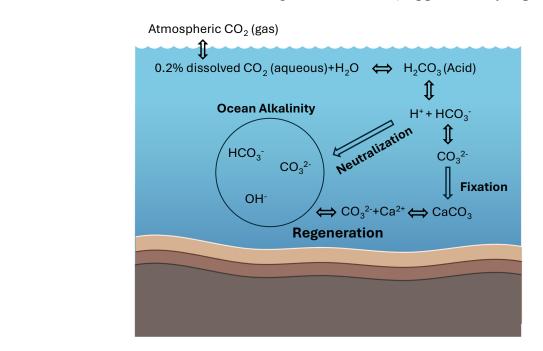

1	Supplementary information
2	Closed-loop upcycling of protein amyloid fibrils from food waste for atmospheric CO ₂ capture
4 5 6	Zhou Dong ¹ , Ming Dai ^{1,2} , Felix Donat ³ , Dominik Richert ³ , Bin Dai ⁴ , Jiangtao Zhou ⁵ , Milad Radiom ¹ , Mohammad Peydayesh ¹ , Yanwen Li ¹ , Xiuhuai Li ⁶ , Hui Wu ⁶ , Christoph R. Müller ³ , Wenshuai Chen ² , Raffaele Mezzenga ^{1,7*}
7	¹ ETH Zürich, Department of Health Sciences and Technology, 8092 Zürich, Switzerland
8	² Key Laboratory of Bio-based Material Science and Technology, Ministry of Education,
9	Northeast Forestry University, Harbin 150040, P.R. China
10	³ ETH Zürich, Department of Mechanical and Process Engineering, Leonhardstrasse 21, CH-
11	8092 Zürich, Switzerland
12	⁴ School of Sensing Science and Engineering, School of Electronic Information and Electrical
13	Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
14	⁵ Department of Food Science and Technology, National University of Singapore, Singapore
15	⁶ College of Food Science and Engineering, South China University of Technology,
16	Guangzhou 510640, P.R. China
17	⁷ ETH Zürich, Department of Materials, 8093 Zürich, Switzerland
18	* Corresponding author
19	E-mail: raffaele.mezzenga@hest.ethz.ch
20	
21	
22	
23	

24	Table of Contents
25	Supplementary information
26	Section 1. Design Rationale Information
27	1.2 Ocean-inspired design rationale
28	1.3 Challenges in hydroxide-based sorbents
29	Section 2. Small-Angle X-Ray Scattering (SAXS)
30	Section 3. Transmission Electron Microscopy (TEM)
31	Section 4. Atomic Force Microscopy (AFM)10
32	Section 5. Synthesis of Microbeads
33	Section 6. Scanning Electron Microscopy (SEM)12
34	Section 7. Dry Ice Vapor Sorption14
35	Section 8. Single-Component Water Vapor Sorption Measurements15
36	Section 9. Instrument for Dynamic Breakthrough Measurements16
37	Section 10. Dynamic Breakthrough Measurements19
38	Section 11. Single-Component Nitrogen Sorption Measurements23
39	Section 12. Detailed Sorbent Comparison for Direct Air Capture30
40	Section 13. Instrument for Desorption and Regeneration34
41	Section 14. Dynamic Desorption and Regeneration Measurements35
42	Section 15. Thermogravimetric Analysis (TGA)41
43	Section 16. Density Functional Theory (DFT) Calculations
44	Section 17. Single-Component CO ₂ Sorption Measurements
45 46	Section 18. <i>In situ</i> Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)
47	Section 19. Powder X-ray Diffraction (PXRD)53
48	Section 20. Molecular Dynamics (MD) Calculations57
49	Section 21. Reduced Density Gradient (RDG) Measurement63
50	Section 22. Life Cycle Assessment (LCA)67
51	22.1 Target and scope definition67
52	(1) Target67
53	(2) Functional unit67
54	(3) System boundary67
55	(4) Cut-off criteria68

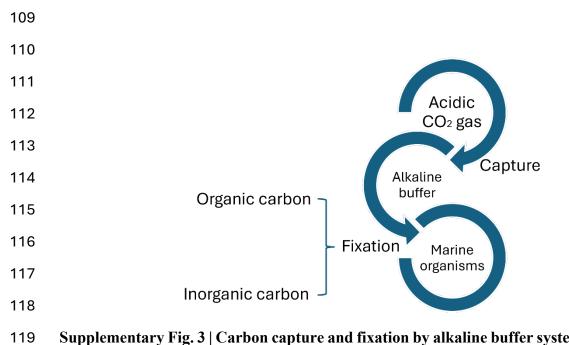
56	22.2 Process data collection	69
57	22.3 Life cycle impact assessment (LCIA)	74
58	Section 23. Biodegradability Test.	78
59	Section 24. The Ranking Efficiency Product (REP)	79
60	24.1 Definition and calculation	79
61	24.2 Calculation boundaries	80
62	Section 25. Techno-Economic Assessment (TEA)	83
63	Section 26. Roasted Coffee Bean Degassing.	84
64	Section 27. In vitro Simulated Digestion	87
65	Section 28. Potential Application in Fertilizer	89
66	References	90
67		
68		

Section 1. Design Rationale Information

1.1 Circular DAC strategy based on food waste.

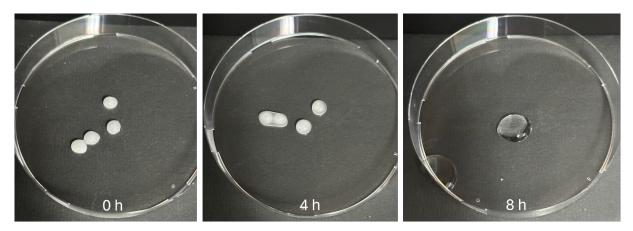


Supplementary Fig. 1 | Illustration of the circular DAC strategy. a, Carbon-intensive sections across dairy and tofu production chains, highlighting upstream (feed production and farming), manufacturing, and downstream (distribution, preservation, and packaging) emissions. Proposed closed-loop pathway that valorizes protein waste into CO_2 capture sorbents (b), followed by food system reintegration through application in food packages, potential feed ingredient, or fertilizer (c).

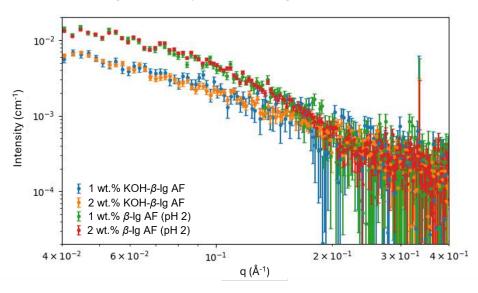

1.2 Ocean-inspired design rationale

The direct ocean capture system exploits the bicarbonate-carbonate equilibrium dynamics in seawater to facilitate CO₂ sequestration^{1,2} (**Supplementary Fig. 2**). Upon dissolution, atmospheric CO₂ forms carbonic acid (H₂CO₃), which rapidly dissociates into bicarbonate (HCO₃⁻) and hydrogen ions at typical oceanic pH ranges (~pH 8). This dissociation drives the neutralization reaction within the alkalinity pool, which is primarily composed of bicarbonate and carbonate ions (CO₃²⁻), serving as the system's buffering capacity. In the presence of calcium ions (Ca²⁺), carbonate ions combine to form calcium carbonate (CaCO₃). This carbon fixation process is often facilitated by marine organisms, such as coccolithophores, corals, and shellfish, which utilize CaCO₃ to build their shells and skeletons. The regeneration of the alkalinity pool involves the dissolution of calcium carbonate (CaCO₃), releasing carbonate ions back into solution. This mineralization-dissolution cycle maintains system alkalinity while permanently sequestering captured CO₂.

In our alkaline-amyloid fibril system, the KOH (an alkalinity pool) reacts with CO₂ to form bicarbonate, and the amyloid fibrils with rich amine groups (analogous to marine organisms) have a similar function to CaCO₃ in fixing the bicarbonate (**Supplementary Fig. 3**).



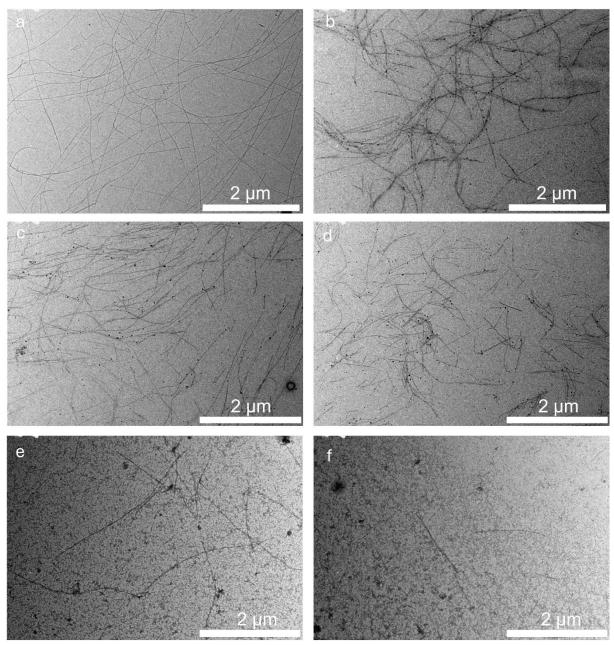
Supplementary Fig. 2 \mid The thermal-free CO_2 capture, fixation, and regeneration process by the ocean.


Supplementary Fig. $3\mid$ Carbon capture and fixation by alkaline buffer system and marine organisms.

1.3 Challenges in hydroxide-based sorbents

Supplementary Fig. 4 | Deliquescence of KOH pellet at ambient air under 40–50% RH at 25 $^{\circ}$ C after 4-h and 8-h exposure.

127 Section 2. Small-Angle X-Ray Scattering (SAXS)

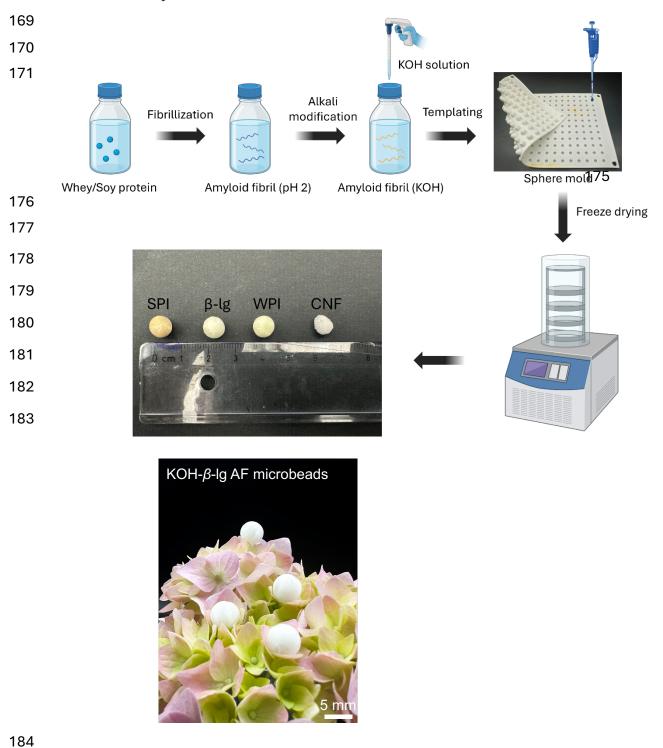


Supplementary Fig. 5 | Normalized SAXS spectra of 1 wt% and 2 wt% β -lg AFs at pH 2 and pH 12–13. 2 wt% β -lg AF was mixed with 1 M KOH at a 5:1 mass ratio and incubated for 7 days before measurement. 1 wt% β -lg AF solution at pH 12–13 was prepared by diluting the 2 wt% solution with distilled water at pH 12.

Supplementary Table 1 | Geometrical parameters of the AF at pH 2 and 12–13 based on fitting SAXS spectra to cylindrical form factor. To improve the fitting results, a similar diameter was assumed.

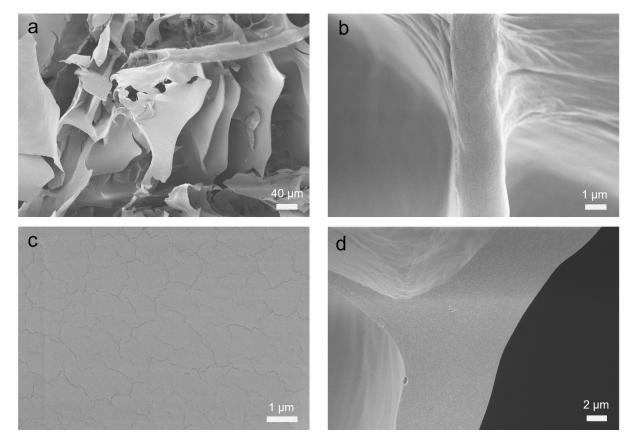
Fit parameters	Length (nm)	Diameter (nm)
pH 2.0	~7400	~2.6
рН (КОН)	~950	~2.6

Section 3. Transmission Electron Microscopy (TEM)

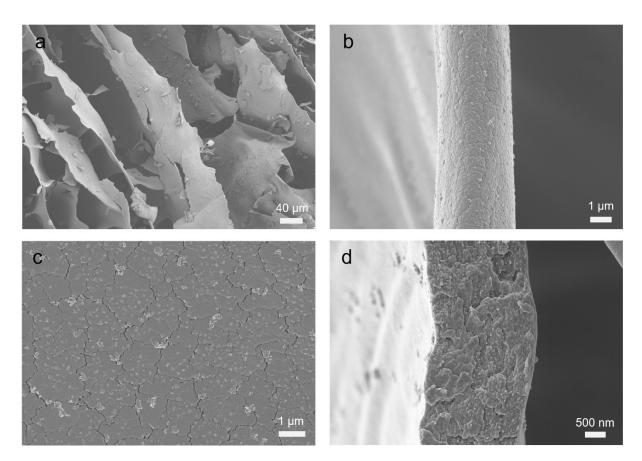

Supplementary Fig. 6 | TEM images of β -lg AF at pH 2 (a) and KOH- β -lg AF after 7-day (b) and 2-month incubation (c,d); SPI AF at pH 2 (e) and KOH-SPI AF after 7-day incubation (f). The scale bar is 2 μ m. The images are representative of three technical replicates (n = 3), each yielding similar results.

Section 4. Atomic Force Microscopy (AFM)

2 μm.


Supplementary Fig. 7 | AFM images of KOH- β -lg AF after 2-month incubation. The scale bar is 2 μ m. The images are representative of three technical replicates (n = 3), each yielding similar results.

Section 5. Synthesis of Microbeads



Supplementary Fig. 8 | Schematic of the synthesis of KOH-AF microbeads using SPI, β -lg, WPI, and CNF by sphere mold templating. β -lg AF (3 wt%), WPI AF (5 wt%), SPI AF (4 wt%), and WPI monomer (5 wt%) solutions at pH 2 were mixed with concentrated KOH solution (2 M) at a dry mass ratio of 5:1 mass for β -lg AF, WPI AF, and WPI monomer, and 10:1 for SPI AF. The color of KOH- β -lg and WPI AF microbeads gradually turned from white to yellow under prolonged storage in a sealed container (1–10 weeks). Scale bar, 5 mm.

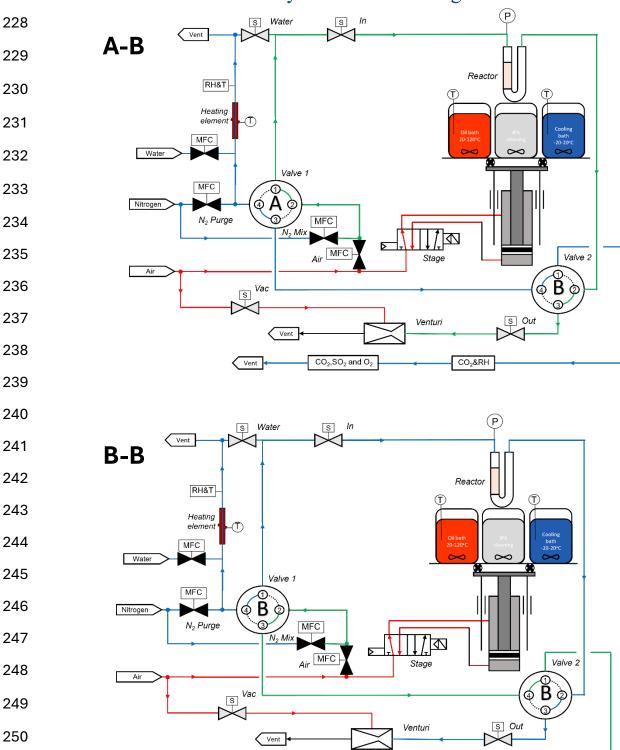
191 Section 6. Scanning Electron Microscopy (SEM)

Supplementary Fig. 9 | SEM images of surface (a–c) and cross-section (d) of unmodified β -lg AF microbeads.

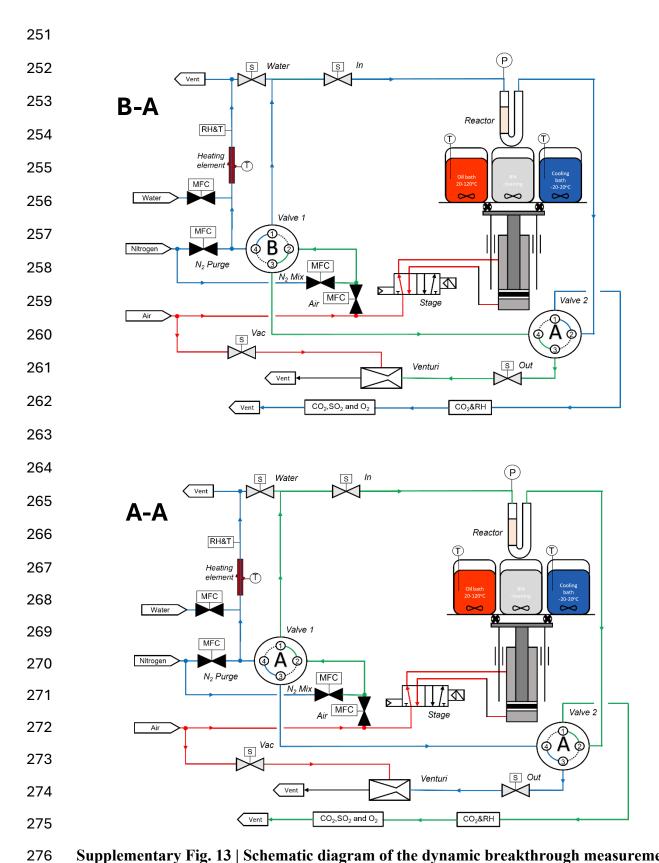
Supplementary Fig. 10 | SEM images of surface (a–c) and cross-section (d) of KOH-modified β -lg AF microbeads. The microbeads were stored in a sealed vial for 2 weeks before measurement, showing the stability of AF microbeads under prolonged alkaline exposure.

Section 7. Dry Ice Vapor Sorption

Supplementary Fig. 11 | The syringe pump for the generation of dry ice smoke with controlled flow direction and rate. 1 g of solid dry ice was mixed with 4 ml of distilled water inside the syringe. The flow rate was 420 ml h^{-1} .


221 Section 8. Single-Component Water Vapor Sorption Measurements

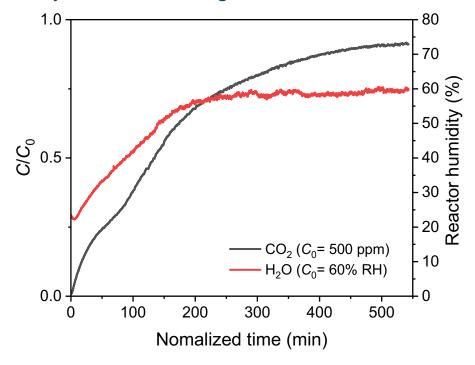
Supplementary Fig. 12 | Single-component water vapor sorption isotherm measured at 25 °C. P is water vapor pressure, and P_{sat} is the saturation water vapor pressure.

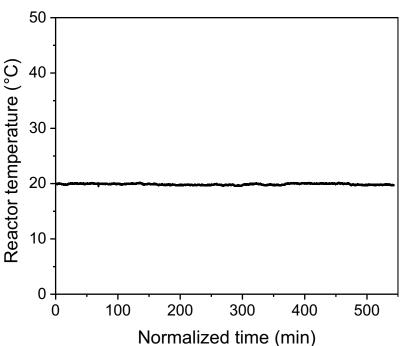

Section 9. Instrument for Dynamic Breakthrough Measurements

227

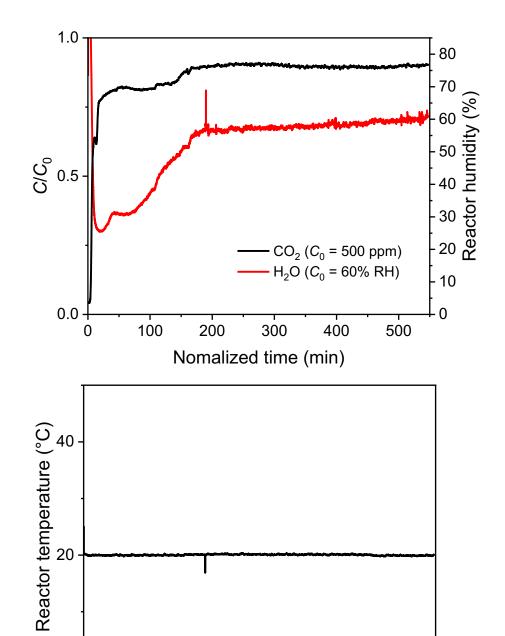
CO₂,SO₂ and O₂

Vent

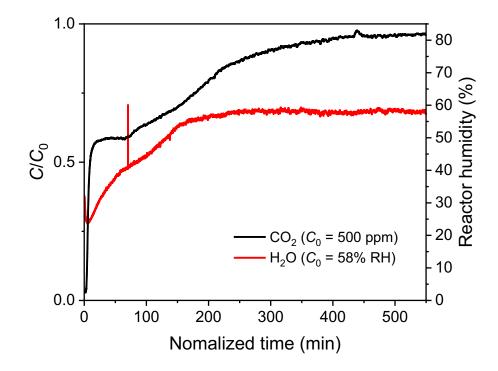


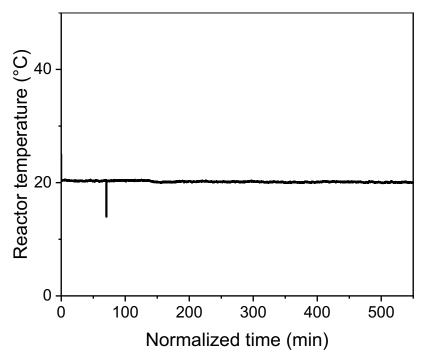

Supplementary Fig. 13 \mid Schematic diagram of the dynamic breakthrough measurement instrument.

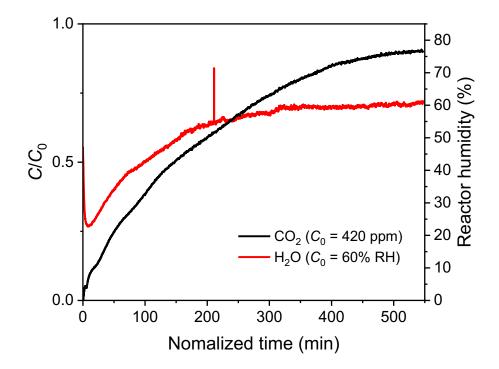
279 Supplementary Table 2 | Function of valves in the dynamic breakthrough measurement 280 instrument

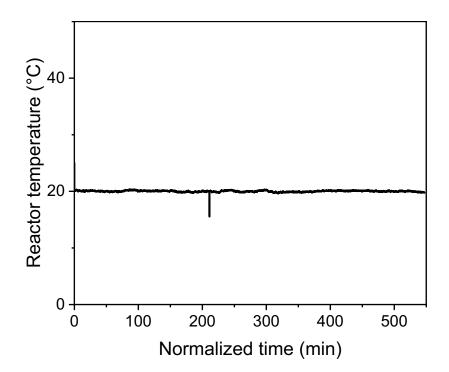

Valve	Position	Effect
1	A	Gas mix to reactor, purge to bypass
	В	Purge to reactor, gas mix to bypass
2	A	Reactor gas to analyzers, bypass to venturi
	В	Reactor gas to venturi, bypass to analyzers

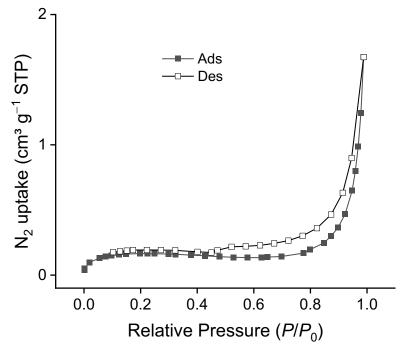
Section 10. Dynamic Breakthrough Measurements

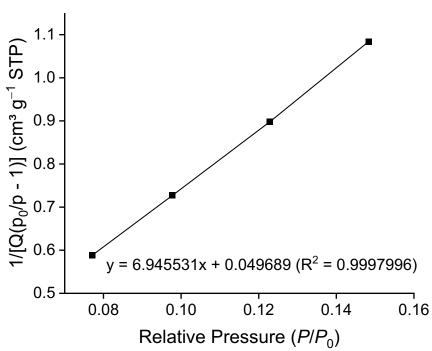


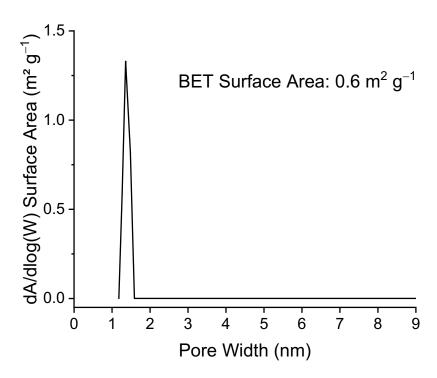

Supplementary Fig. 14 | Dynamic breakthrough measurements of KOH-WPI AF microbeads using simulated air (500 ppm of CO₂ balanced in N₂ with 60% RH) at 20 °C. 100 ± 10 mg of microbeads were degassed at 90 °C for 30 min in N₂, cooled down by methanol, and then prehumidified for 10 min before exposure to air.


Normalized time (min) Supplementary Fig. 15 | Dynamic breakthrough measurements of KOH-SPI AF microbeads using simulated air (500 ppm of CO₂ balanced in N₂ with 60% RH) at 20 °C. 100 ± 10 mg of microbeads were degassed at 90 °C for 30 min in N₂, cooled down by methanol, and then prehumidified for 10 min before exposure to air.

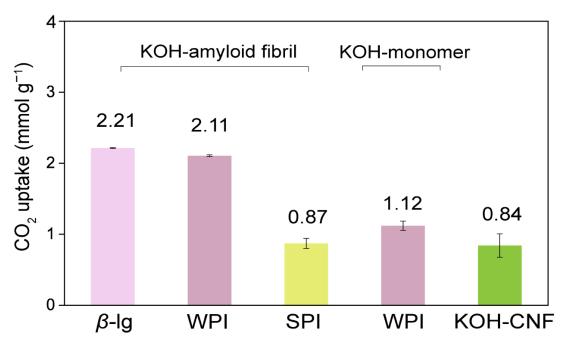

0+0

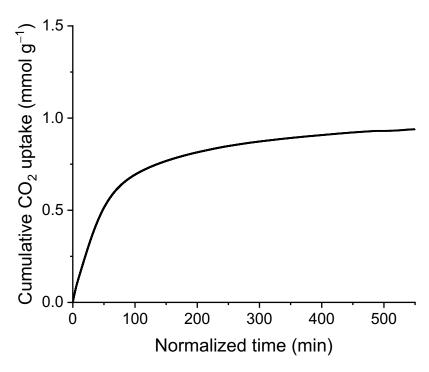

Supplementary Fig. 16 | Dynamic breakthrough measurements of KOH-WPI monomer microbeads using simulated air (500 ppm of CO₂ balanced in N₂ with 58% RH) at 20 °C. 100 ± 10 mg of microbeads were degassed at 90 °C for 30 min in N₂, cooled down by methanol, and then prehumidified for 10 min before exposure to air.

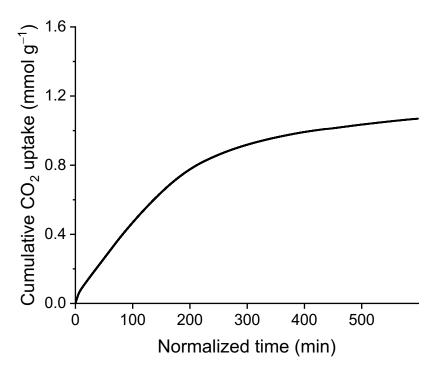


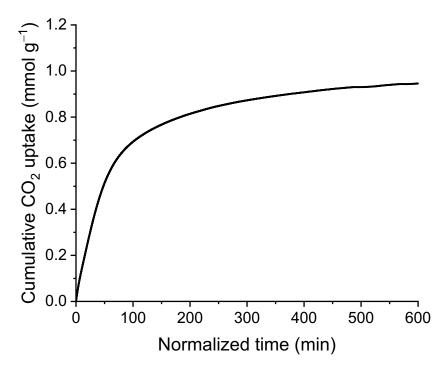


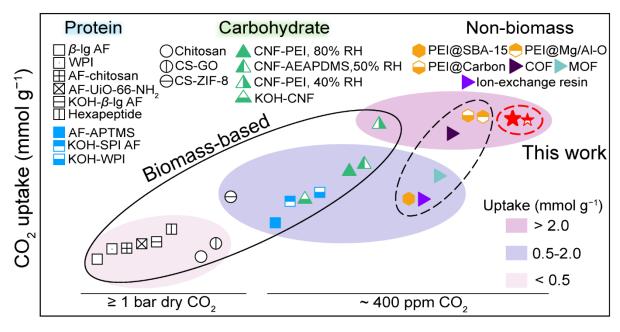
Supplementary Fig. 17 | Dynamic breakthrough measurements of KOH-WPI AF microbead using compressed air at 20 °C. 100 ± 10 mg of microbeads were degassed at 90 °C for 30 min in N_2 , cooled down by methanol, and then prehumidified for 10 min before exposure to air.


305 Section 11. Single-Component Nitrogen Sorption Measurements




Supplementary Fig. 18 | N_2 sorption isotherms of KOH- β -lg AF microbeads measured at 77 K, corresponding BET plot, linear fitting, and pore size distribution calculated from the sorption isotherm. P is nitrogen pressure; $P_0 = 1$ atm under standard temperature and pressure. The BET surface area of the microbead is $0.6 \text{ m}^2 \text{ g}^{-1}$.


Supplementary Fig. 19 | CO₂ uptake of KOH-modified AF (β -lg, WPI, and SPI), WPI monomer, and CNF microbeads under humid simulated air. The data shown are statistical averages, and the error bars represent 1 standard deviation.


Supplementary Fig. 20 | Cumulative CO_2 uptake of the KOH-SPI AF microbead using simulated air (500 ppm of CO_2 balanced in N_2 with 50% RH) at 20 °C. The specific CO_2 uptake of the sample was then obtained as the difference between the observed CO_2 concentration and the expected value. The final CO_2 uptake shown in this figure was 0.93 mmol g^{-1} .

Supplementary Fig. 21 | Cumulative CO_2 uptake of the KOH-WPI monomer microbead using simulated air (500 ppm of CO_2 balanced in N_2 with 50% RH) at 20 °C. The specific CO_2 uptake of the sample was then obtained as the difference between the observed CO_2 concentration and the expected value. The final CO_2 uptake shown in this figure was 1.06 mmol g^{-1} .

Supplementary Fig. 22 | Cumulative CO_2 uptake of the KOH-CNF microbead using simulated air (500 ppm of CO_2 balanced in N_2 with 50% RH) at 20 °C. The specific CO_2 uptake of the sample was then obtained as the difference between the observed CO_2 concentration and the expected value. The final CO_2 uptake shown in this figure was 0.95 mmol g^{-1} .

Supplementary Fig. 23 | CO_2 adsorption uptake comparison of selected bio- and non-bio-based sorbents for concentrated (\sim 1 bar CO_2) and atmospheric CO_2 capture (Supplementary Tables 3–6).

345 Section 12. Detailed Sorbent Comparison for Direct Air Capture

Supplementary Table 3 | Adsorption, desorption, and cycling properties of selected sorbents for DAC using ambient air or simulated air.

	CO ₂		Adsorpti	on condition	ıs						
Sorbent	uptake (mmol g ⁻¹)	CO_2	Temp. (°C)	RH (%)	Carrier gas	Desorption condition	Cycling Stability	Ref.			
	Ambient air										
HIPE templated p(NMe ₃ ⁺ -MS OH ⁻)	0.49	Open air	18	20	-	95% RH	1 cycle	3			
Pickering polyHIPEs	0.72	Open air	18	20	ı	95% RH	1 cycle	4			
Amine-based resin	1.11	Open air	25	35-60	-	100 °C Water vapor	9 cycles	5			
COF-999	1.28	Open air	-	-	-	60 °C	100 cycles	6			
			(Simulated	l air						
Charged sorbent PCS-OH	0.2	400 ppm	30	0	N ₂ /O ₂	130 °C	10 cycles, stable	7			
CO ₃ ²⁻ -resin	0.26	417 ppm	20	0	N ₂ /O ₂	95% RH	5 cycles, stable	8			
MOF-808-Lys	0.70	400	25	50	N ₂ /O ₂	140 °C	10 cycles, stable	9			
Amine-based anion exchange polypropylene	0.98	400	23	0.5	N ₂ /O ₂	water	1 cycle	10			
MOF-74-mmen-2	1.05	390	25	0	N ₂ /O ₂	150 °C	10 cycles, stable	11			
Zn(ZnOH) ₄ (bibta) ₃	1.32	395	25	0	N ₂ /O ₂	100 °C	5 cycles, stable	12			

349 **Supplementary Table 4** | Adsorption, desorption, and cycling properties of selected protein-350 based DAC sorbents.

G 1 4	CO ₂ uptake	A		conditions		Desorption	G 1: G 1:11:	D C
Sorbent	$(\text{mmol } g^{-1})$	CO_2	Temp.	RH (%)	Carrier gas	condition	Cycling Stability	Ref.
			Protein	monom				
Commercial								
Whey protein isolate	0.091	1bar	30	0		N ₂ ,30 °C	15 cycles, 20% loss	
Spray-dried Whey protein isolate (130 °C)	0.177	1bar	30	0		N ₂ ,30 °C	15 cycles, 20% loss	13
Spray-dried Whey protein isolate (170 °C)	0.168	1bar	30	0		N ₂ ,30 °C	15 cycles, 20% loss	
		Pı	otein a	myloid f	$fibril^b$			
Natural hexapeptide VQIVYK	0.48	1bar	37	100%	N_2	N ₂ ,100°C	3 cycles, stable	
Synthesized Hexapeptide VQIVYKK	0.54	1ba	37	100%	N_2	N ₂ ,100°C	3 cycles, stable	14
Synthesized Hexapeptide VKIVYK	0.74	1ba	37	100%	N_2	N ₂ ,100°C	3 cycles, stable	
APTMS-modified β-lg aerogel (1:1)	0.73	1bar	25	0	N_2	N ₂ ,150°C	3 cycles, stable	
diAPTMS- modified β-lg aerogel (1:1)	0.85	1bar	25	0	N_2	N ₂ ,150°C	3 cycles, stable	
triAPTMS- modified β-lg aerogel (1:1)	0.92	1bar	25	0	N_2	N ₂ ,150°C	3 cycles, stable	
triAPTMS- modified β-lg aerogel (1:4)	1.02	1bar	25	0	N ₂	N ₂ ,150°C	3 cycles, stable	
triAPTMS- modified lysozyme aerogel (1:4)	0.3	1bar	25	0	N_2	N ₂ ,150°C	3 cycles, stable	15
triAPTMS- modified black bean aerogel (1:4)	0.41	1bar	25	0	N_2	N ₂ ,150°C	3 cycles, stable	
Low MW chitosan-BLG aerogel	0.16	1bar	25	0	N ₂	N ₂ ,150°C	3 cycles, stable	
medium MW chitosan-aerogel	0.18	1bar	25	0	N ₂	N ₂ ,150°C	3 cycles, stable	
high MW chitosan-aerogel	0.41	1bar	25	0	N ₂	N ₂ ,150°C	3 cycles, stable	
30% UiO-66-NH ₂ hybrid	0.11	1bar	25	0	N ₂	N ₂ ,150°C	3 cycles, stable	
40% UiO-66-NH ₂ hybrid	0.16	1bar	25	0	N ₂	N ₂ ,150°C	3 cycles, stable	16
50% UiO-66-NH ₂ hybrid	0.25	1bar	25	0	N ₂	N ₂ ,150°C	3 cycles, stable	

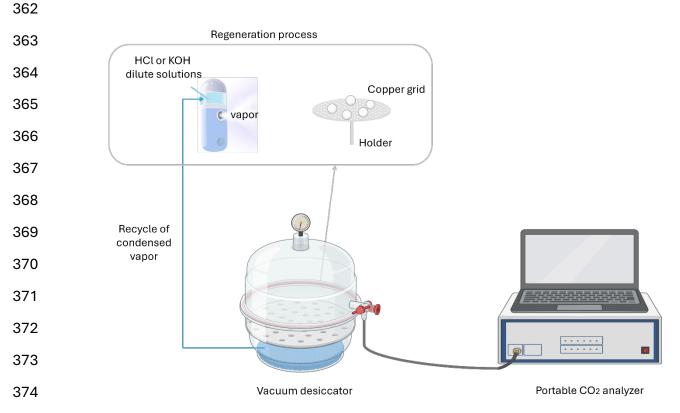
a, Calculated from the weight increase (%) as mmol g^{-1} monomer.

351

b, Breakthrough experiments and single-component isotherm results.

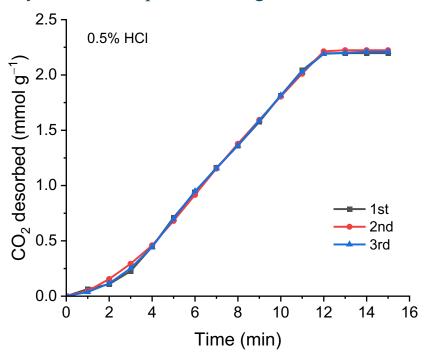
Supplementary Table 5 | Adsorption, desorption, and cycling properties of selected carbohydrate-based DAC sorbents.

	CO_2		Adsorpti	on condition	ıs			
Sorbent	uptake (mmol g ⁻¹)	CO ₂	Temp. (°C)	RH (%)	Carrier gas	Desorption condition	Cycling Stability	Ref.
			(Carbohyd	rate			
CTS/ZIF-8 composite	0.99	1 bar	30	0	-	vacuum, 90 °C	10 cycles, 4.35% loss	3
Pure chitosan	0.05	5 bar	25	0	-	-	-	4
Chitosan Grafted Graphene Oxide Aerogel	0.26	1 bar	25	-	-	-	-	6
AEAPDMS- NFC-FD	1.39	506 ppm	25	40	Compress ed air	Ar, 90 °C	20 cycles, 50% loss	17,18
Nanofibrillated Cellulose- Polyethylenimin e Foams (PEI-44)	1.55	400 ppm	25	40	Ambient air	N ₂ , 85°C	5 cycles, 3% loss	19
	~2.13ª	400 ppm		80	-	-	-	

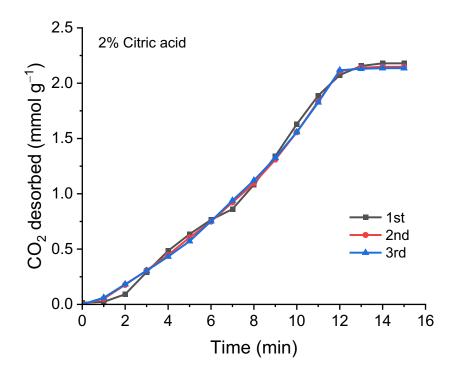

a, estimated from the CO₂ uptake curve versus humidity.

355

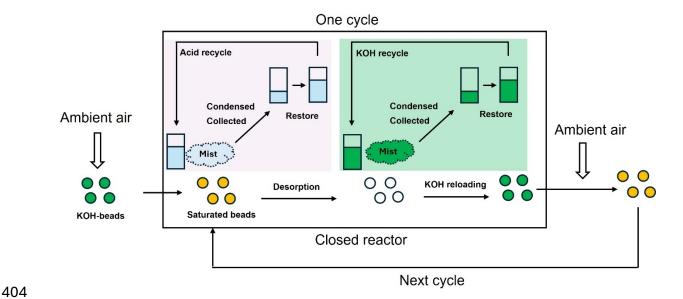
Supplementary Table 6 | Adsorption, desorption, and cycling properties of selected non-biomass-based DAC sorbents.

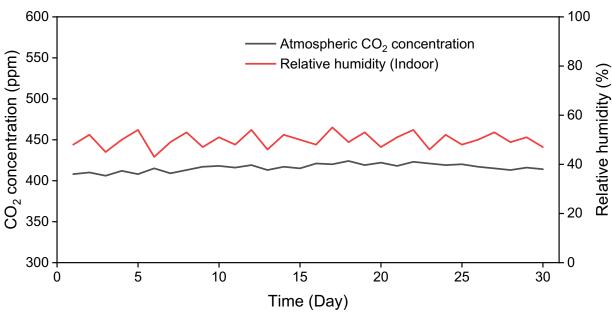

	CO_2		Adsorptio	n conditio	ns			
Sorbent	uptake (mmol g ⁻¹)	CO ₂	Temp. (°C)	RH (%)	Carrier gas	Desorption condition	Cycling Stability	Ref.
		Amine	-function	alized p	orous sup	port		
PEI@SBA-15	0.96	400 ppm	35	0	Не	110 °C	20 cycles, stable	20
PEI@Mesoporous carbon	2.25	400 ppm	25	0	N_2	110 °C	20 cycles, stable	21
PEI@Mg0.55Al-O	2.27	400 ppm	25	0	N_2	120 °C	20 cycles, 14% loss	22
		Coval	ent/Meta	l Organ	ic Framew	ork		
Zn(ZnOH) ₄ (bibta) ₃	1.32	395 ppm	25	0	N ₂ /O ₂	100 °C	5 cycles, stable	12
COF-999	2.02	400 ppm	25	50	N ₂ /O ₂	60 °C	100 cycles, stable	23
Ion-exchange resin								
Amine-based anion exchange resin in polypropylene	0.98	400 ppm	23	0.5	N ₂ /O ₂	water	1 cycle	10

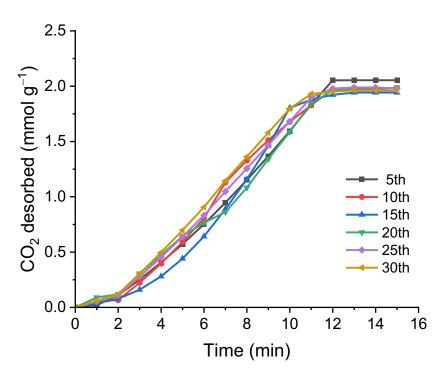
Section 13. Instrument for Desorption and Regeneration



Supplementary Fig. 24 | Schematic diagram of the desorption and regeneration instrument. 10 ml of acid/alkaline solution was loaded into the automatic humidifier (30 ml, 3 W, 5 V) with an acidic/alkaline mist production rate of 1.25–1.45 ml/min. The CO₂ in the 9.3 L reactor (vacuum desiccator) was removed by purging pure N₂ for 30 min. After the N₂ purging was ceased, the mist was generated for 13–15 min. The condensation of the mist was facilitated by an ice bath around the bottom of the desiccator.

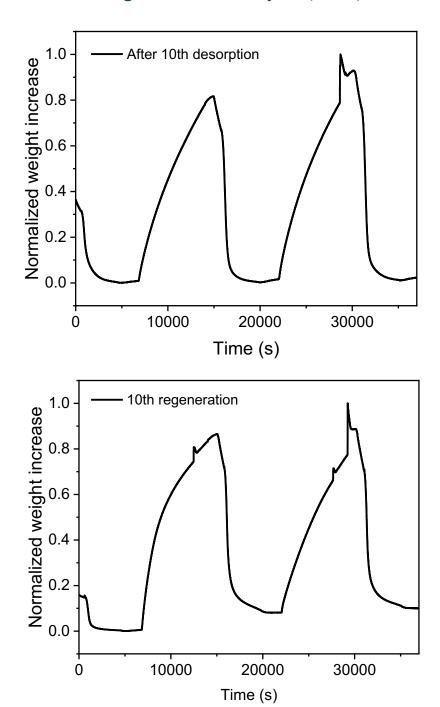

Section 14. Dynamic Desorption and Regeneration Measurements


Supplementary Fig. 25 | Dynamic desorption curves of saturated KOH-WPI AF microbeads under ambient air (~420 ppm CO₂, 40–60% relative humidity, 25 °C) using 0.5% HCl solutions. The gas inside the reactor was removed by N₂ purge for 30 min. The experiment was repeated three times.

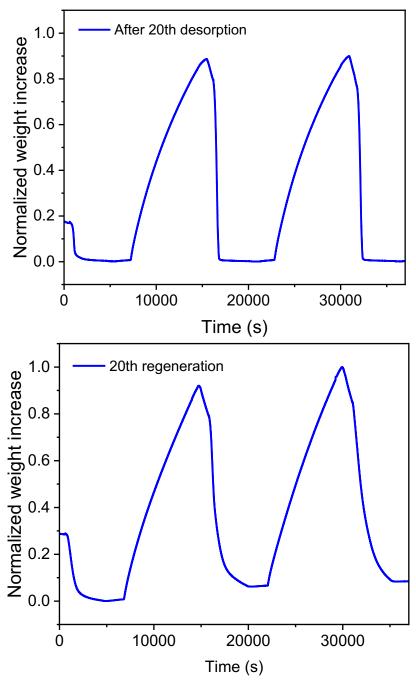

Supplementary Fig. 26 | Dynamic desorption curves of saturated KOH-WPI AF microbeads under ambient air (\sim 420 ppm CO₂, 40–60% relative humidity, 25 °C) using 2% citric acid solutions. The gas inside the reactor was removed by N₂ purge for 30 min. The experiment was repeated three times.

Supplementary Fig. 27 | **A schematic of the acid-alkali mist regeneration cycle.** KOH-WPI AF microbeads were saturated by ambient air (~420 ppm CO₂, 40–60% relative humidity, 25 °C) for 12–14 h. The acid or alkaline mist was collected by condensation and then restored to the initial value by adding fresh solutions in the humidifier. The desorption and regeneration process is continuous without any sample drying.

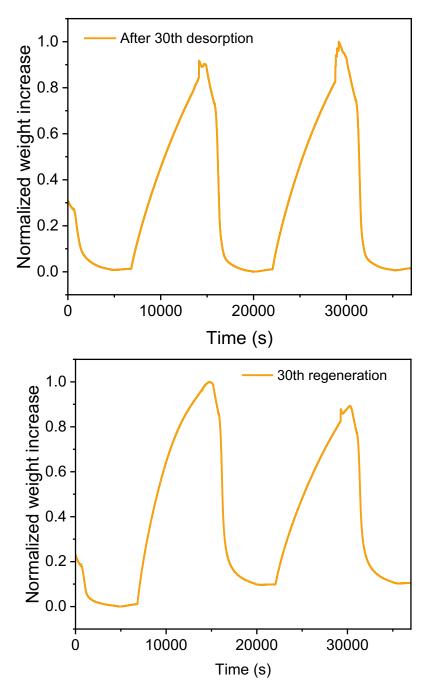
Supplementary Fig. 28 | Atmospheric CO₂ concentration (black) and RH (red) for 30 continuous days of operation using ambient air in Zürich, Switzerland.



Supplementary Fig. 29 | Dynamic desorption curves of KOH-WPI AF microbeads saturated by ambient air (\sim 420 ppm CO₂, 40–60% relative humidity, 25 °C) after 5th, 10th, 15th, 20th, 25th, and 30th regeneration using 0.5% HCl solutions.


Supplementary Table 7 | The mist consumption of 0.5% HCl and 0.5% KOH during 30 cycles. The condensed HCl or KOH mist was collected and weighed, and the consumption was calculated from the difference in weight from the initial value (\sim 10 g) for each cycle. The density of 0.5% HCl and 0.5 % KOH at room temperature was assumed to be 1.002 g ml⁻¹ and 1.005 g ml⁻¹, respectively.

Cycle	HCl solution final weight (g)	HCl solution consumption	KOH solution final weight	KOH solution consumption
0	10.071	(g)	(g)	(g)
0	10.071	1.002	10.050	1.055
1	8.168	1.903	8.193	1.857
2	8.084	1.987	8.969	1.081
3	8.452	1.619	8.745	1.305
4	8.355	1.716	8.452	1.598
5	8.095	1.976	8.496	1.554
6	8.258	1.813	8.78	1.27
7	8.37	1.701	8.039	2.011
8	8.417	1.654	8.6	1.45
9	8.382	1.689	8.6	1.45
10	8.256	1.815	8.935	1.115
11	8.096	1.975	8.079	1.971
12	8.126	1.945	8.501	1.549
13	8.468	1.603	8.895	1.155
14	8.165	1.906	8.857	1.193
15	8.262	1.809	8.422	1.628
16	8.234	1.837	9.011	1.039
17	8.2	1.871	8.684	1.366
18	8.481	1.59	8.708	1.342
19	8.348	1.723	8.69	1.36
20	8.462	1.609	8.553	1.497
21	8.355	1.716	8.398	1.652
22	8.431	1.64	8.934	1.116
23	8.361	1.71	8.829	1.221
24	8.1	1.971	9.006	1.044
25	8.01	2.061	8.041	2.009
26	8.468	1.603	8.226	1.824
27	8.181	1.89	8.76	1.29
28	8.456	1.615	8.115	1.935
29	8.232	1.839	8.557	1.493
30	8.462	1.609	8.432	1.618


Section 15. Thermogravimetric Analysis (TGA)

Supplementary Fig. 30 | TGA curves of desorbed and regenerated KOH-WPI AF microbeads (10th) using compressed air (~420 ppm of CO₂, ~21% O₂, balanced in N₂) with 55% RH at 20 °C. Before the actual CO₂ adsorption measurements, the samples were degassed at 150 °C in N₂ for 30 min. CO₂ was then desorbed by pure N₂, heated to 120 °C at a rate of 10 °C per min, and held at this temperature for 30 min.

Supplementary Fig. 31 | TGA curves of desorbed and regenerated KOH-WPI AF microbeads (20th) using compressed air (\sim 420 ppm of CO₂, \sim 21% O₂, balanced in N₂) with 55% RH at 20 °C. Before the actual CO₂ adsorption measurements, the samples were degassed at 150 °C in N₂ for 30 min. CO₂ was then desorbed using pure N₂, heated to 120 °C at a rate of 10 °C per min, and held at this temperature for 30 min.

Supplementary Fig. 32 | TGA curves of desorbed and regenerated KOH-WPI AF microbeads (30th) using compressed air (~420 ppm of CO₂, ~21% O₂, balanced in N₂) with 55% RH at 20 °C. Before the actual CO₂ adsorption measurements, the samples were degassed at 150 °C in N₂ for 30 min. CO₂ was then desorbed by pure N₂, heated to 120 °C at a rate of 10 °C per min, and held at this temperature for 30 min.

Section 16. Density Functional Theory (DFT) Calculations

Carbamate pathway

Supplementary Table 8 | Reaction 1. ε-amino group of a single Lys residue (Lys-NH₂) attacks
 the CO₂ molecule, forms a transition state-1 (TS-1), and finally becomes intermediate-1 (Int-1):
 Lys-NH₂+COO⁻.

Name	Pathway	Delta G (kJ mol ⁻¹)
Initial state	0 — 0, 'H R-N-H0-H H	0
Transition state-1	0 R-N-HO-H	24.9
Intermediate-1	R-NH ₂ +COO- + H ₂ O	-31.2

Supplementary Table 9 | **Reaction 1-1**. Int-1 undergoes proton rearrangement through the hydrogen bond with water, forms another transition state (TS-1-1), and finally becomes Lys-

453 RNHCOOH.

Name	Pathway	Delta G (kJ mol ⁻¹)
Intermediate-1	R-NH ₂ +COO- + H ₂ O	0
Transition state-1-1	H - O - H - O - O - O - O - O - O - O -	43.6
Product	R-NHCOOH + H ₂ O	-68.9

Supplementary Table 10 | **Reaction 2.** Proton transfer occurs between the Int-1 and the hydroxide ion, which is a barrier-free reaction (strong base to weak base).

Name	Pathway	Delta G (kJ mol ⁻¹)
Initial state	R-NH ₂ +COO- + OH-	0
Product	O/H 	-133.9

 Supplementary Table 11 | Reaction 3. Proton transfer occurs between the Int-1 and the carbonate (stronger base than ε -amino group).

Name	Pathway	Delta G (kJ mol ⁻¹)
Initial state	R-NH ₂ +COO- + CO ₃ ² -	0
Product	0 - 0 H	-103.0

Bicarbonate pathway

Supplementary Table 12 | Reaction 4. The ΔG value is positive, indicating that the reaction
 is non-spontaneous and requires external energy, and is not driven by entropy alone.

Name	Pathway	Delta G (kJ mol ⁻¹)
Initial state	O T	0
Transition state	0 , H R R R R R R R R R R R R R R R R R R	-10.4
Product	O H	7.4

Supplementary Table 13 | Reaction 5. The ε -amino group acts as a hydrogen acceptor, catalyzing the reaction between hydroxide ion and CO_2 to form a hydrogen-bonded

466 bicarbonate complex.

Name	Pathway	Delta G (kJ mol ⁻¹)
Initial state	R-NH ₂ + OH- + CO ₂	0
Product	0 0 1 H R - NH2	-160.3

Supplementary Table 14 | **Reaction 6.** Water transfers a proton to the ε -amino group, resulting in a hydroxide ion, which subsequently attacks the CO₂, forming transition state 3 (TS-3). The final product is the bicarbonate-ammonium complex.

Name	Pathway	Delta G (kJ mol ⁻¹)
Initial state	O H H H H H H H H H H H H H H H H H H H	0
Transition state	0 — H H H H H H H H H H H H H H H H H H	41.3
Product	0 -0 + H R-N-H H	-72.8

Supplementary Table 15 | Reaction 7. Ammonium ions form hydrogen bond complexes with water, which prevent water from reacting with CO₂.

Name	Pathway	Delta G (kJ mol ⁻¹)
Initial state	R−NH ₂ + OH ⁻ + CO ₂	0
Product	O O O O O O O O O O O O O O O O O O O	-19.5

Supplementary Table 16 | **Reaction 8.** Hydroxide ion attacks the CO₂ to form bicarbonate.

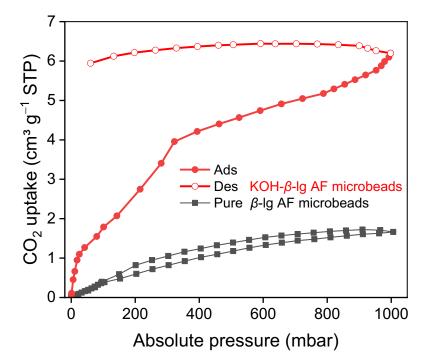
Name	Pathway	Delta G (kJ mol ⁻¹)
Initial state	OH^-+CO_2	0
Product	HCO ₃ ⁻	-127.2

Supplementary Table 17 | Reaction 9. Carbonate reacts with CO₂ and water to form bicarbonate.

Name	Pathway	Delta G (kJ mol ⁻¹)
Initial state	$CO_2 + CO_3^{2-} + H_2O$	0
Product	HCO ₃ ⁻	-75.35

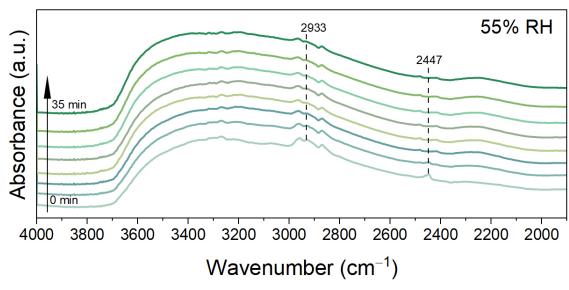
Supplementary Table 18 | Reaction 10. The dicarbonate and ammonium ions undergo proton
 transfer, and the dicarbonate decomposes to produce bicarbonate and carbon dioxide.

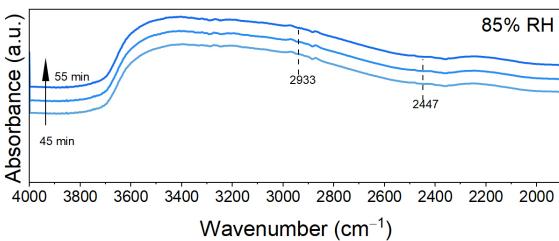
Name	Pathway	Delta G (kJ mol ⁻¹)
Initial state	$R-NH_3$ + $-\frac{1}{0}$ 0 + H_2O	0
Product	R-NH ₂ + CO ₂ + HCO ₃ - + H ₂ O	23.9

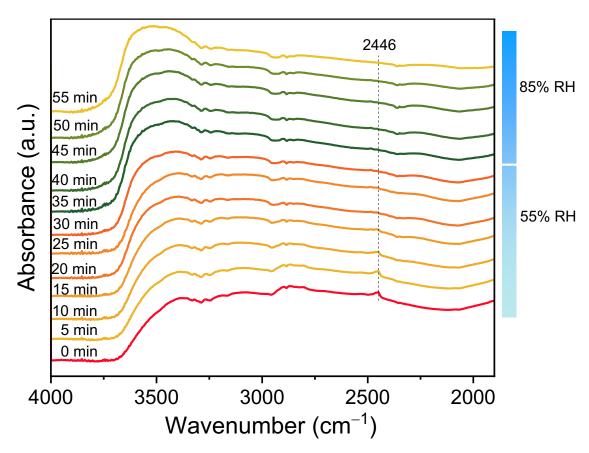

Geometric constraints on the carbamate pathway

Supplementary Table 19 | **Reaction 11.** Due to the fixed 4–5 Å spacing between two Lys ε-amino groups within the fibril stack, water acts as a bridge for proton transfer, forming transition state-4 (TS-4) and finally becomes intermediate-4 (Int-4). Protons from Int-4 transfer preferentially to hydroxide, bicarbonate, or carbonate rather than to adjacent Lys residues.

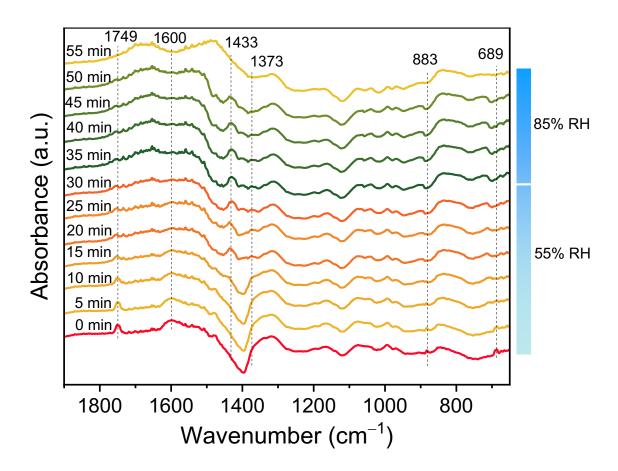
Name	Pathway	Delta G (kJ/mol)
Initial state	R-NH*COO- H H O H H R-NH ₂	0
Transition state	R-NH*COO- 	9.6
Product	R-NHCOO* H O H R-NH ₂ *	-35.4


Section 17. Single-Component CO₂ Sorption Measurements

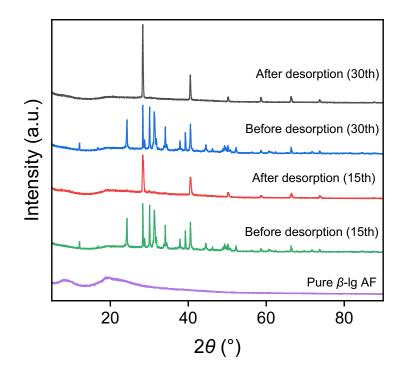



Supplementary Fig. 33 | Single-component CO₂ sorption isotherms of KOH- β -lg AF microbead measured at 298 K. Before the measurements, the samples were degassed by N₂ under vacuum for 5 h at 150 °C. The CO₂ capacity for pure (black curve) and KOH-modified (red curve) β -lg AF microbead is 0.08 mmol g⁻¹ and 0.29 mmol g⁻¹ at 1 bar, respectively.

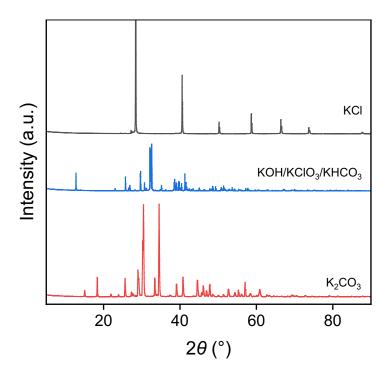
Section 18. *In situ* Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)



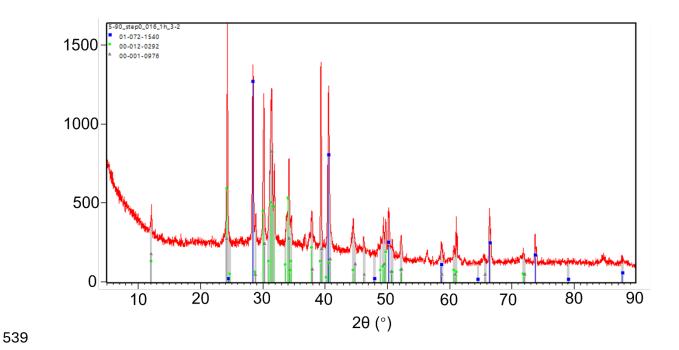
Supplementary Fig. 34 | Time-resolved *in situ* DRIFTS spectroscopy (4000 cm⁻¹ to 1900 cm⁻¹) of KOH-β-lg AF microbead under compressed air (purified ambient air, ~420 ppm CO₂) at 25 °C with 55% RH (up) and 85% RH (down). The measurement interval for each spectrum is 5 min. Before the actual CO₂ adsorption measurements, the samples were degassed at 120 °C in N₂ for 30 min.



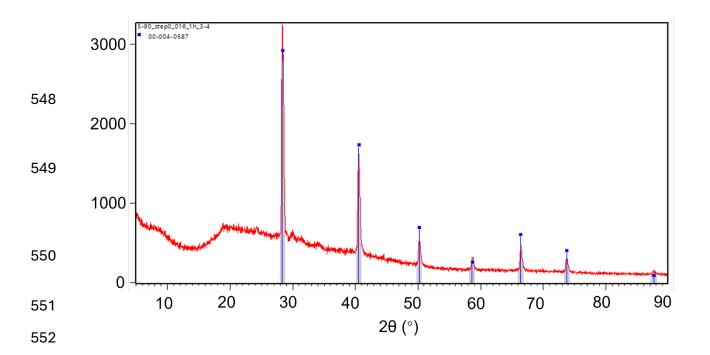
Supplementary Fig. 35 | Time-resolved *in situ* DRIFTS spectroscopy (4000 cm⁻¹ to 1900 cm⁻¹) of KOH-CNF microbead under compressed air (purified ambient air, ~420 ppm of CO₂) at 25 °C under 55% RH and 85% RH. The measurement interval for each spectrum is 5 min. Before the actual CO₂ adsorption measurements, the samples were degassed at 120 °C in N₂ for 30 min.



Supplementary Fig. 36 | Time-resolved *in situ* DRIFTS spectroscopy (1900 cm⁻¹ to 650 cm⁻¹) of KOH-CNF microbead under compressed air (purified ambient air, ~420 ppm of CO₂) at 25 °C under 55% RH and 85% RH. The measurement interval for each spectrum is 5 min. Before the actual CO₂ adsorption measurements, the samples were degassed at 120 °C in N₂ for 30 min.

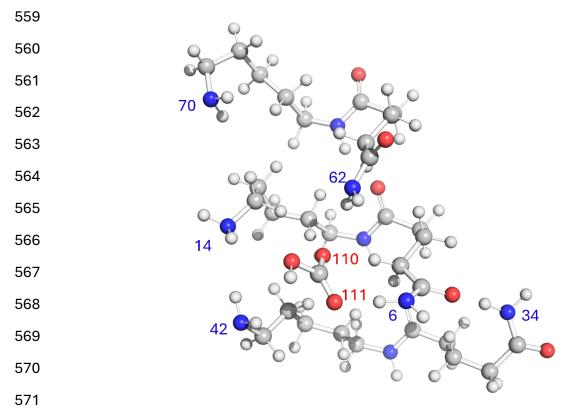

Section 19. Powder X-ray Diffraction (PXRD)

Supplementary Fig. 37 | PXRD patterns of KOH-WPI AF microbead after 15 and 30 cycles. The intensity values along the Y-axis were normalized for comparison.



Supplementary Fig. 38 | PXRD patterns of the reference materials KCl, KHCO₃, and K_2CO_3 . The intensity values along the Y-axis were normalized for comparison.

Visible	Ref. Code	Score	Compound Name	Displ. (°2θ)	Scale Fac.	Chem. Formula
1	01-072- 1540	66	Potassium Chloride	0.000	0.765	KCl
2	00-012- 0292	80	Potassium Hydrogen Carbonate	0.000	0.349	KHCO ₃
3	00-001- 0976	51	Potassium Hydrogen Carbonate	0.000	0.495	KHCO ₃


Supplementary Fig. 39 and Supplementary Table 20 | PXRD pattern analysis of the KOH-WPI AF microbeads before desorption (15th) according to the ICSD database.

Visible	Ref. Code	Score	Compound Name	Displ.(°2θ)	Scale	Chem.
					Fac.	Formula
1	00-004- 0587	81	Potassium Chloride	0.000	0.882	KC1

Supplementary Fig. 40 and Supplementary Table 21 \mid PXRD pattern analysis of the KOHWPI AF microbeads after desorption (15th) according to the ICSD database.

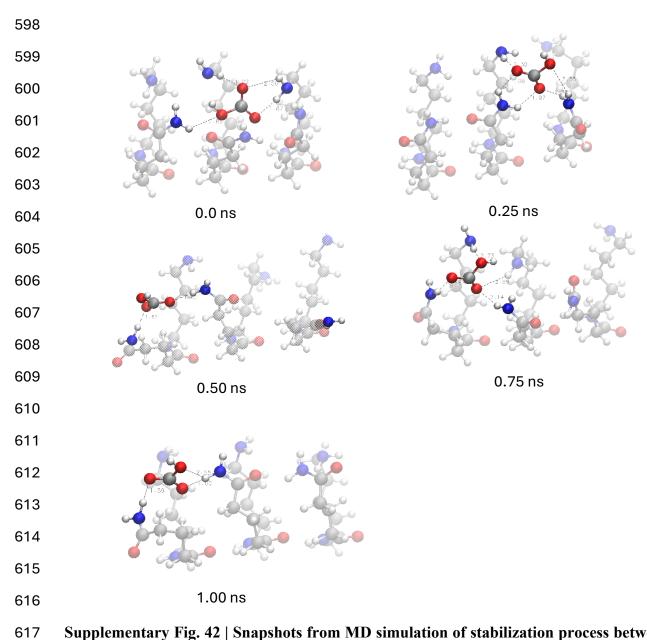
Section 20. Molecular Dynamics (MD) Calculations

Supplementary Fig. 41 | Selected three-layer molecular model containing adjacent Lys and Gln residues in each layer for MD simulation. The oxygen of the carbonyl group is marked 110; the oxygen of the hydroxyl group is marked 111; the hydrogen of the amide group in Gln is marked 6. The red sphere is a carbon atom, the blue sphere is a nitrogen atom, the gray sphere is an oxygen atom, and the white sphere is a hydrogen atom.

Supplementary Table 22 | Hydrogen bond information between the carbonyl oxygen ($O_{110-carbonyl}$) and hydrogen of amine and amide groups of Lys and Gln, within 1 ns simulation time at 298 K.

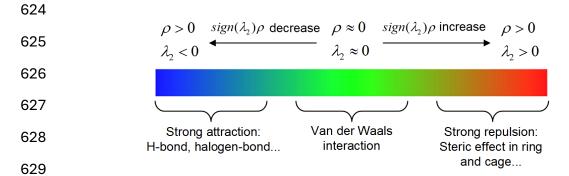
H Donor	H Acceptor	Frequency	Avg. Distance (Å)	Avg. Angle (°)
3	110	0.001	3.28	154.08
40	110	0.027	3.263	159.93
4	110	0.089	3.25	160.188
42	110	0.026	3.14	160.163
59	110	0.002	3.254	160.87
6	110	0.413	2.79	164.285
62	110	0.06	2.848	160.792
10	110	0.092	3.256	158.641
11	110	0.001	3.33	156.923
64	110	0	3.151	156.702
12	110	0.11	3.275	161.437
13	110	0.005	3.273	161.812
66	110	0.001	3.326	162.38
67	110	0.001	3.262	161.622
14	110	0.029	3.108	161.317
68	110	0	3.396	150.695
70	110	0.002	3.099	159.672
69	110	0	3.449	152.356

Supplementary Table 23 | Hydrogen bond information between the hydroxyl oxygen ($O_{111-hydroxyl}$) and hydrogen of amine and amide groups of Lys and Gln within 1 ns simulation time at 298 K.

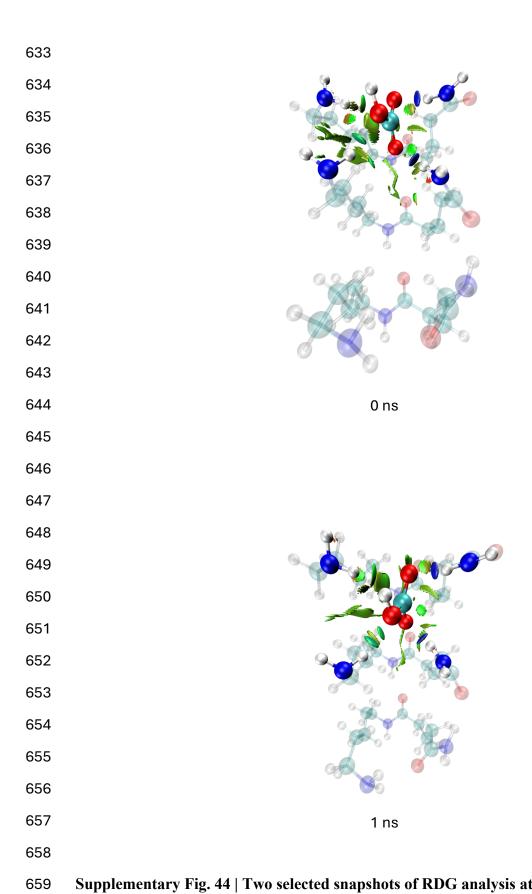

H Donor	H Acceptor	Frequency	Avg. Distance (Å)	Avg. Angle (°)
40	111	0.018	3.269	158.403
4	111	0.016	3.272	161.174
41	111	0	3.264	171.551
42	111	0.131	3.073	162.321
59	111	0.001	3.264	158.937
60	111	0.001	3.32	162.619
6	111	0.074	2.8	162.588
62	111	0.05	2.808	163.118
10	111	0.014	3.223	158.105
11	111	0.002	3.289	159.083
12	111	0.083	3.248	160.401
13	111	0	3.208	160.825
66	111	0.027	3.288	161.956
14	111	0.116	3.084	160.5
67	111	0.004	3.277	160.221
68	111	0.012	3.287	160.306
69	111	0.006	3.288	162.567
70	111	0.023	3.072	161.638

Supplementary Table 24 | Hydrogen bond information between the carbonyl oxygen ($O_{110-carbonyl}$) and hydrogen of amine and amide groups of Lys and Gln, within 1 ns simulation time at 333 K.

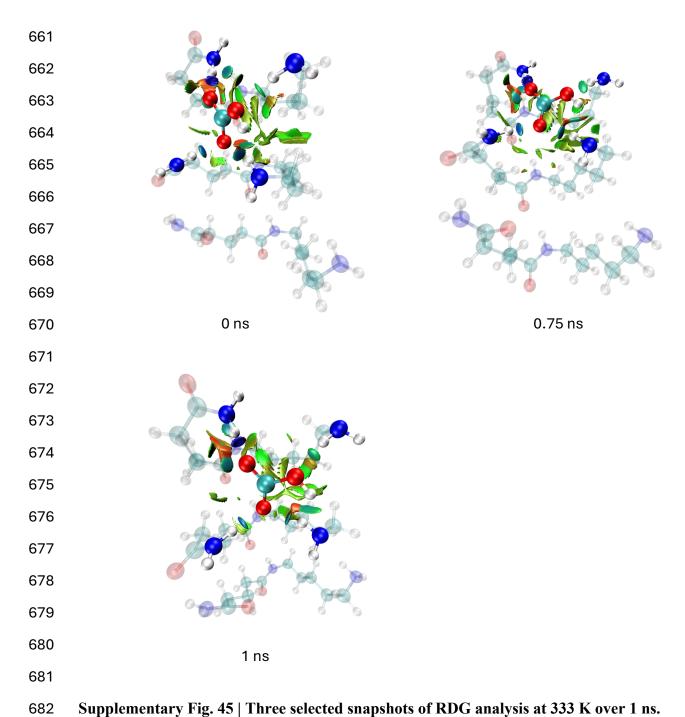
H Donor	H Acceptor	Frequency	Avg. Distance (Å)	Avg. Angle (°)
36	110	0.004	2.943	158.188
38	110	0.034	3.263	161.035
3	110	0.006	3.267	158.317
39	110	0.013	3.266	160.988
40	110	0.028	3.276	160.119
4	110	0.005	3.27	158.609
41	110	0.005	3.327	160.553
42	110	0.019	3.168	160.995
59	110	0	3.352	156.558
6	110	0.237	2.778	164.046
62	110	0.01	2.822	161.659
10	110	0.005	3.247	158.431
11	110	0.001	3.213	161.414
64	110	0	3.231	160.279
12	110	0.039	3.309	161.619
31	110	0.138	3.237	159.144
13	110	0	3.458	155.306
32	110	0.001	3.232	157.978
14	110	0.024	3.09	160.988
67	110	0.002	3.366	157.737
68	110	0	3.247	171.715
34	110	0.223	2.788	163.463
70	110	0.001	3.228	159.621
69	110	0.001	3.35	161.769

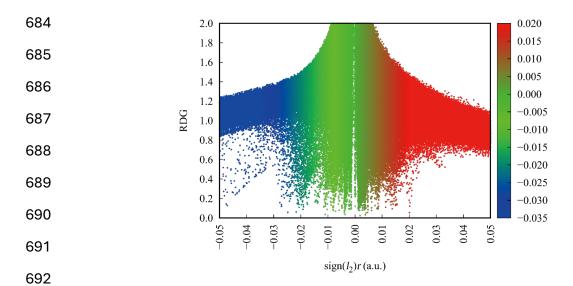

Supplementary Table 25 | Hydrogen bond information between the hydroxyl oxygen ($O_{111-hydroxyl}$) and hydrogen of amine and amide groups of Lys and Gln within 1 ns simulation time at 333 K.

H Donor	H Acceptor	Frequency	Avg. Distance (Å)	Avg. Angle (°)
36	111	0.001	3.036	157.682
38	111	0.014	3.257	158.809
3	111	0.001	3.244	158.68
39	111	0.007	3.285	160.927
40	111	0.022	3.254	160.523
4	111	0	3.242	160.175
41	111	0.006	3.304	161.077
42	111	0.044	3.154	161.011
60	111	0	3.341	159.522
6	111	0.03	2.778	162.263
8	111	0	3.288	159.913
62	111	0.004	2.817	161.887
10	111	0	3.289	153.744
11	111	0.008	3.276	162.02
64	111	0	3.172	158.9
12	111	0.023	3.228	158.781
31	111	0.008	3.272	159.092
66	111	0	3.344	160.442
13	111	0.001	3.291	160.501
32	111	0.005	3.236	157.484
14	111	0.128	3.061	161.252
67	111	0.002	3.27	160.074
68	111	0.002	3.241	157.838
34	111	0.235	2.777	165.018
70	111	0.009	3.03	162.424
69	111	0.002	3.246	160.407



Supplementary Fig. 42 | Snapshots from MD simulation of stabilization process between bicarbonate and the selected AF cluster within 1 ns at 333 K. The VMD snapshot was taken at 0 ns, 0.25 ns, 0.5 ns, 0.75 ns, and 1 ns.


Section 21. Reduced Density Gradient (RDG) Measurement


Supplementary Fig. 43 | **Representative example of RDG color mapping.** The blue, green, and red represent hydrogen bonding, van der Waals forces, and electrostatic interactions.

Supplementary Fig. $44\mid$ Two selected snapshots of RDG analysis at 298 K over 1 ns.

Supplementary Fig. 45 | Three selected snapshots of RDG analysis at 333 K over 1 ns.

Supplementary Fig. 46 | RDG analysis of the molecular interaction at 333 K at 0.75 ns.

698 Section 22. Life Cycle Assessment (LCA)

699 22.1 Target and scope definition

700 (1) Target

- 701 This study applies the Life Cycle Assessment (LCA) method based on the ISO 14040/14044
- standards, with DAC as the application scenario. It compares the environmental impacts of
- 703 different amine-modified sorbents, including AEAPDMS-NFC, PEI/TEPA-SBA-15, and COF
- under the same functional unit, providing a basis for the development of eco-friendly DAC
- sorbents.

706 (2) Functional unit

- 707 The selection of a functional unit for DAC should account for material durability and energy
- 708 efficiency under realistic operating conditions. Here, we define the functional unit as "the
- sorbent required to capture 1 kg CO₂ from air across 20 operating cycles. This definition enables
- 710 reasonable comparison between sorbent materials by evaluating long-term performance rather
- 711 than single-cycle capacity, which is critical for assessing environmental and economic
- 712 feasibility. The 20-cycle timeframe also captures potential degradation and stability effects that
- may not emerge in shorter tests, providing a more comprehensive basis for life cycle assessment
- and technology evaluation. The cyclic performance across 20 cycles of each selected sorbent is
- obtained from the publications (Supplementary Tables 3–6).
- 716 To meet the defined functional unit, 0.53 kg of AF microbeads is required, based on an average
- 717 CO₂ uptake of 2.0 mmol g⁻¹ across 20 cycles. By contrast, aminosilane-modified NFC requires
- 718 32.71 kg due to the intensive chemical pretreatment for cellulose recovery and amine
- modification, coupled with its lower average uptake (0.70 mmol g^{-1}), reflecting a 50% capacity
- loss over 20 cycles. For comparison, 50% PEI/SBA-15, 50% TEPA/SBA-15, and COF require
- 721 0.85, 0.50, and 0.55 kg, respectively, reflecting uptake capacities of 1.34, 2.30, and 2.05 mmol
- 722 g⁻¹ across 20 cycles. To standardize energy accounting, the reported synthesis processes,
- 723 including drying and calcination, were assumed to be conducted using the same laboratory
- 724 equipment (hot plate, oven, refrigerator, freeze dryer, and rotary evaporator).

725 (3) System boundary

- 726 The system boundary for the LCA of DAC sorbents is defined as sorbent production from raw
- materials followed by DAC operation across 20 cycles. For AF-based sorbents, this includes
- 728 AF assembly from whey and alkali functionalization. For NFC-, silica-, and COF-supported
- sorbents, the synthesis of precursors together with subsequent amine modification is considered.

730 In all cases, electricity inputs for the above processes, as well as for thermal and acid-hydroxide 731 mist regeneration, are included within the boundary. 732 (4) Cut-off criteria 733 Based on the defined system boundary, data collection in this study follows four criteria: 734 (A) Foreground data should include all primary material and energy inputs for each unit 735 process. 736 (B) Auxiliary materials (e.g., wastewater treatment reagents or trace additives) accounting for 737 <1% of total material consumption may be excluded, provided their cumulative share does not 738 exceed 5%. 739 (C) General solid waste representing <1% of total emissions may be excluded. 740 (D) Infrastructure (roads, buildings), process equipment, and consumption or emissions associated with personnel and living facilities are excluded. 741

22.2 Process data collection

Supplementary Table 26 | Consumption of material and energy of KOH-AF microbead production and regeneration for capturing 1 kg CO₂ from ambient air with 20 cycles.

	Items	Quantities	Unit
	Whey protein isolate	0.51	kg
Material	Hydrochloric acid	0.11	kg
consumption	Potassium hydroxide	0.11	kg
-	Water	433.05	L
	Fibrilization	1.20	kWh
Energy consumption	Bead synthesis	38.74	kWh
	20-cycle operation	0.15	kWh
Product outputs	Fibril microbead	0.53	kg

Supplementary Table 27 | Consumption of material and energy of AEAPDMS-NFC^{17,24} production and regeneration for capturing 1 kg CO₂ from ambient air with 20 cycles.

	Items	Quantities	Unit
Material	For AEAPDMS (3-		
consumption	aminopropylmethyldiethoxysilane) synthesis		
	γ-chloropropyl-methyldichlorosilane	0.072	kg
	γ-chloropropyl-methyldiethoxysilane	1.89	kg
	Potassium iodide	0.0090	kg
	Dry ammonia	3.84	kg
	Sodium methylate	0.15	kg
	Ethanol	4.43	kg
	For NFC (Nanofibrillated Cellulose) synthesis		
	Bleached kraft pulp	40.82	kg
	Deionized water	3586	L
	Sodium hydroxide	34.23	kg
	Carboxymethylcellulose	4.40	kg
Energy consumption	NFC production	840	kWh
•	Freeze-drying	80	kWh
	Thermal treatment	50	kWh
	20-cycle operation	100.0	kWh
Product outputs	AEAPDMS-NFC-FD cryogel	32.71	kg

Supplementary Table 28 | Consumption of material and energy of 50% TEPA/SBA-15²⁰ production and regeneration for capturing 1 kg CO₂ from ambient air with 20 cycles.

	Items	Quantities	Unit
Material consumption	For SBA-15 synthesis		
	Pluronic P123	0.32	kg
	TEOS	0.62	kg
	HCl (36%)	1.89	kg
	Deionized water	8.5	kg
	For amine loading		
	TEPA	0.25	kg
	Methanol	9.81	kg
Energy consumption	SBA-15 Synthesis	467.3	kWh
	TEPA Impregnation	3.28	kWh
	20-cycle operation	99.0	kWh
Product outputs	50% TEPA/SBA-15	0.85	kg

Supplementary Table 29 | Consumption of material and energy of 50% PEI/SBA-15²⁰ production and regeneration for capturing 1 kg CO₂ from ambient air with 20 cycles.

	Items	Quantities	Unit
Material consumption	For SBA-15 synthesis		
	Pluronic P123	0.55	kg
	TEOS	0.11	kg
	HCl (36%)	3.24	kg
	Deionized water	14.5	kg
<u>.</u>			
	For amine loading		
	PEI	0.43	kg
	Methanol	16.80	kg
Energy consumption	SBA-15 Synthesis	799.80	kWh
	PEI Impregnation	4.71	kWh
	20-cycle operation	100.60	kWh
Product outputs	50% TEPA/SBA-15	0.50	kg

Supplementary Table 30 | Consumption of material and energy of COF²³ production and regeneration for capturing 1 kg CO₂ from ambient air with 20 cycles.

	Items	Quantities	Unit
Material consumption	COF-999-N ₃ Synthesis:		
	TCPB((1,3,5-tris(4-cyanomethylphenyl)benzene))	0.26	kg
	BPDA-N ₃ (3,3'-bis[(6-azidohexyl)oxy]-4,4'-biphenyldicarbaldehyde)	0.46	kg
	Cs ₂ CO ₃ (cesium carbonate)	0.60	kg
	1,2-dichlorobenzene	10.041	kg
	1-butanol	6.24	kg
	Methanol	365.67	kg
	COF-999-NH ₂ Synthesis:		
	PPh ₃ (triphenylphosphine)	1.11	kg
	Methanol	210.83	kg
	Water	33.20	kg
	Methanol	16.80	kg
	COF-999 Functionalization:		
	Toluene	26.70	kg
	Acetic acid	0.081	kg
	Aziridine	1.28	kg
	1 M NaOH in methanol	609.37	kg
	Methanol	79.20	kg
Energy consumption	COF-999-N ₃ Synthesis	907.40	kWh
-	COF-999-NH ₂ Synthesis	367.40	kWh
	COF-999 Functionalization	1,338.90	kWh
	20-cycle operation	40.0	kWh
Product outputs	COF-999	0.55	kg

771 22.3 Life cycle impact assessment (LCIA)

(1) Impact assessment method

773 The LCIA is conducted using the ReCiPe 2016 V1.10 midpoint (H) impact assessment method,

which includes 18 environmental impact indicators.

775

777

778

772

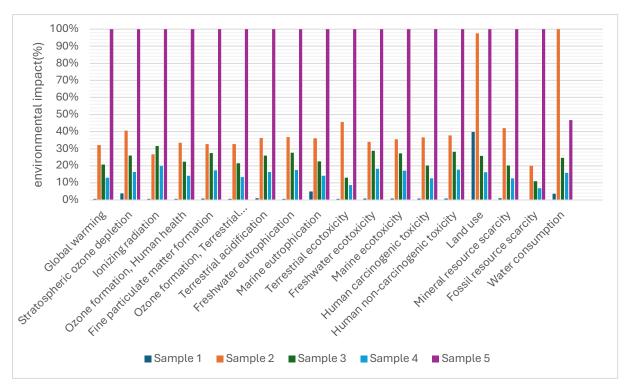
776 Supplementary Table 31 | Environmental impact indicators categories for LCA.

Impact category	Unit	
Global warming	kg CO ₂ eq	
Stratospheric ozone depletion	kg CFC11 eq	
Ionizing radiation	kBq Co-60 eq	
Ozone formation, Human health	kg NO _x eq	
Fine particulate matter formation	kg PM2.5 eq	
Ozone formation, Terrestrial ecosystems	kg NO _x eq	
Terrestrial acidification	kg SO ₂ eq	
Freshwater eutrophication	kg P eq	
Marine eutrophication	kg N eq	
Terrestrial ecotoxicity	kg 1,4-DCB	
Freshwater ecotoxicity	kg 1,4-DCB	
Marine ecotoxicity	kg 1,4-DCB	
Human carcinogenic toxicity	kg 1,4-DCB	
Human non-carcinogenic toxicity	kg 1,4-DCB	
Land use	m ² a crop eq	
Mineral resource scarcity	kg Cu eq	
Fossil resource scarcity	kg oil eq	
Water consumption	m^3	

779 (2) Impact assessment results

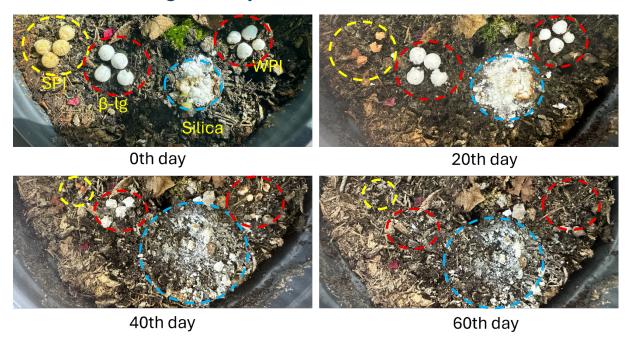
Supplementary Table 32 | Comparison of LCIA results between AF microbead and selected four sorbents for capturing 1 kg CO₂ from ambient air with 20 cycles.

Impact category	Unit	This work	AEAPDMS- NFC	PEI/SBA-15	TEPA/SBA-15	COF
Global warming	kg CO ₂ eq	22.82354483	1098.3367	709.22089	447.94778	3421.81974
Stratospheric ozone depletion	kg CFC11 eq	3.42203E-05	0.000362491	0.0002326	0.000147643	0.00089398
Ionizing radiation	kBq Co-60 eq	1.693063999	66.56292	78.952494	49.748102	249.757763
Ozone formation, Human health	kg NO _x eq	0.052622417	2.4043065	1.6142727	1.0193991	7.17086086
Fine particulate matter formation	kg PM2.5 eq	0.042934053	1.7002477	1.4210086	0.8968314	5.18212854
Ozone formation, Terrestrial ecosystems	kg NO _x eq	0.054070925	2.525533	1.6534097	1.0437564	7.71951491
Terrestrial acidification	kg SO ₂ eq	0.097870259	3.3150415	2.3713933	1.4978141	9.12443574
Freshwater eutrophication	kg P eq	0.010534155	0.54518094	0.4095353	0.25831168	1.47614375
Marine eutrophication	kg N eq	0.005366405	0.03882813	0.0244159	0.015362818	0.10771758
Terrestrial ecotoxicity	kg 1,4-DCB	118.3167207	8956.3156	2573.6473	1700.0016	19647.4165
Freshwater ecotoxicity	kg 1,4-DCB	1.324511615	50.887576	43.233012	27.273641	149.714212
Marine ecotoxicity	kg 1,4-DCB	1.776645567	74.14742	56.738599	35.880911	208.279418
Human carcinogenic toxicity	kg 1,4-DCB	3.389784056	147.71579	81.425163	51.417715	402.740701
Human non-carcinogenic toxicity	kg 1,4-DCB	27.25549646	1119.9162	834.59406	526.80007	2958.50153
Land use	m ² a crop eq	23.04132398	56.562695	14.913096	9.4051898	57.935383
Mineral resource scarcity	kg Cu eq	0.06953164	2.6167137	1.2557484	0.79497536	6.22842128
Fossil resource scarcity	kg oil eq	5.1748631	340.28618	187.52261	118.24692	1706.4028
Water consumption	m ³	0.68296118	39.18485	4.5131879	2.9011939	18.3424054


(3) Interpretation of LCIA results

808

809


784 The LCIA results show that, under the same functional unit (capturing 1 kg CO₂ under 20 cycles) 785 and comparable system boundary conditions, the AF microbead exhibits a significantly lower 786 787 environmental impact than the amine-based sorbents. Among the 18 selected environmental 788 impact indicators, AF microbead demonstrates unparalleled environmental performance, with impacts reduced by more than 95–99% across nearly all categories when benchmarked against 789 NFC (set to 100%). Even when compared with established amine-silica sorbents, this work 790 791 consistently delivers an order of magnitude lower burdens, underscoring its potential as a truly 792 sustainable DAC material²⁵. 793 For eutrophication, this work records only 0.71% of NFC in freshwater and 4.99% in marine 794 systems, representing reductions of more than 99% relative to NFC and at least 4–7 times lower 795 impacts than PEI-silica (22–36%) and TEPA-silica (18–28%). Resource consumption is also 796 minimized: water use accounts for 1.74% of NFC, compared with 7–12% for amine-silica. Mineral resource scarcity is only 1.12%, nearly 20–40 × lower than PEI-silica (42.0%) and 797 798 TEPA-silica (20.2%). Fossil resource use falls to 0.30%, confirming a 97–99% advantage. Similar margins reduce human health impacts. Carcinogenic toxicity is 0.84% of NFC, versus 799 800 20–37% for amine–silica. Non-carcinogenic toxicity remains at 0.92%, compared with 28–38% 801 for silica-based sorbents. Freshwater and marine ecotoxicity are reduced to ~0.85-0.88%, at 802 least 30 × lower than TEPA-silica and PEI-silica. 803 Air-quality indicators show the same pattern. Fine particulate matter formation is 0.83%, while 804 ozone formation (human health) is 0.73%, both far below TEPA-silica (22–27%) and PEI-silica 805 (33%).Climate-related burdens further highlight the advantage. The global warming impact is only 806 0.67% of NFC, more than 30 times lower than amine-silica. Stratospheric ozone depletion is 807

3.83%, still an order of magnitude below silica benchmarks.

Supplementary Fig. 47 | **Bar diagram of the LCA results.** Samples 1, 2, 3, 4, and 5 represent this work, AEAPDMS-NFC, TEPA/SBA-15, PEI/SBA-15, and COF, respectively.

814 Section 23. Biodegradability Test

Supplementary Fig. 48 | Biodegradability of KOH-modified SPI, β -lg, WPI AF microbeads, and PEI-grafted mesoporous silica. The tested material was placed on the soil surface in an indoor flower pot for full exposure to ambient air (~420 ppm CO₂, 28–30 °C, 30–40% RH) during June–August 2025. To minimize the influence of water on degradation, watering was limited to once every two to three weeks. Note that the drying of the soil was caused by high temperature and water insufficiency.

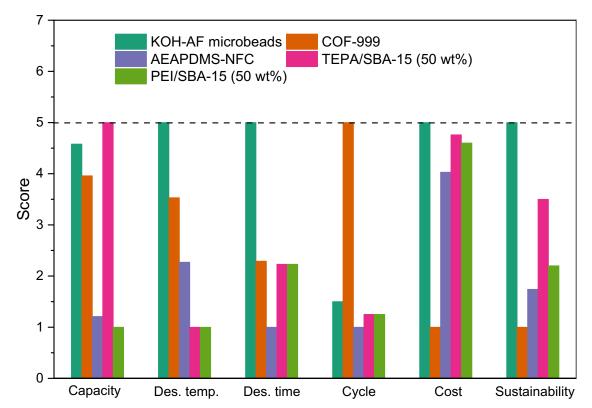
Section 24. The Ranking Efficiency Product (REP)

24.1 Definition and calculation

To enable a more systematic and comparable assessment of CO₂ capture, we rely on the compact index provided by the ranking efficiency product (REP)²⁶, which integrates normalized scores of the six main assessement key criteria, such as: i) adsorption capacity, ii) regeneration temperature, iii) regeneration time, iv) cycling stability, v) production cost, vi) sustainability (glo from the LCA analysis). This composite metric provides a quantitative basis for benchmarking different CO₂ capture technologies, facilitating the evaluation of trade-offs between their respective advantages and limitations.

To calculate the REP value for any (j) of the CO₂ capture technologies considered, we use the following equation²⁶.

$$REP_j = \left[\prod_{i}^{n} (r_i/r_{i-MAX})_j\right]^{1/n}$$


Where r_i is the individual ranking score for the characteristic i of the CO₂ capture technology j under scrutiny. According to this simple approach, a technology j can be evaluated by ranking each i of the n independent characteristics (6 in the present case) between a minimum r_{i-MIN} and a maximum rank, r_{i-MAX} . REP as defined above varies between (r_{i-MIN}/r_{i-MAX}) and 1, for the worst and best performing technologies, respectively. The individual values from which r_i are calculated are given in Supplementary Fig. 49. Individual literature values are ranked on linear scales and normalized, to vary between 1 (minimum score) and 5 (maximum score).

24.2 Calculation boundaries

 Following the sustainability framework of our previous work²⁶, technological sustainability should be assessed not solely by CO₂ capture capacity but through a comprehensive analysis of environmental, energetic, and economic factors²⁷. To ensure a unified and quantitative comparison across sorbents with differing physicochemical and operational characteristics, each parameter was linearly normalized to a five-point scale (1-5), where 5 represents the best achievable performance and 1 the least favorable. The scaling references were fixed according to experimentally or literature-validated benchmarks. The CO₂ uptake capacity was linearly scaled between 1.34 mmol g⁻¹ (1 point) and 2.30 mmol g⁻¹ (5 points)²⁸. The desorption temperature was inversely rated from 25 °C (5 points) to 120 °C (1 point), and the desorption time from 11 min (5 points) to 60 min (1 point). The cycling stability was proportionally scaled up to 100 cycles (5 points). The capture cost was inversely scaled using the experimentally derived cost to capture 1 kg CO₂ over 20 cycles (Section 22.2), with 3.04-8.64 € kg⁻¹ CO₂ (8.64 € for 5 points) for the KOH-AF microbeads and proportionally lower scores up to 1119.78 € kg⁻¹ CO₂ (1 point) for the most energy-intensive COF system. Finally, the life-cycle CO₂ emission (kg CO₂ eq per kg CO₂ captured) was inversely scaled between 22.8 (5 points) and 3421.82 (1 point). The overall sustainability index (REP₍₁₋₅₎) was then calculated as the geometric mean of the six normalized scores, integrating environmental, energetic, and economic contributions into a single dimensionless indicator.

Using this multi-criteria REP analysis, the KOH–AF microbeads exhibited the highest overall sustainability (REP ≈ 0.80) among representative thermally regenerable DAC sorbents (**Supplementary Fig. 49**). Crucially, their CO₂ uptake of 2.20 mmol g⁻¹ was measured under real ambient air (~420 ppm CO₂, ~21 % O₂, 40–55% RH), whereas the comparison sorbents, such as AEAPDMS-NFC and PEI/TEPA-silica, were tested in O₂-free simulated air, conditions that overestimate amine performance by suppressing oxidative degradation. Even under these more demanding, realistic conditions, the AF microbeads achieved thermal-free regeneration (25 °C, ~11 min), outperforming heat-driven COF and amine–silica systems (60–120 °C). Their high REP arises from the synergy of low-temperature, rapid regeneration, minimal life-cycle CO₂ emissions (22.8 kg CO₂-eq kg⁻¹ CO₂), and low capture cost (8.64 \in kg⁻¹ CO₂ over 20 cycles). In contrast, COF-999 and AEAPDMS–NFC display much higher embodied emissions (\approx 1100–3400 kg CO₂-eq kg⁻¹ CO₂) and costs (\approx 280–1120 \in kg⁻¹ CO₂), yielding markedly lower REP values (0.45–0.52). Analogous to adsorption technologies in sustainable water purification, these results highlight that waste-protein-derived amyloid-fibril sorbents, built

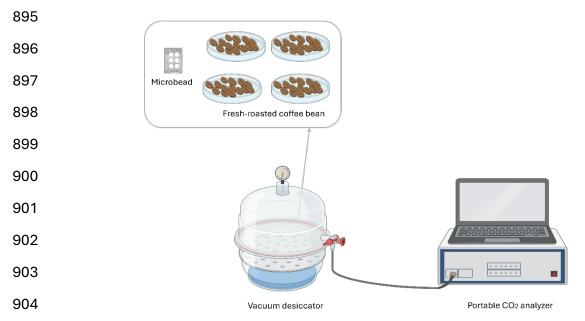
from circular, biodegradable feedstocks, can rival, and, when evaluated under realistic ambient-air conditions, surpass synthetic frameworks in overall sustainability, situating them within the most sustainable quadrant of the DAC landscape.

Supplementary Fig. 49 | A comparison of the technological edges of KOH-WPI AF microbeads with sorbents described in the LCA section according to the rank product statistics. 1 and 5 correspond to the worst and best performance, respectively.

Section 25. Techno-Economic Assessment (TEA)

Supplementary Table 33 \mid Cost analysis for KOH-WPI AF microbeads for capturing 1 kg and 1 ton CO₂ from air.

	Price	Unit	input	unit
Whey protein	0.80-1.40	EUR/kg	3.80^{b}	kg
HC1	0.4233	EUR/kg	0.11	kg
NaOH	0.382	EUR/kg	0.11	kg
Water	8.08E-05	EUR/kg	433.05	kg
Electricity	0.1070	EUR/kWh	12.45	kWh
Total cost	3.04	EUR	1	kg CO ₂
	3.58^{c}	USD		
	342^{d}	EUR	1	ton CO ₂
	372	USD	1	ton CO ₂

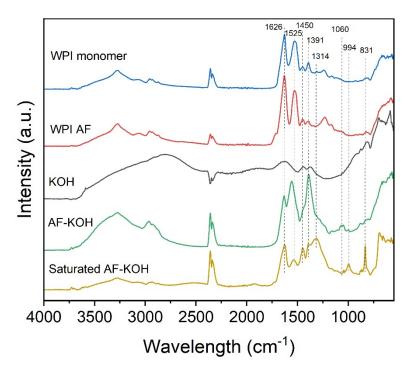

a, lower-end animal feed grade whey powder.

884

885 886

- 888 *b*, The raw whey powder required to obtain 0.506 g WPI isolate.
- c, The value in EUR was converted to US\$2022 terms using annual exchange rates from the International Monetary Fund (IMF)²⁷
- d, Adsorbent consumption is assumed to be 3.80 kg under 3000 cycles, 3.6 kWh per cycle,
 and CO₂ uptake is assumed to be 2.0 mmol g⁻¹.

Section 26. Roasted Coffee Bean Degassing


Supplementary Fig. 50 | Schematic diagram of CO₂ removal experiments using KOH-AF WPI microbeads for freshly roasted coffee beans. Freshly roasted coffee beans were purchased from a local coffee shop. The coffee beans without any treatment served as the blank.

Supplementary Fig. 51 | Comparison of in-pack gas volume during coffee bean storage. Each bag contained 50 g of freshly roasted coffee beans. Commercial coffee packaging typically employs a one-way degassing valve to vent CO₂ while restricting O₂ ingress. To isolate the effects of gas capture, the freshly roasted beans were sealed without prior degassing or N₂ purging. In this valveless configuration, a commercial oxygen adsorbent was included to minimize the influence of residual O₂ on pouch swelling, for example, from lipid oxidation. a, Without any sorbent, the bag exhibited pronounced swelling, primarily due to CO₂ evolution and residual O₂. b, With only the oxygen adsorbent, swelling was reduced but remained evident

because CO₂ was neither vented nor captured. c, When both the oxygen adsorbent and CO₂-

capturing microbeads were included, the bag showed the smallest headspace volume, consistent

Supplementary Fig. 52 | FT-IR spectra of KOH-WPI AF microbead before and after coffee bean degassing experiment.

Section 27. In vitro Simulated Digestion

Supplementary Table 34 | Free amino acid analysis of pure AF microbeads after simulated in vitro digestion. The values are representative of three independent replicates (n = 3).

	Pure AF microbead			
Item	Amino acid content (mg g ⁻¹)			
Asp	115.76, 112.41, 116.81			
Thr	43.84, 46.00, 44.7			
Ser	41.87, 39.67, 43.42			
Glu	192.75, 176.56, 192.91			
Pro	52.73, 53.31, 54.61			
Gly	34.65, 36.39, 35.82			
Ala	40.26, 38.79, 41.09			
Cys	20.49, 20.64, 20.76			
Val	33.15, 31.81, 32.96			
Met	12.06, 10.85, 11.88			
Ile	27.43, 28.6, 27.28			
Leu	75.49, 71.14, 76.65			
Tyr	19.30, 17.54, 19.35			
Phe	25.12, 23.69, 25.16			
Lys	63.86, 60.52, 67.05			
His	15.45, 16.28, 15.90			
Arg	17.25, 17.47, 16.59			

Supplementary Table 35 | Free amino acid analysis of spent KOH-WPI AF microbeads from in-pack experiment after simulated in vitro digestion. The values are representative of three independent replicates (n=3).

CO ₂ -saturated AF microbeads		
Item	Amino acid content (mg g ⁻¹)	
Asp	99.02, 91.52, 108.49	
Thr	38.66, 38.29, 39.18	
Ser	41.15, 44.58, 39.86	
Glu	156.69, 169.92, 146.79	
Pro	62.44, 63.92, 62.25	
Gly	42.09, 42.2, 43.46	
Ala	35.44, 36.95, 35.84	
Cys	15.69, 15.42, 16.44	
Val	27.92, 28.88, 27.41	
Met	9.45, 8.92, 9.96	
Ile	27.11, 27.06, 27.2	
Leu	61.73, 60.55, 62.71	
Tyr	17.69, 16.94, 18.16	
Phe	22.85, 23.17, 22.48	
Lys	44.63, 43.65, 44.58	
His	12.95, 13.46, 11.92	
Arg	15.39, 14.52, 14.14	

938 Section 28. Potential Application in Fertilizer

940

941

939 Supplementary Table 36 | Estimated N: K ratio of spent KOH-WPI AF microbeads.

Quantity	Value	Formula
AF mass (g)	5.00	Baseline for 5:1 example
KOH mass (g)	1.00	From AF: KOH = 5:1
Protein N content (wt%)	16.0%	Jones factor 6.25
Nitrogen mass, N (g)	0.80	$0.16 \times AF$ mass
K mass fraction in KOH	0.697	39.10/56.11
Potassium mass, K (g)	0.697	0.697 × KOH mass
N: K by mass	1.15:1 (this work)	0.80:0.697
	0.34:1 (Potassium nitrate)	
	1.20:1 (NPK 20 20 20)	

942 References

- 1. Fakhraee, M., Planavsky, N. J. & Reinhard, C. T. Ocean alkalinity enhancement through restoration of blue carbon ecosystems. *Nat. Sustain.* **6**, 1087–1094 (2023).
- Sabine, C. L. *et al.* The Oceanic Sink for Anthropogenic CO2. *Science* **305**, 367–371
 (2004).
- 3. Fan, M. *et al.* Structuring ZIF-8-based hybrid material with hierarchical pores by in situ synthesis and thermal treatment for enhancement of CO2 uptake. *J. Solid State Chem.* **269**, 507–512 (2019).
- 4. Kumar, S., de A. e Silva, J., Wani, M. Y., Gil, J. M. & Sobral, A. J. F. N. Carbon dioxide
 capture and conversion by an environmentally friendly chitosan based meso-tetrakis(4-sulfonatophenyl) porphyrin. *Carbohydr. Polym.* 175, 575–583 (2017).
- Wang, Y., Qu, L., Ding, H., Webley, P. & Li, G. K. Distributed direct air capture of carbon dioxide by synergistic water harvesting. *Nat. Commun.* 15, 9745 (2024).
- 955 6. Hsan, N., Dutta, P. K., Kumar, S., Bera, R. & Das, N. Chitosan grafted graphene oxide aerogel: Synthesis, characterization and carbon dioxide capture study. *Int. J. Biol. Macromol.* 125, 300–306 (2019).
- 958 7. Li, H. *et al.* Capturing carbon dioxide from air with charged-sorbents. *Nature* **630**, 654–659 (2024).
- 8. Zhu, Y., Booth, A. & Hatzell, K. B. Confinement Effects on Moisture-Swing Direct Air
 Capture. *Environ. Sci. Technol. Lett.* 11, 89–94 (2024).
- 962
 9. Chen, O. I.-F. *et al.* Water-Enhanced Direct Air Capture of Carbon Dioxide in Metal–
 963
 Organic Frameworks. *J. Am. Chem. Soc.* 146, 2835–2844 (2024).
- 964 10. Wang, T., Lackner, K. S. & Wright, A. Moisture Swing Sorbent for Carbon Dioxide Capture from Ambient Air. *Environ. Sci. Technol.* **45**, 6670–6675 (2011).
- McDonald, T. M. *et al.* Capture of Carbon Dioxide from Air and Flue Gas in the
 Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc). *J. Am. Chem. Soc.* 134, 7056-7065 (2012).
- 969 12. Bien, C. E. *et al.* Bioinspired Metal–Organic Framework for Trace CO2 Capture. *J. Am. Chem. Soc.* 140, 12662–12666 (2018).
- 971 13. CO2 capture using whey protein isolate.
- 972 14. Li, D. *et al.* Designed amyloid fibers as materials for selective carbon dioxide capture. 973 *Proc. Natl. Acad. Sci.* **111**, 191–196 (2014).
- 974 15. Dong, Z. et al. Amine-Functionalized Amyloid Aerogels for CO₂ Capture. 975 ChemSusChem 16, e202300767 (2023).
- 976 16. Peydayesh, M. *et al.* Amyloid fibril-UiO-66-NH₂ aerogels for environmental remediation. *Chem. Commun.* **58**, 5104–5107 (2022).
- 978 17. Gebald, C., Wurzbacher, J. A., Tingaut, P., Zimmermann, T. & Steinfeld, A. Amine 979 Based Nanofibrillated Cellulose As Adsorbent for CO₂ Capture from Air. *Environ. Sci.* 980 *Technol.* 45, 9101–9108 (2011).
- 981 18. Gebald, C., Wurzbacher, J. A., Borgschulte, A., Zimmermann, T. & Steinfeld, A. Single-Component and Binary CO₂ and H₂ O Adsorption of Amine-Functionalized
- 983 Cellulose. *Environ. Sci. Technol.* **48**, 2497–2504 (2014).
- 984 19. Sehaqui, H. *et al.* Fast and Reversible Direct CO₂ Capture from Air onto All-Polymer 985 Nanofibrillated Cellulose—Polyethylenimine Foams. *Environ. Sci. Technol.* **49**, 3167–3174 986 (2015).
- 987 20. Miao, Y., He, Z., Zhu, X., Izikowitz, D. & Li, J. Operating temperatures affect direct 988 air capture of CO2 in polyamine-loaded mesoporous silica. *Chem. Eng. J.* **426**, 131875 989 (2021).

- 990 21. Wang, J. *et al.* Direct Capture of Low-Concentration CO2 on Mesoporous Carbon-991 Supported Solid Amine Adsorbents at Ambient Temperature. *Ind. Eng. Chem. Res.* **54**, 992 5319–5327 (2015).
- 22. Zhu, X. *et al.* Efficient CO2 capture from ambient air with amine-functionalized Mg–Al mixed metal oxides. *J. Mater. Chem. A* **8**, 16421–16428 (2020).
- 995 23. Zhou, Z. *et al.* Carbon dioxide capture from open air using covalent organic frameworks. *Nature* **635**, 96–101 (2024).
- 24. Leonzio, G., Mwabonje, O., Fennell, P. S. & Shah, N. Environmental performance of different sorbents used for direct air capture. *Sustain. Prod. Consum.* **32**, 101–111 (2022).
- 999 25. Deutz, S. & Bardow, A. Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. *Nat. Energy* **6**, 203–213 (2021).
- 1001 26. Bolisetty, S., Peydayesh, M. & Mezzenga, R. Sustainable technologies for water purification from heavy metals: review and analysis. *Chem. Soc. Rev.* **48**, 463–487 (2019).
- 1003 27. Sievert, K., Schmidt, T. S. & Steffen, B. Considering technology characteristics to project future costs of direct air capture. *Joule* **8**, 979–999 (2024).
- 1005 28. Kwon, H. T. *et al.* Aminopolymer-Impregnated Hierarchical Silica Structures:
 1006 Unexpected Equivalent CO2 Uptake under Simulated Air Capture and Flue Gas Capture
 1007 Conditions. *Chem. Mater.* 31, 5229–5237 (2019).
- 1008 29. Anderson, B. A., Shimoni, E., Liardon, R. & Labuza, T. P. The diffusion kinetics of carbon dioxide in fresh roasted and ground coffee. *J. Food Eng.* **59**, 71–78 (2003).