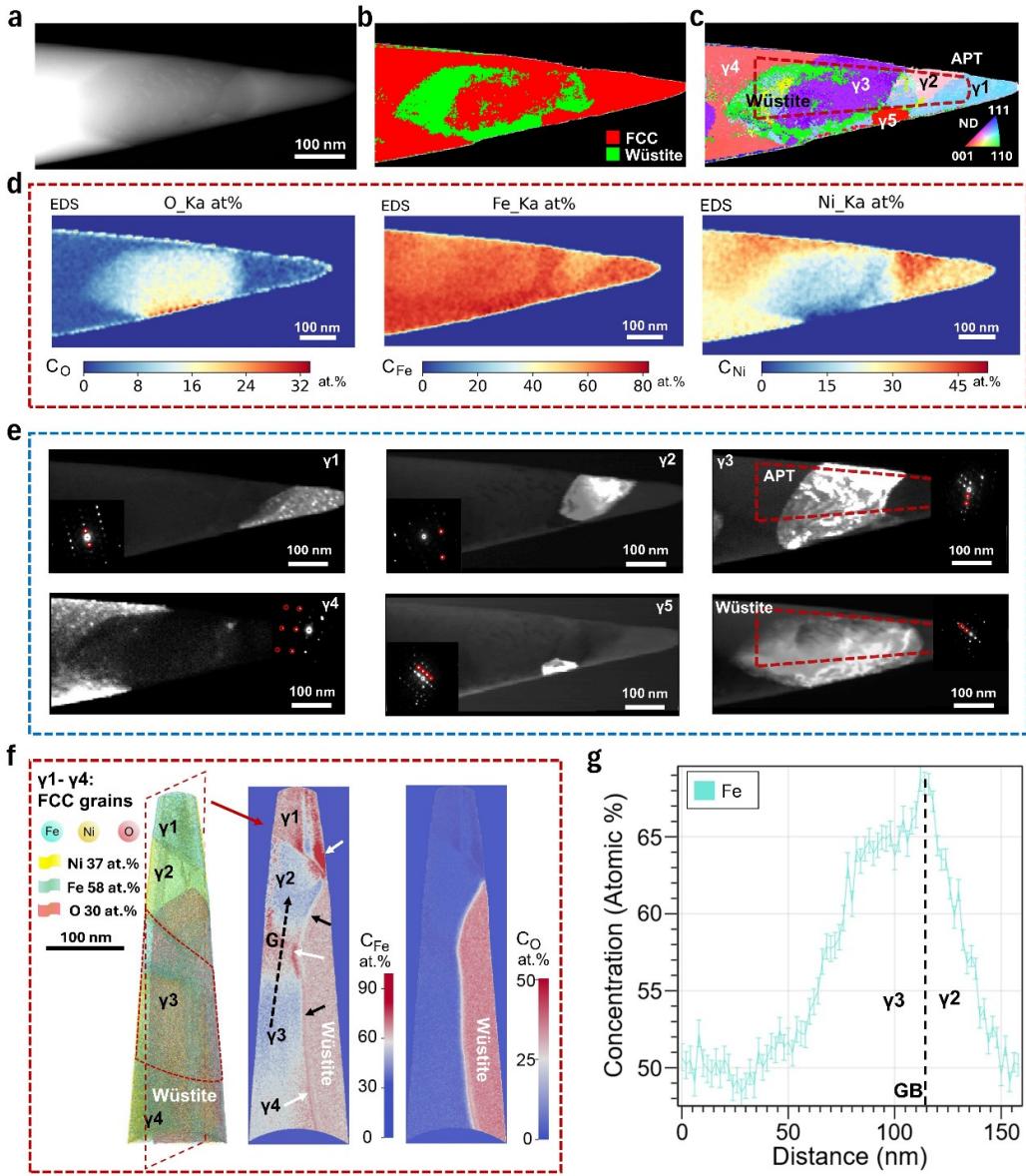
54


55

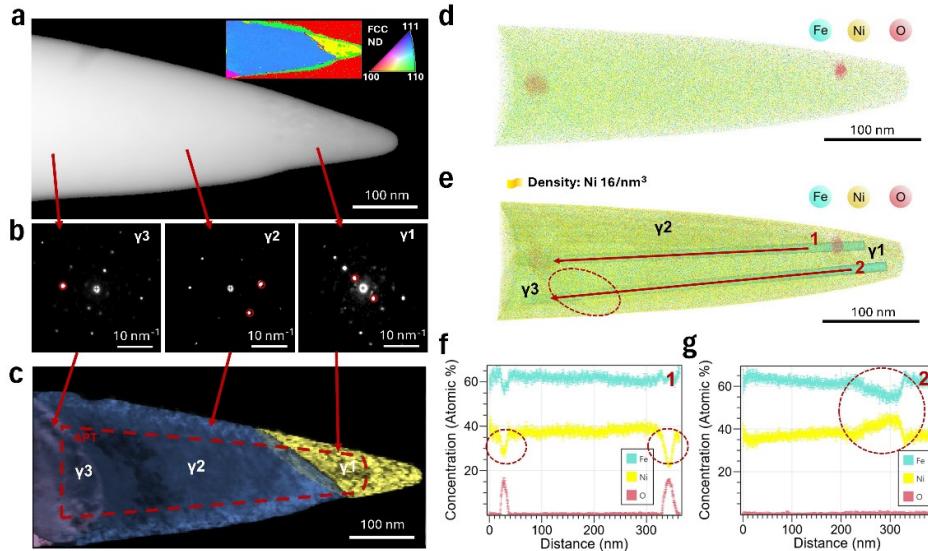
56 **Fig. S3.** (a) EDS map of Fig. 2e, highlighting elemental distributions of oxygen (O, red), iron (Fe, blue), and
 57 nickel (Ni, yellow). Twin boundaries (TB) and grain boundaries (GB) within the Fe–Ni FCC are indicated by
 58 arrows. (b) EDS line profile taken from (a), showing a compositional transition at the Fe_{1-x}O/FCC interface. (c)
 59 Magnified virtual bright-field 4D-STEM image of the region outlined in Fig. 3a, with four indicated positions (1–
 60 4) selected for selected area electron diffraction (SAED) analysis. (d) SAED patterns from positions 1–4 in (c),
 61 confirming (1) Fe_{1-x}O, (2) a mixed Fe_{1-x}O–FCC diffraction pattern, (3) twinned FCC reflections (γ1+γ2), and (4)
 62 the FCC grain orientation (γ2). (e) Virtual dark-field images of Fe_{1-x}O (left) and four differently oriented FCC Fe–
 63 Ni grains (γ1, γ2, γ3, and γ4), each with its corresponding SAED pattern. Insets include virtual apertures (red
 64 circles) for selected spots.


65

66


67

70 **Fig. S4.** (a) HAADF-STEM overview image examined after 730 s of hydrogen reduction of $\text{Fe}_2\text{O}_3 + \text{NiO}$ (Fe-
71 36Ni wt.%) at 700°C under a 0.6 L/h H_2 flow and the corresponding EDS maps of Fe (cyan), Ni (yellow), and O
72 (red). Areas enriched in Fe-bearing FCC (blue outlines), Ni-bearing FCC (yellow outlines), and Fe_{1-x}O (red
73 outlines) are highlighted. (b) 4D-STEM results for the magnified view of the region marked in (a), showing a
74 virtual bright-field TEM image (left), a phase map distinguishing FCC (green) from Fe_{1-x}O (red) (middle), and an
75 orientation map of FCC and Fe_{1-x}O grains (right).



79 **Fig. S5.** (a) High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image
80 at 1230 s of hydrogen reduction of $\text{Fe}_2\text{O}_3 + \text{NiO}$ (Fe-36Ni wt.%) at 700°C under a 0.6 L/h H_2 flow showing the
81 porous structure of the resulting alloy. (b) Corresponding energy-dispersive X-ray spectroscopy (EDS) elemental
82 map confirming uniform Fe and Ni distribution within the porous region. (c) Line profile of elemental composition
83 across the sample at 1230 s showing homogeneous Fe and Ni distribution, with a negligible oxygen content.

86

87 **Fig. S6.** (a) HAADF-STEM image of an APT needle acquired at 730 s of hydrogen reduction of $\text{Fe}_2\text{O}_3 + \text{NiO}$ (Fe–
88 36Ni wt.%) at 700°C under a 0.6 L/h H_2 flow, prepared to capture the Fe_{1-x}O –FCC interface. (b) Phase map of the
89 same needle, showing Fe_{1-x}O (green) embedded within the FCC Fe–Ni matrix (red). (c) Crystallographic
90 orientation map (inverse pole figure) indicating multiple FCC grains (γ_1 – γ_5) adjacent to the Fe_{1-x}O region. (d)
91 EDS elemental maps of the needle tip showing distributions of O (left), Fe (middle), and Ni (right). (e) Virtual
92 dark-field STEM images of Fe_{1-x}O and FCC grains (γ_1 – γ_5), with selected area diffraction patterns (insets)
93 confirming the phase identity. (f) 3D reconstruction of the APT dataset showing Ni (~37 at.%), Fe (~58 at.%), and
94 residual O (~30 at.%) concentrations. The left panel identifies FCC grains γ_1 – γ_4 adjacent to Fe_{1-x}O . Middle and
95 right panels show elemental distributions of Fe and O of the slice (the red dashed box in the left panel). The white
96 arrows show the enrichment of Fe. (g) One-dimensional Fe concentration profile across the γ_3 – γ_2 interface, taken
97 along the dashed arrow in (f), showing compositional variation across the grain boundary.

98

99 **Fig. S7.** (a) HAADF-STEM image of the APT tip from a region where oxides were nearly fully reduced at 730 s
100 of hydrogen reduction of $\text{Fe}_2\text{O}_3 + \text{NiO}$ (Fe-36Ni wt.%) at 700°C under a 0.6 L/h H_2 flow. The inset shows an
101 inverse pole figure map (color-coded by crystal direction) overlaid on the tip apex, obtained by indexing the 4D-
102 STEM dataset, confirming that the tip contains multiple FCC grains (γ_1 , γ_2 , and γ_3). (b) Corresponding 4D-STEM
103 electron diffraction patterns from the three γ grains, with key reflections circled to produce virtual dark-field
104 images. (c) Overlay of these virtual dark-field images for each FCC grain and orientation, highlighting the spatial
105 arrangement of γ_1 (yellow), γ_2 (blue), and γ_3 (purple). The dashed red box outlines the region subsequently
106 analyzed by APT. (d) Reconstructed APT point cloud, showing the distributions of Fe (cyan), Ni (yellow), and O
107 (pink). Two oxide-rich zones (red) are evident within the matrix. (e) The same dataset, now with a semitransparent
108 Ni isodensity surface (16 nm^3), to reveal potential grain boundaries. Labels “1” and “2” mark the paths along
109 which 1D composition profiles were extracted. (f, g) Composition profiles taken along paths 1 and 2, respectively,
110 in (e). Path 1 shows Ni-depleted zones (circled in red) near oxide pockets; the O concentration rises as Ni decreases,
111 indicating residual oxide locations. Path 2 reveals the remaining precursor high-Ni region (circled in red). APT
112 results (fig. S7) reveal the presence of fine residual Fe_{1-x}O at the γ_1/γ_2 and γ_2/γ_3 grain boundaries, as highlighted
113 by the Ni density isosurface in fig. S7e, which illustrates the growth of FCC (Fe, Ni) grains through the
114 consumption of Fe_{1-x}O . In fig. S7f, a thin Fe-enriched layer near the oxide interface indicates an ongoing reaction.
115 In the closed area, these oxide remnants are expected to undergo further reduction in later rate-limiting stages
116 through diffusion of O. The reduction of residual oxides proceeds slowly—leading to additional hydrogen
117 consumption and higher energy requirements to sustain reaction temperatures. A comparison of figs. S7e and S7g
118 shows that, even within the same γ_2 grain, a region near the $\gamma_2/\gamma_3/\text{Fe}_{1-x}\text{O}$ triple junction exhibits elevated Ni levels,
119 implying that Fe diffusion toward the γ_2 precursor portion is slower than direct Fe precipitation and alloying in
120 other parts of the γ_2 grain.