
VALORIS: One-shot and lossless vertical logistic regression for privacy-protecting1

multi-site health analytics - Supplementary Information2

Supplementary Tables3

We provide three notation glossaries: the first described general notation conventions, the second4

describes quantities that pertain to our regression setting, and the last describes quantities that5

pertain to the vertical setting and the proposed algorithm.

Table S1. Glossary for general notation conventions

Random variable in R A Uppercase Non-italic
Random vector in Rp AAA Uppercase Non-italic bold
Scalar in R a Lowercase Italic
Vector in Rp a Lowercase Italic bold
Vector in Rp with all components equal to 1 1p -
Matrix in Rn×p A Uppercase Italic bold
Identity matrix in Rn×n In -
Gradient of f(θ) (column vector) ∇θf(θ) ∇2

θ for Hessian
∇θf(θ)|θ=a ∇θf(a) ∇2

θf(a) for Hessian
max1≤j≤p |aj | ||a||∞ Infinite norm∑p

j=1 |aj | ||a||1 ℓ1-norm√∑p
j=1 a

2
i ||a||2 ℓ2-norm

Diagonal matrix with entries of a on diagonal diag(a) Dimension p× p for a ∈ Rp

Quantity · at iteration t (step count) ·(t) Starts with ·(0)
6

Table S2. Glossary for quantities that pertain to the regression settings

Covariate vector for ith individual xi = [xi1, . . . , xip]
⊤

Covariate vector for ith individual with intercept [1,x⊤
i ]

⊤

Covariate matrix in Rn×p X =

x11 · · · x1p

...
. . .

...
xn1 · · · xnp

 =

x
⊤
1
...

x⊤
n


True (unknown) parameters β0⋆,β⋆

Exact MLE of the parameter β̂0, β̂

Exact penalized estimate of the parameter β̂λ
0 , β̂

λ

Estimate obtained via numerical approximation β̃0, β̃, β̃
λ
0 , β̃

λ

Log-likelihood ℓn(β) =
1
n

∑n
i=1 log(·)

Penalized log-likelihood lλn(β)
Mean of the jth column in covariate matrix un,j

Standard deviation of the jth column in covariate matrix sn,j
Fisher information matrix I(β0,β)
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Table S3. Glossary for quantities specific to the vertical setting

Number of covariate-nodes K
Number of covariates at covariate-node k p(k)

Covariate matrix at covariate-node k X(k)

Centered and scaled covariate matrix at
covariate-node k

X
(k)
cs

Mean and s.d. of the jth column in X(k) u
(k)
n,j ,s

(k)
n,j

Gram matrix at covariate-node k K(k) := X
(k)
cs (X

(k)
cs )⊤

Dual parameter estimates (numerical approx.) α̃λ

Penalized estimate associated with covariate-
node k (numerical approx.)

β̃
λ(k)
j

Standard errors associated with covariate-node
k (numerical approx.)

σ̃
λ(k)
j

Matrix in null-space of K(k) N (k)

intermediate quantities c̃λ(k), S̃

In the followings, we provide the detailed estimates and standard errors obtained for the analysis7

using real health data pertaining first to CKD, and second to the MIMIC-IV database.8

Table S4. Logistic regression model parameter estimates obtained with kidney failure at two years after baseline as
outcome

Covariate-node Variable Vertical Partition β̃λ(σ̃λ) Centralized β̂(σ̂)

1 Age −0.2069(0.1609) −0.2069(0.1609)
1 Sex (male) −0.0509(0.0594) −0.0509(0.0594)
1 eGFR −0.7731(0.5337) −0.7732(0.5337)
1 uACR −0.0076(0.0270) −0.0076(0.0270)
2 Serum albumin −0.6463(0.4388) −0.6464(0.4389)
2 Serum bicarbonate −0.0997(0.0806) −0.0997(0.0806)
2 Serum calcium 0.3463(0.5243) 0.3463(0.5243)
2 Serum phosphate 0.5202(0.2887) 0.5202(0.2887)

A log-transformation was applied to uACR due to a skewed distribution1.
The estimates for the centralized setting were computed using the glm function in R with a non-penalized logistic
regression model.
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Table S5. Logistic regression model parameter estimates obtained with MIMIC-IV database and Death as outcome

Covariate-node Variable Vertical Partition β̃λ(σ̃λ) Centralized β̂(σ̂)1

1 Age 0.0272(0.0023) 0.0272(0.0023)
1 Myocardial infarction 0.4052(0.0828) 0.4052(0.0828)
1 Renal disease 0.1867(0.0751) 0.1867(0.0751)
1 Malignant cancer 0.8814(0.0716) 0.8815(0.0716)
2 Triage temperature −0.0951(0.0276) −0.0951(0.0276)
2 Triage sbp −0.0033(0.0015) −0.0033(0.0015)
2 Triage dbp −0.0097(0.0025) −0.0097(0.0025)
2 Triage respiratory rate > 20 0.4752(0.0856) 0.4752(0.0856)
3 First-day urine output −0.0005(0.0000) −0.0005(0.0000)
3 First-day heart rate mean 0.0319(0.0020) 0.0319(0.0020)
3 First-day glucose mean 0.0025(0.0006) 0.0025(0.0006)

The estimates for the centralized setting were computed using the glm function in R with a non-penalized logistic
regression model.

Supplementary Notes9

The code for the implementation of the algorithm using R is available at: https://github.com/10

OpenLHS/Distrib_analysis/tree/main/Vertically_distributed_analysis/logistic_11

regression_nonpenalized. It includes an automated example with simulated data. The12

folder also includes a basic implementation of the tool that supports the privacy assessment for the13

response-node individual-level data.14

3/18

https://github.com/OpenLHS/Distrib_analysis/tree/main/Vertically_distributed_analysis/logistic_regression_nonpenalized
https://github.com/OpenLHS/Distrib_analysis/tree/main/Vertically_distributed_analysis/logistic_regression_nonpenalized
https://github.com/OpenLHS/Distrib_analysis/tree/main/Vertically_distributed_analysis/logistic_regression_nonpenalized
https://github.com/OpenLHS/Distrib_analysis/tree/main/Vertically_distributed_analysis/logistic_regression_nonpenalized
https://github.com/OpenLHS/Distrib_analysis/tree/main/Vertically_distributed_analysis/logistic_regression_nonpenalized


Supplementary Methods - Details for the derivation of the dual optimization problem15

Recall from the manuscript that to estimate (β0⋆,β⋆), we consider the solutions (β̂λ
0 , β̂

λ) of the16

ridge-penalized logistic regression problem17

max
β0∈R,β∈Rp

(
lλn(β0,β) = ℓn(β0,β)−

λ

2

[(
β0 +

p∑
j=1

βjµn,j

)2
+

p∑
j=1

β2
j s

2
n,j

])
,

where

ℓn(β0,β) = n−1

n∑
i=1

log

[
1

1 + exp{−yi(β0 + x⊤
i β)}

]
.

Since, for all i ∈ {1, . . . , n} we have18

β0 + x⊤
i β = β0 +

p∑
j=1

xijβj

=

(
β0 +

p∑
j=1

µn,jβj

)
+

p∑
j=1

(
xij − µn,j

sn,j

)
(βjsn,j)

=
(
β0 + µ̂⊤β

)
+ x⊤

i,csΣ̂β ,

where we have introduced19

µ̂ = [µn,1, . . . , µn,p]
⊤ , Σ̂ = diag([sn,1, . . . , sn,p]

⊤) , (S1)

it follows upon adopting the re-parametrization (β◦
0 ,β

◦) ≡ (β0 + µ̂⊤β, Σ̂β) that20

max
β0∈R,β∈Rp

lλn(β0,β)

= max
β◦
0∈R,β◦∈Rp

(
ľλn(β

◦
0 ,β

◦) := ℓ̌n(β
◦
0 ,β

◦)− λ

2

p∑
j=0

(β◦
j )

2

)
,

with ℓ̌n(β
◦
0 ,β

◦) := −n−1

n∑
i=1

log
[
1 + exp{−yi(β

◦
0 + x⊤

i,csβ
◦)}
]
.

Following the derivations in2 (see Appendix A therein), since the concave dual conjugate of21

x 7→ (1 + e−x)−1 is y 7→ y log y + (1− y) log(1− y) for y ∈ (0, 1), we obtain that the Fenchel dual22

of ľλn(β
◦
0 ,β

◦) is the following minimization problem:23

min
α∈(0,1)n

(
1

n

n∑
i=1

{
(1− αi) log(1− αi) + αi log(αi)

}
+

1

2λn2

n∑
i=1

n∑
j=1

αiαjyiyj(x
⊤
i,csxj,cs + 1)

)
= min

α∈(0,1)n
Jλ(α) .

Its unique maximizer α̂λ = (α̂λ
1 , . . . , α̂

λ
n)

⊤ ∈ (0, 1)n then satisfies24 [
β̌λ
0

β̌λ

]
= (nλ)−1

n∑
i=1

yiα̂
λ
i

[
1

xi,cs

]
.
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Since the bijective nature of the reparametrization implies25 [
β̂λ
0

β̂λ

]
=

[
β̌λ
0 − µ̂⊤β̂λ

Σ̂−1β̌λ

]
, (S2)

we derive that26

β̂λ
0 = (nλ)−1

n∑
i=1

yiα̂
λ
i − µ̂⊤β̂λ , β̂λ = Σ̂−1

(
(nλ)−1

n∑
i=1

yiα̂
λ
i xi,cs

)
.

By additionally noting that ľλn(β0,β) is strongly concave, its maximum is unique and is achieved27

at the point (β̌λ
0 , β̌

λ) that satisfies28

n−1

n∑
i=1

yi

1 + exp{yi(β̌λ
0 + x⊤

i β̌
λ)}

[
1
xi

]
= λ

[
β̌λ
0

β̌λ

]
,

we can use the triangle inequality and derive29

max
0≤j≤p

|β̌λ
j | ≤ λ−1

(
n−1

n∑
i=1

(∥xi∥∞ + 1)
)
. (S3)

Therefore, the primal maximization problem can be restricted over a compact search space, and30

the relation between the dual and primal parameters implies that the dual maximization problem31

can also be restricted over a compact search space.32

Supplementary Methods - Equivalence to the standard non-penalized log-likelihood and33

computation of standard errors34

Equivalence between parameter estimates35

In this section, we formally establish, under appropriate conditions, the equivalence between the36

penalized estimators (β̂λ
0 , β̂

λ), which maximize ℓλn(β0,β), and the unpenalized maximum likelihood37

estimators. To ensure this equivalence, the conditions must guarantee that maximum likelihood38

estimates exist and are unique. It is well known3 that if the columns of X are linearly independent39

and also linearly independent of the vector 1n, then the Hessian ∇2
β0,β

ℓn(β0,β) is strictly negative40

definite, which implies that the log-likelihood function ℓn(β0,β) is strictly concave. In this case, if41

a maximizer exists for the problem maxβ0∈R,,β∈Rp ℓn(β0,β), then it must be unique and coincide42

with a stationary point of ∇β0,βℓn(β0,β). The existence of such a solution is guaranteed when the43

response vector y is not separable4. Specifically, y is said to be separable if there exists (β0,β)44

such that yi(β0 + x⊤
i β) > 0 for all i ∈ 1, . . . , n. We will assume these conditions throughout the45

following discussion. Let (β̂0, β̂) denote the unique maximizer of ℓn(β0,β).46

In what follows, for any positive definite matrix A, let ιmin(A) denote its smallest eigen value.47

Also, let M ≥ 1 be a constant such that max1≤i≤n ∥xi,cs∥∞ ≤ M .48

To establish the statistical equivalence between (β̂λ
0 , β̂

λ) and (β̂0, β̂), we start by proving49

an inequality that involves the reparametrized version of (β̂λ
0 , β̂

λ) introduced in Supplemen-50

tary Methods - Details for the derivation of the dual optimization problem, namely (β̌λ
0 , β̌

λ) =51

argmaxβ0∈R,β∈Rp ľλn(β0,β), and a corresponding reparametrized version of the maximum likelihood52

estimates (β̂0, β̂). Specifically, by reparametrisation arguments analogous to those in the previous53

Supplementary Methods, it follows that maxβ0∈R,β∈Rp ℓn(β0,β) = maxβ◦
0∈R,β◦∈Rp ℓ̌n(β

◦
0 ,β

◦), with54
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ℓ̌n defined in the previous Supplementary Methods. Moreover, ℓ̌n has a unique maximizer (β̌0, β̌)55

satisfying56 [
β̂0

β̂

]
=

[
β̌0 − µ̂⊤β̂

Σ̂−1β̌

]
.

To derive the inequality, we adopt some notational simplifications. We will occasionally write57

zi = [1,x⊤
i ]

⊤ and zi,cs = [1,x⊤
i,cs]

⊤. We will also use the shorthand θ̂λ, θ̂, θ̌λ, and θ̌ to denote,58

respectively, [β̂λ
0 , (β̂

λ)⊤]⊤, [β̂0, β̂
⊤]⊤, [β̌λ

0 , (β̌
λ)⊤]⊤, and [β̌0, β̌

⊤]⊤. In this notation, the inequality59

we shall prove below is the following:60

∥θ̌λ − θ̌∥∞ ≤ (p+ 1)λ∥θ̌∥∞
λ+ ω{(p+ 2)2∥θ̌∥∞}ιmin(n−1

∑n
i=1 zi,csz⊤

i,cs)
, (S4)

where ω(x) := ex/(1 + ex)2.61

Since θ̌λ and θ̌ are the unique stationary points of ℓ̌λn and ℓ̌n, respectively, they satisfy the62

corresponding first-order conditions, that is, they cancel the gradients of these functions. Hence,63

we have64

λθ̌λ = n−1

n∑
i=1

yi

[ 1

1 + exp(yiz⊤
i,csθ̌

λ)
− 1

1 + exp(yiz⊤
i,csθ̌)

]
zi,cs

= n−1

n∑
i=1

yi

[ 1

1 + exp{yiz⊤
i,cs(θ̌ +∆)}

− 1

1 + exp(yiz⊤
i,csθ̌)

]
zi,cs ,

where we have introduced ∆ = θ̌λ − θ̌. Since65

1

1 + exp{yiz⊤
i,cs(θ̌ +∆)}

− 1

1 + exp(yiz⊤
i,csθ̌)

= −
∫ 1

0

exp{yiz⊤
i,cs(θ̌ + t∆)}

[1 + exp{yiz⊤
i,cs(θ̌ + t∆)}]2

dt yiz
⊤
i,cs∆ ,

we further deduce that66

λθ̌λ = −
∫ 1

0

(
n−1

n∑
i=1

exp{yiz⊤
i,cs(θ̌ + t∆)}

[1 + exp{yiz⊤
i,cs(θ̌ + t∆)}]2

zi,csz
⊤
i,cs

)
dt∆

= −
∫ 1

0

(
n−1

n∑
i=1

exp{yiz⊤
i,cs(θ̌ + t∆)}

[1 + exp{yiz⊤
i,cs(θ̌ + t∆)}]2

zi,csz
⊤
i,cs

)
dt (θ̌λ − θ̌) .

From straightforward algebra manipulations, the latter equation implies67

θ̌λ − θ̌ = −λ

{∫ 1

0

(
n−1

n∑
i=1

exp{yiz⊤
i,cs(θ̌ + t∆)}

[1 + exp{yiz⊤
i,cs(θ̌ + t∆)}]2

zi,csz
⊤
i,cs

)
dt+ λIp+1

}−1

θ̌

= −λ
{∫ 1

0

I(θ̌ + t∆)dt+ λIp+1

}−1

θ̌ ,

where I(θ̌ + t∆) is the Fisher information matrix at (3) computed at parameter θ̌ + t∆.68

This provides the bound69

∥θ̌λ − θ̌∥∞ ≤ (p+ 1)λ∥θ̌∥∞
λ+ ιmin{

∫ 1

0
I(θ̌ + t∆)dt}

.
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Since the latter inequality trivially implies ∥∆∥∞ = ∥θ̌λ − θ̌∥∞ ≤ (p+ 1)∥θ̌∥∞, which further70

implies max1≤i≤n |yiz⊤
i,cs(θ̌+ t∆)| ≤ M(p+1){∥θ̌∥∞ + (p+1)∥θ̌∥∞} ≤ M(p+2)2∥θ̌∥∞, we deduce71

the bound in (S4) from the fact that ω(x) = ex/(1 + ex)2 is even, and strictly decreasing for all72

x > 0.73

From this bound, we will derive a bound for ∥θ̂λ − θ̂∥∞ using the relationship74 [
β̂λ
0 − β̂0

β̂λ − β̂

]
=

[
β̌λ
0 − β̌0 − µ̂⊤(β̂λ − β̂)

Σ̂−1(β̌λ − β̌)

]
=

[
β̌λ
0 − β̌0 − µ̂⊤Σ̂−1(β̌λ − β̌)

Σ̂−1(β̌λ − β̌)

]
.

From the above relationship, it can readily be deduced that75

∥θ̂λ − θ̂∥∞ ≤
{
1 +

p ∥µ̂∥∞
ιmin(Σ̂)

}
∥θ̌λ − θ̌∥∞ .

Using (S4), this directly implies that76

∥θ̂λ − θ̂∥∞ ≤

{
1 + p ∥µ̂∥∞

ιmin(Σ̂)

}
(p+ 1)λ∥θ̌∥∞

λ+ ω{(p+ 2)2∥θ̌∥∞}ιmin(n−1
∑n

i=1 zi,csz⊤
i,cs)

≤

{
1 + p ∥µ̂∥∞

ιmin(Σ̂)

}2

(p+ 1)λ∥θ̂∥∞

λ+ ω
[
(p+ 2)2

{
1 + p ∥µ̂∥∞

ιmin(Σ̂)

}
∥θ̂∥∞

]
ιmin

(
n−1

∑n
i=1 zi,csz⊤

i,cs

) .
Under the assumption that the xi’s have finite marginal means and variances, and that their77

variance–covariance matrix is invertible, together with the condition θ̂ have finite components, the78

above expression ensures that taking λ sufficiently small yields the equivalence– up to a negligible79

remainder–between θ̂λ and θ̂.80

Standard errors81

The standard deviation of β̂j, given by

√
Var(β̂j) = n−1/2[(E{I(β0⋆,β⋆)})−1]jj is commonly esti-82

mated using the following quantity:83

σ̂j :=
1√
n

([(
I(β̂0, β̂)

)−1
]
jj

)1/2

.

Based on the previous subsection, which implies that max(|β̂λ
0 − β̂0|, ∥β̂λ − β̂∥∞) can be made84

arbitrarily small by choosing λ small, the proof of the consistency of our standard error compu-85

tation procedure follows from the derivations provided in the following section, which show that86

[(I(β̂λ
0 , β̂

λ))−1]jj = [(Iλ)−1]jj/s
2
n,j, with Iλ defined at the beginning of Methods - Methodology for87

computing standard errors of parameter estimates in VALORIS (in main manuscript).88

Computation of standard errors89

Recall from above the definition of (β̌λ
0 , β̌

λ).90

For j ∈ {1, . . . , p}, one obtains from the relationship between (β̂λ
0 , β̂

λ) and (β̌λ
0 , β̌

λ) that91

[{I(β̂λ
0 , β̂

λ)}−1]jj = [{−∇2
β0,β

ℓ̌n(β̌
λ
0 , β̌

λ)}−1]jj/s
2
n,j ,
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where92

−∇2
β0,β

ℓ̌n(β̌
λ
0 , β̌

λ) =
1

n

n∑
i=1

exp{yi(β̌λ
0 + x⊤

i,csβ̌
λ)}

[1 + exp{yi(β̌λ
0 + x⊤

i,csβ̌
λ)}]2

[
1 x⊤

i,cs

xi,cs xi,csx
⊤
i,cs

]
=

1

n

n∑
i=1

exp{yi(β̂λ
0 + x⊤

i β̂
λ)}

[1 + exp{yi(β̂λ
0 + x⊤

i β̂
λ)}]2

[
1 x⊤

i,cs

xi,cs xi,csx
⊤
i,cs

]
.

Now, recall that, for each k ∈ {1, . . . , K}, the vector ĉλ(k) defined in (7) satisfies93

ĉλ(k) = X
(k)
cs diag(s

(k)
n,1, . . . , s

(k)

n,p(k)
)β̂λ(k) = X(k)β̂λ(k) − (

∑p(k)

j=1 β̂
λ(k)
j µ

(k)
j )1n, and that the response-94

node has access to ĉλ(1), . . . , ĉλ(K). Since the response-node can also compute (nλ)−1
∑n

i=1 α̂
λ
i yi =95

β̂λ
0 +

∑n
j=1 β̂

λ
j µn,j (recall the expression given in (6)), it is therefore able to compute96

β̂λ
01n +Xβ̂λ = β̂λ

01n +
K∑
k=1

X(k)β̂λ(k) = ((nλ)−1

n∑
i=1

α̂λ
i yi)1n +

K∑
k=1

ĉλ(k) .

Then, upon defining V̂ λ, whose diagonal entries [V̂ λ]jj satisfying97

[V̂ λ]jj =
exp

[
yj

{
(nλ)−1

∑n
i=1 α̂

λ
i yi +

∑K
k=1 ĉ

λ(k)
j

}]
(
1 + exp

[
yj

{
(nλ)−1

∑n
i=1 α̂

λ
i yi +

∑K
k=1 ĉ

λ(k)
j

}])2
=

exp{yj(β̂λ
0 + x⊤

j β̂
λ)}

[1 + exp{yj(β̂λ
0 + x⊤

j β̂
λ)}]2

,

the matrix −∇2
β0,β

ℓ̌n(β̌
λ
0 , β̌

λ) can be computed as98

Iλ = n−1
[
1n X

(1)
cs . . . X

(k)
cs

]⊤
V̂ λ
[
1n X

(1)
cs . . . X

(k)
cs

]

= n−1


1⊤
n V̂

λ1n 1⊤
n V̂

λX
(1)
cs · · · 1⊤

n V̂
λX

(K)
cs

(X(1))⊤V̂ λ1n (X
(1)
cs )⊤V̂ λX

(1)
cs · · · (X

(1)
cs )⊤V̂ λX

(K)
cs

...
...

. . .
...

(X
(K)
cs )⊤V̂ λ1n (X

(K)
cs )⊤V̂ λX

(1)
cs · · · (X

(K)
cs )⊤V̂ λX

(K)
cs

 .

Supplementary Methods - Box-constrained optimization algorithm and stopping criteria99

Two-metric projected Newton algorithm100

The convexity of the dual problem to solve at the response-node ensures that a unique solution101

exists on the domain of the objective function. The algorithm used to solve the problem should allow102

sufficient descent to reach an adequate approximation of this unique solution. Since the components103

of α are bounded by a compact set included in the open set (0, 1) (see previous Supplementary104

Methods), an algorithm adequate for box-constrained convex optimization problems had to be105

selected. While many methods exist for box-constrained optimization5, the chosen method should106

allow to reach convergence with sufficient precision given the potentially small magnitude of the107

dual parameter α while still offering efficient computation when the dimension of the dual is high.108

We used the Two-Metric Projected Newton method suggested by Bertsekas6, applicable because109

we previously argued that the dual parameter estimates lie in a compact parameter space. We refer110
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to7 for an extensive description of the method and convergence details. Briefly, all components111

of the estimate α̂λ
(t) at step t at a boundary of the search domain and for which the gradient112

would pull the search toward the opposite side of the search domain are updated through gradient113

descent projected in the domain, while all other components are updated using Newton descent114

projected in the domain. The update is therefore α̂λ
(t+1) = Proj[α̂λ

(t) − θD(t)∇αJ
λ(α̂λ

(t))], where115

D(t) depends of the component as described before and Proj[·] denotes the projection under the116

Euclidean norm. The step size θ is selected through backtracking line search (Armijo rule) along117

projection arc detailed in5,7. An initial admissible estimate has to be provided, which was set at118

α̂λ
(0) = [0.1, . . . , 0.1]⊤.119

Stopping criteria120

The error entailed by the approximation of α̂λ in the chosen algorithm should ideally be low enough121

such that it preserve the asymptotic properties derived for the primal estimate. We notice that λ122

holds a scaling role over the dual parameter α when it comes to retrieving the associated primal123

parameter β. A restriction in function of λ consequently needs to be imposed in the estimation of124

the dual parameter to preserve the asymptotic properties of the primal parameters. We derived125

a stopping criteria for the dual estimation that ensures the asymptotic properties of the primal126

parameter hold.127

We first fix ϵ > 0 and consider α̃λ := α̃λ
ϵ ∈ (0, 1)n such that128

∥∇αJ
λ(α̃λ)∥2 ≤

2λ√
p+ 1

(
p(n− 1) + n

)−1/2

ϵ .

For i ∈ {1, . . . , n} let x0i = 1 and β̆λ
j = (λn)−1

∑n
i=1 yiα̃

λ
i xij,cs and β̌λ

j = (λn)−1
∑n

i=1 yiα̂
λ
i xij,cs129

for j ∈ {0, . . . , p}.130

Using the fact that yi ∈ {−1, 1} for all i ∈ {1, . . . , n}, we derive that131

max
j∈{0,...,p}

|β̆λ
j − β̌λ

j | = max
j∈{0,...,p}

∣∣(λn)−1

n∑
i=1

xij,csyi(α̃
λ
i − α̂λ

i )
∣∣

≤ (λn)−1

p∑
j=0

n∑
i=1

|xij,cs||α̃λ
i − α̂λ

i |

≤ (λn)−1∥α̃λ − α̂λ∥2
p∑

j=0

( n∑
i=1

x2
ij,cs

)1/2
≤
√
p+ 1(λn)−1∥α̃λ − α̂λ∥2

( p∑
j=0

n∑
i=1

x2
ij,cs

)1/2
=
√
p+ 1(λn)−1∥α̃λ − α̂λ∥2

(
p(n− 1) + n

)1/2
. (S5)

To obtain the second-to-last line, we used Cauchy-Schwartz inequality, and to obtain the one-to-last132

line, we used the fact that for any positive a0, . . . , ap we have
∑p

j=0 aj ≤
√
p+ 1(

∑p
j=0 a

2
j)

1/2 .133

Finally, the last line is derived from the fact that
∑n

i=1 x
2
ij,cs = n− 1 for all j ∈ {1, . . . , p}.134

Now observe that, using standard vector calculus manipulations, the Hessian matrix of Jλ(α)135
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can be expressed as136

∇2
αJ

λ(α) =(λn2)−1 diag(y)
( K∑

k=1

K(k) + 1n1
⊤
n

)
diag(y)

+ n−1 diag
{[

(α1(1− α1))
−1, · · · , (αn(1− αn))

−1
]⊤}

.

In the equation above, the matrix in the first term of the right-hand side of the equality is semi-137

positive definite, since for any vector α ∈ Rn, α⊤ diag(y)
(∑K

k=1K
(k) + 1n1

⊤
n

)
diag(y)α ≥ 0. As138

the matrix n−1 diag{[(α1(1− α1))
−1, · · · , (αn(1− αn))

−1]⊤} is positive definite for all α ∈ (0, 1)n,139

with (αi(1− αi))
−1 ≥ 4 for all i ∈ {1, . . . , n}, it follows that ∇2

αJ
λ(α) is strongly convex, with140

strong convexity parameter m = 4n−1, since it follows from the last discussion that the matrix141

∇2
αJ

λ(α)− m

2
I,

is positive definite.142

This allows us to conclude as in e.g.8, Section 9.1.2, p.459, that it holds for all α ∈ (0, 1)n that143

||α− α̂λ||2 ≤
2

m
∥∇αJ

λ(α)∥2 =
n

2
∥∇αJ

λ(α)∥2.

Combining this result with the inequality derived at (S5), we obtain144

max
j∈{0,...,p}

|β̃λ
j − β̌λ

j | ≤
√
p+ 1

2λ
∥∇αJ

λ(α̃λ)∥2
(
p(n− 1) + n

)1/2
.

Now combining this result with the fact that145

∥∇αJ
λ(α̃λ)∥2 ≤

2λ√
p+ 1

(
p(n− 1) + n

)−1/2

ϵ ,

it directly follows that maxj∈{0,...,p} |β̆λ
j − β̌λ

j | < ϵ.146

It remains that we wish to establish the bound over maxj∈{0,...,p} |β̃λ
j − β̂λ

j |, where (β̃λ
0 , β̃

λ) denotes147

a version of (β̂λ
0 , β̂

λ) computed based on α̃λ instead of α̂λ. As shown in previous sections, the148

maximizer (β̂λ
0 , β̂

λ) of lλn(β0,β) satisfies149 [
β̂λ
0

β̂λ

]
=

[
β̌λ
0 − µ̂⊤β̂λ

Σ̂−1β̌λ

]
,

where µ̂ and Σ̂ are defined in (S1).150

Therefore, (β̃λ
0 , β̃

λ) satisfies151 [
β̃λ
0

β̃λ

]
=

[
β̆λ
0 − µ̂⊤β̃λ

Σ̂−1β̆λ

]
,

Therefore, if α̃λ is a point such that152

∥∇αJ
λ(α̃λ)∥2 ≤

2λ√
p+ 1

(
p(n− 1) + n

)−1/2

ϵ ,

it follows that maxj∈{0,...,p} |β̌λ
j − β̆λ

j | < ϵ. Then, for j ∈ {1, . . . , p}, we have153

|β̂λ
j − β̃λ

j | ≤ s−1
n,j|β̌λ

j − β̆λ
j | ≤ s−1

n,jϵ .

The inequality over ∥∇αJ
λ(α̃λ)∥2 can therefore be used as a stopping criteria, and the asymptotic154

properties are preserved under ϵ = o(n−1/2).155
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Supplementary Methods - Privacy-preserving properties156

Theoretical details : When only parameter estimates and their standard errors are available157

to the response-node, without the intermediate quantities158

Recall from Methods - Methodology for computing standard errors of parameter estimates in159

VALORIS (in main manuscript) that σ̂λ
j =

√
[(Iλ + ηIp+1)−1]j+1,j+1/sn,j, and where from Supple-160

mentary Methods - Computation of standard errors, Iλ can be expressed as161

Iλ =
1

n

n∑
i=1

exp{yi(β̂λ
0 + x⊤

i β̂
λ)}

[1 + exp{yi(β̂λ
0 + x⊤

i β̂
λ)}]2

[
1 x⊤

i,cs

xi,cs xi,csx
⊤
i,cs

]
.

Also recall that (β̂λ
0 , β̂

λ) solve the maximization problem defined in (5) in the manuscript, which162

therefore implies that β̂λ satisfies163

n−1

n∑
i=1

yi

1 + exp{yi(β̂λ
0 + µ̂⊤β̂λ + x⊤

icsΣ̂β̂λ)}
xi,cs = λΣ̂β̂λ ,

where we have introduced164

µ̂ = [µn,1, . . . , µn,p]
⊤ , Σ̂ = diag([sn,1, . . . , sn,p]

⊤) ,

see Supplementary Methods - Details for the derivation of the dual optimization problem for details.165

Suppose, without loss of generality, that the response-node also holds covariate data and is166

labeled as covariate-node k = 1, and consider the setting where only two nodes participate in the167

analysis: the response-node (also acting as a covariate-node) and a single additional covariate-node.168

The extension to scenarios involving more than two covariate-nodes follows analogously.169

To analyze the privacy risk entailed when the set {(β̂λ(2)
j , σ̂

λ(2)
j ) : j ∈ {1, . . . , p(2)}} of parameter170

estimates and their associated standard errors—together with the response vector y and the covariate171

data it holds—is the only information available to the response-node, we adopt a deliberately more172

adverse scenario: for the purposes of this analysis only, we assume that, in addition to the β̂
λ(2)
j ’s,173

the response-node has access to the full matrix J λ defined as174

J λ := Σ̂−2

(
1

n

n∑
i=1

exp{yi(β̂λ
0 + x⊤

i β̂
λ)}

[1 + exp{yi(β̂λ
0 + x⊤

i β̂
λ)}]2

xi,csx
⊤
i,cs + ηIp

)
,

rather than solely to the σ̂
λ(2)
j ’s, which satisfy σ̂

λ(2)
j =

√
[(J λ)−1]jj. This conservative assumption175

simplifies the mathematical derivations and yields an upper bound on the potential privacy risk.176

When at least one continuous covariate is held by a covariate-node located outside the response-177

node, then candidate matrices for X
(2)
cs are column-centered and scaled matrix A = [a⊤

1 , . . . ,a
⊤
n ]

⊤
178

satisfying179

n−1

n∑
i=1

yi

1 + exp[yi{b+ (x
(1)
i,cs)

⊤Σ̂(1)β̂λ(1) + a⊤
i ∆β̂λ(2)}]

[
x
(1)
i,cs

ai

]
= λ

[
Σ̂(1)β̂λ(1)

∆β̂λ(2)

]
, (S6)

and180

n−1

n∑
i=1

exp{b+ (x
(1)
i,cs)

⊤Σ̂(1)β̂λ(1) + a⊤
i ∆β̂λ(2)}

[1 + exp{b+ (x
(1)
i,cs)

⊤Σ̂(1)β̂λ(1) + a⊤
i ∆β̂λ(2)}]2

[
x
(1)
i,cs(x

(1)
i,cs)

⊤ x
(1)
i,csa

⊤
i

ai(x
(1)
i,cs)

⊤ aia
⊤
i

]

=

[
Σ̂(1) 0
0 ∆

]2
J λ − ηIp , (S7)
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with Σ̂(1) := diag([s
(1)
n,1, . . . , s

(1)

n,p(1)
]), where ∆ := diag([δ1, . . . , δp(2) ]

⊤) is the vector of unknown181

standard deviations, and b denotes the unknown intercept.182

Assume temporarily that the only unknowns in the system of equations above are those associated183

with the (or one of the, if multiple exist) continuous variables held by covariate-node k = 2, and184

that all other entries of A are fixed and equal to those of X
(2)
cs . In this case, the system comprises185

n+ 2 real-valued unknowns: the n entries of the continuous variable in A, one candidate intercept186

b, and one candidate standard deviation corresponding to the continuous variable in ∆. On the187

other hand, the system imposes p+ p(p+1)/2 equality constraints: p equations from the first-order188

optimality condition in (S6), and p(p+ 1)/2 from the symmetry-reduced second-order condition in189

in (S7) (since J λ is symmetric, the p(p− 1)/2 off-diagonal constraints are not independent). In190

addition, two further constraints are imposed to ensure that the column of A associated with the191

continuous variable is centered and scaled (i.e., has mean zero and variance one). Thus, the total192

number of equations is p+ p(p+ 1)/2 + 2, while the number of unknowns remains n+ 2.193

When the inequality p+ p(p+ 1)/2 < n holds, the number of unknowns exceeds the number of194

independent constraints. Since a solution lying in the interior of the feasible set exists (i.e., the195

configuration defined by X
(k)
cs ), the constraint set defines a smooth manifold of positive dimension196

in a neighborhood of that point. Therefore, the system admits infinitely many solutions when197

p+ p(p+1)/2 < n, provided that the component of β̂λ(2) associated with the continuous variable is198

nonzero. This argument can be repeated for each continuous covariate held by covariate-node k = 2,199

showing that each associated column admits infinitely many admissible candidate configurations.200

Now assume that, in addition to a continuous covariate, X
(2)
cs also includes a centered and scaled201

binary covariate. Consider the case where the entries of A corresponding to this binary covariate202

match those of X
(2)
cs , except for two entries—one originally positive and one originally negative203

in X
(2)
cs —whose signs are flipped to preserve the column’s mean and variance (such a pair always204

exists under the assumption that Xcs is not colinear with 1n). As above, assume that all other205

entries of A are equal to those of X
(2)
cs , except for those in the column corresponding to the (or206

one of the, if multiple exist) continuous covariate. Now interpret the equations in (S6) and (S7)207

as defining a system in which the unknowns are the entries of A associated with the continuous208

covariate, its associated standard error, and the unknown intercept. Because the constraints vary209

smoothly with respect to the continuous covariate entries of A, and provided that the vector y210

contains at least two entries equal to 1 and at least two equal to −1, the system admits at least211

one solution whenever n is larger than p+ p(p+ 1)/2. This is because, as the constraints behave212

smoothly, small changes in the continuous values can compensate for small mismatches elsewhere,213

allowing the system to adjust without violating the structure required by the observed quantities.214

It follows that, for any entry in a column corresponding to a binary covariate in X
(2)
cs , there215

exists an admissible candidate matrix in which that entry takes a different value.216

Privacy assessment for the response vector - Empirical criterion217

We now provide details regarding the ability of covariate-node k to retrieve the response-vector y218

from ĉλ(k). Recall that covariate-node k has access to K(k) = X
(k)
cs (X

(k)
cs )⊤ and to η, and that219

S(ĉλ(k)) = {y† ∈ {−1, 1}n : ĉλ(k) = (nλ)−1K(k) diag(α)y† for some α ∈ (0, 1)n} .

Since we have assumed that at least one continuous covariate is held outside of covariate-node k, α220

can be treated as a vector with real-valued entries. Moreoever, since we have assumed that X(k)
221

has full-column rank, as n > p(k), the null-space of K(k) has dimension n− p(k) > 0. Letting W222

denote an n× (n− p(k)) matrix of linearly independent columns spanning the null-space of K(k),223
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any solution x0 satisfying ĉλ(k) = (nλ)−1K(k)x0 can be expressed as x0 = diag(α̂λ)y +Wb, for224

b ∈ Rn−p(k) , the solution space S(ĉλ(k)) can be re-expressed as225

S(ĉλ(k)) =
{
y† ∈ {−1, 1}n :y† = sign{diag(α̂λ)y +Wb}, with diag(α̂λ)y +Wb ∈ (−1, 1)n

}
,

where, in the above equation, the function sign(·), when applied to a vector, is understood226

component-wise: it returns −1 for each negative entry and 1 for each positive entry. To derive this227

expression, we also used the fact that any y† ∈ {−1, 1}n satisfying ĉλ(k) = (nλ)−1K(k) diag(α)y†
228

for some α ∈ (0, 1)n satisfies y† = sign(diag(α)y†).229

Using these derivations, an empirical criterion was derived to verify if, using the quantities230

available at the covariate-nodes, every entry of the response-node’s data can be flipped while still231

leading to an admissible candidates for the response vector. This criterion is described in Algorithm232

S1 to support numerical implementation.233

This criterion can be verified at the response-node for any covariate-node k not co-located at234

the response-node.235

Algorithm S1 Empirical criterion for the privacy assessment of the response vector y at covariate-node k

Input: Gram matrix K(k) from covariate-node k, response vector y and dual numerical estimate α̃λ.
Output: Number of entries of the vector y that could be flipped.
Procedure:

1. Generate W in the null-space of K(k).

2. For every i ∈ {1, . . . , n}, verify if ∃ x0 such that sign(x0i) ̸= sign(yi), where x0 = diag(α̃λ)y+Wb ∈ (−1, 1)n.

3. Count the number of entries yi that satisfied the condition.

Based on numerical simulations, the empirical criterion is likely to be satisfied when the sample236

size is sufficiently large relative to the number of covariates at node k—for example, when n ≥ 100237

and p(k) ≤ 10.238

Supplementary Methods - Conservative Scenario: Response-Node Retains Intermediate239

Quantities240

In real applications, a covariate-node may not assume that the response-node has executed the241

algorithm as intended. By analogy with the use of the term honest-but-curious in the main text,242

this situation can be viewed as involving a malicious adversary9, where the malicious behavior243

consists solely of not performing step 4 of the algorithm—that is, without collusion with other244

parties.245

In the following, we consider the conservative scenario in which the response-node has access to246

the local Gram matrices, in addition to the other disclosed estimates. The ability of the response-247

node to attempt reverse-engineering then depends on whether the covariate-nodes disclose p-values,248

or parameter estimates together with their standard errors. To analyze this ability, let249

S(K(k)) =
{
A ∈ Mn,p(k)(R)

∣∣∣ AA⊤ = K(k), A⊤1n = 0,
and diagvec(A

⊤A) = (n− 1)1p(k)

}
.

The set S(K(k)) consists of all candidate matrices for X
(k)
cs from which node k’s local Gram250

matrix K(k) could equivalently be computed. When p(k) = 1, we obtain directly that S(K(k)) =251

{X(k)
cs ,−X

(k)
cs }. For p(k) ≥ 2, any sign-permutation matrix P±

π —that is, any matrix with exactly252

one nonzero entry in each row and each column, with each nonzero entry equal to either 1 or −1—253
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can be shown to satisfy X
(k)
cs P±

π ∈ S(K(k)), so that X
(k)
cs P±

π is always an admissible candidate for254

X
(k)
cs .255

Note on the separation of binary and continuous covariates256

In the privacy analysis, we analyze binary and continuous covariates separately. Proceeding in this257

way yields to conservative privacy risk assessments, since, for instance, the local Gram matrices258

K(k,bin) = X(k,bin)(X(k,bin))⊤ and K(k,cont) = X(k,cont)(X(k,cont))⊤ are not transmitted separately to259

the response-node; instead, only their sum, K(k) = K(k,bin) +K(k,cont), is disclosed. We proceed in260

this way because it remains unclear, at this stage, under which conditions the above decomposition261

is unique, and thus whether there is a risk that the response-node could uniquely recover K(k,bin)
262

and K(k,cont) from the aggregate matrix K(k).263

When only the local Gram matrix and parameter estimates are available to the response-264

node265

When, in addition to K(k), the response node has access to a selected subset J ⊆ {1, . . . , p(k)} of266

the components of the estimated parameters β̂λ(k) (which may include all components), reverse-267

engineering X
(k)
cs would require the response-node to search for a matrix A ∈ S(K(k)) that satisfies268

s
(k)
n,jβ̂

λ(k)
j = (nλ)−1

n∑
i=1

[A]ijα̂
λ
i yi for all j ∈ J ,

where the values s
(k)
n,j are not available to the response-node.269

WhenX
(k)
cs is computed from continuous covariate data, successful reverse-engineering of node k’s270

data would require the response-node to identify a matrix A such that there exists a set of constants271

{aj : j ∈ J} with strictly positive entries (aj > 0 for all j) satisfying272

ajβ̂
λ(k)
j = (nλ)−1

n∑
i=1

[A]ijα̂
λ
i yi for all j ∈ J . (S8)

Now for any A ∈ S(K(k)), if A does not satisfy (S8), there exists a set of indices J ′ ⊆ J such that273

(β̂
λ(k)
j nλ)−1

∑n
i=1[A]ijα̂

λ
i yi < 0 for all j ∈ J ′. Since flipping the signs of all entries in any given274

column of a matrix in S(K(k)) yields another matrix that also belongs to S(K(k)), it follows that275

the matrix A′ = A
∏

j∈J ′ P
±
j still belongs to S(K(k)) while now meeting the constraint given by276

(S8). We draw the following conclusions:277

• Case p(k) = 1: In this case, as S(K(k)) = {X(k)
cs ,−X

(k)
cs }, for any A ∈ S(K(k)), only one of A278

and A′ = AP±
1 will meet (S8). Centered and scaled individual-level data could be retrieved.279

• Case p(k) ≥ 2: Given that matrices A = X
(k)
cs P±

π are in S(K(k)), it follows that at least280

A = X
(k)
cs Pπ, where Pπ denotes a permutation matrix (i.e., either the identity matrix, or the281

matrix that permutes the columns) will meet constraint (S8).282

In the binary-covariates case, as the binary nature must be preserved, it can be shown that283

candidate matrices for X
(k)
cs are all of the form A = X

(k)
cs P±

π . Therefore, if the response-node is284

able to identify a single admissible candidate in S(K(k)), it can compute all candidates in S(K(k)).285

The binary nature of the covariates involved at node k implies that the entries X
(k)
cs have the form286

[X(k)
cs ]ij =

x
(k)
ij − µj√
µj(1− µj)

√
n− 1

n
, x

(k)
ij ∈ {0, 1} , µj ∈

{ 1
n
, . . . ,

n− 1

n

}
.

14/18



This implies that the proportion of positive entries in the jth column of X
(k)
cs is equal to µ

(k)
n,j, and287

the standard deviation of the covariate in column j can therefore be computed as288 √
n

n− 1

√√√√{n−1

n∑
i=1

I(x(k)
ij,cs > 0)

}{
1− n−1

n∑
i=1

I(x(k)
ij,cs > 0)

}
,

where I(B) is the indicator function taking value 1 if B is true, and 0 otherwise. Then, recalling289

equation (S8), if β̂
(k)
j is disclosed for all j ∈ J , the response-node can narrow its search for X

(k)
cs by290

identifying which admissible candidate A ∈ S(K(k)) satisfies the following equality:291 √
n

n− 1

√
µA
j (1− µA

j ) = (β̂
λ(k)
j nλ)−1

n∑
i=1

Aijα̂
λ
i yi for all j ∈ J , (S9)

with µA
j = n−1

∑n
i=1 I([A]ij > 0). This typically yields a set of admissible candidates with a unique292

possibility for every column j ∈ J of X
(k)
cs , irrespective of the cardinality of J .293

Therefore, in the conservative non-colluding malicious adversary setting, disclosing parameter294

estimates for binary covariates entails a risk of data leakage.295

When only the local Gram matrix, parameter estimates and their standard errors are296

available to the response-node297

We now turn to the solution space of candidate matrices A when coefficient estimates indexed298

by J ⊆ {1, . . . , p(k)} are disclosed, and for a subset of these, Jsd ⊆ J , the corresponding standard299

errors are also released. We restrict attention to the case of continuous covariates, since, as shown300

previously, the disclosure of parameter estimates for binary covariates entails a risk of data leakage.301

Recall the expression of σ̂
λ(k)
j for j ∈ {1, . . . , p(k)}, given by302

s
(k)
n,jσ̂

λ(k)
j =

{
n−1η−1 − n−1η−2[(X(k)

cs )⊤Ŝ−1X(k)
cs ]jj

}1/2

. (S10)

While the values s
(k)
n,j are not known to the response-node, for j ∈ J the coefficients are β̂

(k)
j .303

Moreover, from (S8), a candidate A ∈ S(K(k)) implicitly determines a corresponding candidate304

value for s
(k)
n,j, given by aj = (β̂

λ(k)
j nλ)−1

∑n
i=1[A]ijα̂

λ
i yi. Consequently, reverse-engineering X

(k)
cs305

requires the response-node to search for A ∈ S(K(k)) that satisfies (S8) for all j ∈ J , as well as the306

following for all j ∈ Jsd:307

n−1η−1 − n−1η−2

n∑
m=1

n∑
i=1

[A]ij[A]mj[Ŝ
−1]im =

(
σ̂
λ(k)
j

β̂
λ(k)
j nλ

n∑
i=1

[A]ijα̂
λ
i yi

)2

. (S11)

We next show that, when p(k) ≥ 4 and |Jsd| ≤ (p(k)− 1)(p(k)− 2)/2− 1 and X
(k)
cs has full column308

rank, the set of candidate matrices A ∈ S(K(k)) that simultaneously satisfy (S8) for all j ∈ J and309

(S11) for all j ∈ Jsd is infinite.310

To do so, for θ ∈ (−π, π]p
(k)(p(k)−1)/2, let Pθ be defined as:311

Pθ =

p(k)−1∏
i=1

p(k)∏
j=i+1

GGG(θ(i−1)(p(k)−i/2)+(j−i); i, j) , (S12)
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where, for 1 ≤ i < j ≤ p(k) and θ ∈ (−π, π], GGG(θ; i, j) ∈ Mp(k)×p(k)(R) denotes the Givens rotation312

matrix (see e.g.10) with entries [GGG(θ; i, j)]ℓℓ′ defined as313

[GGG(θ; i, j)]ℓℓ′ =



cos(θ) if (ℓ, ℓ′) ∈ {(i, i), (j, j)} ,
− sin(θ) if (ℓ, ℓ′) = (i, j) ,

sin(θ) if (ℓ, ℓ′) = (j, i) ,

1 if (ℓ, ℓ′) ∈ {(1, 1), . . . , (p(k, p(k))} \ {(i, i), (j, j)} ,
0 elsewhere .

(S13)

In this notation, the set {Pθ : θ ∈ (−π, π]p
(k)(p(k)−1)/2} is exactly the set of all rotation matrices314

of size p(k) × p(k), from which the full set of orthogonal matrices can be generated by additionally315

allowing reflections.316

Consider g(θ) = [g1(θ), . . . , gp(k)−1(θ)], where, for j ∈ {1, . . . , p(k) − 1},317

gj(θ) =

p(k)−1∑
ℓ=1

p(k)∑
ℓ′=ℓ+1

[Pθ]ℓj[Pθ]ℓ′jτ
(k)
ℓℓ′ ,

where τ
(k)
ℓℓ′ = n−1

∑n
i=1 x

(k)
iℓ,csx

(k)
iℓ′,cs. Since Aθ = X

(k)
cs Pθ is centered and scaled matrix if and only if318

g(θ) = 0, it can be readily verified that that319 {
A = X(k)

cs PθP
±
π | θ ∈ (−π, π]p

(k)(p(k)−1)/2 and g(θ) = 0
}
= S(K(k)) .

Moreover, such Aθ satisfies (S11) for all j ∈ Jsd if and only if hJsd(θ) = 0, where320

h(θ) = [h1(θ), . . . , hp(k)(θ)] [h1(θ), . . . , hp(k)(θ)] with321

hj(θ) =
1

nη
− 1

nη2

p(k)∑
ℓ=1

p(k)∑
ℓ′=1

[Pθ]ℓj[Pθ]ℓ′j[(X
(k)
cs )⊤Ŝ−1X(k)

cs ]ℓℓ′ −
( σ̂λ(k)

j

β̂
λ(k)
j

p(k)∑
ℓ=1

[Pθ]ℓjs
(k)
n,ℓβ̂

(k)
ℓ

)2
.

Now note that the cardinality of the set {θ ∈ (−π, π]p
(k)(p(k)−1)/2 : g(θ) = 0 and hJsd(θ) = 0}322

is infinite. This follows directly from the smoothness of g(θ),hJsd(θ), the fact that if |Jsd| ≤323

(p(k) − 1)(p(k) − 2)/2 − 1 the dimension of θ exceeds the number of equations, the existence of324

a solution θ0 ∈ (−π, π)p
(k)(p(k)−1)/2 satisfying this solution set (i.e., the solution θ = 0, which325

corresponds to Pθ = Ip(k)), and an application of the Implicit Function Theorem.326

Since for any Aθ = X
(k)
cs Pθ with g(θ) = 0 and hJsd(θ) = 0 we have Aθ ∈ S(K(k)), and as all327

matrices of the form AθP
± satisfy both AθP

± ∈ S(K(k)) and (S11), the proof that the set of328

candidate matrices A ∈ S(K(k)) that simultaneously satisfy (S8) for all j ∈ J and (S11) for all329

j ∈ Jsd is infinite follows from the fact that for any θ there always exists a P± such that AθP
±

330

satisfies (S8).331

It follows that the targeted estimates and standard errors can be disclosed by the covariate-node332

while ensuring Privacy Level II.333

When only the local Gram matrix and two-sided p-values are available to the response-334

node335

We now study the solution space of candidate matrices A for X
(k)
cs when a subset J ⊆ {1, . . . , p(k)}336

of two-sided p-values ρ
λ(k)
val,j are available to the response-node, in addition to the local Gram matrix337
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K(k). Given the one-to-one relationship between ρ
λ(k)
val,j and |βλ(k)

j |/σ̂λ(k)
j , and using equations (S8)338

and (S10), for a candidate matrix A for X
(k)
cs to be such that the disclosed quantities K(k) and339

ρ
λ(k)
val,J := {ρλ(k)val,j : j ∈ J} could have been equivalently computed from either A or X

(k)
cs , the340

response-node must identify a matrix A such that341

(ρ
λ(k)
val,j)

2
(
n−1η−1 − n−1η−2

n∑
m=1

n∑
i=1

[A]ij[A]mj[Ŝ
−1]im

)
=
( 1

nλ

n∑
i=1

Aijα̂
λ
i yi

)2
. (S14)

It can be easily verified that {X(k)
cs ,−X

(k)
cs } are admissible candidates that respect equation342

(S14).343

In Figure S1, we illustrated the conditions under which a covariate-node holding only continuous344

covariates can disclose p-values, parameter estimates and standard errors while achieving Privacy345

Level II. The privacy-preserving properties for the case of a covariate-node k holding only continuous346

covariates are illustrated in Figure S1.347

2 or more
covariates

1 or more
covariates

5 or more
covariates*

1 or more
covariates

Fig. S1. Privacy-preserving properties for a covariate-node k holding continuous covariates only. The
response-nodes is assumed to have cleared intermediate quantities in the upper figure, and it assumed to have not
cleared intermediate quantities in the lower figure. *If X(k) holds 4 continuous covariates, Privacy Level II is
guaranteed when at most two pairs of estimates and standard errors are disclosed. If X(k) holds 5 or more
continuous covariates, Privacy Level II is guaranteed all pairs are disclosed.
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