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Supplementary Notes
Supplementary Note 1. Details of the Liquids used in the JD window
In the fabricated JD window, the liquid paraffin (LL) was purchased from Huangjia Biotechnology Co., Ltd., with the executive standards of Q/HHL01-98. The raw material of CD (standard: GB26687-2011; manufacture: Kirui Biotechnology Co., Ltd), copper sulfate (purity: 99.9%; manufacture: Xilong-Scientific), and Polysorbate-80 (manufacture: Shijieer) were used without further purification to prepare the HL. The PMMA panes used in fabricating the JD window sample were provided by SAYS Co., Ltd, and their spectral transmittance. When blending the copper sulfate and CD together, it is important to note that the Cu2+ leads to the ionization of water, resulting in a weakly acidic solution. However, the CD molecules tend to agglomerate into small particles in acidic environments. A solution prepared by simply dissolving CD and Cu2+ together in water is unstable. To ensure long-term optical stability of the blended solution, polysorbate-80 was employed in the preparation process. The detailed preparing process can be divided into three stages:
1.Preparation of highly concentrated (1wt%) CD emulsion: 120 g of Polysorbate-80 and 177 ml of deionized (DI) water were mixed in a 75℃-water bath for 1 hour. Then, 3 g of CD powder was dissolved in the Polysorbate-80/water mixture using a magnetic stirrer for 120 minutes at room temperature.
2.Preparation of the CuSO4 solution: CuSO4 solution was prepared by directly dissolving CuSO4·5H2O into DI water, with magnetic stirrer for 120 minutes at room temperature.
3.Preparation of the CD/CuSO4 blended solution (HL): The blended solution was prepared by mixing the highly concentrated CD solution and CuSO4 solution, followed by the addition of water to dilute the solution.


Supplementary Note 2. Detailed Explanation for AgNW/PET optical simulation 
The infrared optical properties of AgNW PET substrates were modeled using the Electromagnetic Waves, Frequency Domain (ewfd) interface in COMSOL Multi-physics. A reduced-order periodic unit cell approach was implemented, to efficiently simulate the randomly oriented nanowire network while maintaining computational tractability. Each unit cell consisted of two intersecting nanowires (Fig. S12) forming a parallelogram configuration, with the intersection angle varied parametrically from 0° to 90° to represent the statistical distribution of nanowire orientations observed in experimental samples.
Considering the propagation characteristics of plane waves in a periodic structure, periodic boundary conditions are applied to the edges of the air layer, PET layer, and PML (Perfectly Matched Layer), a virtual matching layer used in simulations. During the simulation process, the intrinsic optical constants of Ag and PET are taken from the data reported by Arkadiusz et al. [1] and Zhang et al. [2], as shown in Fig. S13.
To reveal the electromagnetic properties of AgNWs, the electric field distribution at a height equal to the AgNW diameter (d) above the PET film surface was simulated. The electric field distribution for a unit cell with different intersection angles (ξ), under incident light with a wavelength of 10 μm, is shown in Fig. S14. Smaller ξ leads to a stronger electric field, primarily because smaller spacing between nanowires enhances near-field radiation effects, thereby strengthening the optical absorption of the nanowires. Fig. S15 presents the simulated infrared emissivity of the AgNW/PET film at different ξ angles. As ξ increases, the emissivity shows an overall decreasing trend. 
In practical situations, the silver nanowires are randomly arranged on the PET film. Therefore, the overall emissivity of the silver nanowires can be determined by calculating the area-weighted average of the emissivities of AgNW/PET films at various ξ angles ranging from 0° to 90°, as shown in Equation (1).

		(1)
When simulating the emissivity of each AgNW/PET film configuration, this study used a 5°, and the simulated emissivity of AgNW/PET film with different nanowire diameter (d) and inter-nanowire spacing (w) are shown in Fig. S16a. The results indicate the infrared emissivity of the material can be tuned by adjusting the filling factor of AgNWs, by modifying the density or diameter of AgNW. We identified a feasible set of geometric parameters, with d = 20 nm and w = 100 nm, suitable for the JD window application. With this configuration, the infrared emissivity and solar transmittance of the AgNW/PET film are illustrated in Fig. S17 and Fig. S18. 


Supplementary Note 3. Detailed explanation of the optical simulation for PDMS
The infrared emissivity of the PDMS film is affected by its thickness. With a specific thickness, the film becomes completely opaque to infrared radiation, and its emissivity is then determined by the interfacial reflection at the material's surface. The absorption (emissivity) and reflectance of the material can be calculated by its intrinsic refractive index (n) and extinction coefficient (k). In this study, the optical constants of PDMS reported by Zhang et al. [2] (see Fig. S20) were collected and used, to calculate the reflectance and absorption (emissivity) of PDMS.
For the emit direction normal to the PDMS surface, the interfacial reflectance between PDMS and air can be calculated using Equation (2), and the emissivity can be calculated using Equation (3).

		(2)

		(3)
Where	a-PDMS (dimensionless) is the reflectance at the air-to-PDMS interface; 
PDMS (μm) is the thickness of PDMS layer.
With tilted incident angle, the interfacial reflectance can be calculated by:

		(4)

		(5)

		(6)

		(7)
To verify the accuracy of the emissivity calculation, a comparison was conducted between the calculated values and the tested emissivity of a 10 mm-thick PDMS sample. In this study, the PDMS layer was created by mixing the main agent and curing agent at a 10:1 ratio. Fig. S21 depicts this comparison between the tested emissivity of PDMS and the calculated value. The results reveal a strong agreement between the two datasets, affirming the model's ability to accurately predict the emissivity of PDMS.
It is important to note that PDMS, as a coating layer on a glazing surface, is affected by interfacial Fresnel reflection, decreasing as the emission angle increases. Fig. 22 shows the angularly averaged emissivity of a 200 μm-thick PDMS on vertical surface within the atmospheric window (8 to 13 μm). The emissivity is highest in the horizontal (normal) direction, reaching approximately 0.94. As the emission angle deviates from the normal direction, the emissivity gradually decreases, eventually dropping to zero in the vertical direction.


Supplementary Note 4. Detailed explanation of the building space heating and cooling load simulation
To validate and quantify the energy-saving potential of the JD window across different climate zones, this study conducted a comprehensive simulation based through developing an optical transmission model and transient heat transfer model for spectrally selective windows.
(1) Optical transmission/absorption model
In the optical transmission modeling of the JB window, it is essential to comprehensively account for both multi-layer absorption and multi-interface reflection phenomena. The JD window consists of six distinct optical media arranged in sequence: “PDMS-glazing-filling fluids (HL or LL)-glazing-PET-AgNW”. Due to the similar refractive indices of PET film and glazing (both approximately 1.5) in solar spectrum, the interfacial reflection between PET and glazing can be considered negligible. Therefore, the PET film can be excluded from the optical model of the JB window in the simulation. Then the JB window can be considered as five optical media arranged in sequence: “PDMS-glazing-filling fluids (HL or LL)-glazing-AgNW”.
The optical transmission model incorporates the spectral absorption and reflection of each of the five media. Each layer’s absorption and reflection coefficient is wavelength-dependent, and contributes to the overall attenuation of solar radiation. In these five media, the interfacial Fresnel reflections at five key optical boundaries include: Air-PDMS interface, PDMS-Glazing interface, Glazing-Fluid interface, Fluid-Glazing interface, Glazing-Fluid interface and Glazing-AgNW-Air interface.
The interfacial reflectance of Air-PDMS interface, PDMS-Glazing interface, Glazing-Fluid interface, Fluid-Glazing interface, Glazing-Fluid interface can be calculated by:

		(8)

		(9)

		(10)
and the reflectance of Glazing-AgNW-Air interface is calculated by the COMSOL software.
For the PDMS layer, when radiation incident from the air-PDMS interface, the reflectance can be calculated by:

		(11)
When radiation incident from the glazing-PDMS interface, the reflectance can be calculated by:

		(12)

		(13)
The transmittance of the PDMS layer can be calculated by:

		(14)
For the PDMS-glazing unit, the transmittance can be calculated by:

		(15)

		(16)
When radiation incident from the air-PDMS interface, the reflectance of the PDMS-glazing unit can be calculated by:

		(17)
When radiation incident from the glazing-fluid interface, the reflectance can be calculated by:

		(18)
For the PDMS-glazing-fluid unit, the transmittance can be calculated by:

		(19)

		(20)
When radiation incident from the air-PDMS interface, the reflectance of the PDMS-glazing-fluid unit can be calculated by:

		(21)
When radiation incident from the glazing-fluid interface, the reflectance can be calculated by:

		(22)
For the JB window, the transmittance can be calculated by:

		(23)
When radiation incident from the air-PDMS interface, the reflectance can be calculated by:

		(24)
When radiation incident from the air-AgNW interface, the reflectance can be calculated by:

		(25)
(2) Heat transfer model
The thermal balance between the window, indoor environment and outdoor environment can be expressed by:

		(26)

		(27)

		(28)
where	cg (J/kg·K) is the specific heat of the glazing;
cf (J/kg·K) is the specific heat of the fluids (HL or LL);
mg (kg) is the mass of the glazing;
mf (kg) is the mass of the fluid;
Tg1 (℃) is the temperature of the glazing 1;
Tg2 (℃) is the temperature of the glazing 2;
Qh,out (W) is the convective heat transfer to outdoor environment;
Qrsc (W) is the radiative heat transfer from glazing to outdoor environment;
Qc,g2 (W) is the conductive heat transfer from glazing to the clear glazing;
Qr,g2 (W) is the radiative heat transfer from the glazing to the clear glazing.
The convective heat transfer can be calculated by:

		(29)

		(30)
where 	 and  (m) are the thicknesses of the glazing;
		λ1 and λ [W/(m·K] are the thermal conductivity the glazing;
hin and hout (W·m-2·K-1) are the convective heat transfer coefficients respectively.
The natural convective heat transfer coefficient hin can be calculated by [3]: 

		(31)
The forced convective heat transfer coefficient hout can be calculated by [4]:

		(32)
The radiative heat transfer between glazing and indoor environment can be calculated by:

		(33)
	 in (dimensionless) is the emittance of indoor environment, being 1.0.
The net radiative sky cooling power of outdoor surface of the window can be calculated by:

		(34)

		(35)

		(36)

	(37)

		(38)

		(39)

		(40)

		(41)
where	Tatm (dimensionless) represents the transmittance of atmospheric window;
		y (dimensionless) represents cloud cover fraction;
		Tref (K) reference temperature difference of 10 K [5];
Ib is the blackbody emission, can be calculated by:
h (J/s) is the Planck constant, being 6.62607015 × 10-34 J/s.
The transmittance of atmospheric window (Tatm) is determined by sky conditions, which can be dealt as a function of PWV and altitude [6-8], as shown in Fig. S37. 
The radiative sky cooling obtained from the window primarily dissipates through outdoor convective heat transfer, indoor radiative heat transfer, and indoor convective heat transfer. The indoor radiative cooling gain (RCG) can be evaluated by:

		(42)
The solar heat gain is the sum up of direct solar heat gain and secondary solar heat gain, can be calculated by:

		(43)

		(44)

		(45)
where	Tg (℃) is the glazing temperature;
Tg’ (℃) is the glazing temperature calculated when there is no solar radiation [9, 10].
(3) Control logic for the JD window
In different thermal zones, the control logic for the simulation was defined as the same: when the outdoor air temperatures exceed 26℃, the JD window operates in the cooling model, when the outdoor air temperature falls below 5 ℃, the window operates in the heating model state. Specifically, if the outdoor temperature rises from below 5℃ into the 5～26℃ range, the window remains in the heating mode until the temperature exceeds 26℃. Conversely, if the temperature decreases from above 26℃ into the 5～26℃ range, the window remains in the cooling mode until the outdoor temperature drops below 5℃. The design allows the JD window to flip only twice within a yearly cycle, thereby reducing heating and cooling loads caused by air infiltration through the building.
According to the developed model, the MATLAB code was generated to calculate the heat transfer behaviors of the JD window, utilizing the hourly meteorological data in the year of 2025, among 1929 sites in the world. The JD window used in the simulation incorporated a 0.1%CD/10%CuSO4 solution as the HL, and a AgNW/PET film with a sheet resistance of 7.5 Ω serving as the low-e surface.

Supplementary Note 5. The definition and calculation of key metrics
With the spectral transmittance data, the solar transmittance of an optical material was calculated by:

		(46)
the photopic visible transmittances (Tlum) was calculated by: 

		(47)
and the melanopic transmittances (Tmel) was calculated by: 

		(48)
where T () represents the spectral transmittance, which is the solar irradiance spectra for air mass 1.5 (AM 1.5). Slum and Smel are the action spectra of photopic sensitivity and the action spectra of melanopic (ipRGC) sensitivity respectively.
FOM was defined as the ratio of solar transmittance to photopic luminous transmittance, it can be can be used to estimate the light/heat decoupling performance of spectrally selective materials, and can be expressed by:

		(49)
M/P value is the ratio of a light source’s melanopic (non-visual) stimulus to its photopic (visual) brightness, it can be calculated by:

		(50)
In this paper, the infrared emissivity generally refers to the average emissivity in the 8–13 μm wavelength range, calculated using the following equation:

		(52)
The hemispherical average emissivity is calculated using the following equation:

		(53)
For optically tunable windows, the spectral regulation capability is a key parameter for evaluating their performance. The main aspects include solar modulation ability (Tsol) and MIR emissivity regulation ability (), which are defined as follows:

		(51)

		(54)


Supplementary Figures
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Figure S1 Schematic of the gravity-driven fluid switching process
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Figure S2 Photos of the liquid switching process of a JD window sample with 3 mm-thick cavity
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Figure S3 Central cross-section of the CFD simulation of the fluid switching process of a small sized JD window (3 mm-thick cavity)
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Figure S4 Central cross-section of the CFD simulation of the fluid switching process in the real-sized JD window (3 mm-thick cavity)
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Figure S5 Simulated switching speed of the JD window
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Figure S6 Spectral transmittance of the LL at different optical thickness
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Figure S7 Spectral transmittance of the LL at different optical thickness
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Figure S8 Spectral transmittance of the HL at different optical thickness
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Figure S9 Photos of the HL with and without polysorbate-80, over a period of 5 months
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Figure S10 Spectral transmittance of the HL over a period of 8 months
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Figure S11 Stability test of the HL under 48 hours of strong UV exposure
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Figure S12 Schematic of the unit cell in the optical simulation of AgNW/PET film
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Figure S13 Optical constants of Ag (a) [1] and PET (b) [2]
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Figure S14 Surface electric field distribution of the AgNW/PET film at the height of d
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Figure S15 Emissivity of AgNW/PET surface with different ξ angles
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Figure S16 Emissivity of AgNW/PET film with different diameter (a) and inter-spacing (b) of AgNW
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Figure S17 Emissivity of AgNW/PET film with different emitting angles
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Figure S18 Spectral transmittance of AgNW/PET film with different angles
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Figure S19 Comparison of the tested and simulated transmittance (a) and emissivity (b) of the 7.5 Ω AgNW/PET film
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Figure S20 Optical constants of PDMS [2]
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Figure S21 Comparison between the tested emissivity and calculated data for PDMS
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Figure S22 Averaged emissivity (8-13 μm) of 200 μm-thick PDMS layer in different angles
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Figure S23 SEM and AFM images of the PDMS layer
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Figure S24 Optical mechanisms of the optical materials in the JD window
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Figure S25 SEM images of the 7.5 Ω and 10 Ω AgNW/PET films
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Figure S26 The tested transmittance (a) and emissivity (b) of the 10 Ω AgNW/PET film
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Figure S27 IR images of the PDMS surfaces and AgNW surfaces
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Figure S28 Indoor view of the JD window on heating (left) and cooling (right) modes
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Figure S29 CIELAB coordinate space of the JD windows.
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Figure S30 Comparison of the spectral absorption of the Real skin and Artificial skin.
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Figure S31 Optical transmittance and reflectance of the experimental low-e glazing
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Figure S32 Outdoor weather conditions of the experimental period. a, Global horizontal solar irradiance. b, direct horizontal solar irradiance. c, outdoor air temperature. d, outdoor wind speed during the experimental period.
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Figure S33 Comparison between the indoor illuminance of the experimental chambers in the experimental period
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Figure S34 Solar azimuth and elevation angles in Hong Kong during the experimental period
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Figure S35 Comparison of indoor air (a), skin (b), floor (c), and glazing surface temperatures (d) at different locations of the two chambers in the experimental period
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Figure S36 Schematic diagram of the heat transfer model for spectrally selective windows
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Figure S37 Solar spectral power distribution (SPD) at different solar elevation angles and different elevation. a, 0 km. b, 1 km. c, 2 km. d, 4 km.
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[bookmark: _Toc201166222]Figure S38 Atmospheric transmittance at different Total Column Water (TCW) and elevation. a, 0 km. b, 1 km. c, 2 km. d, 4 km.
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Figure S39 Model validation. a, Comparison between measured and predicted surface temperatures of the JD window. b, Error analysis between measured and predicted surface temperatures of the JD window glass. c, Comparison between measured and predicted surface temperatures of the low-e glass. d, Error analysis between measured and predicted surface temperatures of the low-e glazing.
[image: pointstation]
Figure 40 Geographical Distribution of Energy Simulation Sites
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Figure 41 World climate zones map [11]
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Figure 42 Outdoor weather parameters across different regions. a Annual cumulative direct solar radiation received by vertical surfaces (south-facing for Northern Hemisphere and north-facing for Southern Hemisphere). b Annual cumulative diffuse solar radiation received by vertical exterior surfaces. c Annual average outdoor air temperature. D Annual average outdoor wind speed. e Annual average total column water and (f) Annual average cloud cover.
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Figure 43 World map of the load reduction of Janus window compared to low-e glazing. a Space cooling load reduction. b Space heating load reduction.
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Figure 44 World map of the yearly cumulative solar heat gain of the (a) JD window and (b) low-e glazing. 
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Figure 45 World map of the yearly cumulative radiative cooling power of the JD window
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Figure 46 Energy-saving performance of the JD window across 23 major global cities






[bookmark: _Toc201166453]Supplementary Tables
Table S1 ICP analysis of the HL
	Solute
	Sample Volume (mL)
	Final Volume V0 (mL)
	Element
	Concentration C0 (mg/L)
	Dilution Factor f
	Element Concentration C1 (mg/L)

	[image: ]
	1
	10
	Na
	0.51 
	1
	0.506 

	
	1
	10
	Na
	0.52 
	1
	0.516 

	
	1
	10
	Na
	0.51 
	1
	0.514

	
	1
	10
	Cu
	2.58 
	1000
	2581.06 

	
	1
	10
	Cu
	2.54 
	1000
	2538.11 

	
	1
	10
	Cu
	2.55 
	1000
	2553.79 


Note: Elemental content in samples is tested using ICP analysis with the Agilent720ES. The test was conducted with the RF power of 1.20–1.55 kW, plasma gas flow of 15.0 L/min, auxiliary gas flow of 1.50 L/min, carrier/nebulizer gas flow of 0.71–0.75 L/min, and makeup gas of 0.48 L/min. Sample uptake time is 45 sec, with stabilization and delay times set to ensure accuracy. Each sample is measured in triplicate with 0.90 sec integration per mass. Calculations are based on the sample mass (m₀), final volume after digestion (V₀), dilution factor (f), and measured concentration in the test solution (C₀). From these, the concentrations in the digested solution (C₁), in the original sample (Cₓ, mg/kg), and as a percentage (W%) are derived. Solid and powder samples require digestion and are calculated using standard formulas, while liquid samples may be analyzed directly.
[bookmark: _GoBack]Table S2 GPC Molecular Weight (MW) of liquid paraffin used in this study
	Component
	Number average MW (Mn)
	Peak MW (Mp)
	Weight average MW (Mw)
	Z average MW (Mz)
	Z+1 average MW (Mz+1)
	Polydispersity index (Mw/Mn)

	Liquid paraffin (CnH2n+2)
	184 g/mol
	291 g/mol
	283 g/mol
	379 g/mol
	464 g/mol
	1.538





Table S3 Optical switching of the 1.5 m (width) × 1.8 m (height) JD window, with cavity gap of 3 mm
	Parameters
	4 ℃
	20 ℃
	30 ℃
	40 ℃
	60 ℃

	Viscosity of LL (× 103 Pa s)
	1.8
	1.3
	1.2
	1
	0.8

	Viscosity of HL (× 103 Pa s)
	27.6
	22.4
	17.4
	15.8
	11.1

	Coloring duration (s)
	169
	141
	112
	104
	91

	Bleaching duration (s)
	71
	60
	54
	51
	47


Note: The coloring process indicates the transition from heating mode to cooling mode, 
while the bleaching process represents the transition from cooling mode back to heating mode.


Table S4 Detailed optical properties of the HLs with different thickness and concentrations
	Optical thickness
	Mass concentration
	Tlum (%)
	Tsol (%)
	FOM
	Tmel (%)
	M/P
	CRI

	2 mm
	20% CuSO4
	74.6 
	36.5 
	2.04
	85.5
	0.96 
	83 

	
	10% CuSO4
	80.7 
	46.2 
	1.75
	86.7
	0.90 
	92 

	
	5% CuSO4
	84.0 
	57.7 
	1.46
	86.8
	0.87 
	97 

	
	0.15% CD
	64.6 
	60.2 
	1.07
	61.5
	0.80 
	91 

	
	0.10% CD
	70.7 
	63.1 
	1.12
	69.1
	0.82 
	92 

	
	0.05% CD
	79.9 
	69.2 
	1.15
	78.5
	0.83 
	96 

	
	10% CuSO4
	84
	45.9
	1.83
	90.1
	0.90 
	91

	
	0.05% CD/10% CuSO4
	74.5
	41.1
	1.81
	74.3
	0.84 
	89

	
	0.1% CD/10% CuSO4
	66.4
	34.5
	1.92
	63.4
	0.80 
	85

	3 mm
	10% CuSO4
	81
	39.3
	2.06
	90.4
	0.94 
	88

	
	0.05% CD/10% CuSO4
	74.1
	35.6
	2.08
	73.6
	0.83 
	84

	
	0.1% CD/10% CuSO4
	56.2
	24.7
	2.28
	54.1
	0.81 
	80

	5 mm
	10% CuSO4
	78.4
	33.7
	2.33
	89.4
	0.96 
	81

	
	0.05% CD/10% CuSO4
	55.9
	21.9
	2.55
	55
	0.83 
	72

	
	0.1% CD/10% CuSO4
	41
	15.1
	2.72
	39.3
	0.81 
	68

	10 mm
	10% CuSO4
	65.1
	29.5
	2.21
	88.8
	1.15 
	68

	
	0.05% CD/10% CuSO4
	38.6
	12.6
	3.06
	37.2
	0.81 
	56

	
	0.1% CD/10% CuSO4
	19.4
	6.0
	3.23
	19
	0.82 
	49




Table S5 Optical properties of the Janus structure
	Materials
	Tsol
	Tlum
	 (8-13 μm)

	
	
	
	Normal direction
	Spherical average

	7.5 Ω AgNW/PET
	0.75
	0.80
	0.24
	0.173

	10 Ω AgNW/PET
	0.80
	0.85
	0.36
	0.256

	100 mm PDMS - 3 mm SiO2
	0.94
	0.94
	0.94
	0.804


Table S6 Optical parameters of the JD window
	Windows
	Tlum
	Tsol
	CRI
	LAB chromaticity coordinates

	
	
	
	
	L*
	a*
	b*

	Case 1 in heating mode
	0.81
	0.71
	98
	79.8
	-13.1
	5.32

	Case 1 in cooling mode
	0.62
	0.27
	82
	90.2
	-1.58
	8.86

	Case 2 in heating mode
	0.87
	0.78
	98
	83.48
	-13
	2.6

	Case 2 in cooling mode
	0.65
	0.30
	83
	94.27
	-0.9
	5.58


Note: Case 1 refers to the JD window employs 3 mm-thick 0.05% CD and 10% CuSO4 as the HL, and 7.5Ω AgNW as the low-e surface. Case 2 refers to the JD window employs 3 mm-thick 0.05% CD and 10% CuSO4 as the HL, and 10Ω AgNW as the low-e surface.


Table S7 Optical parameters of the JD window and its counterparts
	Categories
	Scattering or not?
	Tlum (%)
	Tsol (%)
	Tsol
	
	 
	Refs

	
	
	Cold
	Hot
	Cold
	Hot
	
	Cold
	Hot
	
	

	VO2
	No
	0.28
	0.26
	—
	—
	0.09
	0.21
	0.61
	0.4
	Wang et al. 2021 [12]

	W-doped VO2
	No
	0.43
	0.43
	0.51
	0.40
	0.11
	0.71
	0.94
	0.23
	Wang et al. 2024 [13]

	VO2
	No
	0.38
	0.36
	0.38
	0.29
	0.09
	0.3
	0.7
	0.40
	Keum et al. 2025 [14]

	WO3
	No
	0.50
	0.12
	0.39
	0.08
	0.39
	0.4
	0.82
	0.42
	Zhang et al. 2024 [15]

	
	No
	0.60
	0.26
	0.57
	0.19
	0.38
	0.42
	0.82
	0.4
	

	
	No
	0.61
	0.24
	0.58
	0.18
	0.4
	0.37
	0.82
	0.45
	

	Electrically controlled device
	No
	0.85
	0.85
	—
	—
	≈0
	0.49
	0.9
	0.41
	Jia et al. 2023 [16]

	Liquid filled EC device
	No
	0.81
	0.27
	0.69
	0.25
	0.44
	0.19
	0.93
	0.74
	Huang et al. 2025 [17]

	ITO/PEDOT:PSS
	No
	≈0.73
	≈0.1
	≈0.7
	≈0.1
	0.6
	0.2
	0.94
	0.74
	Deng et al. 2025 [18]

	Reconfigurable interwoven surface
	No
	0.5
	0.5
	0.45
	0.55
	0.1
	0.36
	0.93
	0.57
	Ke et al. 2022 [19]

	Flipping structure
	No
	0.47
	0.47
	≈0.25
	≈0.25
	0
	0.13
	0.94
	0.81
	Huang et al. 2024 [20]

	Flipping PDLC
	Yes
	0.36
	haze
	0.43
	0
	0.42
	0.3
	0.95
	0.65
	Deng et al. 2024 [21]

	Flipping structure with hydrogel
	Yes
	0.72
	0.08 haze
	0.57
	0.07
	0.50
	0.1
	0.9 (PE)
	0.8
	Wang et al. 2021 [22]

	Hydrogel and AgNW
	Yes
	0.78
	haze
	0.66
	0.07
	0.58
	0.35
	0.92
	0.57
	Lin et al. 2022 [23]

	Hydrogel and AgNW
	Yes
	≈0.70
	haze
	≈0.66
	≈0
	0.66
	N/A
	N/A
	0.32
	Yu et al. 2025 [24]

	VO2 and hydrogel
	Yes
	0.21
	haze
	0.20
	0
	0.2
	0.35
	0.69
	0.33
	Zhang et al. 2025 [25]

	Mechanical strain
	Yes
	≈0.8
	≈0.15
	0.8
	0.25
	0.55
	0.59
	0.84
	0.25
	Zhou et al. 2022 [26]

	Mechanical strain
	Yes
	0.37
	haze
	—
	—
	0.24
	0.45
	0.9
	0.45
	Wang et al. 2023 [27]

	Transparent wood
	Yes
	0.20
	0.2
	0.22
	0.21
	0.01
	0.19
	0.63
	0.44
	Hu et al. 2024 [28]

	JD window
	No
	0.81
	0.62
	0.71
	0.27
	0.44
	0.24
	0.94
	0.7
	This work

	
	No
	0.87
	0.65
	0.78
	0.30
	0.49
	0.36
	0.94
	0.58
	





Table S8 Average load reduction of the JD windows across different climatic zones
	Thermal 
zones
	Space cooling load reduction
(GJ m-2 year-1)
	Space heating load reduction
(GJ m-2 year-1)
	Total load reduction
(GJ m-2 year-1)

	
	
	
	

	0
	0.69 
	0.00 
	0.69 

	1
	0.52 
	0.00 
	0.52 

	2
	0.33 
	0.00 
	0.33 

	3
	0.12 
	0.01 
	0.13 

	4
	0.15 
	0.02 
	0.16 

	5
	0.14 
	0.02 
	0.16 

	6
	0.09 
	0.01 
	0.10 

	7
	0.03 
	-0.02 
	0.01 

	8
	0.01 
	-0.13 
	-0.12 




Table S9 Average load reduction of the JD windows across different climatic zones
	Cities
	Longitude
	Latitude
	Thermal zones
	Cooling load reduction 
(GJ·m-2·yr-1)
	Heating load reduction 
(GJ·m-2·yr-1)
	Total load reduction 
(GJ·m-2·yr-1)
	Solar heat gain of the JD window 
(GJ·m-2·yr-1)
	Solar heat gain of the low-e window 
(GJ·m-2·yr-1)

	Singapore
	103.82 
	1.35 
	1
	0.56 
	0.00 
	0.56 
	1.44 
	2.25 

	Managua
	-86.25 
	12.14 
	1
	0.55 
	0.00 
	0.55 
	1.42 
	2.31 

	Dar es Salaam
	39.21 
	-6.79 
	1
	0.59 
	0.00 
	0.59 
	1.36 
	2.19 

	Riyadh
	46.68 
	24.71 
	1
	0.58 
	0.00 
	0.58 
	1.66 
	2.73 

	Melbourne
	144.96 
	-37.81 
	3
	0.07 
	0.01 
	0.07 
	1.91 
	2.29 

	Lahore
	74.34 
	31.55 
	2
	0.49 
	0.00 
	0.50 
	1.95 
	2.64 

	Los Angeles
	-118.24 
	34.05 
	3
	0.25 
	0.00 
	0.25 
	1.76 
	2.34 

	Cape Town
	19.42 
	-33.92 
	3
	0.16 
	0.01 
	0.17 
	1.87 
	2.48 

	Athens
	23.73 
	37.98 
	4
	0.20 
	0.01 
	0.21 
	1.94 
	2.44 

	Buenos Aires
	-59.38 
	-34.60 
	3
	0.17 
	0.01 
	0.17 
	1.68 
	2.29 

	Beijing
	116.41 
	39.90 
	4
	0.18 
	0.07 
	0.25 
	2.13 
	2.54 

	New York
	-73.01 
	40.71 
	4
	0.10 
	0.02 
	0.12 
	1.98 
	2.29 

	Seoul
	126.98 
	37.57 
	4
	0.13 
	0.05 
	0.18 
	2.03 
	2.40 

	Paris
	2.35 
	48.86 
	4
	0.03 
	0.01 
	0.03 
	1.56 
	1.92 

	Moscow
	37.62 
	55.76 
	6
	0.04 
	-0.05 
	-0.01 
	1.59 
	1.94 

	Chicago
	-87.63 
	41.88 
	5
	0.12 
	0.00 
	0.12 
	1.90 
	2.32 

	Nuuk
	-51.72 
	64.18 
	8
	0.00 
	0.03 
	0.03 
	2.15 
	2.18 

	Helsinki
	24.94 
	60.17 
	6
	0.01 
	-0.03 
	-0.02 
	1.41 
	1.77 

	Yakutsk
	129.68 
	62.04 
	8
	0.03 
	-0.06 
	-0.03 
	1.62 
	1.96 

	Reykjavik
	-21.94 
	64.15 
	6
	0.00 
	-0.05 
	-0.05 
	1.56 
	1.48 

	Lhasa
	91.17 
	29.65 
	7
	0.00 
	0.26 
	0.26 
	3.02 
	3.10 

	Anchorage
	-149.90 
	61.22 
	8
	0.00 
	0.10 
	0.10 
	1.93 
	1.91 

	Tokyo
	139.69 
	35.69 
	3
	0.14 
	0.03 
	0.17 
	1.92 
	2.29 
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