
SUPPLEMENTARY DISCUSSIONS TO MANUSCRIPT: 

Ultrahigh Strength and Shear-Assisted Decohesion of Sliding Silver Nanocontacts Studied 

in situ  


 Supplementary Discussion 1 (the results to obtain the values of spring constant)


We obtained the stiffness of the beam through analytical, numerical, and experimental means. The results 

of these analyses agree to within 1.4% giving confidence in the result.


Table S.1 | The experimental values of the spring constant were compared with analytical and nu-

merical solutions. 


The analytical value of the stiffness k is calculated by Eq.6.


                                                                                                                                              (6)


The stiffness kx for measuring the friction force F was calculated by Eq.6 where the Young’s modulus E is 

169.7 GPa, the width of the beam w, the length of the beam l, and the thickness of the beam t were mea-

sured by SEM as 6.5, 80, and 670 µm, respective


                                         kx=3.1[N/m]


The stiffness ky for measuring the normal force N was calculated by Eq.6. where the Young’s modulus E 

169.7 GPa, the width of the beam w, the length of the beam l, and the thickness of the beam t were mea-

sured by SEM as 17.5, 80, and 850 µm respective.


                                         ky=30[N/m] !

Analytical value Numerical value Experimental value

kx 3.1 3.09 3.1

ky 30 29.6 30

k =
Ew3t
4l3
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The numerical method calculates the stiffness kx for measuring the friction force F. In order to estimate 

the stiffness of the beam corresponding to the first normal mode, Finite Element analysis was performed. 

In this analysis, a point load of 1µN was applied to the end of the cantilever, while the other side of the 

beam was held fixed. This resulted in a tip displacement of 0.323 µm, which translates to a beam stiffness 

of 3.09 N/m.


Figure S16 | A finite element analysis calculated the displacement by the applied force (the stiffness 

kx). The right edge of the beam was fixed, and the left side was free. The force was applied at the very end 

of the left beam. The values of the width of the beam, the length of the beam and thickness of the beam 

were matched to the SEM measurements.


The numerical method calculates the stiffness ky for measuring the load. The stiffness of the beam ky was 

derived through a similar procedure to that used to calculate the stiffness in the x direction. A point load 

of 1µN was applied to the end of the cantilever, while the other side of the beam was held fixed. This re-

sulted in a tip displacement of 0.0338 µm, which translates to a stiffness of the beam of 29.6 N/m.


Figure S17 | A FEM analysis calculated the displacement by the applied force (the stiffness ky). !



The beam stiffnesses were obtained by measuring the resonant frequency. The resonant frequency and 

mass of the beam can be used to derive the stiffness of the beam:


                                                                                                                                  (7)


where f is the resonant frequency, k is the stiffness of the beam and M’ is the effective mass of the beam. 

The effective mass of the first normal mode M’ corresponds to 23% of the gravitational M. 


                                                   M’=0.23M                                                                                     (8)


The gravitational mass M was calculated from the density [kg/m3], the width of the beam w, the length 

of the beam l and the thickness of the beam t.


                                                  M= wlt                                                                                           (9)


Then, Eq.7~9 gives,


                                             


																																																		 														                                                                 (10)


	 In order to measure the stiffness of the beam, we applied an alternating input voltage. This volt-

age induced current flow through the beam due to the change of the capacitance between the beam and 

the actuator. We detected this current using a lock-in-amplifier. For a given voltage maximum amplitude, 

the largest vibrational displacement is achieved at the beam’s resonant frequency. When the beam moves, 

the gap between the beam and the electrostatic actuator becomes narrow inducing additional current flow, 

so the current is maximized at the resonant frequency.
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Figure S18 | The fundamentals of the electrostatic actuator and inducing vibrations. a the 

electrostatic actuator was integrated alongside the long beam. The beam was treated as a spring and the 

beam/actuator were treated as a capacitor, as depicted in b and c. b the input voltage generates electrical 

charges between capacitors that applies an actuation force between the beam and the actuator. c an 

increase in the input voltage further attracts the beam. A sinusoidal voltage generates beam vibrations. 


	 An electrostatic actuator has a spring effect, which makes the beam appear softer than we ex-

pect. When the beam is actuated, the gap between the beam and actuator becomes smaller, thereby in-

creasing the magnitude of the electrostatic attractive force. This causes the beam to deflect more than oth-

erwise expected at higher input voltages. This phenomenon is known as the “spring effect”. In order to 

measure the actual stiffness of the beam independent of the spring effect, a bias voltage between the beam 

and the electrostatic actuator was applied. We detected the resonant frequency for each bias voltage and 

then obtained the mechanical stiffness while eliminating the effect of the applied input voltage.





Figure S19 | A function generator and lock in amplifier allow measurement of the beam resonant 

frequency. The input voltage was applied from the electrostatic actuator to the beam. The current flows to 

the beam. The current was magnified and monitored by lock-in-amplifier.




An alternating input voltage and a bias voltage of 60 V were applied at the electro static actuator. We de-

tected the current and found that the resonant frequency was 20.087 kHz. We changed the bias voltage 

and measured the resonant frequency for each bias voltage as shown below.





Figure S20 | The resonant frequencies of kx beam were measured for each bias voltage. The resonant 

frequency at the bias voltage as 0 V was utilized to calculate the stiffness. 


The resonant frequency when the bias voltage Vbias was zero, corresponds to the stiffness that does not 

include the spring effect. According to the relationship between the bias voltage Vbias and the resonant 

frequency f, we obtained f=-0.2199V2bias +6.9394Vbias+20461. We found that the resonant frequency for 

detecting the force was 20.46[kHz]. The equation (4) and the value of resonant frequency give the value 

of the stiffness. Therefore, we found that the stiffness kx was 3.1[N/m]. The maximum of this function 

should be at V=0, however the maximum is at V~16V so at V=0 it is lower than the maximum of ~20.52 

KHz. This is a very small error though, only 0.2% which is fairly equal to the precision of the experi-

ments. Furthermore fixing it here won’t change the 3.1N/m number that propagates into all your other 

calculations.


                kx=9.08×(20461)2×2329[Kg/m3] ×(6.5×10-6) ×(670×10-6) ×(80×10-6)


                   =3.084[N/m]
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                   =3.1[N/m]


The stiffness of the beam ky was derived through a similar procedure to that used to calculate the stiffness 

in the x direction. We changed the bias voltage and measured the resonant frequency for each bias voltage 

as shown in below.


Figure S21 | The resonant frequencies of ky beam were measure for each bias voltage. The resonant 

frequency at the bias voltage as 0 V corresponds to the stiffness of the beam.


According to the relationship between the bias voltage Vbias and the resonant frequency f, we obtained f=-

0.0742V2bias+0.0721Vbias+34608. We found that the resonant frequency for detecting the force was 34.608 

kHz, because the resonant frequency when the bias voltage Vbias was zero, corresponds to the stiffness that 

does not include the spring effect. Therefore, we found that the stiffness ky was 30 N/m.


              ky=9.08×(34608)2×2329 [Kg/m3] ×(17.5×10-6) ×(850×10-6) ×(80×10-6)


                  =30.141 [N/m]


                  =30        [N/m]


The stiffness of the beam agrees to within 1.4% via analytical, numerical and experimental means. !



Supplementary Discussion 2 (the calculation to estimate the e-beam damage on the specimen)


   The effect of the TEM electron beam was evaluated and shown to be negligibly small.


Displacement energy: When the energy Ee as described in below equation exceeds a specific threshold 

energy Ed, the electron beam can displace atomic nuclei to interstitial positions [1].


                                                 Ee=E0(1.02+E0 /106)/(465.7A)


Where the incident-electron energy E0 of our TEM was 200 keV, and atomic weight A of Silver was 

107.9. The energy Ee from the electron beam is calculated as 4.86 eV. The threshold energy Ed of silver is 

25 eV [2,3] and it is 5 times higher than the energy due to the electron beam of TEM. Therefore, it cannot 

displace atomic nuclei to interstitial positions and thereby the beam does not degrade the crystalline per-

fection of the silver part. We concluded that the experimental aberrations due to the displacement energy 

can be considered negligible.


   The current flowing on the surface of the specimen jsample was calculated as below. We estimated the 

current flowing on the surface of the tip when the electron beam illuminates the specimen. The current 

density jall, when the beam was enlarged up to 11 cm in diameter, was experimentally measured. This 

density was found to be


                                               jall = 0.5×10-11       [A/cm2]


The current density j’, when the beam was narrowed down to 4cm in diameter, was calculated as below

                                              j’= jall {π (11/2)2} / {π (4/2)2}


                                                = 4.5×10-11         [A/cm2]
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The current density jsample, which was applied to the specimen, was calculated as below.


                                        jsample = j’ (3nm×1000,000)2        


                                                 = 4.05×10-12 [A]


                                                 = 4.05           [pA]


Therefore, we calculated the current flowing on the 3nm square specimen at 1,000,000X magnification as 

4.05 pA and found the surface current was negligibly small. Furthermore, since both tips are connected to 

GND, no charge accumulation occurs within the sample specimen.


   The increase in the temperature ΔT due to the e-beam was calculated as below. According to the refer-

ence [4],


                                             H=Q’J        (Q’=ρQ)


                                             Q=Qc+Qr


                                              k" 2 T=H


where, H is the energy transfer rate, Q is the average energy loss of an electron per unit length, J is the 

electron current density which is experimental obtained as 4.5×10-11 [A cm-2], Qc is the Collision stopping 

power, 1.671 [MeV cm2 g-1], Qr is the radiative stopping power, 0.03201 [MeV cm2 g-1], ρ is the mass 

density of silver, 10500 [Kg m-3], k is the thermal conductivity of silver 420[W m-1 K-1], the values of Qc, 

Qr for Ag were obtained by reference [5]. And then


                          H=QJ


                             =(1.671+0.03201)×10500×4.5×10-11  [MeV cm2 g-1 Kg m-3 A-1 A cm-2]


                             =8.037×10-4                                         [eV cm-3]




                             =1.286×10-22                                                           [J cm-3]


                       " 2T=(1.286×10-22)/(4.2)                           [J cm-3]/[J s-1 cm-1 K-1]


                              =3.062×10-7                                        [K s nm-2]


The increase in the temperature, ΔT, when we shine the electron beam on the 1nm square specimen for 

one minute is therefore


                          ΔT=3.062×10-7 × 60


                               =18   [µK]


As such the heating rate is approximately one milikelvin per hour of observation, and therefore the in-

crease in temperature due to the electron beam is negligibly small. !
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Supplementary Discussion 3 (the uncertainty analysis)


   The values of the error were calculated as follows. We performed similar experiments for six 

trials. One of the trials was described in the main manuscript. The other five experiments were 

described in the Supplementary data. In this section, error value is discussed.


The error in sliding distance in the lateral axis Δx depends on the clarity of TEM images because 

the sliding distance of the tip was measured by marking a characteristic feature on the tip and 

tracking the feature. Although the TEM resolution is 0.1 nm, the outline of the tip has a slightly 

larger width, and it is impossible to precisely measure the displacement less than the thickness of 

the outline. The width of the outline depends on the magnification of TEM images and the values 

were found to be 0.2 nm.


                                                          Δx= 0.2 [nm]                                                                         (11)


   The friction force ΔF error was derived by the propagation of the error of the stiffness Δkx and 

the error of the sliding distance Δx, because the force was calculated as the product of the rigidity 

of spring constant k and the displacement of the tip x.


                                                                                               (12)


                                                     ( )                                                              (13)


kx was obtained by the measurement of the resonant frequency. It is possible to precisely read the 

peak of the resonant frequency with 10 Hz(Δf) accuracy. Therefore, the error of the stiffness Δkx 

is as below.


                                                       


ΔF = (
dF
dkx

Δkx)2 + (
dF
d x

Δx)2

dF
dkx

= x ∵ F = kxx

Δkx = ( dkx

d fx )Δ f



                                                        (   )         (14)


(13), (14) give that


                                                                                                        (15)


                                                                                   ( )                                 (16)


(16) gives that


                                                                                                                              (17)


Substituting (15) and (17) to (12),


                                          


                                                  = 0.6 (nN)                                                                                     (18)


Therefore the friction force error ΔF was derived as 0.6 nN. The displacement of the beam x is 

3.8×10-9 m, the mass of the beam M is 8.0×10-10 Kg, the resonant frequency (experimental data) 

fx is 6470 Hz, the error of the measurement Δf is 10 Hz, the stiffness of the beam kx is 3.1 N/m, 

the error of the displacement Δx is the results of Eq.11.


The load error ΔL was derived through a similar procedure to that used to measure the error ΔF.


                                     


                                           


                                           = 6 (nN)                                                                                                     (19)


∴ Δkx = ( 23
200 ) M fx Δ f

π2
∵ fx = 2π

kx

0.23M

dF
dkx

Δkx = x( 23
200 ) M fx Δ f

π2

dF
d x

= kx ∵ F = kxx

dF
d x

Δx = kx Δx

ΔF = {x(
23

200
)

M fx Δ f
π2

}2 + (kx Δx)2

ΔL = (
dL
dky

Δky)2 + (
dL
dy

Δy)2

= {y(
23
200

)
M fyΔ f

π2
}2 + (kyΔy)2

11



Therefore the friction force error ΔL was derived as 6 nN. The displacement of the beam x is 

3.8×10-9 m, the mass of the beam M is 25.8×10-10 kg, the resonant frequency (experimental data) 

fx is 10944 Hz, the error of the measurement Δf is 10 Hz, the stiffness of the beam kx is 30 N/m, 

the error of the displacement Δx is the results of Eq.11.


   The error of the shear force ΔFshear was calculated as below. The shear force Fshear and the 

compressive force Fnormal were obtained by Eq.20 where F is friction force, L is load, and θ is the 

angle between the direction of actuation and the plane of contact.


                                                                                           (20)


Therefore the shear force error ΔFshear was


                      


                                       


        




                                   = 1.93 (nN)


Therefore the error of friction force ΔFshear was calculated to be 1.93 nN. The of friction force 

error ΔF is 0.6 nN, the friction force error ΔL is 6.0 nN, the value of the contact angle just prior 

to the separation θ: 14.4°, the value of friction force just prior to the separation F is 11.82 nN, the 

value of normal force just prior to the separation L is -18.19 nN, the contact angle error just prior 

to the separation Δθ is 4.0°.


  The normal force error ΔFnormal was derived through a similar procedure to that used to measure 

the error ΔFshear.


(Fshear

Fnormal) = (cosθ −sinθ
sinθ cosθ )(F

L)

ΔFshear = (
dFshear

dF
ΔF )2 + (

dFshear

dL
ΔL)2 + (

dFshear

dθ
Δθ )2

= (ΔFcosθ )2 + (ΔLsinθ )2 + (Δθ )2(Fsinθ + Lcosθ )2

= (0.6 × cos14.4)2 + (6.0 × sin14.4)2 + (0.052)2(11.82 × sin14.4 + 18.19 × cos14.4)2



       


                       


                        = 5.83 (nN)  


Therefore, the friction force error ΔFnormal was derived as 5.83 nN. Where the friction force error 

ΔF is 0.6 nN, the friction force error ΔN is 6.0 nN, the value of the contact angle just prior to the 

separation θ is 14.4°, the value of friction force just prior to the separation F is 11.82 nN, the 

value of normal force just prior to the separation N is 18.19 nN, he error of contact angle error 

just prior to the separation Δθ is 4.0°.


The value of the contact width w was measured by detecting both side of the junction. Therefore, 

the resolution Δx (=Δy) affects the contact width of the junction error Δw.


                                                      


                                                            


                                                             = 0.29  [nm]


The value of the von Mises stress SvM was calculate by Eq.21. Fshear was shear force calculate by 

Eq.22. Fnormal was the normal force calculate by Eq.23. and A was the actual contact area calcu-

lated by Eq.24 where w was the value of contact width.


                                                                                                                            (21)


                                                                                                                                        (22)


                                                                                                                                     (23)


                                                                                                                                       (24)


Therefore the von Mises stress error ΔSvM was calculate by Eq.25.


ΔFnormal = (
dFnormal

dF
ΔF )2 + (

dFnormal

d N
ΔN )2 + (

dFnormal

dθ
Δθ )2

= (ΔFsinθ )2 + (ΔLcosθ )2 + (Δθ )2(Fcosθ − Lsinθ )2

Δw = (Δx)2 + (Δx)2

= (0.3)2 + (0.3)2

SvM = σ2 + 3τ2

τ =
Fshear

A
σ =

Fnormal

A
A = π (

w
2

)2
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                                                           (  , )           (25)


                             


According to Eq.23,


                                


                     (  ,  )     

(26)


According to  Eq.22,


                               


                         (   ,   )     (27)


According to (14), the actual contact area error is


  


                                                     


                                                           


                                                            = 2.15 [nm]                                                                         (28)


ΔSvM = (
dSvM

dσ
Δσ)2 + (

dSvM

dτ
Δτ)2

= ( σ2

σ2 + 3τ2
Δσ2) + ( 9τ2

σ2 + 3τ2
Δτ2)

∵
dSvM

dσ
=

σ

σ2 + 3τ2

dSvM

dτ
=

3τ

σ2 + 3τ2

Δσ = (
dσ

dFnormal
ΔFnormal)2 + (

dσ
d A

ΔA)2

= (
ΔFnormal

A
)2 + (

Fnormal

A2
ΔA)2 ∵

dσ
dFnormal

=
1
A

dσ
d A

=
−Fnormal

A2

Δτ = (
dτ

dFshear
ΔFshear)2 + (

dτ
d A

ΔA)2

= (
ΔFshear

A
)2 + (

Fshear

A2
ΔA)2 ∵

dτ
dFshear

=
1
A

dτ
d A

=
−Fshear

A2

ΔA =
d A
dw

Δw

=
π
2

wΔw



Substituting (26), (27), (28) to (25),	 


                                           0.29 [GPa]


where the shear force error ΔFshear is 1.93 nN, the value of shear force Fshear is 6.94 nN, the normal force 

error ΔFnormal is 5.83 nN, the value of normal force Fnormal is -20.6 nN, the value of actual contact area just 

prior to the separation A is 11.8 nm2, the value of shear stress just prior to the separation:  0.38 GPa, the 

value of normal stress just prior to the separation is -1.11 GPa, the contact width just prior to the separa-

tion w is 0.29 nm. The uncertainty values of all experiments were derived from similar procedures above. !

ΔSvM =

15



Supplementary Discussion 4 (The calculation of the critical contact width)


Aghababaei et al. (17) calculated a critical contact width for this process to occur in shearing as-

perities based on the increase in the surface energy produced by fracture and the work done by 

external forces due to shear stress. If the contact width is smaller than the critical contact width, 

asperity fracture and wear debris is occurs. The critical contact width d* is derived from Eq(1).


                                                        (1)


where Δw is the work adhesion of silver as 2.516(J/m2), G is the shear modulus as 27.8(GPa), σj 

is the shear stress at separation. The experimental data of shear stress at separation are 0.38, 0.36, 

0.41, 0.37, 0.10, and 0.14(GPa). Thus each value of the critical contact width is 1476, 1628, 

1242, 1549, 20168, and 10705(nm). And the contact width obtained from TEM images are 5.46, 

4.56, 7.21, 7.12, 10.69, and 8.96 respectively. It was found that the critical contact widths were 

170-1900 times larger than the values of the contact width obtained from the experiments. Thus, 

the model of Aghababaei et al. predicts no asperity fracture, consistent with our results.
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