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VALORIS: One-shot and lossless vertical logistic regression for privacy-protecting
multi-site health analytics - Supplementary Information

Supplementary Tables

We provide three notation glossaries: the first described general notation conventions, the second
describes quantities that pertain to our regression setting, and the last describes quantities that
pertain to the vertical setting and the proposed algorithm.

Table S1. Glossary for general notation conventions

Random variable in R A Uppercase Non-italic
Random vector in RP A Uppercase Non-italic bold
Scalar in R a Lowercase Italic
Vector in RP a Lowercase Italic bold
Vector in R? with all components equal to 1 1, -
Matrix in R™*P A Uppercase Italic bold
Identity matrix in R™*™ I, -
Gradient of f(6) (column vector) Vo f(0) V3 for Hessian
Vof(0)lo=a Vof(a) V3 f(a) for Hessian
maxi<;<p |a;] [lal|so Infinite norm
S ay| lall: f1-norm

i a; [lal|2 £2-norm

Diagonal matrix with entries of a on diagonal diag(a) Dimension p x p for a € R?
Quantity - at iteration ¢ (step count) () Starts with - (g

Table S2. Glossary for quantities that pertain to the regression settings

Covariate vector for ¢th individual x; =[x, ... ,xip]—r
Covariate vector for ith individual with intercept 1,27
11 ot Tlp $1|—
Covariate matrix in R™*P = =|:
Tnl = Tnp w;LI'
True (unknown) parameters Box, Bx
Exact MLE of the parameter BO, ,@
Exact penalized estimate of the parameter B@, BA
Estimate obtained via numerical approximation Bo, ,C;', Bé‘, BA
Log-likelihood 0a(B) =137 log(+)
Penalized log-likelihood IB)
Mean of the jth column in covariate matrix Up,j
Standard deviation of the jth column in covariate matrix Sn.j
Fisher information matrix Z(Bo,B)
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Table S3. Glossary for quantities specific to the vertical setting

Number of covariate-nodes K
Number of covariates at covariate-node k pk)
Covariate matrix at covariate-node k X ®)
Centered and scaled covariate matrix at Xc(f )

covariate-node k
Mean and s.d. of the jth column in X *)

Gram matrix at covariate-node k
Dual parameter estimates (numerical approx.)

wF) (k)
7]75 n,j
KW = x (X&)
at

Penalized estimate associated with covariate- B;\(k)
node k (numerical approx.)
Standard errors associated with covariate-node &;‘(k)
k (numerical approx.)
Matrix in null-space of ik N
intermediate quantities Ak 8§
7 In the followings, we provide the detailed estimates and standard errors obtained for the analysis

s using real health data pertaining first to CKD, and second to the MIMIC-IV database.

Table S4. Logistic regression model parameter estimates obtained with kidney failure at two years after baseline as
outcome

Covariate-node  Variable Vertical Partition 3*(5) Centralized 5( )
1 Age —0.2069(0.1609)  —0.2069(0.1609)
1 Sex (male) 0.0509(0.0594)  —0.0509(0.0594)
1 eGFR —0.7731(0.5337)  —0.7732(0.5337)
1 wACR —0.0076(0.0270)  —0.0076(0.0270)
2 Serum albumin —0.6463(0.4388)  —0.6464(0.4389)
2 Serum bicarbonate —0.0997(0.0806)  —0.0997(0.0806)
2 Serum calcium 0.3463(0.5243) 0.3463(0.5243)
2 Serum phosphate 0.5202(0.2887)  0.5202(0.2887)

A log-transformation was applied to UACR due to a skewed distribution'.
The estimates for the centralized setting were computed using the glm function in R with a non-penalized logistic
regression model.
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Table S5. Logistic regression model parameter estimates obtained with MIMIC-IV database and Death as outcome

Covariate-node Variable

Vertical Partition (&

Centralized ()"

—_

Age

Myocardial infarction
Renal disease

Malignant cancer

Triage temperature
Triage sbp

Triage dbp

Triage respiratory rate > 20
First-day urine output
First-day heart rate mean
First-day glucose mean

LW WNDNNN ==

w

*)
0.0272(0.0023)
0.4052(0.0828)
0.1867(0.0751)
0.8814(0.0716)
—0.0951(0.0276)
—0.0033(0.0015)
—0.0097(0.0025)
0.4752(0.0856)
—0.0005(0.0000)
0.0319(0.0020)
0.0025(0.0006)

0.0272(0.0023)
0.4052(0.0828)
0.1867(0.0751)
0.8815(0.0716)
—0.0951(0.0276)
—0.0033(0.0015)
—0.0097(0.0025)
0.4752(0.0856)
—0.0005(0.0000)
0.0319(0.0020)
0.0025(0.0006)

The estimates for the centralized setting were computed using the glm function in R with a non-penalized logistic

regression model.

Supplementary Notes

The code for the implementation of the algorithm using R is available at: https://github.com/

OpenLHS/Distrib_analysis/tree/main/Vertically_distributed_analysis/logistic_

regression_nonpenalized. It includes an automated example with simulated data. The
folder also includes a basic implementation of the tool that supports the privacy assessment for the

response-node individual-level data.
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s Supplementary Methods - Details for the derivation of the dual optimization problem

s Recall from the manuscript that to estimate (5o, 3x), we consider the solutions (B\()\, ,@’\) of the
7 ridge-penalized logistic regression problem

(8009 =003 S+ ] )

where
1

ln(Bo, B) =n~ Zlog {1—|—exp{—yi(5o+fc;m}- .

8 Since, for all i € {1,...,n} we have

504‘33:5:504‘2%]'@'

<ﬁo+2umﬁg> +Z (3”” “"J) (Bj5n.)

J=1 7j=1 n,
= (ﬁU + I'LT/B) + "Ei,csz/B?

v where we have introduced
b= [tnt,-- s tnp) Y = diag([Sn1s - Snp) ) (S1)
» it follows upon adopting the re-parametrization (33, 8°) = (8 + ' B, 26) that

max 1o, B)

BoER,BERP
)\ p
_ X[ Qo o\ ._ J o oy 2 012
= g, (B89 = Lo - 5 3007).
with £,(85,8°) == —n~" Z log [1+ exp{—ui(85 + . 8°)}] -
i=1
2 Following the derivations in? (see Appendix A therein), since the concave dual conjugate of

2 x> (1+e®) sy ylogy + (1 —y)log(l —y) for y € (0,1), we obtain that the Fenchel dual
s of [(B5,3°) is the following minimization problem:

N

1 n
i) ("Z{( ;) log(1 — a;) + a;log(a;)
1 - - T . A
T on? ; ; QG YiY; (T s jes + 1)) = i J o).
»  Its unique maximizer & = (a7, ..., a;)" € (0,1)" then satisfies

FIR Y A
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Since the bijective nature of the reparametrization implies

2\ A _ T3
lg‘i] - 52

we derive that

B = (nA\)” Zyla — =31 <(n)\)_12yi&g\wms> .
i=1

By additionally noting that l?z‘(ﬁo, () is strongly concave, its maximum is unique and is achieved

at the point (37, 3) that satisfies
5A ’

-1 - Yi 1
' ;‘ 1+ exp{ui(6y + =] B)} L”}

we can use the triangle inequality and derive

n

max |3 < A~ ( ’1Z(Hwi\|m+1)). (S3)

0<5<p —

Therefore, the primal maximization problem can be restricted over a compact search space, and
the relation between the dual and primal parameters implies that the dual maximization problem
can also be restricted over a compact search space.

Supplementary Methods - Equivalence to the standard non-penalized log-likelihood and
computation of standard errors

Equivalence between parameter estimates

In this section, we for@allAy establish, under appropriate conditions, the equivalence between the
penalized estimators (3}, 3"), which maximize £)(53y,3), and the unpenalized maximum likelihood
estimators. To ensure this equivalence, the conditions must guarantee that maximum likelihood
estimates exist and are unique. It is well known?® that if the columns of X are linearly independent
and also linearly independent of the vector 1,,, then the Hessian V%m gln (Bo, B) is strictly negative
definite, which implies that the log-likelihood function ¢,,(By, 3) is strictly concave. In this case, if
a maximizer exists for the problem maxg,cr_gere £n (5o, 3), then it must be unique and coincide
with a stationary point of Vﬁoﬁén(ﬁo, 3). The existence of such a solution is guaranteed when the
response vector y is not separable?. Specifically, y is said to be separable if there exists (3, 3)
such that y; (8o + =, B) > 0 for alli € 1,...,n. We will assume these conditions throughout the

following discussion. Let (BO, ,6’) denote the unique maximizer of ¢,(5o, B).

In what follows, for any positive definite matrix A, let ¢y, (A) denote its smallest eigen value.
Also, let M > 1 be a constant such that max;<;<,, || @;cs|[cc < M.

To establish the statistical equivalence between (ES,BA) and (EO,B\), we start by proving
an inequality that involves the reparametrized version of (B\@,B’\) introduced in Supplemen-
tary Methods - Details for the derivation of the dual optimization problem, namely (B()\,B)‘) =
arg maxg,er gere I (B0, B), and a corresponding reparametrized version of the maximum likelihood
estimates (50, B) Specifically, by reparametrisation arguments analogous to those in the previous
Supplementary Methods, it follows that maxger gere £n(fo, B) = maxgecr gocre (n(5B8,3°), with
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s 0, defined in the previous Supplementary Methods. Moreover, /,, has a unique maximizer (6o, B)
s satisfying

Bo| _ [Po— BB

B g

57 To derive the inequality, we adopt some notational simplifications. We will occasionally write
s 2z = [La]]" and z = [1,2]]". We will also use the shorthand 6%, 8, 8*, and 6 to denote,
o respectively, [B\S‘, (B)‘)T]T, [B\O;B\T]T7 182, (BMT]T, and [B, B"]". In this notation, the inequality
o we shall prove below is the following:

TN+ {0+ 2)20lloc min (0700 Ziesz)

o« where w(z) :=e”/(1+e")> ) )
62 Since 8" and @ are the unique stationary points of £} and ¢, respectively, they satisfy the
e corresponding first-order conditions, that is, they cancel the gradients of these functions. Hence,

& we have

5

o

16* (S4)

AN =7t z[ o )
Z 4 1+ exp(yiz 0*) 1+ exp(yizgcse)
1

i=1 %,CS

i 1
-1
=N i = - A
2 Y [1 +exp{yiz] (0 +A)} 1+ exp(yiz].0)

i1
s where we have introduced A = > — 0. Since

1 1 B /1 exp{yizle (0 +tA)}
1+ exp{yizzcs(é +A)} 1+ exp(yiz, . 0) o [1+ exp{yizgcs(é +tA)}]?

,CS

tyl-zT A,

,CS

e we further deduce that

_ 1 " 2] (04 tA
)\0)\ _ _/ (n—l Z eXp{y zz,cs( + )} ZLCSZ'T )th
0

1+ exp{yizgcs(é +tA)}]? nes

i=1
1 exp{y;z. (0 +tA . 3
— _/ (nl Z p{y 1,0;( v )} Z@CSZ,LTCS) dt (0)\ . 0) .
0 — 1+ exp{y,-zi7cs(9 +tA)}? ’
& From straightforward algebra manipulations, the latter equation implies

~ -1
. . 1 " izl (0 +tA 3
0)\ — 9= _)\{ / <TL—1 Z eXp{Z/ zl,cs( )} zi,cszi—,rcs) dt + )\Ip+1} 0
0

— 1+ exp{yizgcs(é +tA)}?
1 . —1 .
- —A{ / (0 +tA)dt + )\Ip+1} 0,
0

» where Z(0 +tA) is the Fisher information matrix at (3) computed at parameter 6 + tA.
69 This provides the bound

(P +1A6] .
A+ toin{ fy Z(6 + tA)dt}

Hé)\ - é”oo S
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Since the latter inequality trivially implies ||A |l = 16> — QHOO <(p+ 1)\]9”001 which further
implies max;<i<p [Yi2/es (0 +1A)| < M(p+ D{[[0]c + (p+ D0l } < M(p+2)°[16], we deduce
the bound in (S4) from the fact that w(z) = /(1 + €*)? is even, and strictly decreasing for all
x > 0.

From this bound, we will derive a bound for ||§’\ -6 ||o using the relationship

[B@ - Bo] _ [Ba —fo— AT (B - B)}

#-8 | s@-p
[ s g
X1 - B)

From the above relationship, it can readily be deduced that
6"~ 6] < {1+ ELEL= Y190 gy
Lmin(z)

Using (S4), this directly implies that

_ {1+ 2B (p 4+ 1)2]6]
— 0| < tmin (%) _
A+ w{(p+ 228l min (17 i Zico71)

~ 2 ~
{1+ 28} 0+ DBl

16*

S — — .
Mt [0+ 221+ 2B 8] | i (7 T 20e)

Lmin( )

Under the assumption that the x;’s have finite marginal means and variances, and that their
variance—covariance matrix is invertible, together with the condition 0 have finite components, the
above expression ensures that taking A sufficiently small yields the equivalence— up to a negligible
remainder—between 6* and 6.

Standard errors

The standard deviation of Bj, given by \/Var(gj) = n"V2[(E{Z(Box, B+)})}];; is commonly esti-
mated using the following quantity:

5 = % ({(z(&ﬁ))ﬂﬁ)m |

Based on the previous subsection, which implies that max(|3) — Bol, 3" — Blls) can be made
arbitrarily small by choosing A small, the proof of the consistency of our standard error compu-
tation p£ocedure follows from the derivations provided in the following section, which show that
[(Z(B), B)) My = [(T*)"];3/s% ;. with I* defined at the beginning of Methods - Methodology for

computing standard errors of parameter estimates in VALORIS (in main manuscript).

Computation of standard errors
Recall from above the definition of (3}, 3).
For j € {1,...,p}, one obtains from the relationship between (3}, 3*) and (3}, 3*) that

HZ (B, BN}y s = (= V2, sla( B, By 1,5/525
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where

V%O,@én(gé,ﬁk) 1 i ex]D{Z/i(B@VnL w:csﬁi)} l 1 a;ZTCST ]
n 1+ explyi(5) + @ B} [Tics Piesies
_ 1y~ e{u(B + @8N} { 1 el ]
nA= 1+ exp{y: (B + ) BY)}? [Fies PiesT

Now, recall that, for each k € {1,..., K } the vector ¢*¥) defined in (7) satisfies

1,CS

26 — X1 diog(sL), ..o mww = XWB® — (3272, 5 uf")1,. and that the response-
node has access to &, ..., &), Since the response-node can also compute (n\)~ Sty =

56‘ +2 0 @,uw (recall the expression given in (6)), it is therefore able to compute
K n K
Boln+ X B = BLy + ) XWBE = ((n) 71 Y @ty + ) @
k=1 i=1 k=1

Then, upon defining V*, whose diagonal entries [‘Aﬂ] ;; satisfying

exp [yj{(n)\)_l DDAV DAY )H
(1 e {0 S a2+ 2,50 ])
_ exp{y; (%) + ] BY)}

1+ exp{y; (36\ + CCJTBA)}]Q

the matrix VBO gln /(33,3 can be computed as

V5 =

T — ! [1n x» Xéf)}Tf/A [1n x» Xé?]
1TV, Tvx® o Tyax
) (X(l))Tf})\l (Xc(sl))T‘/}/\Xc(sl) (XC(;))T‘/}AXC(S{{)
:n_ . " . . .
(Xc(g))'rfﬂln (Xéf))T.fﬂXé;) (Xc(sm)r";xxgo

Supplementary Methods - Box-constrained optimization algorithm and stopping criteria

Two-metric projected Newton algorithm

The convexity of the dual problem to solve at the response-node ensures that a unique solution
exists on the domain of the objective function. The algorithm used to solve the problem should allow
sufficient descent to reach an adequate approximation of this unique solution. Since the components
of a are bounded by a compact set included in the open set (0,1) (see previous Supplementary
Methods), an algorithm adequate for box-constrained convex optimization problems had to be
selected. While many methods exist for box-constrained optimization®, the chosen method should
allow to reach convergence with sufficient precision given the potentially small magnitude of the
dual parameter ¢ while still offering efficient computation when the dimension of the dual is high.
We used the Two-Metric Projected Newton method suggested by Bertsekas®, applicable because
we previously argued that the dual parameter estimates lie in a compact parameter space. We refer
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to” for an extensive description of the method and convergence details. Briefly, all components
of the estimate @, at step ¢ at a boundary of the search domain and for which the gradient
would pull the search toward the opposite side of the search domain are updated through gradient
descent projected in the domain, while all other components are updated using Newton descent
projected in the domain. The update is therefore &, ) = Projag, — 0Dy VaJ (@f,)], where
D, depends of the component as described before and Proj|-] denotes the projection under the
Euclidean norm. The step size 0 is selected through backtracking line search (Armijo rule) along
projection arc detailed in>”. An initial admissible estimate has to be provided, which was set at

ay, =[0.1,...,01]T.

Stopping criteria

The error entailed by the approximation of & in the chosen algorithm should ideally be low enough
such that it preserve the asymptotic properties derived for the primal estimate. We notice that A
holds a scaling role over the dual parameter a when it comes to retrieving the associated primal
parameter 3. A restriction in function of A consequently needs to be imposed in the estimation of
the dual parameter to preserve the asymptotic properties of the primal parameters. We derived
a stopping criteria for the dual estimation that ensures the asymptotic properties of the primal
parameter hold.

We first fix € > 0 and consider & := & € (0,1)" such that

—-1/2

(p(n—1)+n> €.

22
Vo J @M, <
I (@2 < N ES

For i € {1,...,n} let zo; = 1 and B/\ (An)~1>7" v Tijes and ﬁ’\ (An)=t5°" yi@i)‘xij’cs

for j € {O,...,p}
Using the fact that y; € {—1,1} for all i € {1,...,n}, we derive that

n
A AN 1 1 ey
a = ma >\ Z (BN ) ’
JGI{I& )fp} ’B 6 | GI{%, )fp} TL) pa xZJ,Csyz(az a; )
p n
n7 0D el - &
7=0 =1

n 1/2
< () Y& — @M. Z (Zx?j,cs)
j=0 i=1
1 xA A Y\ 2 12
< Vo 10w at - @ (34

j=0 i=1
B =R 1/2
10w @ = @ (pin —1) +n) (S5)

To obtain the second-to-last line, we used Cauchy-Schwartz inequality, and to obtain the one to-last
line, we used the fact that for any positive ao,...,a, we have ZJ 0@ < D+ I( ] —0 ])1/2 :
Finally, the last line is derived from the fact that ZZ 125 =n—Lforallj e {1,...,p}.

Now observe that, using standard vector calculus manipulations, the Hessian matrix of J*(cx)
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1 can be expressed as

K
V2 (@) =(An?)~! diag(y) (D K® + 1,1 ) diag(y)
k=1

+n~! diag { [ (T =)™t (o (1 = an))’lf} :
197 In the equation above, the matrix in the first term of the right-hand side of the equality is semi-
w positive definite, since for any vector a € R”, o' diag(y) < SEK® 4 1nlz) diag(y)a > 0. As

e the matrix n~!diag{[(c;(1 — 1)), -, (an(1 — )71} is positive definite for all a € (0, 1)™,
o with (a;(1 —;))™t > 4 for all i € {1,...,n}, it follows that V2 J*(a) is strongly convex, with
w strong convexity parameter m = 4n~!, since it follows from the last discussion that the matrix

V2 M a) — %I,

1

>

w2 18 positive definite.
143 This allows us to conclude as in e.g.®, Section 9.1.2, p.459, that it holds for all a € (0,1)" that

~ 2 n
lae — &}||2 < EHVaJA(a)HQ = §||VaJA(04)H2-

144 Combining this result with the inequality derived at (S5), we obtain

- . 1 1/2
m Ao < VP A& _ _
max |3 = 3] < YL Ve (@) o (pn — 1)+ )

145 Now combining this result with the fact that

\/]% (p(n -1)+ n>_1/26,

s it directly follows that max;eo,.. ) |ﬁuj’\ — B]’\\ <e.

IVad (@) <

1

>

147 It remains that we wish to establish the bound over max;co,.. p} | BJ’\ — BJA\, where (53, BA) denotes

we a version of (36\, B*) computed based on & instead of @*. As shown in previous sections, the
1w maximizer (83, 3%) of I8, B) satisfies

Bl _[3-wTs
B -1 3 ’

w0 where 1 and §]~are~deﬁned in (S1).
- Therefore, (33, 3") satisfies

{@é} _ [Bé; ﬁjﬂ“}
,3/\ 271/6)\ ’

152 Therefore, if & is a point such that

(p(n —-1)+ n) 71/26,

2\
Vo @) <

iws it follows that max;co,.. py |B;‘ - B])‘| < €. Then, for j € {1,...,p}, we have
PA AA 115\ _ AX -1
|5j - le < Sn,j|ﬂj - Bj | < Sn,i€-

154 The inequality over ||V 4J*(&")||2 can therefore be used as a stopping criteria, and the asymptotic
s properties are preserved under € = o(n~"/2).
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Supplementary Methods - Privacy-preserving properties

Theoretical details : When only parameter estimates and their standard errors are available
to the response-node, without the intermediate quantities
Recall from Methods - Methodology for computing standard errors of parameter estimates in

VALORIS (in main manuscript) that 5 = \/[(I’\ + ndp1) 7Y 41,541/ 50, and where from Supple-
mentary Methods - Computation of standard errors, T* can be expressed as

1~ exp{w(B) +=/8Y)} { 1zl ]
n > 2 . x|
S (U eplu(R + 2] PN [Bie T

1,c8
Also recall that (33, 3)‘) solve the maximization problem defined in (5) in the manuscript, which
therefore implies that 3* satisfies

T =

77,_1 = ?\Z = T3a Lijcs = )\i\]BAa
= 1 +exp{ui(By + "B + 2, 2B}

where we have introduced

B=[tn,--- ,,un,p]T , 3 = diag([sn.1, - - - ,sn,p]T) ,

see Supplementary Methods - Details for the derivation of the dual optimization problem for details.

Suppose, without loss of generality, that the response-node also holds covariate data and is
labeled as covariate-node k = 1, and consider the setting where only two nodes participate in the
analysis: the response-node (also acting as a covariate-node) and a single additional covariate-node.
The extension to scenarios involving more than two covariate-nodes follows analogously.

To analyze the privacy risk entailed when the set {(Bj @, 3;(2)) cj€{1,...,p®P}} of parameter
estimates and their associated standard errors—together with the response vector y and the covariate
data it holds—is the only information available to the response-node, we adopt a deliberately more

adverse scenario: for the purposes of this analysis only, we assume that, in addition to the B\;‘@)’s,

the response-node has access to the full matrix J* defined as

AR (P 1+ 2T
n = 1+ exp{y; (8} + =/ B)}]? ’

rather than solely to the 6'\;\(2)’87 which satisfy 5;\(2) — \/[(T*)~1];;- This conservative assumption

simplifies the mathematical derivations and yields an upper bound on the potential privacy risk.
When at least one continuous covariate is held by a covariate-node located outside the response-

node, then candidate matrices for X2 are column-centered and scaled matrix A = al,...,a]"
satisfying
Y i 01 [sogw
" 0 Te03 5 IV CRE (S6)
im1 1+ explyi{b+ (w,) TEVB +al ABP}] L @i AB
and
s efb (@) SO ol ABO}  Tall @ )T 2l
n — — — b b k)
T L+ ep(b+ (@) TSOBD +al APPY? | ail@i)’  aal
- 2
_1Z® 0 A
-5 2 - (57
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with O = diag([sgi)l, ey SS,;)yO)])’ where A := diag([01,...,0,»]") is the vector of unknown
standard deviations, and b denotes the unknown intercept.
Assume temporarily that the only unknowns in the system of equations above are those associated

with the (or one of the, if multiple exist) continuous variables held by covariate-node k = 2, and

that all other entries of A are fixed and equal to those of X2 In this case, the system comprises
n + 2 real-valued unknowns: the n entries of the continuous variable in A, one candidate intercept
b, and one candidate standard deviation corresponding to the continuous variable in A. On the
other hand, the system imposes p+ p(p+ 1)/2 equality constraints: p equations from the first-order
optimality condition in (S6), and p(p + 1)/2 from the symmetry-reduced second-order condition in
in (S7) (since J* is symmetric, the p(p — 1)/2 off-diagonal constraints are not independent). In
addition, two further constraints are imposed to ensure that the column of A associated with the
continuous variable is centered and scaled (i.e., has mean zero and variance one). Thus, the total
number of equations is p + p(p 4+ 1)/2 + 2, while the number of unknowns remains n + 2.

When the inequality p + p(p + 1)/2 < n holds, the number of unknowns exceeds the number of
independent constraints. Since a solution lying in the interior of the feasible set exists (i.e., the

configuration defined by xk )), the constraint set defines a smooth manifold of positive dimension
in a neighborhood of that point. Therefore, the system admits infinitely many solutions when
p+p(p+1)/2 < n, provided that the component of 8*?) associated with the continuous variable is
nonzero. This argument can be repeated for each continuous covariate held by covariate-node k = 2,
showing that each associated column admits infinitely many admissible candidate configurations.

Now assume that, in addition to a continuous covariate, X2 also includes a centered and scaled
binary covariate. Consider the case where the entries of A corresponding to this binary covariate
match those of X ), except for two entries—one originally positive and one originally negative
in X2 whose signs are flipped to preserve the column’s mean and variance (such a pair always
exists under the assumption that X is not colinear with 1,,). As above, assume that all other

entries of A are equal to those of x? , except for those in the column corresponding to the (or
one of the, if multiple exist) continuous covariate. Now interpret the equations in (S6) and (S7)
as defining a system in which the unknowns are the entries of A associated with the continuous
covariate, its associated standard error, and the unknown intercept. Because the constraints vary
smoothly with respect to the continuous covariate entries of A, and provided that the vector y
contains at least two entries equal to 1 and at least two equal to —1, the system admits at least
one solution whenever n is larger than p + p(p 4+ 1)/2. This is because, as the constraints behave
smoothly, small changes in the continuous values can compensate for small mismatches elsewhere,
allowing the system to adjust without violating the structure required by the observed quantities.

It follows that, for any entry in a column corresponding to a binary covariate in Xéf ), there
exists an admissible candidate matrix in which that entry takes a different value.

Privacy assessment for the response vector - Empirical criterion
We now provide details regarding the ability of covariate-node k to retrieve the response-vector y

from & ®). Recall that covariate-node k has access to IK*®) = X(gf)(Xc(f))T and to 7, and that
S@®) = {y' € {-=1,1}" : &® = (nA) "KW diag(a)y' for some a € (0,1)"}.

Since we have assumed that at least one continuous covariate is held outside of covariate-node k, o
can be treated as a vector with real-valued entries. Moreoever, since we have assumed that X *)
has full-column rank, as n > p®, the null-space of K*) has dimension n — p® > 0. Letting W
denote an n x (n — p*)) matrix of linearly independent columns spanning the null-space of K®,
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any solution x, satisfying &*® = (nA)"'IC W™z, can be expressed as zy = diag(at)y + Wb, for
b e R"*p(k), the solution space S(¢**)) can be re-expressed as

S(@®) = {y' € {~1,1}" :y! = sign{diag(a)y + Wb}, with diag(a*)y + Wb e (-1,1)"}

where, in the above equation, the function sign(-), when applied to a vector, is understood
component-wise: it returns —1 for each negative entry and 1 for each positive entry. To derive this
expression, we also used the fact that any y' € {—1,1}" satisfying &*® = (nX)"'K® diag(a)y'
for some a € (0, 1)" satisfies y' = sign(diag(a)y).

Using these derivations, an empirical criterion was derived to verify if, using the quantities
available at the covariate-nodes, every entry of the response-node’s data can be flipped while still
leading to an admissible candidates for the response vector. This criterion is described in Algorithm
S1 to support numerical implementation.

This criterion can be verified at the response-node for any covariate-node k not co-located at
the response-node.

Algorithm S1 Empirical criterion for the privacy assessment of the response vector y at covariate-node k

Input: Gram matrix K®) from covariate-node k, response vector y and dual numerical estimate &*.
Output: Number of entries of the vector y that could be flipped.
Procedure:

1. Generate W in the null-space of KKk,
2. For every i € {1,...,n}, verify if 3 zq such that sign(xo;) # sign(y;), where zq = diag(a&™)y+Wb € (—1,1)".

3. Count the number of entries y; that satisfied the condition.

Based on numerical simulations, the empirical criterion is likely to be satisfied when the sample
size is sufficiently large relative to the number of covariates at node k—for example, when n > 100
and p®*) < 10.

Supplementary Methods - Conservative Scenario: Response-Node Retains Intermediate
Quantities

In real applications, a covariate-node may not assume that the response-node has executed the
algorithm as intended. By analogy with the use of the term honest-but-curious in the main text,
this situation can be viewed as involving a malicious adversary”, where the malicious behavior
consists solely of not performing step 4 of the algorithm—that is, without collusion with other
parties.

In the following, we consider the conservative scenario in which the response-node has access to
the local Gram matrices, in addition to the other disclosed estimates. The ability of the response-
node to attempt reverse-engineering then depends on whether the covariate-nodes disclose p-values,
or parameter estimates together with their standard errors. To analyze this ability, let

T _ 1c(k) T —
(k)z{ AAT =K, A1, =0, }

S(ICH) AeM, ,»R) and diag,, (ATA) = (n — 1)1,

The set S(K™) consists of all candidate matrices for X%¥ from which node ks local Gram

matrix K*) could equivalently be computed. When p*) = 1, we obtain directly that S(K(k)) =

{Xéf), —Xc(f)}. For p¥) > 2. any sign-permutation matrix P*—that is, any matrix with exactly

one nonzero entry in each row and each column, with each nonzero entry equal to either 1 or —1—

13/18



254

256

257

258

260

261

262

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

can be shown to satisfy X )Pﬂi e S(K®), so that X )Pﬂi is always an admissible candidate for
x&.

Note on the separation of binary and continuous covariates

In the privacy analysis, we analyze binary and continuous covariates separately. Proceeding in this
way yields to conservative privacy risk assessments, since, for instance, the local Gram matrices
Jetkbin) — x (kbin) (X (b)) T g gelkocont) — x (kicont) (X (kcont)) T are not, transmitted separately to
the response-node; instead, only their sum, K®) = ICEP) 4 gelkeont) g Jisclosed. We proceed in
this way because it remains unclear, at this stage, under which conditions the above decomposition
is unique, and thus whether there is a risk that the response-node could uniquely recover KC*P™)
and ICF<") from the aggregate matrix /%),

When only the local Gram matrix and parameter estimates are available to the response-
node

When, in addition to K, the response node has access to a selected subset J C {1,...,p™} of

the components of the estimated parameters EW“) (which may include all components), reverse-

engineering X would require the response-node to search for a matrix A € S(IC(I“)) that satisfies

n

s(’“)@(’“) — (n\)"! Z[A]ijai\yi forall j € J ,

n,jj
i=1

7(1]6]) are not available to the response-node.

When X% is computed from continuous covariate data, successful reverse-engineering of node k’s
data would require the response-node to identify a matrix A such that there exists a set of constants
{a; : j € J} with strictly positive entries (a; > 0 for all j) satisfying

where the values s

;3" = (AT (Al Gty forall j € J (S8)
i=1
Now for any A € S(K®)), if A does not satisfy (S8), there exists a set of indices J' C .J such that
(B;\ (k)n)\)_l S [A)ijaty; < 0 for all j € J'. Since flipping the signs of all entries in any given
column of a matrix in S(IC®) yields another matrix that also belongs to S(IX™)), it follows that
the matrix A’ = A[];., Pji still belongs to S(IC®)) while now meeting the constraint given by
(S8). We draw the following conclusions:

e Case p*) = 1: In this case, as S(K(k)) = {X(Ef), —Xéf)}, for any A € S(K(k)), only one of A
and A’ = AP will meet (S8). Centered and scaled individual-level data could be retrieved.

e Case p®¥) > 2: Given that matrices A = X(gf)P;—L are in S(K™), it follows that at least

A= Xéf )P,r, where P, denotes a permutation matrix (i.e., either the identity matrix, or the
matrix that permutes the columns) will meet constraint (S8).

In the binary-covariates case, as the binary nature must be preserved, it can be shown that
candidate matrices for X are all of the form A = X )Pﬁi. Therefore, if the response-node is
able to identify a single admissible candidate in S(K®), it can compute all candidates in S(K*)).
The binary nature of the covariates involved at node k implies that the entries X have the form

xi?—uj n—1

- Vg (1 = py) n

[X®; 2o 1} :

CcS

(k) 1
, oz €{0,1}, uje{ﬁ,..., -
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This implies that the proportion of positive entries in the jth column of xP

the standard deviation of the covariate in column j can therefore be computed as

nﬁl {nlzl]K Sg)cs>0}{ —n Z z]cs }7

1=

is equal to u(k)» and

n7] ’

where [(B) is the indicator function taking value 1 if B is true, and 0 otherwise. Then, recalling
equation (S8), if BJ(-k) is disclosed for all j € J, the response-node can narrow its search for x ¥ by

identifying which admissible candidate A € S(KX™®) satisfies the following equality:

n ~ e, -~ :
\ /n —\ [t (1 — pdt) = (ﬁj(k)n)\) ! ZAUO&?% forall j€J , (S9)

1=1

with pt = n~t 3" I([A];; > 0). This typically yields a set of admissible candidates with a unique
possibility for every column j € J of xk ), irrespective of the cardinality of J.
Therefore, in the conservative non-colluding malicious adversary setting, disclosing parameter

estimates for binary covariates entails a risk of data leakage.

When only the local Gram matrix, parameter estimates and their standard errors are
available to the response-node

We now turn to the solution space of candidate matrices A when coefficient estimates indexed
by J C {1,...,p®} are disclosed, and for a subset of these, Jyq C J, the corresponding standard
errors are also released. We restrict attention to the case of continuous covariates, since, as shown
previously, the disclosure of parameter estimates for binary covariates entails a risk of data leakage.

Recall the expression of 3;‘(’“) for j € {1,...,p®}, given by

N L L ~ 1/2
ROPIONS {n Il (XY TS 1X(k)]jj} ‘ (S10)

n,g-J cs

While the values sff; are not known to the response—node, for j € J the coefficients are 5’3(.]6)
Moreover, from (S8), a candidate A € S(IC )) implicitly determines a corresponding candidate
value for 352, given by a; = (Bj k)n)\) S [A]i;a2y;. Consequently, reverse-engineering x¥
requires the response-node to search for A € S(IC®)) that satisfies (S8) for all j € J, as well as the
following for all j € Jy:

n n ~A(k) n 2
~ a. -
ntyt—n7in? Z Z[A]ij [A]1n;[S ™ im = (W Z[A]z‘ja{'\yz) : (511)
m=1 i=1 ﬁj nA =
We next show that, when p*) > 4 and |Jq| < (p® — 1)(p® —2)/2 —1 and X has full column
th

rank, the set of candidate matrices A € S(K¥)) that snnultaneously satisfy (S8) for all j € J and
(Sll) for all j € Jyq is infinite.

To do so, for 8 € (—, ﬂ]p<k)(p(k>_1)/2, let Py be defined as:

1 pk)
Po= T II $6unwe-imiinii ), (512)
i=1 j=it1
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where, for 1 < z <j <p® and 6 € (—7,7], G(0;1,7) € Myw 00 (R) denotes the Givens rotation
matrix (see e.g.'?) with entries [G(6; Z,j)]gg/ defined as

(cos(f) it (6,0) € {(3,1), (j, 1)},
—sin(0) if (¢,0) = (4,§),
G050 e = { sin(8)  if (6,€) = (j4), (513)

1 if (6,¢7) € {(1,1),.., (% p™)F\A{(9), (7.5)}

L0 elsewhere .

In this notation the set {Py : 0 € (—m, 7P @ =D/2} ig exactly the set of all rotation matrices
of size p® x p*), from which the full set of orthogonal matrices can be generated by additionally
allowing reﬂectlons.

Consider g(0) = [91(0), ..., 9,0 _1(0)], where, for j € {1,... p® — 1},

p 1 pk)

= Z Z [Pe]fj[PO]Z’jTé(f’)’

(=1 {U'=(+1

where 7'5(5) =n! ZZ 1T )CSIL‘EW s Since Ag = XC(S Py is centered and scaled matrix if and only if

g(8) = 0, it can be readily verified that that
{A = XB PP |0 e (—m,aP"?D/2 and g(6) = o} = S(K®).

Moreover, such Ag satisfies (S11) for all j € Jyq if and only if h;(0) = 0, where
h(@) = [hl (0), c ,hp(k)(é))] [hl(e), ey hp(k)(e)] with

k) pk) p(

h;(6) =——_ZZP9@ Pploi[(XE) TS X)) ”’_< AR Z blejs gﬂ[(k> '

n n
n 77 (=1 0= ] (=1

Now note that the cardinality of the set {8 € (—m, 7]P"®"”~D/2 . g(@) = 0 and h_(6) = 0}
is infinite. This follows directly from the smoothness of g(0),h, (0), the fact that if |Jy| <
(p® — 1)(p™ — 2)/2 — 1 the dimension of @ exceeds the number of equations, the existence of
a solution 8y € (—m, )P @ =1/2 gatisfying this solution set (i.e., the solution & = 0, which
corresponds to Py = I ), and an application of the Implicit Function Theorem.

Since for any Ag = X&' P, with g(0) = 0 and h,_(0) = 0 we have Ay € S(K®), and as all
matrices of the form Ay P satisfy both AgP* € S(IX®)) and (S11), the proof that the set of
candidate matrices A € S(K®)) that simultaneously satisfy (S8) for all j € J and (S11) for all
j € Jyq is infinite follows from the fact that for any 6 there always exists a P* such that AgP*
satisfies (S8).

It follows that the targeted estimates and standard errors can be disclosed by the covariate-node
while ensuring Privacy Level II.

When only the local Gram matrix and two-sided p-values are available to the response-
node
We now study the solution space of candidate matrices A for X ®) When a subset J C{1,...,p®}

of two-sided p-values pi‘gg ; are available to the response-node, in addition to the local Gram matrix
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KC™®). Given the one-to-one relationship between pi‘éf ; and | ﬁ;\(k)| / Ef\;\(k), and using equations (S8)

and (S10), for a candidate matrix A for X to be such that the disclosed quantities % and
pi‘éf ?] = {p\’}éf ; : j € J} could have been equivalently computed from either A or xk ), the

response-node must identify a matrix A such that

A (™ =02 30 S AL AL 8 i) = (o D Audt) (S14)
=1

m=1 i=1

It can be easily verified that {Xc(f ), —Xc(f )} are admissible candidates that respect equation
(S14).

In Figure S1, we illustrated the conditions under which a covariate-node holding only continuous
covariates can disclose p-values, parameter estimates and standard errors while achieving Privacy
Level I1. The privacy-preserving properties for the case of a covariate-node k holding only continuous
covariates are illustrated in Figure S1.
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Fig. S1. Privacy-preserving properties for a covariate-node k holding continuous covariates only. The
response-nodes is assumed to have cleared intermediate quantities in the upper figure, and it assumed to have not
cleared intermediate quantities in the lower figure. *If X (%) holds 4 continuous covariates, Privacy Level I is
guaranteed when at most two pairs of estimates and standard errors are disclosed. If X *) holds 5 or more
continuous covariates, Privacy Level II is guaranteed all pairs are disclosed.
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