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1 Experimental Set-up

Fig. shows the experimental setup used in this study. We employ an Yb-
doped fiber laser system (Active Fiber Systems) with a central wavelength
of \g = 1030 nm, corresponding to a central frequency of wy = 27 - 291 THz,
and a pulse duration of 7 &~ 40fs. The pulses propagate through a 2 f system
with focal lengths of f = 150mm. The quartz crystal is placed approxi-
mately 1.5mm beyond the focus to prevent damage. After the 2f system,
the fundamental and generated harmonics pass through a CaF, prism pair to
separate the harmonics from the fundamental. The fundamental is directed
to a beam dump, while the harmonic spectra are recorded using a commer-
cial Avantes spectrometer. Sample rotation is controlled by a custom-built

motorized stage, operated via a self-written MATLAB program.
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Figure S1: Experimental set-up used for this study.

2 Electronic structure of Quartz

In its ideal form, quartz possesses a wide band gap of F, = 8.9¢eV, with
the HOMO-LUMO splitting illustrated in Fig. [S2] However, defect centers
in real crystals introduce intermediate states within the band gap. A neg-
atively charged vacancy center exhibits distinct optical and magnetic prop-

erties through its interactions with neighboring atoms. Optical absorption



bands arise at approximately 3.7 eV, with a bandwidth of about AE = 0.3eV
at 1o (I = 27 x 70 THz), and another band near 4.6 eV [1]. The latter corre-
sponds to a transition from a doubly occupied o-type bonding state (located
at the top of the valence band) to a singly occupied o*-state (manifested as
split left and right lines at the bottom of the conduction band). The first
transition, critical for this study, corresponds to the excitation from the singly
occupied o*-state to the lowest conduction band and is strongly influenced
by the Si-Si distance [2].
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Figure S2: Schematic representation of the electronic structure of quartz
with an overall bandgap of £, = 8.9eV. The oxygen vacancy induces two
localized intermediate states with broadband absorption bands around 3.5eV
[2] or 3.7 [1] eV and around 4.6€V.

3 Electrons in a Periodic Potential

In this section we will briefly describe the motion of electrons in a periodic
crystal lattice3]. We assume, that the reader knows exactly where the opera-

tor notation is needed and thus, we omit the operator notation (e.g. H = H)



Let’s consider the Hamiltonian for N, electrons
. b; S
H= —— + U(13), (S1)

where p; is the momentum operator of the i electron, m, is the electrons
mass and U(7) = U(7 + R,) is the periodic crystal potential with lattice
vectors ﬁj. The energy & of the i electron can be obtained by solving the
Schrodinger Equation (SE)

Hipi(15) = Ei(ri) <= i HU) | = Ei(ri), (S2)

B 2me,

where h is the Planck constant. We can now ignore the index ¢. By using
the Bloch condition

V(P + R) = exp(ikR)y(7) (S3)

we can define periodic functions in the reciprocal space as

up(F) = exp(—ikr) iy (7) (S4)

and thus the wave functions are written as

—»

() = exp(ikr)uy(r), (S5)

\/V_E

where Vg is the volume of the elementary unit cell. eq. is known as the
Bloch-Theorem and ug(7) is the Bloch-Factor. Hence, the energy dispersion
£(k) can be calculated for all k—points in the first Brillouin-Zone (BZ) by

solving the following Schrodinger equation

R (1 2\ 2 .
2m, \ 1
For all k—points the Kramer’s-Theorem|[4]
En(k) = En(—=F) (S7)



is valid, where n denotes the valence band or the conduction band.

4 Electron Motion in Solids - External Elec-
tric Field

Here we present a brief and straight forward calculation for an electron ac-
celerated in an external electric field in a wide bandgap solid. Starting from

the acceleration theorem [5], the electrons velocity #(k) in a solid moving

with momentum % can be obtained from

10 (k)

T

(S8)
The electrons momentum accelerated in an electromagnetic field can be

gained by integrating the equation of motion
m'r = —e <E+?X §>7 (S9)

o —1
where m* = h? (%) is the effective mass of the electron, e the ele-
mentary charge, E is the external electric field, and B is the magnetic field.
Assuming the electric field E(t) = Fy cos(wot)é, is polarized in z-direction,

the time-dependent velocity ) and the location x| are then given by

m* &) = —eFy cos(wot)
E
= b= —— sin(wot)
m~wo
ey (S10)
== cos(wot).

0

The momentum in z-direction parallel to the electric field is then given by

m*a eby .
- I~ _hwz sin(wot). (S11)

k=



The band dispersion can always be expanded in terms of Fourier coefficients
and by following the Kramers Theorem [4] after eq.

S(E) = ia:xfln coS (Z ﬁkiai> tmaz=l 1 cos (Z k:ia,-) , (S12)
=1 i ;

where A5, A are the Fourier amplitudes and a; the lattice constant in direction
i where i = {x,y,2}. n denotes the number of neighbouring atoms and for
our case we use 7 = 1. Using eq. (S8§)), (S11) and (S12)) we now can calculate

the parallel velocity of the electron in the solid

~ E
UH(k’”) = —AE sin (—eh;a

; ) sin(wot)> (S13)

We can use the Jacobi-Anger expansion [5, 6],
sin[z sin(©)] = 2 Z Jom—1(z) cos[(2m — 1)0] (S14)

where J,,, is the Bessel function of m* order, z = ﬁ—os = 2—? and © = wyt,
to bring eq.(S13) to a more suitable form

(k) = Mag~) | (Z—B) cos [(2m — 1)wot] , (S15)

0
m

where wp = eEpa/h is the Bloch frequency. Calculating the Fourier trans-
form of eq. (S15)) gives the third harmonic spectrum (for m = 2)

F (vl(ky)) oc A[6(w — 3wo) + 0(w + 3wo)] , (S16)

where A = \/g %Jg <°:)—§> That describes the usual third harmonic gen-
eration without any modulation as expected. The goal is thus to integrate
the electric field amplitude Ej into the delta function, which automatically

implies that the semiclassical momentum k (t) has to increase linearly in time.



5 Electron Motion in Solids - External Elec-
tric and Magnetic Field

Since the motion of an electron in an electric field only gives rise to usual
third harmonic generation we also have to consider the possibility that the
electron couples to the magnetic component of the driving field, in order to
induce anharmonic modulation. Thus the Lorentzian force has to be included

in which 7 = | €, interacts with B(t). By means of the induction law
rotE = —B(t) (S17)
we can calculate the magnetic field
B(t) = By cos(wot — k2)e, (S18)

with By = wﬁOEo = % The Lorentz force thus causes the electron to gain a

motion in z-direction perpendicular to the electric and magnetic polarization

* t
o mT) € o S =
ki.e, = = _ﬁ/ dt' ky(t')e, x B(t')e.
0
eByeEy [*
— ke, = —2 | dt’ sin(wpt’) cos(wot)e,
m* woh J,
— ke, =—— 23 cos? (wot)é., (S19)
wia
where w, = 675,9 is the cyclotron frequency. Thus, undamped electron motion

gives rise to a harmonic modulation of the electron momentum, which will
have no effect on the spectral shifts observed in Fig [2d-f of the main text.
This is due to the wyt-argument in the cosine function. Note that the cou-

pling to the magnetic component according to eq. (S19) will induce a direct

current since — %242 cos?(wot) = —%45 (1 — sin*(wpt)). This direct current is
wga 2wga

important for the asymmetric harmonic yield of the nonresonant components
A = 335nm and 348 nm shown in Fig. 2f and in Fig. in the main text,

since it rotates the yield according to e(ews/ 25). Now, if k£, €, according to



eq. (S19) is inserted into eq. (S15]), the resulting velocity becomes:

wo wi

v o sin (w—B sin(wot) — C«;ch cosQ(th)> : (520)

This means that the goal of integrating the electric field strength into the
delta function according to eq. is not achieved. For this, a linear
relationship between the electron momentum & and time would be required.
The velocity according to eq. would therefore have to take the following

form:

v  sin (W—B sin(wot) + bt) : (S21)
Wo

where b o< EJ with ¢ > 1 must hold. Only in this case a spectral modula-
tion by the external field can arise as described in the context of amplitude
modulation. This will be possible in the damped case, as will be explained
in the following (section [f)).

Before that, Fig. schematically summarizes how the individual electron
momenta are composed. Fig. a) shows the oscillation of the electric field.
The magnet fields oscillating in phase to the electric field is shown in Fig.
b). The velocity induced by the electric field is shown in Fig. c). Itis
phase-shifted relative to the electric and magnetic fields and corresponds to
a sine oscillation. The cross product describing the Lorentz force, shown in
Fig. d), thus results from the product of a sine and a cosine oscillation.
The temporal integration of this force in the k., direction leads to a resulting

electron momentum, which corresponds to a squared cosine oscillation. This

is finally shown in Fig. [S3|e).

6 Damped Electron Motion in Solids - Exter-
nal Electric and Magnetic Field

Since we generate the third harmonic in the vicinity of a charged vacancy

with frequency €2, the motion of an electron will further gain a damping term
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Figure S3: Schematic representation of the velocities and forces induced by
the electric and magnetic fields in the undamped case: a) time evolution of
the electric field, b) in-phase magnetic field, c¢) electron velocity induced by
the electric field, d) resulting Lorentz force as the cross product of velocity
and magnetic field, e) time-integrated electron momentum in the &, direction,
resulting in a squared cosine oscillation.
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I' which has to be included in the calculation. The equation of motion then
will change to [7]
m*[# + 2lwi + Q%z] = —eE(t) (S22)

with E(t) = Eycos(wot) = 3 Ep [exp(iwot) + exp(—iwot)]. We can solve eq.
(S22)) with the approach

eEy exp(iwot) N
T| damp = — , c.c.
hdame = ome | 02 — 2Ty — o
eEy exp(iwgt)(Q? —w?) . 2T wpexp(iwgt) N
=— —1 ce|.
2m* [\ (2 —wd)? + (2Twp)? (22 — w?)? + (2Twy)?
(S523)
The complex conjugated part is given by
e exp(—iwpt) (2% — w?) L 2T wq exp(—iwpt) (824)

(B + (2Two)? (2 —wf)? + (L)

By adding up eq. (S23)) and eq. (S24]) the time dependent location of the

electron will gain a phase-shifted part compared to the undamped case

€E0 1
X\ damp — —
I damp m* (92 —w2)? + (2Twy)

5 (9% — wp)) cos(wot) — 2wy sin(wt)] -

(S25)
Note, when Q,T' = 0 eq. (S25|) becomes again eq. (S10) which describes the
undamped case. In particular, the phase-shifted term 2I'wq sin(wpt) vanishes,
which is crucial for the coupling to the magnetic field, as we will see below.

The velocity of the damped electron can be calculated by taking the time
derivative of eq. (S25) which results in

. eE() wWo
Z|,damp —
ldamp = 7 s (22 — w2)2 + (2T'wp)?

(€ — wp)) sin(wot) + 2Twg cos(wot)] -
(526)
We already know from eq. (S19) and eq. (S14) that the left term in the
squared brackets gives rise to only harmonic modulation. Therefore, only
the right part will contribute to the interaction of the electron with the

magnetic field. After applying the Lorentz force | qamp€s X B we get the

11



integral

- m*:tJ_,damp - WcWB QFM(% /t / 2 n =
k am z B z - ° dt t 2z

Ldamp R T 4 ()t @rme [, M eos (@t
(S27)

Using the approximation
t .
t  sin(2wet) t

dt’ cos®(wot') = = + ———L ~ —. S28

/O cos” (wot') 5 + 1oy 5 (528)

Since sin(2wpt) € [—1,1] and wy = 27 - 291 THz the second term will con-

tribute only non-significant noise to the motion and thus % ~ 0. The

momentum of the electron in z—direction is then given by

L Wwsp Twp R
kL damp€s = tE,. $29
L damp® a (92— w22+ (2Lwp)2 € (529)

Using the Fourier expansion of the band dispersion shown in eq. and
(S12)), a significant current in z-direction is induced by the damped velocity

of the electron in a magnetic field

A
oll & 2% in (('2 sin(wot) + wt) , (S30)
h wWo

T'w?
02 —wi)?+(2Twp)?
The left term 2 sin(wot) is the electron momentum induced by solely the

with W = w.wp ( . That means that eq. (S21|) is now satisfied.

electric field of the driving pulse. The two momenta in different components
are adding up due to the scalar product in eq. . At this point, however,
it must be considered that in this case there is no restoring force, so that
222 = 0 can be set. The absence of a restoring force is due to the fact that
these are intraband currents. Despite absorption at a resonance induced by
the vacancy, the electrons are accelerated quasi-freely within the band. This
is because fuwws = 3.6eV < E; = 8.9¢eV. It thus corresponds to the Drude

12
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Figure S4: Electron momentum within an electromagnetic field. The blue,
linearly increasing oscillation shows the electron momentum kad induced by
the electric and magnetic fields. The linear increase results from synchro-
nization with the magnetic field component, while the superimposed high-
frequency oscillation is caused by the electric field. The orange and red lines
represent contributions to the momentum along the z-direction (k,a) induced
exclusively by the magnetic field. The orange line depicts the complete mo-
mentum including both synchronous and asynchronous components, while
the red line only accounts for the linear term wt. For better visibility, both
lines have been slightly offset, although they are identical in content. It is
evident that the harmonic modulations induced by the magnetic field are
negligible in the significant region, so the linear component (red) is sufficient
to describe the temporal momentum evolution.

model. Therefore, the modulation frequency @ simplifies to

_ r

(831)

According to the argument in eq. (S12)) the complete electron momentum
will be given by

Z kiai = 22 sin (wot)—i-i cos? (wot)+wt+ﬂ sin (2wot) ~ “B in (wot)+wt
; wWo Wo 2(,(}0 wWo

($32)

5. Here the momenta induced by the electric

ith & — 9270.18
with w = w.wpwy (@ —w?)7 4 (2lw0)

13



field, the synchronous coupling and asynchronous coupling to the magnetic
component of the driving field were added up according to eqs. , ,
and . We use the lattice constant of quartz which is @ = 5A. Fig.
shows the individual electron momenta. The total momentum according to
eq. (S32) is shown in blue. To justify the linear approximation, the orange
and red lines must be compared. These actually lie on top of each other,
but in Fig. they have been slightly offset for clarity. The red line repre-
sents the total momentum of the electrons in the k, direction induced by the

magnetic field, i.e., the wio cos®(wpt) term from eq. as well as the term
(wt + %sin@wot)) from the damped coupling. The orange line contains
only the wt term from the damped coupling. Thus, there is no difference
between these two curves. It is therefore immediately evident that the main
contribution to the electron momentum is given by the last term in eq. ,
and this approximation can thus be considered justified.

To calculate the spectrum of eq. ([S30), we first have to use sin(4 + B) =
sin(A) cos(B) + cos(A) sin(B) with A = “Esin(wot) and B = wt to decom-
pose eq. . Thus, eq. changes to

oll & _Aa {sin (W—B sin(wot)) cos(wt) + cos (W—B sin(wot)) sin(wt)}
h Wo Wo

_ 24 Z Toms (‘:fj ) sin ((2m — )wot) cos(@t)—

2Aa
h

( ) Z’JZ’”( )COS(QmWOt)SIH(wt)] (S33)

The second term of eq. only refers to even harmonics, so in our case,
it will be neglected. The Jy term can also be neglected, since it refers to a
direct current. Note that the second term vanishes completely for w = 0 and
the first term remains. For odd harmonics we thus obtain for the velocity of

the electron in the damped case

o0

ol & —% Z Jom—1 (Z—f) sin ((2m — 1)wot) cos(wt) (S34)

14



which is the mathematical formula for amplitude modulation. Therefore, the
synchronization of the electron to the magnetic component of the driving
field at a localized charge center will induce a new typ of opto-magnetic
amplitude modulation of the harmonic spectra generated in the localized
absorption region. Note that the amplitude modulation cos(wt) only acts
on harmonics m in the absorption region. For harmonics distant from this
region cos(wt) = 1 because the @ = 0. The spectrum for the third harmonic
in the spectral region where the charged vacancy shows absorption can be
calculated using the Fourier transformation of eq.

Flol] % i A (Z—’j) §(w — 3wp £ @) (S35)

Since w oc EZ the goal to put the electric field into the —function is achieved.
The field dependent frequency modulation can be thus explained by eq.
(S35). Fig. provides a summary of the schematic development of the
calculation for the damped case. Fig. [S5|a) and b) correspond to the electric
and magnetic fields, as already shown in Fig a) and b). The damped
electron momentum, shown in Fig. ¢), is now in phase with the electric
and magnetic fields and also corresponds to a cosine oscillation. Therefore,
the cross product shown in Fig. d) results in a squared cosine oscillation,
so that after temporal integration of the cross product, a linearly increasing
momentum in the k, direction arises, as shown in Fig. e).

For m* = 0.055m,, wy = 27 - 291 THz, I' = 27 - 70 THz (= 0.3eV) [1], Ey =
1.4V/A, and By = 46 T, the frequency shifts to @ ~ 27-24.0 THz. The Bloch
frequency is wp =~ 11 PHz, and the cyclotron frequency is w,. ~ 147 THz.
Now, eq. must be verified. A closer look at the spectra from Fig.
and f reveals that a frequency shift relative to the resonant third harmonic at
A = 343 nm is not sufficient, since an additional spectral modulation depen-
dent on the azimuth is observed. In the previous calculation the crystal sym-
metry is neglected. Therefore the reference frequency will be different for the
blue- and red-shifted components. Considering the spectrum, shown in Fig.

d and f, one observes, as previously mentioned, an S-shaped modulation in

15
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Figure S5: Schematic representation of the velocities induced by the electric
and magnetic fields in the damped case. a) shows the oscillation of the
electric field. The corresponding in-phase magnetic field is shown in b). The
electron momentum induced by the electric field, now damped, is shown in
¢). It is in phase with the electric and magnetic fields and corresponds to
a cosine oscillation. The cross product of the velocity with the magnetic
field, shown in d), therefore results in a quadratic cosine oscillation. After
time integration of the cross product, a linearly increasing momentum in the
k.-direction arises, as shown in e).
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Figure S6: Mean value of the pump-field-dependent blue and red spectral
shifts for the z-cut.

the azimuth. The suppression of the resonant harmonic does not appear as
a continuous resonant line across the spectrum. For the suppressed reference
frequency, the red spectral components use the component at A = 339 nm,
while the resonant harmonic at A = 343 nm serves as the suppressed reference
frequency for the blue components. This can be exemplified at the positions
a ~ 30° (redshift) and a ~ 0° (blueshift).

Fig. [S6] shows the field-dependent shifts for the z-cut. From these, an effec-
tive mass of m* =~ 0.055m, can be derived. An overall quadratic dependence

on the field strength Fj is recognizable.

7 Momentum-Space Dependent Amplification

Until now, the initial electron momentum was assumed to be zero. However,
this assumption is not valid within a crystal’s Brillouin zone. Therefore, a
non-zero electron momentum [5, 8, 9] at ¢ = 0 also couples to the magnetic

part of the laser as

t
kL,initial@)éz - _i*BO/ dt/ k(o)\\,solidgm X COS<W0t/)gy
m 0 (S36)

> ki nitial(t)€: = —&k(O) sin(wot)é,
Wo

17



where k(0) is the non-zero momentum of the electron in the Brillouin zone.
Also the non-zero initial momentum in z—direction couples to the magnetic
component (see main text) giving rise to a contribution in z-direction due to
the cross product. Here, we will set this one to zero for simplicity. Thus, the

momentum of the electron changes to

Z kia; = — sm(wot) + Wt — —k:(())a sin(wot) (S37)

Wo

Using the Jacobi-Anger expansion

exp [izsin(©)] = Z Im(2) exp [imO], (S38)

m

we can rewrite the new current to

Aexp [ (“ﬁ — Zek0) ) sin(wot) } ZA T <— — Zek0) a) exp [imwot] .

Wo W wo
(S39)
From Fig. [S7]it is obvious, that the measured spectra differ from the fit
obtained by eq. . This is due to the fact that the damping of the
electron is not a feature of the band dispersion according to eq. but
occurs rather at localized points. Thus, another method has to be used to
include the damping induced by the localized vacancy centers. We have to
note, that the resonant Harmonic A = 343 nm shown in Fig. [S7] can be fitted
using higher harmonics n from eq. . However, the non-resonant parts or
in other word, the complete spectrum is not reconstructable with eq.
with higher harmonics of the band dispersion 7.
The Bloch functions are plane waves in momentum space and are thus delo-

calized. Therefore, a change in basis is needed.

18
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Figure S7: Fitted function according to eq. (S39)) to one spectral component
of the z-cut. The fit function and the measured data do not match.

8 Maximally localized Wannier states

Since the charge centers are localized states, they can be described by a

Wannier representation. We consider the following matrix element [10]
M,y (K k) = (n'K'| BInk), (S40)

with some matrix B. The Bloch states (x|nk) = u,x(z) can be expressed via
maximally localized Wannier states (MLWS) [jR) [11]

nk) =Y e* U | [iR) (S41)
jR
and .
IjR) = N Z e Ui kInk) (S42)
nk

where U, U is the unitary matrix that describes the maximal localization

according to
|7’Lk3> = Z Un’n,kln,k0>a (843)

19



where Nj is the number of k—points in the BZ. Thus, the matrix element

can be written as

1 )
Mj (R, R) = (j'R|BljR) = - Y e ARUL L (k| BInk) Uy, (S44)

n'j'k
k n'nk

where AR = R’ — R denotes the spacing of two Wannier sates. For B = V,
and n’ = n, eq. (S44]) can be related to the Berry connection A,(k) =
i(nk|Vi|nk) and the Berry phase v, = i § dk(nk|Vy|nk). They can be di-

rectly connected to a polarization term [12]

(%)3% <§n:@ / dl{:(nk|vk|nk>> : (S45)

In order to calculate the emitted harmonic spectra modulated at a vacancy,

pP—

we have to calculate the Fourier transform of a current j(t) = 4 P(¢). Our

basis will be time-dependent and we can use the adiabatic theorem

() =D cam(®)n' (1)), (546)

n/

with ¢, (t) = ¢ (0)e®” ®ew®) is the transition probability. Here

1 t
Op = —— / E.(tdt' (547)
h Jo

denotes the dynamical phase and

=i / (! () ()t (348)

the geometrical phase. In particular the system remains in the eigenstate at
t = 0 and only exhibits a change in phase. Thus, the probability amplitudes
remain the same over time for intraband currents, since the phases in the

adiabatic expansion vanish when taking the square of the wavefunction. The

20



transition amplitude thus is given by
lew (8)]* = |ew (0. (549)

We can now rewrite eq. (S45)) in a time-dependent basis

(27)?

P(t) =

3 ( ) / (ko + k(£)) el (E)en(t) (0 (8), Ko + k(1) Vg n(0), o + k(t»)
- (S50)

with k& — ko + k(t) and having ignored the phase factors for this particular

problem. For an intraband polarization this simplifies to [9]

P<t)intra — #

S (Z > / d(k + k()]en(0)(n(t), ko + k()| Vi rx(p In(t), ko + k(t»)
’ (S51)

Combining eq.(S44) and eq. (S51)) our time-dependent polarization term

for a maximally localized current can be written as

P(t)mtraloc = (;)3% (zz / d(ko + k(t))]c, (0)|Pe (o thIDAR
™

Ui,k0+k(t)<n(t>7 kO + k(t)‘vko-i-k(t)‘n(t)? kO + k(t)>Un,ko+k(t)) (852)

In order to remove the time dependency from the matrix elements we use

the definition of the unitary matrix and the adiabatic theorem
(n(®)n()) = (n(0)|U*(to, )U (to, £)[n(0)) = (n(0)[n(0)) = (n|n), ~ (S53)

since U'(tg,t)U (to,t) = 1. For |ky + k(t)) the same rules can be applied using
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eq. (S43)). For a time dependent operator A(t), the unitary transformation
A(t) = U (to, ) AO)U (to, 1) ($54)

is valid and V) — Vi,. Thus, the maximally localized polarization can

be rewritten as

P(t intra,loc — €
( ) (27’(’)3

3 (@Z / d(ko + Ek(t))]ca(0) e ko thIDAR U,I,kO(nko\Vkomko)Un,kO) :

($55)

Since dk — d(ko+ k(t)) as k — ko + k(t), the differential changes to the sum
dko + dk(t). The second term dk(t) = é”lcf)—(tt)dt changes to a total differential.
It is a line integral, and it is well known that these type of integrals will
always depend on the initial and final point (7}, T, where T; is the ionization
time and T, is the recombination time) and not on the path itself. Thus, this

part of the polarization will not depend on time. So the current

d .
_p E Tr intra,loc
dt ( ? ) X
d (o)
o Eg (/ dt (%) ci(kot+k()AR Ul’k0<nko|vk0|nko>Un,ko> =0 (S56)
T;

will not contribute to the spectral power density. The final time-dependent

polarization is

P(t intra,loc — €
( ) (27‘(‘)3

%(iz / dk:o|cn(0)]2e‘i(’“0+k(t))ARUg,ko(nko\vkolnko)Un,%). (S57)
. JBZ

Now, we have to find a value for AR. Since we operate in reciprocal space it
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will be a fixed value. For AR > a the matrix element

UT

nka

(nk0|V;€O|nkg>Un,kO (858)

will rapidly decay to zero, since it is maximally localized. For AR = 0
the time dependency of P(t)™"#!°¢ will vanish and thus the current j =
%P (t)intraloc 5 (0. From the frequency shift according to @ and the time-
bandwidth product for a pulse of 7 = 40fs (Arv = 11 THz) we can estimate

a lower limit for AR

iAR < 11 THz. (S59)
a
For a maximum frequency shift of f, .. ~ 22 THz the lower limit approaches
approximately
AR ~ g (S60)

However, only the upper limit for AR = a has to be taken into account,
since it has the more dominant contribution for the harmonic yield due to
eq. (S39) and there are no atoms for values for AR < a. For a total electron

momentum of

- w w w

k(t) = (—B - —Cko) sin(wot)e, + —té, (S61)
awo wWo a

and the polarization according to eq. (S55) for ARy.x = a, we can rewrite

the new current using the same splitting as in eq. (S33]), since the polarization

is given by the imaginary part to

Wo wo

502 g 3 Ak sin (22 i) snteun)] eosan =

wp We

== Z Ap (ko) Js (— — —ko - a) sin(3wot) cos(wt), (S62)

Wo Wo

where A, (ko) is the Berry connection of band n. From this equation it is clear
that the Berry connection can be extracted from the field dependend spectra
generated in the vicinity of the localized vacancy center. In particular, the
spectrum is given by the Fourier transform of eq. . Fig. displays
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Figure S8: Harmonic gain for three wavelengths plotted with eq. (S62|) for

the z-cut. The points represent the experiment and the lines denote the
theory.

the one dimensional cuts of three different spectral components for the z-cut,
respectively. The fit function according to eq. matches the observed
spectra. Note, that the Berry connection is a gauge dependent quantity and
is therefore usually not referred as physical observable. The overall Fourier

transformation of eq. (S62)) is given by

+(3wy —W)0(Bwp — W — w)] +
+5" Au(ko) Js (W—B Y- a) %\/g [(3wo + )8 (3wo + T + w)

+(3wp — @)8(3wp — T + )] (S63)

9 Fitting of the Berry Connection

In this work, we employed the Levenberg-Marquardt (LM) method for non-

linear least-squares fitting using Python. To improve the stability and con-
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Figure S9: Normalized Berry connection for the z-cut

vergence of the algorithm, we manually adjusted the parameter space by in-
troducing additional, unused parameters. These "empty” parameters, while
not explicitly contributing to the functional form of the model, acted to en-
hance the distribution of the eigenvalues of the Jacobian matrix, effectively
improving the conditioning of the problem. Consequently, this led to a bet-
ter adjustment of the damping parameter \ during the optimization process,
resulting in a more stable fit.

From eq. we know that the Berry connection parallel to the propaga-
tion direction can be extracted from the measured third harmonic spectra.
We sample the whole Brillouin zone between —% and Z or between 0 and 27”
with a step size of 0.1/A. Due to time reversal (parity) symmetry 7 (P) the
Berry connection is a symmetrical function, which is valid for a crystal with

broken inversion symmetry. Our regression of the spectra implies
A(kG) = A(=k5)- (564)

Fig. [S9 displays the Berry connection for z-cut for an integration range of
[0, 2%]. The resulting spectra are shown in Fig. [3|b), d), and f) in the main
text. The Berry connection obtained with a symmetric integration range
([=%,Z2]) for the z-cut is shown in Fig. Different spectral components
exhibit a sign flip in their extracted Berry connection.
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10 Wannier-Stark Localization

The generated spectra for the z-cut are shown in Fig. [2| d-f, particularly
as a function of the azimuthal rotation of the crystal. In addition, Fig.
in the main text provides a detailed description and reconstruction of the
field-dependent amplification. Differences from the conventional description
of harmonic generation have been identified. Some of these deviations could
already be explained within the framework of the plane-wave approximation
using the semiclassical approach of synchronization of the electron velocity
with the magnetic field of the driving field, as well as through localized Wan-
nier states. Nevertheless, several phenomena remain unexplained, while the
analysis of the Berry connections has revealed additional new characteris-
tics. These open questions will be addressed in the following sections. First,
however, the properties of the Berry connections will be examined in more
detail. A central feature is the observed systematic sign change, which be-
comes particularly apparent in the analysis.

It is now established that the Berry connection can be extracted from the
measured spectra. However, to understand the observed systematic sign re-
versal, it is first necessary to recapitulate what the Berry connection describes
in a physical context. For solids, the Berry connection was introduced in sec-
tion [8 using localized Wannier functions and the connection to macroscopic
polarization in solids was established. A detailed discussion of this can be
found in [11]. The sum over the Berry connections in k-space corresponds to
an intraband current. This means that the harmonics under consideration
are generated within a single band, without transitions to other bands. This
interpretation is particularly relevant, as the third harmonic investigated here
lies within the band gap of quartz, thus ruling out interband-induced transi-
tions.

It is now striking that the normalized Berry connections, particularly for the
resonant component and the opto-magnetically modulated spectral compo-
nents, exhibit opposite signs. This suggests that these components may not
originate within the same band and that a simple intraband model may be

insufficient to fully describe the generation of these sub-band-gap harmonics.
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Furthermore, some of these spectral components show a significant increase
in amplitude depending on the external field strength Ej. This could indi-
cate that the underlying dynamics take place in the conduction band, while
other components may be generated in the valence band. To analyze these
processes in more detail, a two-level model encompassing both the valence
and conduction bands will be considered in the following. Therefore we start
with band deformation induced by an external electric field. This is known
as Wannier-Stark localization.

When an strong optical pulse passes through a wide-band gap crystal, it will
bent the band structure of the crystal [I5H17]. Thus the energy eigenstates
E,, of band n of the crystal will be bend by the Wannier-Stark shifts. They
form the so-called Wannier-Stark ladder [15]:

E,, =FE, — hwgl (S65)
with | = —Timax/2, ..., imax/2. For our case Nipmax = 1. The band gap reduces
to

Ec,—1/2 - EU,1/2 = Ec - E’U - th- (866)

Thus the valence band will be shifted upwards and the conduction band will
be shifted downwards. The other case in which the valence band is shifted
downwards and the conduction band is shifted upwards is not of interest
here. For Ey = 1.4V/A the Bloch energy will be fiwg = 7.24 V. The length

of a Wannier-Stark localization is given by [15]

h2

—_— S67
mia®|eFy| (S67)

Lws =
and thus, the effective mass for a length of Lws = a can be determined by
ﬁ2

g — 568
me 0J3’€E0| ( )
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as m! ~ 0.044m, for a field strength of Ey = 1.4V/A. This is in good
agreement with the effective mass determined here, which is approximately
m} ~ 0.055 — 0.06 m, as shown in Fig. [S6]

11 Avoided Crossing

Consider a two-level quantum system described by the Hamiltonian

E 0
H = (o E2> , (S69)

where F; and E, are the energy eigenstates of [11) and [¢)5) shown in Fig.
in the main text. For E; = F5 the energy eigenvalues are degenerate. If
we assume, that a perturbation H;, acts on the off-diagonal elements as V,

the new Hamiltonian H = H + H;, can be written as

H’:<E1 V). (S70)
V B,

The new eigenvalues of the Hamiltonian, representing the energy levels

of the system, are given by

E,+E B, — B,\?
Ei:%:t\/<%) + V2 (S71)

In the absence of coupling (V' = 0), the energy levels cross when E; = Es.
However, for V' # 0, the term V? ensures that the levels avoid crossing,
resulting in a minimum energy gap 2V. To find the new eigenstates of these
eigenvalues, we can write the new eigenstates as a superposition of the old
states [i1) and [t)q)

) = cos (5 ) )+ ¢ sin (5 ) 1 (572)
oo =~ sin (5 ) o)+ cos (5 ) o) (573)
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These two new states are an orthonormal basis. So

<¢¢|¢i> =0, <¢3F|¢3F> =1 (874)

is valid. It is well known, that these two states have Berry connections and
thus Berry phases which are opposite in sign (as we have in our measure-

ments). The Berry phase v for these two states is given by
Qp .
v =Fo with Qp = 27(1 — cos(f)). (S75)

The angle 6 is given by

tan (9) = (EI%VE) | (S76)

The states |1)4) are entangled.

12 Landau-Zener Tunnel Effect

An important application of the adiabatic/diabatic avoided crossing theorem
is the Landau-Zener tunnel effect. It describes the probability of tunnelling
from the lower state ©_ to the upper state 1), when an external field is
applied. The starting point of such systems is a Hamiltonian which time-

dependence is linearly in time

, E V WV
H = Hyy + H = Hyy + At — — ), (S77)
V —-F V —at

where £ = F, = —Fy, = at. At t = 0 the two states E; and Ey would
be degenerate without the perturbation Hi,. But due to this perturbation,
avoided crossing occurs and the two states have a band gap of 2V. The

transition/tunnel probability at t = 0 is given by

P =exp (—2nT). (S78)
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The factor I' is given by

| (4 [ Hine|90-) |

I —
OF )
hor

(S79)

where (¢, |Hint|t)—) =V denotes the energy gap.

13 Landau-Zener in Solids - Synchronization
to the Magnetic Field

In solids, the Landau-Zener-Hamiltonian is given by

/ LY )
HSolids: T 2 (SSO)
i, —ank

Due to the synchronization of the localized damped electron velocity p/m to
the magnetic component of the seed pulse and considering a one-dimensional
problem only in z-direction, the electron momentum can be replace by k, =

w/a - t. Thus, the Hamiltonian can be written as
: hw/a -t iE
Hgopas = (Uk /o 2 ) ; (S81)

:E, —vghw/a -t

leading us directly to the linear Landau-Zener effect given above. The tran-

sition probability factor I' is given by

_|Ee(k = 0) = By(k = 0) — hwp|?

22w
Ukﬁ p

r (S82)
Here k = t = 0 means the energy gap at the I' point, since |¢1) = |ucx)
is the conduction band and |¢)_) = |u, ) is the valence band. In eq.
there is an additional term to the linear one which we left out due to its
minimal effect on the electron momentum shown in fig. [S4 However, since
we look at the derivative at ¢ = 0 and only in z-direction the second term

o sin(2wpt) has also to be taken into account given an additional factor of 2
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in eq. .

Due to the substitution k, = %t, the linear dependence in time according to
eq. is satisfied. According to eq. (S72|) and , the valence and the
conduction bands are the described two entangled states. The Berry con-
nections shown in Fig[S9 exhibit opposite signs. Therefore, the modulated,
non-resonant harmonics are not generated as intraband current in the valence
band, but rather as intraband current in the conduction band. If this is the
case, the amplification of the modulated, non-resonant harmonics should be
proportional to the tunnelling probability of the Landau—Zener tunnelling
effect according to eq. . This is indeed the case. Fig. shows the
fit of eq. to the normalized intensity of the opto-magnetically mod-
ulated components, exemplified for the z-cut. The resulting effective mass,
obtained from the Landau—Zener tunnelling effect through the Brillouin mo-
mentum v, = 2hw/(am*), is approximately m* ~ 0.04m. for a constant
effective mass, and m* =~ 0.02m, for an electric-field-dependent effective
mass according to eq. at a field strength of Fy ~ 1.4V/ A. This agrees
well with the assumption of a strongly reduced effective mass due to Wan-
nier—Stark localization, as given by eq. . However the field dependent
reduction in effective mass should be also checked as fitting parameter in
eq. . This will be discussed in more detail later. However, according
to eq. and the fact that tunnelling occurs at ¢ = 0, the two states
FE, and E, become degenerate. As a result, the Berry phase takes a fixed
value of 7/2, and the 6-dependence described by eq. cannot be repro-
duced. This raises the question of whether it is possible to reconstruct the
f-dependence of the Berry phase for the valence and conduction bands based
on the states ¥4 given in eqs. (S72|) and using the measured spectra.
The answer is yes. To achieve this, one must perform a basis transformation
and analyse how the Berry connections and Berry phases—induced by the
synchronization of the electron velocity with the magnetic component of the
driving field—relate to those of the two Bloch states ...
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14 Topological Connection between the Bloch

sphere and the Brillouin zone

Due to eq. , the angle 0 is fixed at 6 = 7/2, resulting in a constant
Berry phase of v, = Fx. This follows from the fact that tunnelling occurs at
t = 0, where the two states F/, and E, are degenerate, leading to £; — Fy =0
and consequently fixing the value of 6.

To express the Berry phase 7. = m(1 — cos ) of the two states |1)+), a basis
transformation is required. It is therefore useful to calculate the Berry phase
of the entangled pseudo-spin states to understand how the Brillouin zone
coordinates in reciprocal space connect to the parametric coordinates (6, ¢)

of the Bloch sphere. The spherical coordinates are given by

Z =rcosf. (S83)

The angle ¢ ranges from [0, 27], while 6 can take values in either [—7/2, 7/2]
or alternatively in [0, 7]. Consequently, only the angle ¢ can serve as a closed
path for the Berry phase calculation.

The state |1y ) is given by

) = cos (5 ) )+ esin (5 ) 1. (584)

Taking its gradient yields

V]y) = —sin (g) ?Wﬁ + i€’ sin (g) do|va) + e’ cos (g) %0’¢2>'
(S85)
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Multiplying eq. (S85)) by (¢, | results in

(| V|4) = —cos (g) sin (g) %9 + sin (g) cos (g) % + 4 sin® (g) do

= isin® (g) dp = %(1 — cos0)do. (S86)

Thus, the df integration vanishes entirely, leaving only the d¢ integration to
contribute to the Berry phase, as expected from the definition range of the
polar angles in eq. (S83). The Berry phase of the upper state |1, ) is then

calculated as

w= [ T V)6 = —r(1 — cosf), (587)
A similar calculation applies to the lower state:
[_) = —e " sin (g) |¥1) + cos (g) [12). (S88)
Taking the gradient yields
VI ) = —e 7 cos (g) %Wl) + i€’ sin (g) do|i) + sin (g) ?Wz)-

(S89)

Multiplying eq. (S89) by (¢)_| results in

(Y_|V|_) = —cos (g) sin (g) % + sin (g) Ccos <g) %0 — isin? <g) do

i (g) 46 = (1 cos )do. (S90)

Thus, the Berry phase for the lower state is given by

. /02Tri<w]V|z/}>d¢ — 71 — cosh). (S91)
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Hence, in both cases, the integration range is defined by d¢. In our scenario,
the integration corresponds to dk, in the Brillouin zone, where z defines the
propagation axis of the seed pulse. Since the Brillouin zone can be mapped
onto a circle (see Fig. 4 in the main text), the Berry phase of the Brillouin

zone and the Bloch sphere should be equivalent:

o= fatgar = [ 4w (592)

Thus, the S! topology of the one-dimensional Brillouin zone along the k.-
direction can be adiabatically mapped onto the polar angle ¢ of the Bloch
sphere. However, a similar mapping also applies to the k,- and k,-directions,
even without invoking an adiabatic process. In eq. , we access the
k,-direction of the Brillouin zone at t = 0. Consequently, the S topology
naturally applies here as well, but now oriented perpendicular to the k.-

direction. Therefore, k, at t = 0 can be mapped to Z. Using the definition
of Z in eq. (S83)), we obtain

kya = 2w cos 0, (S93)

where the factor of 27 arises from normalization. This relation follows from
the one-point compactification (Alexandroff compactification) of R?, which
yields the topological structure of the S? sphere as shown in Fig. . Sub-
stituting eq. into the fit function eq. and summing over the
k-points in the z-direction, the resulting Berry phase exhibits the expected
dependence as given by egs. and , as shown in Fig. 5 of the
main text and Fig. for A = 343 nm (orange curve) and A = 348 nm (blue
curve). In both figures, the offset has been removed and the Berry phase is
normalized to 2m. The Berry phase was determined by summing over the
k.-axis of Fig. for the orange curve and Fig. for the blue curve. The
results justify the assumption to map the Bloch sphere onto the Brillouin
zone

However, in order to fulfill this relation, the basis of the Landau-Zener

effect has to change. That means that the tunnelling has to occur in k,-
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Figure S10: One-point compactification of the Brillouin zone. The ¢ compo-
nent is adiabatically mapped as shown in the main text in Fig. [de. For the
kO direction the usual S'-topology is used to create a circle. This was shon
in Fig. b in the main text.

21

Figure S11: Extracted Berry phase v as a function of 8, evaluated using eqs.
and (S62)), for the unmodulated (resonant) harmonic at A = 343nm
(orange) and a modulated (non-resonant) harmonic at A = 348 nm (blue). A
comparison with the Berry phases of the entangled states 1)1 from eqs. (S87)
and reveals that the A = 343 nm harmonic originates from the valence
band associated with ¢_, while the A = 348 nm (and A = 335nm) harmonics
are generated in the conduction band described by . .
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Figure S12: Dependence of the Berry connection as a function of k,a for the
resonant harmonic A = 343 nm.
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Figure S13: Dependence of the Berry connection as a function of k,a for the
opto-magnetic harmonic A = 348 nm.
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direction. Thus the parameter I' according to eq. (S79) changes to

E2

— 594
4U hdkm ‘ t=0 ( )

where £, = 8.9eV is the band gap of quartz and k,(¢) is the momentum of
the electron parallel to the electric field according to eq. (S11)). There it was

denoted as k. The time derivative of the momentum is given by

dk,(t d eE
() = ——e—osm wo Ocos wot ‘t 0

’ t ’ _€E GEO
dat '=0 dt hwy =0 p

~h

(S95)

By using the Brillouin momentum v, = 27h/(m*a) the transition probability

according to eq. (S78)) becomes the original Landau-Zener formula [18, |19]

p— mak, S96
= exp AR (S96)

We note that the avoided crossing in this basis depends on the external
field Ejy rather than time, as shown in the supplementary information of
[15]. Consequently, the bandgap reduction due to Wannier-Stark localization,
described by eq. , is already incorporated in eq. and does not
need to be included separately, as indicated in eq. .

Fig. displays the fit of eq. to the harmonic yield of the opto-
magnetic modulated parts of the spectrum of the z-cut. Here, an effective
mass of m* = 0.45m, for the A = 348 nm could be extracted. This matches
the reported values of the electron effective mass in quartz reported before
[20]. However this is significantly higher than the effective mass we extract
from the Landau-Zener effect in k,-direction. Here the lowering in effective
mass is a consequence of the localized synchronization and the Wannier-Stark

localization.
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Figure S14: Fit of eq. (S96) to the harmonic yield of the opto-magnetic
modulated parts of the spectrum of the z-cut.

14.1 Determination of the Berry Phases and Berry
Connections using the Wannier-Stark Effective
Mass

In eq. , the effective mass was described as a function of the electric
field and the constant length of a Wannier -Stark localization. An effective
mass of m* ~ 0.04m, was determined at a field strength of 1.4 V/A. Tt was
assumed that the localization length is constant and given by the lattice con-
stant Lws = AR = a, where AR is defined in eq. . This directly implies
that the effective mass is not constant, but rather inversely proportional to
the external electric field Ey. However, in Fig. [S9] a constant effective mass
was assumed. According to eq. , this would imply a variable localiza-
tion length Lwgs that depends on the external field. Since the length also
scales inversely with FEj in this case, the localization would increase with
increasing field strength. This leads to Lws # AR = a (in k.-direction).

Given that different modelling approaches are now under consideration, their
physical equivalence must be examined. Therefore, the Berry connection
previously calculated in Fig. [S9 under the assumption of a field-independent
constant effective mass is re-calculated here using a field-dependent effective
mass according to eq. . To this end, eq. must be inserted into
eq. . Fig. shows the corresponding Berry connection for the z-cut
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Figure S15: Normalized Berry connection for the z-cut using the field-
dependent effective mass according to eq. (S68)).

across all spectral components. The overall structure of the Berry connec-
tion as a function of the k. direction is clearly preserved, with the opto-
magnetically modulated components consistently maintaining their charac-
teristic sign reversal. However, slight variations in the spectral width of the
phase are noticeable.

For a more detailed analysis, a fixed point along the k, direction is con-
sidered, namely k, = 0. From Figure [S15] it can be seen that the blue
region lies within the spectral range between A = 337nm and A = 345 nm.
The corresponding phase jump to the red region, which indicates the sign
change in the Berry connection, occurs both below and above this interval.
In contrast, Figure [S9 shows the blue region at k, = 0 within a slightly
narrower range between A = 340nm and A = 345nm. Additionally, in this
representation the Berry connection is out of phase for wavelengths below
A = 333nm. However, the central main maxima are in phase in both cases,
in Fig. [S9 and Fig. This suggests that the fits differ primarily in the
low-intensity spectral regions, whereas they agree in the vicinity of the main
maxima, which are the spectrally relevant domains.

It remains to demonstrate the equivalence of the Berry phase. For this pur-
pose, the substitution using eq. and eq. is again performed in
eq. (S62), followed by integration along the k. direction from 0 to 27. Figure
shows the resulting Berry connection as a function of the Bloch angle 6
for the spectral range around A = 334 nm (orange) and for the spectral range

around A = 335 nm (blue). It is readily apparent that the structure described
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Figure S16: Berry phase ~ for the z-cut as a function of the Bloch angle
0, obtained by integrating the Berry connection determined via eq.
and eq. . The blue curve corresponds to the spectral range around
A = 335nm, while the orange curve represents the resonant spectral range
at A = 343nm. The sampling rate of the Brillouin zone is 0.17.

by eq. (S87) and eq. (S91)) is preserved. The resulting Berry phases, shown
in Fig. Bf in the main text and Fig. [S11], differ only by numerical noise. As

in the aforementioned figures, the background was subtracted in Figure
and the Berry phases for both spectral regions — and thus for both energy
bands described by the pseudo-spin vectors — were normalized to 27w. The
final remaining aspect of the spectral analysis is to verify the sampling in

k-space.

14.2 Determination of the Berry Phase and Berry Con-

nection with symmetrical integration limits

In the previous three sections, the equivalence of three different methods for
extracting the formal Berry phase as a function of the Bloch angle from the
spectral data has been demonstrated. These methods involved comparing
different samplings of the Brillouin zone under the assumption of a constant

effective electron mass in the k.-direction. Although the Berry connections
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Figure S17: Berry connection obtained from the spectrum generated for
the z-cut using a constant effective mass and a sampling rate of 0.17/a
and symmetrical integration limits [—m/a,7/a]. The sign reversal of the
opto-magnetically modulated and resonant spectral components is preserved,
although the Berry connection differs formally from that shown in Fig. [S9

differ between the approaches, integration over k., yields Berry phases for the
upper and lower states ¥, and ¢ _ that remain consistent with the functional
forms given in eq. and eq. . Assuming a constant effective mass
implies a variable length of the Wannier- Stark states as a function of the
electric field Ey, according to eq. . Conversely, if the length of the
Wannier- Stark states is fixed, i.e., Lws = AR = a, the effective mass be-
comes field-dependent. The equivalence of the resulting Berry connection for
the z-cut has been demonstrated in Fig. [S9 for the case of constant effective
mass (implying a field-dependent localization length), and in Fig. for
the case of a variable effective mass with fixed localization length.
The final method to be validated concerns the integration limits. This anal-
ysis is performed under the assumption of a constant effective mass. Figure
shows the resulting Berry connection for the z-cut at the with symmetri-
cal integration limits (k, € [—7/a,7/a]). It is immediately evident that the
Berry connection formally differs from that shown in Fig. [S9|

However, the characteristic sign change in the Berry connection around
the resonant and opto-magnetically modulated spectral regions remains clearly
visible.
It remains to be verified whether the substitution according to eq. ,
followed by integration over the k,-direction, still yields the Berry phase of
the entangled states as given by eq. and eq. . This is indeed
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Figure S18: Extracted Berry phase « for the z-cut as a function of the Bloch
angle 0, shown for the spectral components at A = 343nm (orange) and
A = 348nm (light blue), using a reduced Brillouin zone sampling rate of
0.17/a and symmetrical integration limits [—7/a, 7/al.

the case. Figure shows the resulting Berry phases. The method remains
unchanged: in both cases, the background is removed, and the curves are
subsequently normalized to 27. The (1 — cos(f))-dependence of the Berry
connection, as described by eq. (S87)) and eq. for the two entangled
states characterized by the pseudo-spin vectors in eq. and eq. ,
is preserved. It is particularly noteworthy that the resulting Berry phase
for these two states no longer exhibits numerical noise. The numerical noise
observed previously is thus identified as an artifact of the fitting procedure,
and can be considered entirely unphysical and safely disregarded.

In summary, the spectra have been analyzed using four different methods.
While the Berry connection formally differs in all four approaches—as ex-
pected—the resulting Berry phase consistently exhibits the characteristic
(1 — cos(f)) dependence of the entangled states. Consequently, the method
that is numerically the most straightforward and yields the most reliable

results may be confidently applied.
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