

1 **Non-line-of-sight imaging of moving objects obscured by a**
 2 **random corridor**

3 **Supplementary Information**

4 **Supplementary Note 1:**

5 **Imaging principle of RSESC method**

6 In the paper, the cross-correlation of speckle intensity images $C_{rd}(\Delta\mathbf{p})$
 7 calculated by the RSESC method is approximately equivalent to the transmitted field
 8 autocorrelation of a hidden object $C_{ho}(\Delta\mathbf{p})$ under the condition of multiple scattering.
 9 Hidden objects in random corridors can be imaged with the approximation. The
 10 approximate relationship can be expressed as,

11
$$C_{rd}(\Delta\mathbf{p}) \approx C_{ho}(\Delta\mathbf{p}) \quad (1)$$

12 This relationship can be derived from the definition of $C_{rd}(\Delta\mathbf{p})$ based on three
 13 assumptions. $C_{rd}(\Delta\mathbf{p})$ is defined as,

14
$$C_{rd}(\Delta\mathbf{r}) = \left\langle \frac{\left[I_{rd}(\mathbf{r}_c; \mathbf{r}_o) - \langle I_{rd}(\mathbf{r}_c; \mathbf{r}_o) \rangle_{\mathbf{r}_c} \right] \left[I_{rd}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) - \langle I_{rd}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \rangle_{\mathbf{r}_c} \right]}{\sigma_{rd}(\mathbf{r}_o) \sigma_{rd}(\mathbf{r}_o + \Delta\mathbf{p})} \right\rangle_{\mathbf{r}_c, \mathbf{r}_o} \quad (2)$$

15 The ensemble average $\langle \dots \rangle_{\mathbf{r}_o}$ is used to increase the overall average times. Therefore,
 16 $C_{rd}(\Delta\mathbf{p})$ is expressed as,

17
$$C_{rd}(\Delta\mathbf{r}) = \frac{\left[I_{rd}(\mathbf{r}_c; \mathbf{r}_o) - \langle I_{rd}(\mathbf{r}_c; \mathbf{r}_o) \rangle_{\mathbf{r}_c} \right] \left[I_{rd}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) - \langle I_{rd}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \rangle_{\mathbf{r}_c} \right]}{\sigma_{rd}(\mathbf{r}_o) \sigma_{rd}(\mathbf{r}_o + \Delta\mathbf{p})} \quad (3)$$

18 The numerator is expanded in formula (3) to obtain,

19
$$C_{rd}(\Delta\mathbf{r}) = \frac{\langle I_{rd}(\mathbf{r}_c; \mathbf{r}_o) I_{rd}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \rangle_{\mathbf{r}_c} - \langle I_{rd}(\mathbf{r}_c; \mathbf{r}_o) \rangle_{\mathbf{r}_c} \langle I_{rd}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \rangle_{\mathbf{r}_c}}{\sigma_{rd}(\mathbf{r}_o) \sigma_{rd}(\mathbf{r}_o + \Delta\mathbf{p})} \quad (4)$$

20 The reduced electric field of scattered light is denoted as E_{rd} , and then the reduced
 21 intensity of scattered light can be expanded as $I_{rd} = E_{rd} E_{rd}^*$.

22 **Assumption 1:** E_{rd} follows a Gaussian distribution with zero mean. Apply a moment
 23 theorem for complex Gaussian¹, and the first term of the numerator in Eq(4) can be
 24 expanded as,

$$\begin{aligned}
 & \left\langle I_{rd}(\mathbf{r}_c; \mathbf{r}_o) I_{rd}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} \\
 &= \left\langle E_{rd}(\mathbf{r}_c; \mathbf{r}_o) E_{rd}^*(\mathbf{r}_c; \mathbf{r}_o) E_{rd}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) E_{rd}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} \\
 25 &= \left| \left\langle E_{rd}(\mathbf{r}_c; \mathbf{r}_o) E_{rd}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} \right|^2 + \left\langle \left| E_{rd}(\mathbf{r}_c; \mathbf{r}_o) \right|^2 \right\rangle_{\mathbf{r}_c} \left\langle \left| E_{rd}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right|^2 \right\rangle_{\mathbf{r}_c} \quad (5) \\
 &= \left| \left\langle E_{rd}(\mathbf{r}_c; \mathbf{r}_o) E_{rd}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} \right|^2 + \left\langle I_{rd}(\mathbf{r}_c; \mathbf{r}_o) \right\rangle_{\mathbf{r}_c} \left\langle I_{rd}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c}
 \end{aligned}$$

26 At the same time, the denominator in Eq. (4) reads²,

$$\begin{aligned}
 & \sigma_{rd}(\mathbf{r}_o) \sigma_{rd}(\mathbf{r}_o + \Delta\mathbf{p}) \\
 27 &= \left\langle I_{rd}(\mathbf{r}_c; \mathbf{r}_o) \right\rangle_{\mathbf{r}_c} \left\langle I_{rd}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} \quad (6) \\
 &= \left\langle \left| E_{rd}(\mathbf{r}_c; \mathbf{r}_o) \right|^2 \right\rangle_{\mathbf{r}_c} \left\langle \left| E_{rd}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right|^2 \right\rangle_{\mathbf{r}_c}
 \end{aligned}$$

28 Substituting (5) and (6) into (4), we have,

$$29 C_{rd}(\Delta\mathbf{r}) = \frac{\left\langle E_{rd}(\mathbf{r}_c; \mathbf{r}_o) E_{rd}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c}}{\left\langle \left| E_{rd}(\mathbf{r}_c; \mathbf{r}_o) \right|^2 \right\rangle_{\mathbf{r}_c}} \cdot \frac{\left\langle E_{rd}^*(\mathbf{r}_c; \mathbf{r}_o) E_{rd}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c}}{\left\langle \left| E_{rd}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right|^2 \right\rangle_{\mathbf{r}_c}} \quad (7)$$

30 We denote the transmitted field of the hidden object as E_{ho} . Previous studies have
 31 shown that E_{rd} is a function of E_{ho} ³,

$$32 E_{rd}(\mathbf{r}_c; \mathbf{r}_o) = \int d\mathbf{r} K_{rd}(\mathbf{r}_c, \mathbf{r}) \cdot E_{ho}(\mathbf{r}; \mathbf{r}_o) \quad (8)$$

$$33 E_{rd}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) = \int d\mathbf{r} K_{rd}(\mathbf{r}_c, \mathbf{r}) \cdot E_{ho}(\mathbf{r}; \mathbf{r}_o + \Delta\mathbf{p}) \quad (9)$$

34 Here \mathbf{r} represents the position vector in three-dimensional space with random media,
 35 $K_{rd}(\mathbf{r}_c, \mathbf{r})$ represents the subspace reduced generalized propagator (SRGP) from \mathbf{r} to
 36 \mathbf{r}_c . Substituting (8) and (9) into (7),

$$\begin{aligned}
 & \left\langle E_{rd}(\mathbf{r}_c; \mathbf{r}_o) E_{rd}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} \\
 37 &= \left\langle \int E_{ho}(\mathbf{r}'; \mathbf{r}_o) K_{rd}(\mathbf{r}_c, \mathbf{r}') d\mathbf{r}' \int E_{ho}^*(\mathbf{r}''; \mathbf{r}_o + \Delta\mathbf{p}) K_{rd}^*(\mathbf{r}_c, \mathbf{r}'') d\mathbf{r}'' \right\rangle_{\mathbf{r}_c} \quad (10) \\
 &= \left\langle \int \int E_{ho}(\mathbf{r}'; \mathbf{r}_o) E_{ho}^*(\mathbf{r}''; \mathbf{r}_o + \Delta\mathbf{p}) K_{rd}(\mathbf{r}_c, \mathbf{r}') K_{rd}^*(\mathbf{r}_c, \mathbf{r}'') d\mathbf{r}' d\mathbf{r}'' \right\rangle_{\mathbf{r}_c}
 \end{aligned}$$

38 **Assumption 2:** When $\mathbf{r}' \neq \mathbf{r}''$, $\int K_{\text{rd}}(\mathbf{r}_c, \mathbf{r}') K_{\text{rd}}^*(\mathbf{r}_c, \mathbf{r}'') d\mathbf{r}' = 0$, namely, SRGP from
 39 different spatial locations to \mathbf{r}_c is independent of each other. Therefore, equation (10)
 40 can be reduced to,

$$\begin{aligned}
 & \left\langle E_{\text{rd}}(\mathbf{r}_c; \mathbf{r}_o) E_{\text{rd}}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} \\
 41 &= \left\langle \int E_{\text{ho}}(\mathbf{r}; \mathbf{r}_o) E_{\text{ho}}^*(\mathbf{r}; \mathbf{r}_o + \Delta\mathbf{p}) |K_{\text{rd}}(\mathbf{r}_c, \mathbf{r})|^2 d\mathbf{r} \right\rangle_{\mathbf{r}_c} \\
 &= \int E_{\text{ho}}(\mathbf{r}; \mathbf{r}_o) E_{\text{ho}}^*(\mathbf{r}; \mathbf{r}_o + \Delta\mathbf{p}) \left\langle |K_{\text{rd}}(\mathbf{r}_c, \mathbf{r})|^2 \right\rangle_{\mathbf{r}_c} d\mathbf{r}
 \end{aligned} \tag{11}$$

42 **Assumption 3:** $P_G = \left\langle |K_{\text{rd}}(\mathbf{r}_c, \mathbf{r})|^2 \right\rangle_{\mathbf{r}_c}$ is a constant and independent of \mathbf{r} and \mathbf{r}_c , then,

$$43 \quad \left\langle E_{\text{rd}}(\mathbf{r}_c; \mathbf{r}_o) E_{\text{rd}}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} = P_G \int E_{\text{ho}}(\mathbf{r}; \mathbf{r}_o) E_{\text{ho}}^*(\mathbf{r}; \mathbf{r}_o + \Delta\mathbf{p}) d\mathbf{r} \tag{12}$$

44 Similarly,

$$45 \quad \left\langle |E_{\text{rd}}(\mathbf{r}_c; \mathbf{r}_o)|^2 \right\rangle_{\mathbf{r}_c} = P_G \int |E_{\text{ho}}(\mathbf{r}; \mathbf{r}_o)|^2 d\mathbf{r} \tag{13}$$

$$46 \quad \left\langle |E_{\text{rd}}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p})|^2 \right\rangle_{\mathbf{r}_c} = P_G \int |E_{\text{ho}}(\mathbf{r}; \mathbf{r}_o + \Delta\mathbf{p})|^2 d\mathbf{r} \tag{14}$$

47 Therefore, it can be approximated as,

$$48 \quad \frac{\left\langle E_{\text{rd}}(\mathbf{r}_c; \mathbf{r}_o) E_{\text{rd}}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c}}{\left\langle |E_{\text{rd}}(\mathbf{r}_c; \mathbf{r}_o)|^2 \right\rangle_{\mathbf{r}_c}} \approx \frac{\int E_{\text{ho}}(\mathbf{r}; \mathbf{r}_o) E_{\text{ho}}^*(\mathbf{r}; \mathbf{r}_o + \Delta\mathbf{p}) d\mathbf{r}}{\int |E_{\text{ho}}(\mathbf{r}; \mathbf{r}_o)|^2 d\mathbf{r}} \tag{15}$$

49 We define the autocorrelation of the transmitted field of a hidden object as,

$$50 \quad C_{\text{ho}}(\Delta\mathbf{p}) = \left| \frac{\int E_{\text{ho}}(\mathbf{r}; \mathbf{r}_o) E_{\text{ho}}^*(\mathbf{r}; \mathbf{r}_o + \Delta\mathbf{p}) d\mathbf{r}}{\int |E_{\text{ho}}(\mathbf{r}; \mathbf{r}_o)|^2 d\mathbf{r}} \right|^2 \tag{16}$$

51 By substituting Eq. (15), (16) into Eq. (7), eventually we obtain the imaging principle
 52 of the RSEVIC method,

$$53 \quad C_{\text{rd}}(\Delta\mathbf{r}) \approx C_{\text{ho}}(\Delta\mathbf{p}) = \left| \frac{\int E_{\text{ho}}(\mathbf{r}; \mathbf{r}_o) E_{\text{ho}}^*(\mathbf{r}; \mathbf{r}_o + \Delta\mathbf{p}) d\mathbf{r}}{\int |E_{\text{ho}}(\mathbf{r}; \mathbf{r}_o)|^2 d\mathbf{r}} \right|^2 \tag{17}$$

54 Assumption 2 is satisfied by strong scattering of random media. The subspace
 55 reduction we proposed guarantees that Assumption 3 is satisfied regardless of the shape
 56 of random medium. Moreover, subspace reduction also ensures the validity of
 57 Assumption 1 for any observation position \mathbf{r}_c and any size of spatial statistical region
 58 $\langle \dots \rangle_{\mathbf{r}_c}$.

59 In expression (16), $\int d\mathbf{r}$ represents the integral of three-dimensional space
 60 including random medium, $E_{ho}(\mathbf{r}; \mathbf{r}_o)$ and $E_{ho}(\mathbf{r}; \mathbf{r}_o + \Delta\mathbf{p})$ represent the three-
 61 dimensional transmitted field illuminating on a hidden object. Therefore,

$$62 \quad \begin{aligned} & \int E_{ho}(\mathbf{r}; \mathbf{r}_o) E_{ho}^*(\mathbf{r}; \mathbf{r}_o + \Delta\mathbf{p}) d\mathbf{r} \\ &= \iiint E_{ho}(x, y, z; \mathbf{r}_o) E_{ho}^*(x, y, z; \mathbf{r}_o + \Delta\mathbf{p}) dx dy dz \end{aligned} \quad (18)$$

63 When the hidden object is a transmission plate and the integral interval of $\int dz$ is
 64 relatively small, $E_{ho}(x, y, z) \approx E_{ho}(x, y)$, thus,

$$65 \quad \begin{aligned} & \int E_{ho}(\mathbf{r}; \mathbf{r}_o) E_{ho}^*(\mathbf{r}; \mathbf{r}_o + \Delta\mathbf{p}) d\mathbf{r} \\ &= b_z \cdot \iint E_{ho}(x, y; \mathbf{r}_o) E_{ho}^*(x, y; \mathbf{r}_o + \Delta\mathbf{p}) dx dy \end{aligned} \quad (19)$$

66 Here $b_z = \int dz$ is a constant. Applying the Eq. (19) to the Eq. (16), we have,

$$67 \quad C_{ho}(\Delta\mathbf{p}) = \left| \frac{\iint E_{ho}(x, y; \mathbf{r}_o) E_{ho}^*(x, y; \mathbf{r}_o + \Delta\mathbf{p}) dx dy}{\iint |E_{ho}(x, y; \mathbf{r}_o)|^2 dx dy} \right|^2 \quad (20)$$

68 We define the reduced dimensionless transmitted field as,

$$69 \quad \hat{E}_{ho}(x, y; \mathbf{r}_o) = \frac{E_{ho}(x, y; \mathbf{r}_o)}{\sqrt{\iint |E_{ho}(x, y; \mathbf{r}_o)|^2 dx dy}} \quad (21)$$

$$70 \quad \hat{E}_{ho}(x, y; \mathbf{r}_o + \Delta\mathbf{p}) = \frac{E_{ho}(x, y; \mathbf{r}_o + \Delta\mathbf{p})}{\sqrt{\iint |E_{ho}(x, y; \mathbf{r}_o + \Delta\mathbf{p})|^2 dx dy}} \quad (22)$$

71 By inserting Eq. (21), (22) to Eq. (20) and applying the autocorrelation theorem⁴, we
 72 have,

$$\begin{aligned}
C_{\text{ho}}(\Delta\mathbf{p}) &= \left| \iint \hat{E}_{\text{ho}}(x, y; \mathbf{r}_o) \hat{E}_{\text{ho}}^*(x, y; \mathbf{r}_o + \Delta\mathbf{p}) dx dy \right|^2 \\
73 \quad &= \left| \mathcal{F}^{-1} \left\{ \left| \mathcal{F} \left\{ \hat{E}_{\text{ho}}(x, y) \right\} \right|^2 \right\} \right|^2
\end{aligned} \tag{23}$$

74 Here \mathcal{F} and \mathcal{F}^{-1} represent Fourier transform and inverse Fourier transform,
75 respectively. Then combining Eq. (23) with (1),

$$76 \quad \hat{E}_{\text{ho}}(x, y) = \mathcal{F}^{-1} \left\{ \sqrt{\mathcal{F} \left\{ \sqrt{C_{\text{rd}}(\Delta\mathbf{p})} \cdot e^{i\varphi_1(\Delta\mathbf{p})} \right\}} \cdot e^{i\varphi_2(\mathbf{k})} \right\} \tag{24}$$

77 In this equation, $\varphi_1(\Delta\mathbf{p})$ is the phase of $\iint \hat{E}_{\text{ho}}(x, y; \mathbf{r}_o) \hat{E}_{\text{ho}}^*(x, y; \mathbf{r}_o + \Delta\mathbf{p}) dx dy$. When
78 the hidden object is a transmission plate, we find that the imaginary part of
79 $\iint \hat{E}_{\text{ho}}(x, y; \mathbf{r}_o) \hat{E}_{\text{ho}}^*(x, y; \mathbf{r}_o + \Delta\mathbf{p}) dx dy$ is much smaller than its real part, so
80 $\varphi_1(\Delta\mathbf{p}) \approx 0$. $\varphi_2(\mathbf{k})$ can be recovered by an iterative phase recovery algorithm^{5, 6}.
81 Substituting $\varphi_1(\Delta\mathbf{p})$, $\varphi_2(\mathbf{k})$ and $C_{\text{rd}}(\Delta\mathbf{p})$ into (24), $\hat{E}_{\text{ho}}(x, y)$ can be recovered.
82 $\hat{E}_{\text{ho}}(x, y)$ is the reduced dimensionless transmitted field on an XY-plane near the
83 hidden object, and its amplitude $|\hat{E}_{\text{ho}}(x, y)|$ is the image of the hidden object. Finally,
84 the image of the hidden object is successfully reconstructed.

85 **Supplementary Note 2:**

86 **Calculation of the autocorrelation of hidden objects**

87 In our experiment, the hidden object to be imaged is a transmission plate. The
88 transmittance of the aperture of the transmission plate to the laser is 1, and the
89 transmittance of other parts of the plate is close to 0. Because the size of the aperture
90 on the transmission plate is in the order of mm, which is 10^3 times of the laser
91 wavelength, the diffraction effect can be ignored. Based on the analysis above, the
92 transmitted field of different hidden objects can be simulated.

93 The steps to simulate the transmitted field of a hidden object are as follows. First,
94 an amplitude function $A_{\text{ho}}(x, y)$ is generated. Then the center of the transmission
95 plate is taken as the coordinate origin, and $A_{\text{ho}}(x, y)$ is binarized according to the

96 geometric characteristics of the transmission plate. The rule of binarization is,

97

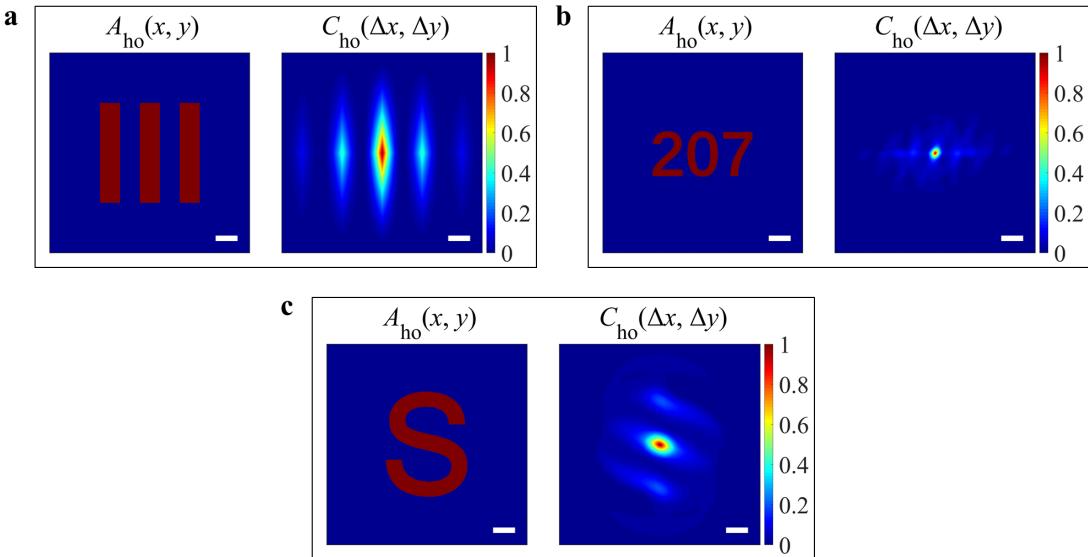
$$A_{\text{ho}}(x, y) = \begin{cases} 1, & (x, y) \in \text{Hole area} \\ 0, & (x, y) \notin \text{Hole area} \end{cases} \quad (25)$$

98 Next, the phase of the transmitted field of the hidden object is simulated as a constant
 99 φ_{ho} that is independent of x or y . Finally, the simulated transmitted field of the
 100 hidden object is obtained,

101

$$E_{\text{ho}}(x, y) = A_{\text{ho}}(x, y) \cdot e^{i\varphi_{\text{ho}}} \quad (26)$$

102 Substituting the simulated $E_{\text{ho}}(x, y)$ into Eq. (21), (23), $C_{\text{ho}}(\Delta x, \Delta y)$ can be
 103 obtained. The simulated $A_{\text{ho}}(x, y)$ and $C_{\text{ho}}(\Delta x, \Delta y)$ of three different hidden objects
 104 are shown in the supplementary Figure 1.



106
 107 Supplementary Figure 1: Simulated $A_{\text{ho}}(x, y)$ and $C_{\text{ho}}(\Delta x, \Delta y)$ of three different hidden
 108 objects. Scale bar: 1mm.

109 **Supplementary Note 3:**

110 **Elimination of the adverse effect of ambient noise**

111 Since the Eq.1 of the imaging relation is obtained without concerns for the noise,
 112 it is no longer valid when the speckle intensity images contain noise. In the condition of
 113 taking the noise into consideration, the reduced electric field E_{rd} of scattered light is
 114 expressed as,

115

$$E_{\text{rd}}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) = E_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) + E_{\text{rd-b}}(\mathbf{r}_c; t_0 + \Delta t) \quad (27)$$

116 Here $E_{\text{rd-ho}}$ represents the scattering field induced by the transmitted field E_{ho}
 117 interacting with the random medium. $E_{\text{rd-b}}$ represents the time-varying background
 118 noise field. The position vector of the hidden object at time t_0 is \mathbf{r}_o , and the velocity
 119 vector of the hidden object is \mathbf{v} , then $\Delta\mathbf{p}=\mathbf{v}\Delta t$. Based on equation (27), the cross-
 120 correlation of E_{rd} can be expanded into four terms,

$$\begin{aligned} & \left\langle E_{\text{rd}}(\mathbf{r}_c; \mathbf{r}_o) E_{\text{rd}}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} \\ 121 &= \left\langle E_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) E_{\text{rd-ho}}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) + E_{\text{rd-b}}(\mathbf{r}_c; t_0) E_{\text{rd-b}}^*(\mathbf{r}_c; t_0 + \Delta t) + \right. \\ & \quad \left. E_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) E_{\text{rd-b}}^*(\mathbf{r}_c; t_0 + \Delta t) + E_{\text{rd-b}}(\mathbf{r}_c; t_0) E_{\text{rd-ho}}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} \end{aligned} \quad (28)$$

122 Since $E_{\text{rd-ho}}$ and $E_{\text{rd-b}}$ are independent of each other,

$$123 \quad \left\langle E_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) E_{\text{rd-b}}^*(\mathbf{r}_c; t_0 + \Delta t) + E_{\text{rd-b}}(\mathbf{r}_c; t_0) E_{\text{rd-ho}}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} = 0 \quad (29)$$

124 Substituting (29) into (28), then

$$\begin{aligned} & \left\langle E_{\text{rd}}(\mathbf{r}_c; \mathbf{r}_o) E_{\text{rd}}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle \\ 125 &= \left\langle E_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) E_{\text{rd-ho}}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} + \left\langle E_{\text{rd-b}}(\mathbf{r}_c; t_0) E_{\text{rd-b}}^*(\mathbf{r}_c; t_0 + \Delta t) \right\rangle_{\mathbf{r}_c} \end{aligned} \quad (30)$$

126 Then substituting (30) into (7), we have

$$\begin{aligned} C_{\text{rd}}(\Delta\mathbf{p}) &= \frac{\left| \left\langle E_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) E_{\text{rd-ho}}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} \right|^2 + \left| \left\langle E_{\text{rd-b}}(\mathbf{r}_c; t_0) E_{\text{rd-b}}^*(\mathbf{r}_c; t_0 + \Delta t) \right\rangle_{\mathbf{r}_c} \right|^2}{\left\langle \left| E_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) \right|^2 + \left| E_{\text{rd-b}}(\mathbf{r}_c; t_0) \right|^2 \right\rangle_{\mathbf{r}_c}} + \\ 127 & \frac{\left\langle E_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) E_{\text{rd-ho}}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} \left\langle E_{\text{rd-b}}^*(\mathbf{r}_c; t_0) E_{\text{rd-b}}(\mathbf{r}_c; t_0 + \Delta t) \right\rangle_{\mathbf{r}_c}}{\left\langle \left| E_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) \right|^2 + \left| E_{\text{rd-b}}(\mathbf{r}_c; t_0) \right|^2 \right\rangle_{\mathbf{r}_c}^2} + \\ & \frac{\left\langle E_{\text{rd-ho}}^*(\mathbf{r}_c; \mathbf{r}_o) E_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} \left\langle E_{\text{rd-b}}(\mathbf{r}_c; t_0) E_{\text{rd-b}}^*(\mathbf{r}_c; t_0 + \Delta t) \right\rangle_{\mathbf{r}_c}}{\left\langle \left| E_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) \right|^2 + \left| E_{\text{rd-b}}(\mathbf{r}_c; t_0) \right|^2 \right\rangle_{\mathbf{r}_c}^2} \end{aligned} \quad (31)$$

128 It can be found from Eq.(31) that $C_{\text{rd}}(\Delta\mathbf{p})$ contains both the correlation of noise and
 129 of transmitted field of the hidden object. When the noise evolves rapidly with time, its
 130 time correlation can be seen as a δ function, therefore,

$$131 \quad \left\langle E_{\text{rd-b}}(\mathbf{r}_c; t_0) E_{\text{rd-b}}^*(\mathbf{r}_c; t_0 + \Delta t) \right\rangle_{\mathbf{r}_c} = \begin{cases} \left\langle I_{\text{rd-b}}(\mathbf{r}_c; t_0) \right\rangle_{\mathbf{r}_c} & , \quad \Delta t = 0 \\ 0 & , \quad \Delta t > 0 \end{cases} \quad (32)$$

132 Substituting (32) into (31),

$$133 C_{rd}(\Delta\boldsymbol{\rho}) = \begin{cases} 1 & , |\Delta\boldsymbol{\rho}| = 0 \\ \frac{\left| \left\langle E_{rd-ho}(\mathbf{r}_c; \mathbf{r}_o) E_{rd-ho}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\boldsymbol{\rho}) \right\rangle_{\mathbf{r}_c} \right|^2}{\left\langle |E_{rd-ho}(\mathbf{r}_c; \mathbf{r}_o)|^2 + |E_{rd-b}(\mathbf{r}_c; t_0)|^2 \right\rangle_{\mathbf{r}_c}^2} & , |\Delta\boldsymbol{\rho}| > 0 \end{cases} \quad (33)$$

134 It can be found from Eq.(33) that $C_{rd}(\Delta\boldsymbol{\rho})$ is a piecewise function. When $|\Delta\boldsymbol{\rho}|$
135 increases gradually from 0, the noise causes $C_{rd}(\Delta\boldsymbol{\rho})$ to drop sharply from 1 to
136 $\left| \left\langle I_{rd-ho}(\mathbf{r}_c; \mathbf{r}_o) \right\rangle_{\mathbf{r}_c} / \left\langle I_{rd}(\mathbf{r}_c; \mathbf{r}_o) \right\rangle_{\mathbf{r}_c} \right|^2$, it deviates significantly from $C_{ho}(\Delta\boldsymbol{\rho})$. In the
137 Supplementary Figure 2, C_{rd} calculated from the experimental data is compared with
138 C_{ho} , which confirms the sudden drop behavior and shows the significant deviation
139 between the two correlations.

140 In order to image hidden objects, the adverse effect of noise on $C_{rd}(\Delta\boldsymbol{\rho})$ must be
141 eliminated. We denote the cross-correlation of speckle intensity images with the noise
142 elimination as $\tilde{C}_{rd}(\Delta\boldsymbol{\rho})$,

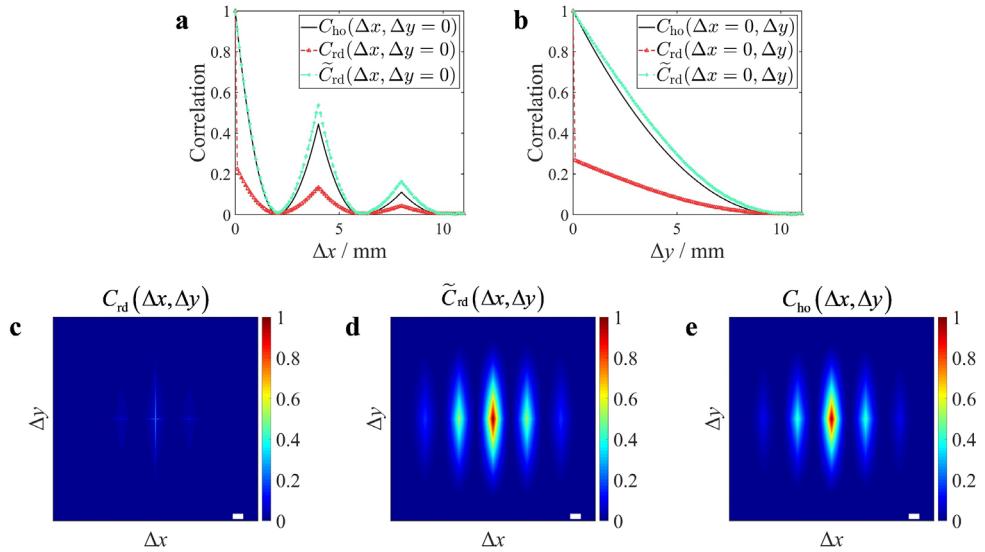
$$143 \tilde{C}_{rd}(\Delta\boldsymbol{\rho}) = \frac{\left| \left\langle E_{rd-ho}(\mathbf{r}_c; \mathbf{r}_o) E_{rd-ho}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\boldsymbol{\rho}) \right\rangle_{\mathbf{r}_c} \right|^2}{\left\langle I_{rd-ho}(\mathbf{r}_c; \mathbf{r}_o) \right\rangle_{\mathbf{r}_c}^2} \quad (34)$$

144 According to **Supplementary Note 1**, $\tilde{C}_{rd}(\Delta\boldsymbol{\rho}) \approx C_{ho}(\Delta\boldsymbol{\rho})$, $\tilde{C}_{rd}(\Delta\boldsymbol{\rho})$, therefore, can
145 be used to reconstruct the image of hidden objects. In order to recover $\tilde{C}_{rd}(\Delta\boldsymbol{\rho})$,
146 $\left| \left\langle E_{rd-ho}(\mathbf{r}_c; \mathbf{r}_o) E_{rd-ho}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\boldsymbol{\rho}) \right\rangle_{\mathbf{r}_c} \right|^2$ is extracted from $C_{rd}(\Delta\boldsymbol{\rho})$. By inverting Eq. (33),
147 we have,

$$148 \left| \left\langle E_{rd-ho}(\mathbf{r}_c; \mathbf{r}_o) E_{rd-ho}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\boldsymbol{\rho}) \right\rangle_{\mathbf{r}_c} \right|^2 = \begin{cases} \left\langle I_{rd-ho}(\mathbf{r}_c; \mathbf{r}_o) \right\rangle_{\mathbf{r}_c}^2 & , |\Delta\boldsymbol{\rho}| = 0 \\ C_{rd}(\Delta\boldsymbol{\rho}) \cdot \left\langle I_{rd}(\mathbf{r}_c; \mathbf{r}_o) \right\rangle_{\mathbf{r}_c}^2 & , |\Delta\boldsymbol{\rho}| > 0 \end{cases} \quad (35)$$

149 From equation (35), it can be found that all values of

150 $\left| \left\langle E_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) E_{\text{rd-ho}}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} \right|^2$ are known except for $\Delta\mathbf{p} = 0$. Therefore,
151 $\left\langle I_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) \right\rangle_{\mathbf{r}_c}^2$ can be extrapolated from the known values of
152 $\left| \left\langle E_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) E_{\text{rd-ho}}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} \right|^2$. Then $\tilde{C}_{\text{rd}}(\Delta\mathbf{p})$ can be recovered with equation
153 (34).



154
155 Supplementary Figure 2: A comparison of C_{ho} , C_{rd} and \tilde{C}_{rd} . Scale bar: 1mm.

156 We use quadratic polynomial to extrapolate $\left\langle I_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) \right\rangle_{\mathbf{r}_c}^2$. First, data points of
157 $\left| \left\langle E_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) E_{\text{rd-ho}}^*(\mathbf{r}_c; \mathbf{r}_o + \Delta\mathbf{p}) \right\rangle_{\mathbf{r}_c} \right|^2$ in a monotonic decreasing region
158 $(0 < \Delta x \leq l_x, 0 < \Delta y \leq l_y)$ near $|\Delta\mathbf{p}|=0$ are chosen. Then these data points are
159 substituted into the following quadratic polynomials,

$$160 \quad C_{\text{rd}}(\Delta x, \Delta y) \cdot \left\langle I_{\text{rd}}(\mathbf{r}_c; \mathbf{r}_o) \right\rangle_{\mathbf{r}_c}^2 = \left\langle I_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) \right\rangle_{\mathbf{r}_c}^2 + k_1(\Delta x + \Delta y) + k_2(\Delta x^2 + \Delta y^2) \quad (36)$$

161 Since the expression contains three unknown coefficients $\left\langle I_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) \right\rangle_{\mathbf{r}_c}^2$, k_1 and k_2 ,
162 at least three data points are required to solve these coefficients. We select three data
163 points on x-axis, y-axis and 45° direction respectively, and substitute them into Eq.
164 (36). Three groups of coefficients $\left\langle I_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) \right\rangle_{\mathbf{r}_c}^2$, k_1 and k_2 are solved. Then three

165 values of $\langle I_{\text{rd-ho}}(\mathbf{r}_c; \mathbf{r}_o) \rangle_{\mathbf{r}_c}^2$ are statistically averaged and substituted into Eq. (34) to
166 obtain $\tilde{C}_{\text{rd}}(\Delta\mathbf{p})$.

167 The recovered \tilde{C}_{rd} is also drawn in Supplementary Figure 2. The good
168 consistency between \tilde{C}_{rd} and C_{ho} indicates that the noise is successfully eliminated,
169 and confirms the adaptability of the RSESC method in an environment with strong
170 noise.

171

172 **References**

- 173 1. Reed IS. On a moment theorem for complex Gaussian processes. *IRE Transactions on
174 Information Theory* **8**, 194-195 (1962).
- 175
- 176 2. Goodman JW. *Speckle Phenomena in Optics: Theory and Applications*. Roberts & Co
177 (2007).
- 178
- 179 3. Martin OJF, Girard C, Dereux A. Generalized Field Propagator for Electromagnetic
180 Scattering and Light Confinement. *Physical Review Letters* **74**, 526-529 (1995).
- 181
- 182 4. Goodman J. *Introduction To Fourier Optics*, 2 edn. The McGraw-Hill Companies (1996).
- 183
- 184 5. Fienup JR. Reconstruction of a complex-valued object from the modulus of its Fourier
185 transform using a support constraint. *J Opt Soc Am A* **4**, 118-123 (1987).
- 186
- 187 6. Meihua L, Dajiang L, Wenqi H, Giancarlo P, Wolfgang O, Xiang P. Improving
188 reconstruction of speckle correlation imaging by using a modified phase retrieval
189 algorithm with the number of nonzero-pixels constraint. *Appl Opt* **58**, 473-478 (2019).