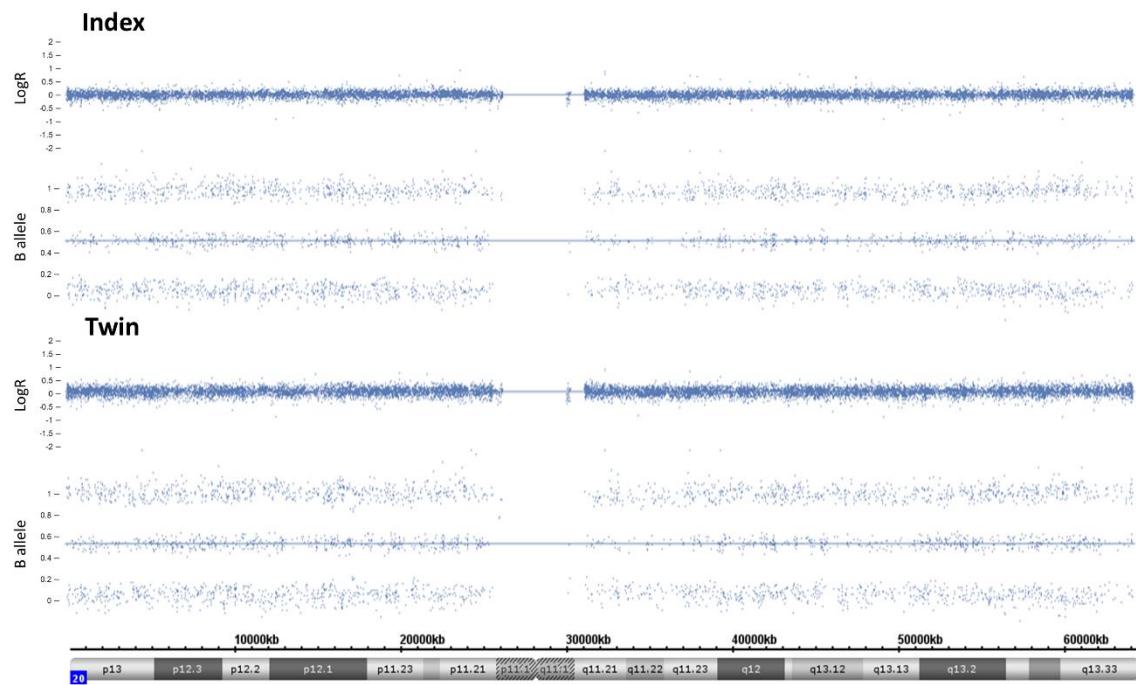
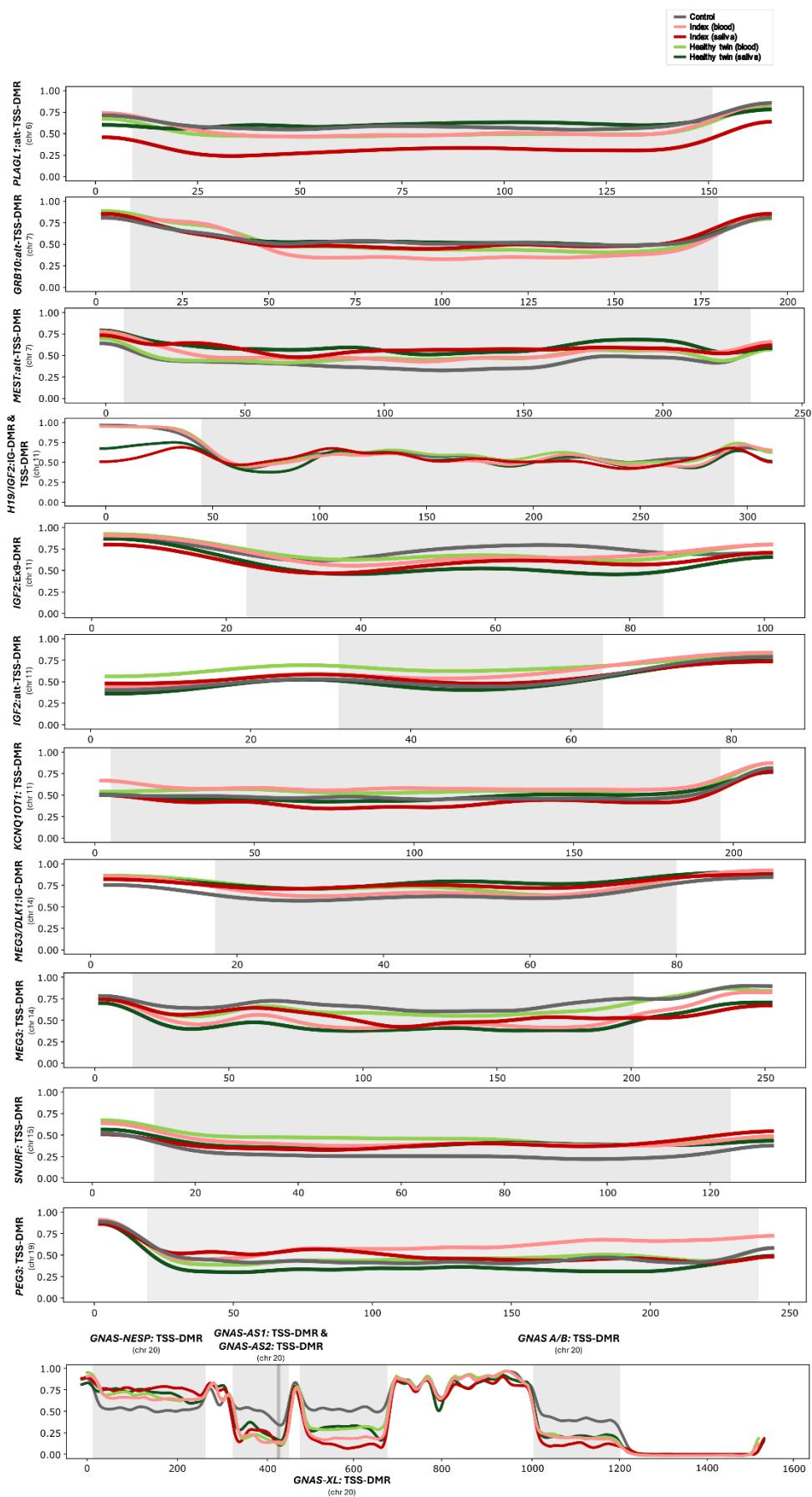
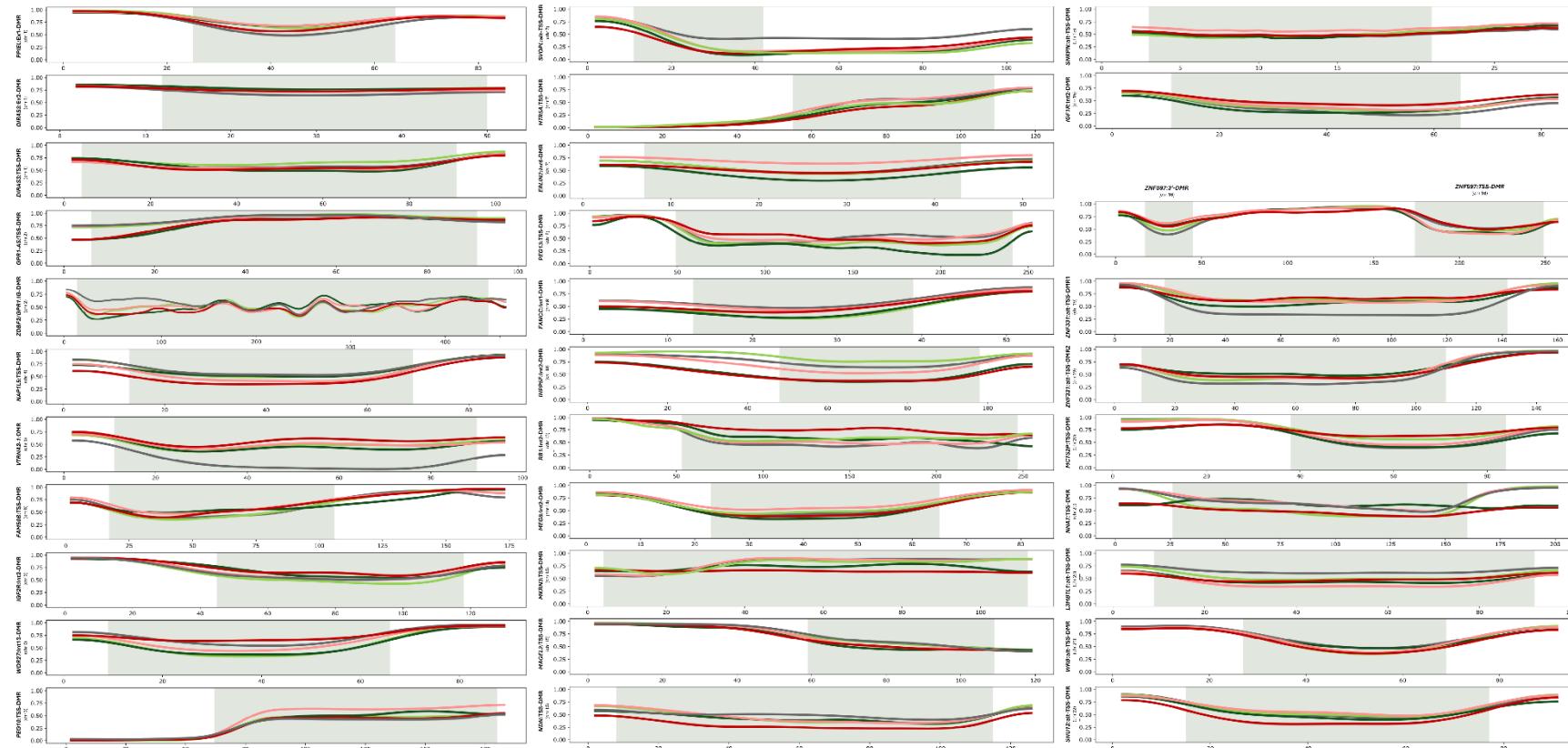

SUPPLEMENTARY MATERIAL

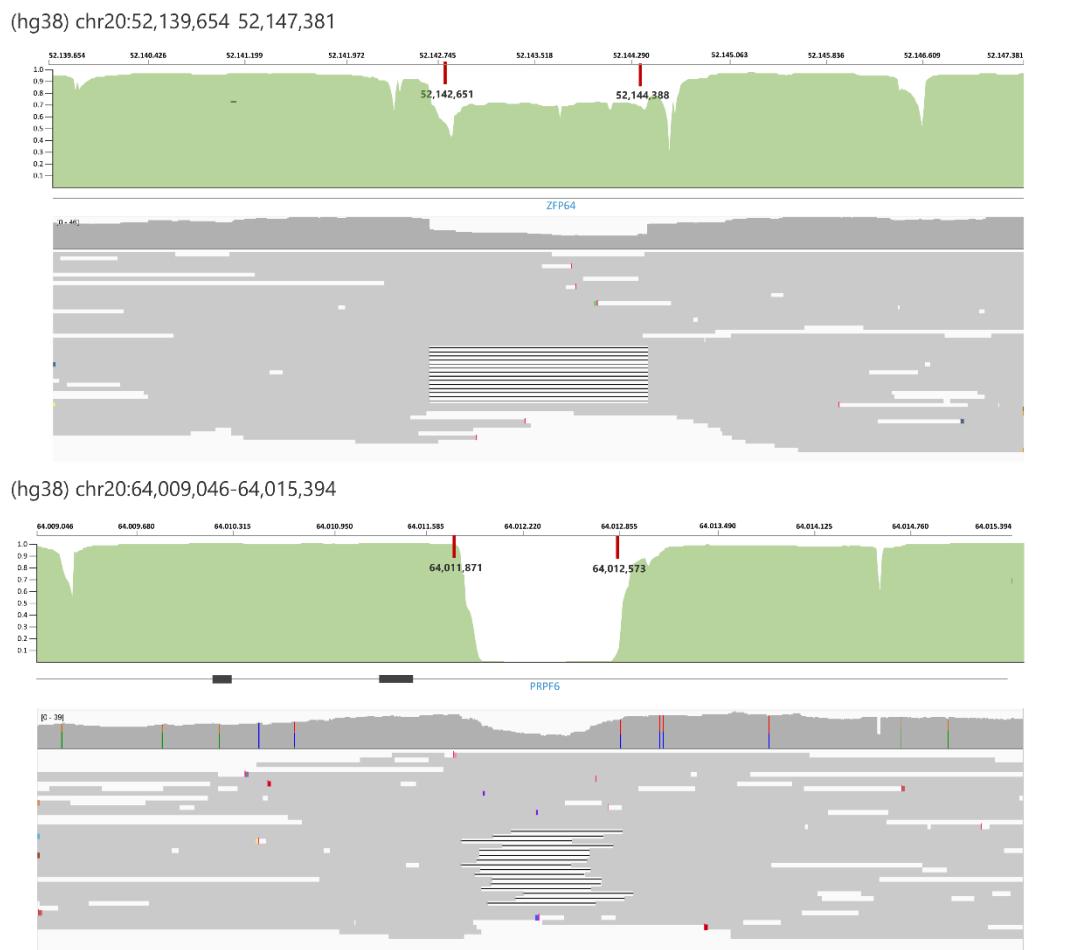
Supplementary Table 1: Genes included in the NGS panel "Imprinting Regulators v1". This panel captures genes involved in imprinting regulation, classified into distinct functional categories: MEG (Maternal Effect Genes), SCMC (Subcortical Maternal Complex), and HYDM (Hydatidiform mole). Mammalian MEG includes genes with currently unknown roles in humans but demonstrated maternal functions in embryonic development in other species, while Human MEG are those with documented functions in humans, some of which belong to the SCMC as indicated. The categories Embryonic and Gametogenesis refer to genes involved in embryonic expression/function and meiotic processes including genetic recombination and sister chromatid cohesion, respectively. Genes shown in bold harbor variants previously associated with Multi-Locus Imprinting Disturbance (MLID) in humans. Probe design was based on RefSeq 2020 transcript annotations (refseq-2020-02-09-gencodev33-2020-02-16-ccds22-2019-10-20).


Genes included in IR panel v1	Gene type	Genes included in IR panel v1	Gene type
<i>AGO2</i>	Mammalian MEG	<i>PIK3R1</i>	Mammalian MEG
<i>ATG5</i>	Mammalian MEG	<i>PMS2</i>	Mammalian MEG
<i>BCAR4</i>	Mammalian MEG	<i>POU5F1/OCT4</i>	Mammalian MEG
<i>BCAS2</i>	Mammalian MEG	<i>RAD21</i>	Gametogenesis
<i>BNC1</i>	Mammalian MEG	<i>REC114</i>	Gametogenesis
<i>BRWD1</i>	Mammalian MEG	<i>RING1</i>	Mammalian MEG
<i>BRME1/C19orf57</i>	Gametogenesis	<i>RLIM</i>	Mammalian MEG
<i>CTCF</i>	Mammalian MEG	<i>RNF2</i>	Mammalian MEG
<i>DICER1</i>	Mammalian MEG	<i>SEBOX</i>	Mammalian MEG/Regulador de MEG
<i>DMAP1</i>	Mammalian MEG	<i>SLBP</i>	Mammalian MEG
<i>DNMT1</i>	Mammalian MEG	<i>SMARCA4</i>	Mammalian MEG
<i>DNMT3A</i>	Mammalian MEG	<i>SOX2</i>	Mammalian MEG
<i>DNMT3L</i>	Mammalian MEG	<i>STAG3</i>	Gametogenesis
<i>DPPA3</i>	Mammalian MEG	<i>SYCE1</i>	Gametogenesis
<i>ESR2</i>	Gametogenesis	<i>SYCP2</i>	Gametogenesis
<i>EZH2</i>	Mammalian MEG	<i>TCL1A</i>	Mammalian MEG
<i>FANCM</i>	Gametogenesis	<i>TET3</i>	Mammalian MEG
<i>FIGLA</i>	Gametogenesis / MEG regulator	<i>TLE6</i>	Human MEG (SCMC)
<i>FMN2</i>	Mammalian MEG	<i>TOP6BL/C11orf80</i>	Gametogenesis
<i>GAS6</i>	Mammalian MEG	<i>TP73</i>	Mammalian MEG
<i>GCLM</i>	Mammalian MEG	<i>TRIM24</i>	Mammalian MEG
<i>GJA4</i>	Mammalian MEG	<i>TRIM28</i>	Mammalian MEG
<i>HFM1</i>	Gametogenesis	<i>UBE2A</i>	Mammalian MEG
<i>HIRA</i>	Mammalian MEG	<i>UCHL1</i>	Mammalian MEG

Genes included in IR panel v1	Gene type	Genes included in IR panel v1	Gene type
<i>HIST1H2AA/H2AC1</i>	Mammalian MEG	<i>XIST</i>	Mammalian MEG
<i>HIST1H2BA/H2BC1</i>	Mammalian MEG	<i>YY1</i>	Mammalian MEG
<i>HIST1H3F/H3C7</i>	Mammalian MEG	<i>ZAR1</i>	Mammalian MEG/ Human MEG
<i>HIST1H4F/H4C6</i>	Mammalian MEG	<i>ZBED3</i>	MEG humano (SCMC)
<i>HSF1</i>	Mammalian MEG	<i>ZFP36L2</i>	Mammalian MEG
<i>HSF2BP</i>	Gametogenesis	<i>ZFP57</i>	Embryonic
<i>KDM1B</i>	Mammalian MEG	<i>ZFP69B</i>	Embryonic
<i>KHDC3L</i>	Human MEG (SCMC)/ HYDM	<i>ZNF182</i>	Embryonic
<i>KMT2D</i>	Mammalian MEG	<i>ZNF2</i>	Embryonic
<i>KPNA6</i>	Mammalian MEG	<i>ZNF202</i>	Embryonic
<i>MCM8</i>	Gametogenesis	<i>ZNF257</i>	Embryonic
<i>MCM9</i>	Gametogenesis	<i>ZNF263</i>	Embryonic
<i>MEI1</i>	Gametogenesis	<i>ZNF273</i>	Embryonic
<i>MEIOB</i>	Gametogenesis	<i>ZNF28</i>	Embryonic
<i>MIR181A1</i>	MEG regulator	<i>ZNF30</i>	Embryonic
<i>MIR196A1</i>	MEG regulator	<i>ZNF445</i>	Embryonic
<i>MIR212</i>	MEG regulator	<i>ZNF468</i>	Embryonic
<i>MSH4</i>	Gametogenesis	<i>ZNF479</i>	Embryonic
<i>MSH5</i>	Gametogenesis	<i>ZNF506</i>	Embryonic
<i>NLRP2</i>	Human MEG (SCMC)	<i>ZNF519</i>	Embryonic
<i>NLRP4</i>	Mammalian MEG	<i>ZNF534</i>	Embryonic
<i>NLRP5</i>	Human MEG (SCMC)	<i>ZNF557</i>	Embryonic
<i>NLRP7</i>	Human MEG (SCMC)/ HYDM	<i>ZNF649</i>	Embryonic
<i>NOBOX</i>	Gametogenesis	<i>ZNF675</i>	Embryonic
<i>NPM2</i>	Mammalian MEG	<i>ZNF75D</i>	Embryonic
<i>OOEP</i>	Human MEG (SCMC)	<i>ZNF793</i>	Embryonic
<i>PADI6</i>	Human MEG (SCMC)	<i>ZNF90</i>	Embryonic
<i>PDK1</i>	Mammalian MEG	<i>ZNF695</i>	Embryonic


SUPPLEMENTARY FIGURES


Supplementary Figure 1: Results of MS-MLPA studies in blood, saliva, and urine from both sisters. For each tissue, the upper panel displays the GNAS locus copy number, indicating no alterations in dosage. The lower panel for each tissue shows the methylation pattern in the different regions. In blood, both sisters have a very similar pattern, with slight hypermethylation in *GNAS-NESP:TSS-DMR* and hypomethylation in *GNAS-AS1:TSS-DMR*, *GNAS-XL:Ex1-DMR* and *GNAS A/B:TSS-DMR*. However, in saliva and urine, this methylation alteration is more pronounced in the patient, while in her healthy sister it is almost imperceptible.


Supplementary Figure 2: Chromosome 20 was analyzed using SNP array technology. The results obtained in both sisters confirmed the absence of copy number variations affecting chromosome 20. Similarly, no regions of loss of heterozygosity were detected, ruling out the presence of uniparental isodisomy.

Supplementary Figure 3: Methylation analysis after long-read sequencing focused on DMRs described as clinical [1]. The panel depicts methylation distribution across the coordinates of these DMRs using DNA from saliva and blood samples of both sisters and a healthy control. The methylation pattern was comparable across samples, except at the *GNAS* locus.

Supplementary Figure 4: Methylation analysis after long-read sequencing focused on non-clinical DMRs [1]. The methylation pattern was similar for samples of both twins and a healthy control.

Supplementary Figure 5: Image comparing the genomic regions containing the two structural variants identified in the sisters. In both panels, the upper section corresponds to gnomAD data showing average read depth, whereas the lower section displays IGV coverage from the index patient's sequencing results. A decrease in read depth can be observed in the patient, called as a heterozygous variant. This reduction coincides in both regions with areas of lower read coverage in the general population, likely reflecting sequencing limitations or difficulties with short-read technologies.