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ABSTRACT 200/200 

 

Background: 

Seronegative hepatitis (SNH) is an acute fulminant liver injury which leads to liver failure, 

requiring urgent transplantation. Its clinical, biochemical, and histological features mimic 

autoimmune hepatitis (AIH). SNH aetiology and pathogenesis is unknown thus defining 

triggers and immune pathways is essential for timely diagnosis and effective treatment. 

Methods: 

We applied multi-modal spatial transcriptomics, combining CosMx™ single-cell resolution 

with Visium whole-transcriptome profiling, to SNH, AIH and healthy donor explant liver 

tissue. Data were integrated with meta-transcriptomics and multiplex imaging on the same 

tissues to identify disease-specific signatures. 

Results: 

SNH livers displayed a significant expansion of macrophages enriched for interferon-

stimulated genes (MX1, ISG15, OAS1, IFIT3), compared to AIH. MX1⁺ hepatocytes were 

also uniquely expanded in SNH. Meta-transcriptomic profiling of matched livers revealed 

transcriptional upregulation of human endogenous retroviruses (HERVs), including HERV-K, 

in SNH and AIH livers but absent in donor livers. HERV-K protein was detected in SNH by 

tissue staining, implicating viral aetiology as a potential immune trigger. Furthermore, SNH 

was distinguished by CD63 upregulation and selective activation of the LIGHT-HVEM 

pathway between macrophages and hepatocytes. 

Conclusions: 
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Multi-modal spatial profiling reveals that SNH is transcriptionally and immunologically distinct 

from classical AIH, with evidence for viral-associated immune activation driving severe liver 

injury. 
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INTRODUCTION 

 

Autoimmune hepatitis (AIH) is an immune-mediated liver disease driven by an aberrant 

attack on hepatic tissue by the host’s innate and adaptive immune systems, with unknown 

aetiology1,2. It is typically diagnosed based on characteristic clinical presentation with 

jaundice, abnormal liver enzymes and immune mediated hepatitis histological findings in the 

presence of circulating autoantibodies3. Seronegative hepatitis (SNH), sometimes referred to 

as autoantibody-negative AIH, is a form of acute immune-mediated liver injury that closely 

resembles and shares many clinical, biochemical and histopathological features with 

classical AIH, however autoantibodies are absent4. However, a unique feature of SNH is an 

overwhelming acute fulminant hepatitis leading to pan-acinar hepatocyte necrosis which 

leads to liver failure. 

 

It is still unknown whether SNH represents a distinct immune-mediated liver disease from a 

precipitating trigger or is it an early onset of AIH before autoantibodies can be synthesised5-7. 

Presentation of SNH is normally in young adults with features of fulminant hepatic failure8,9. 

In many cases, SNH progresses rapidly leading to massive liver necrosis with poor 

outcomes. Liver transplantation is the only life-saving definitive treatment10 and the majority 

of patients will not survive unless they undergo an urgent liver transplantation. 

In this study, we comprehensively profile gene, metagenome, transcriptome and protein 

expression on liver tissue from rare samples of SNH patients, AIH patients, and donor 

controls by combination of CosMx™ single-cell spatial transcriptomics, Visium whole-

transcriptome, meta-transcriptomic, immunohistochemistry and confocal microscopy. 

Crucially, and a unique feature in this study, the same patient samples were used across all 

modalities, allowing direct integration of spatial, transcriptional, immune pathways and 

protein-level data on hepatocytes and intrahepatic immune cells. This multi-OMICs platform 
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approach enabled us to identify cellular and molecular features unique to SNH and allowed 

us to dissect the aetiology and pathogenesis pathway with these precious samples.  

Excitingly, we found an antiviral signature which is associated with hepatic macrophages 

(Kupffer cells), transcriptional upregulation of endogenous retroviruses (HERVs) along with 

LIGHT-HVEM (also known as TNFSF14-TNFRSF14) signalling pathway in SNH. Our data 

reveals that SNH is characterised by a distinct spatial immune microenvironment, possibly 

triggered by exposing antiviral gene expression programs by the host immune response, and 

subsequent activation of TNF receptor superfamily-related immune cells–parenchyma 

communication networks. These findings redefine the description of SNH as a 

mechanistically distinct immune mediated liver disease with implications for potential new 

diagnosis tools and the development of potential future therapy. 
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METHODS 

 

Ethical approval 

 

All human samples were obtained from surgical procedures carried out at the Queen Elizabeth 

Hospital, Birmingham, UK, with written consent from patients. Ethical approval for the study 

was granted by the Local Research Ethics Committee at the University of Birmingham (REC; 

reference number 18/WA/0214, IRAS reference 223072). Diseased liver tissue was sourced 

from explanted livers from patients undergoing transplantation. Donor livers were received in 

cases where the liver was rejected for transplantation or surplus to clinical requirements.  

 

CosMx data generation 

 

FFPE explant liver samples were processed using the Human Universal Cell 

Characterisation 1000-plex panel11 following the manufacturer’s protocol (Item 

number:121500005, Bruker Spatial Biology, Seattle, WA). Briefly, tissue sections were cut to 

a thickness of 5um and mounted on Superfrost Plus Micro Slides within a 15 mm x 20 mm 

imaging area and baked overnight at 60°C to enhance adherence. After deparaffinisation, 

target retrieval was performed, followed by permeabilization. Fiducial markers were applied 

for precise image alignment, followed by post-fixation and blocking. Slides were then 

hybridized overnight with RNA-specific probes from the 1000-plex RNA panel. DAPI was 

stained for nuclear visualisation and cell segmentation markers CD298/Beta-2-Microglobulin 

(B2M), CK8/18, and CD45 were applied. The prepared slides were loaded into the CosMx 

SMI instrument for imaging. Regions of interest were selected for imaging and processed 

using the fully automated, on instrument analysis pipeline. The raw images were processed 

and decoded using the AtoMxTM Spatial Informatics Platform (SIP) (v1.3.2). Segmentation 

was performed using AtoMx built-in cellpose algorithm. Cell segmentation was generated 

using cellpose on the AtoMx software using the non-neuronal cell profile. To ensure we were 
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using the optimal segmentation methodology, the small and large cell AtoMx segmenting 

profile was tested as well as the addition of Baysor segmentation which did not improve the 

segmentation. 

 

CosMx data processing and analysis 

 

The dataset was segmented under default settings using AtomMx and exported as flat text 

files. The dataset was loaded into R (4.5.1) using Seurat (5.1.0)12 and cells were assigned to 

the appropriate samples and conditions based on FOV. The relationship between per cell 

feature counts, number of features, and sample was assessed using FeatureScatter, VlnPlot, 

and SpatialFeaturePlot (Supplementary Fig. 1A-C). Indicating high consistency between 

sample quality, despite some samples having low cell counts due to tissue size 

(Supplementary Fig. 1C).  

Next, the data was normalised using SCT and PCA performed. The elbow plot (Supplementary 

Fig. 1D) suggested between 10-15 dimensions were potentially informative. 15 dimensions 

were carried forward. Clustering was performed using FindNeighbors and FindClusters under 

default settings and a UMAP generated (Supplementary Fig. 1E), which showed a clear per 

sample batch effect. The PCA was integrated on sample using Harmony (3.8)13, under default 

settings. The integrated PCA was re-clustered and the UMAP generated which displayed high 

consistency between samples (Supplementary Fig. 1F). 

To identify cell types, per cluster were identified using FindAllMarkers specifying only.pos = 

TRUE, min.pct = 0.25 and logfc.threshold = 0.25. SingleR (2.1)14 with the Human Primary Cell 

Atlas database was used as a prior, with clusters manually curated based on the markers and 

spatial information (Supplementary Table 1). Due to the limited markers in the 1k plex assay, 

assigning immune cell types with high resolution proved challenging. To improve marker 

resolution, we identified cells as “immune” and “non-immune” and subsetted the dataset, then 

re-ran the PCA, integration, clustering and find FindAllMarkers on each subset 
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(Supplementary Table 2 and 3 respectively). Manual curation of the subsetted markers 

resulted in the identification of 12 cell types. 

 

CosMx spatial region classification: parenchyma and non-parenchyma 

 

To separate parenchyma (P) and non-parenchyma (NP) cells, a custom Python script was 

used to dynamically select spatial niches based on histology. Regin boundaries were manually 

drawn, with validation against known cell-type markers (Supplementary Fig. 2). Next 

differential expression analysis was performed between conditions, for P or NP, for each cell 

type. To do so, we collapsed the data into pseudo counts by sample + cell type + P / NP, using 

AggregateExpression. We removed any sample with < 50,000 reads, and pairwise differential 

expression was calculated using DESeq2 (1.48.1) under default settings. The results were 

visualized using Searchlight (2.0.3) specifying p.adj < 0.05, absolute log2fold > 1 for 

significance, and using the String (11.5) and TRRUST (2.0) databases.  

 

Visium data generation 

 

The Visium spatial transcriptomics data was generated following the Visium spatial 

transcriptomics platform user guide (10X Genomics, CG000239 Rev B). Briefly, the Visium 

workflow began with sectioning 10um fresh frozen explant liver tissue onto a Visium RNA 

capture slides. The tissue was fixed, H&E stained and imaged without a cover slip using a 

slide scanner (Axio Scan, Zeiss). Permeabilization was then preformed to make the mRNA 

accessible, permeabilization time ranged between 6-12 min depending on the samples 

determined using tissue optimisation slides and reagents (10X Genomics). Tissue sections 

were incubated in permeabilization buffer and then reverse transcription, second strand 

synthesis and denaturation, complementary DNA (cDNA) amplification, and quality control 

were performed to ensure proper construction of spatial gene expression libraries (10X 

Genomics). High-throughput sequencing was performed on a NovaSeq sequencer (Illumina) 
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using a SP 200 cycle flow cell to achieve recommended sequencing depth. Sequencing 

reads were demultiplexed and aligned to the human genome (GRCh38-2020-A) using Space 

Ranger (v.2.1.0; 10X Genomics). All data analysis and visualizations were conducted in R 

(v4.5.1). 

 

Visium gene deconvolution and enumeration of cell fractions by CIBERSORTx 

 

Published scRNA-seq data from donor livers containing parenchymal and non-parenchymal 

cells (n=8444 total cells)15 was used to generate CIBERSORTx “signature matrix” files 

(https://cibersortx.stanford.edu)16. Signature matrices contained gene profiles of hepatocytes, 

hepatic stellate cells, portal endothelial cells, plasma cells, B cells, NK cells, inflammatory and 

non-inflammatory macrophages, T cells, cholangiocytes and central venous LSECs. Next, 

average gene expression (median-normalised) of parenchymal and non-parenchymal areas 

were converted into CIBERSORTx “mixture” files containing differential gene expression 

values measured by spatial transcriptomics. The mixture file and the signature matrices were 

uploaded and run in the “impute cell fractions” module of CIBERSORTx17. 

 

Visium data processing and analysis 

 

Visium Spatial Gene Expression data (10x Genomics) were processed using the Space 

Ranger pipeline (v2.1.0) with the GRCh38 human genome reference for alignment and gene 

quantification. Tissue sections were quality-checked using H&E staining and imaged prior to 

permeabilisation and library preparation. The resulting dataset was loaded into R (4.5.1) using 

Seurat (5.1.0), and the relationship between per cell feature counts, number of features, and 

sample was assessed using FeatureScatter, VlnPlot, and SpatialFeaturePlot (Supplementary 

Fig. 3A-C). The results showed inconsistency between the counts observed in each sample, 

with two samples (AH_1607 and AH_7538) showing very low counts. For all samples the 

expected relationship between counts and features was observed (Supplementary Fig. 3C), 

https://cibersortx.stanford.edu/
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suggesting no issue with the library preparation, and the most likely cause was tissue 

adherence to the slides. All samples were taken forward to improve reduction, clustering and 

cell type identification, however several samples were filtered out at the pseudo-bulk step. 

Next, the data was normalised using SCT, and PCA and UMAP performed. The initial UMAP 

showed a clear per sample batch effect (Supplementary Fig. 3D). The data was integrated 

using Seurats FindIntegrationAnchors function. With 3,000 integration markers and samples 

AH_2709 and SN_3303 used as the reference. The integrated data was then re-normalised 

using SCT, and PCA performed. The PCA suggested between 10 and 20 dimensions were 

potentially informative (Supplementary Fig. 3E). 15 dimensions were carried forward. 

Clustering was performed using FindNeighbors and FindClusters under default settings and a 

UMAP generated (Supplementary Fig. 3F). 

The 10x loupe browser platform was used to identify regions that were either parenchyma (P), 

non-parenchyma (NP), deep parenchyma (DP) or deep non-parenchyma (DNP). These cell 

annotations were imported into the Seurat metadata. The data was collapsed into pseudo 

counts by sample + region (P, NP, DP, DNP). We removed any sample with < 50,000 reads, 

and the data was corrected for read count using CombatSeq (SVA)18. Next, pairwise 

differential expression was calculated using DESeq2 (1.48.1) under default settings, and a 

normalised expression table produced. The results were visualized using Searchlight (2.0.3) 

specifying p.adj < 0.05, absolute log2fold > 1 for significance, and using the String (11.5)19 

and TRRUST (2.0)20 databases.  

To deconvolute, the data the CibersortX web platform was used. Firstly, a signature genes file 

was created. The healthy donor single cell dataset (GSE115469) was imported into R, and 

the top 25 markers for each cell type identified using FindAllMarkers. Next, the count data was 

collapsed by cell type into Pseudobulk. To reduce complexity the separate hepatocyte sub-

clusters were collapsed into one. The counts were normalised using DESEq221 and then 

filtered to contain only the top 25 markers for each cell type. This was uploaded as the 

signature genes file. To generate the mixture file, Visium pseudo bulk normalised expression 

table was filtered to contain only genes in the signatures gene file. 
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Neighbourhood enrichment analysis  

 

To investigate the spatial organisation of cells, we used SquidPy (Python; v3.10.18; Squidpy 

v1.6.5; Scanpy v1.11.13)22. Spatial neighbourhood graphs were generated with the 

squidpy.gr.spatial_neighbors function, connecting cells within a specified radius. After 

systemically testing different radii, we determined that 50 µm was the optimal radius to use.  

Neighbourhood enrichment analysis was then performed on these graphs using 

squidpy.gr.nhood_enrichment, which compares observed co-occurrence of cell type labels to 

a permutation-based null distribution (1,000 shuffles). This produced Z-scores describing 

enrichment (positive values) or depletion (negative values) for each label pair. Scores were 

calculated per sample and averaged within disease groups. 

We also computed Ripley’s G statistic23 to assess spatial segregation or mixing of each cell 

type. For a given type 𝑖,	 

𝐺(𝑡)=𝑃(𝑑𝑖 ≤ 𝑡) 

where 𝑑𝑖 is the distance to the nearest neighbour. Curves were averaged within each 

disease group. 

 

Immunohistochemistry 

 

All immunohistochemistry was performed using paraffin-embedded tissue cut to three 

micrometres onto a positively charged slide. Tissue sections were deparaffinized with xylene 

and rehydrated using 97% industrial denatured alcohol (IDA) and then underwent antigen-

retrieval procedures by microwaving in Tris-based antigen unmasking solution (Vectorlabs). 
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Endogenous peroxidase activity and non-specific antibody binding within tissue sections was 

blocked using REAL peroxidase blocking solution (Dako) and 2X casein solution (Vectorlabs), 

respectively. Sections were incubated with primary antibodies (Supplementary Table 4) at 

room temperature for 1 h or overnight at 4°C depending on the antibodies used. Appropriate 

isotype-matched controls were used to stain serially cut tissue sections for all procedures. For 

chromagen-based detection, slides were washed with TBST, and then primary antibodies 

were detected using anti-rabbit or anti-mouse HRP-conjugated secondary reagents 

(Vectorlabs). IMMPACT DAB (Vectorlabs) was used as a chromogen for stain development. 

Sections were counterstained with Mayers Haematoxylin which was developed using hot 

water. Sections were washed in water, dehydrated with 97% IDA and xylene, and then 

mounted with DPX mountant (CellPath)24. Sections were then scanned using a Zeiss Axio 

Scan.Z1 slide scanner.  

 

For immunofluorescence, sections were washed as above and then incubated with 

appropriate, fluorophore-tagged secondary antibodies, diluted in 2X casein buffer, for 1 h. 

Sections were then incubated with TBST containing 1 µg/ml Hoechst 33342 (Life 

Technologies) for 10 min. Autofluorescence was then quenched in sections using TrueView 

(Vectorlabs). Sections were washed and then mounted on to glass coverslips using 

Vectorshield plus (Vectorlabs). Sections were then imaged using a Zeiss 880 LSM confocal 

microscope piloted by Zen black v2.3 software. Where consecutive round multiplexing was 

necessary – when using multiple rabbit antibodies – coverslips were removed, and sections 

were treated with Vectorplex (Vectorlabs) as per manufacturer’s instructions. Samples were 

then blocked in 2X3.12 casein buffer as above and then staining procedures were repeated. 

Previous imaging positions were recalled using the Zen black v2.3 software and images were 

overlaid using Zen lite v3.12.   
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Further details of chromogen-based immunohistochemistry methods can be found in Davies 

et al 25. Details of fluorescence immunohistochemistry methods can be found in Davies et al 

24.  

 

Quantifying DAB staining with QuPath 

 

Using QuPath (version 5.1), DAB staining was quantified in digital slide images 

(Supplementary Fig. 4). Initially, the images were opened in QuPath with the image type set 

to Brightfield (H-DAB). Stain vectors for Haematoxylin and DAB were optimised to ensure 

accurate colour separation. The whole tissue section was selected using the annotation tools. 

Colour deconvolution was then performed using the estimate stain vectors function to separate 

Haematoxylin and DAB channels. 

 

Positive cell detection algorithms were configured and executed to identify DAB-stained cells, 

with adjustments made for nucleus and cytoplasm detection as well as positivity thresholds. 

Detected cells underwent review, and parameters were fine-tuned to ensure accuracy. 

Quantification results were accessed in the measurement table and exported for subsequent 

analysis. 

 

RNA extraction 

 

RNA was extracted to check the RIN values of the tissues used for spatial transcriptomics 

and also for the meta-transcriptomics analysis. 

 

Ten scrolls of 10mm thick cryosections cut from each frozen liver tissue block were placed 

into an Eppendorf for RNA extraction using the Qiagen RNeasy Mini kit, following the 

protocol suggested by the manufacturer. 
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Meta-transcriptomics 

 

RNA extracted from frozen liver blocks was submitted to Novogene for meta-transriptomics 

sequencing. Ribosomal RNA was depleted from the total RNA, which was then reverse 

transcribed into cDNA. Libraries were prepared and sequences using high-throughput 

Illumina technology (n=5 AIH, n=6 SN, n=4 donor). 

 

Barcode trimming and quality control were performed using fastp v 0.23.4 26 to discard reads 

shorter than 40 nucleotides and a Phred quality score of ≥Q20. Reads were then aligned to 

the human genome (GRCh38) using Bowtie2 v 2.5.4 (--very-sensitive-local -k 100 --score-

min L, 0, 1.6 for multi-mappings) 27,28. The Bowtie2 output was used in the Telescope v 1.0.3 

28 to quantify accurate retrotransposon expression on samples using HERV and L1 

annotation (retro.hg38.v1, available on 

https://github.com/mlbendall/telescope_annotation_db/tree/master/builds, accessed on 3 

January 2025). Host gene quantification was performed using Salmon v 1.10.3 29 through 

Ensembl GRCh38 genome assembly and annotation. Telescope and Salmon outputs were 

used to calculate retrotransposons differentially expressed in SN and AIH vs donor samples 

using DESeq2 30. Retrotransposons with p.adj-values < 0.05 and absolute (log2fold) > 1were 

considered differentially expressed and visualised using Volcano plots with Bioconductor 

EnhancedVolcano package. 

 

Statistical analysis 

Statistical analysis were performed using either Student’s t-tests or Mann-Whitney tests, 

selected based on data distribution assessed by the Kolmogorov-Smirnov test. Data 

presented are represented as mean ± SEM, with horizontal bars indicating the median. When 

comparing mean values generated between experimental groups, differences were 

considered significant if p<0.05. GraphPad Prism V10 was used for statistical analysis. 

GraphPad Prism V10 and RStudio V10.10.0 were used for figure generation. 

https://github.com/mlbendall/telescope_annotation_db/tree/master/builds
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RESULTS 

 

Exploring spatial gene signatures of immune cells and hepatic parenchyma in 

autoimmune hepatitis and seronegative hepatitis liver tissues 

 

To investigate the immune mediated hepatitis pathogenesis through gene signatures, we 

performed spatial transcriptomics on human explant liver tissues from seronegative hepatitis 

(SNH) and autoimmune hepatitis (AIH) patients and compare with donor liver tissues as 

control (Fig. 1A). Same patients’ samples were used throughout the study across all 

platforms, including CosMx spatial transcriptomics, Visium whole-transcriptome profiling, 

meta-transcriptomics, immunohistochemistry (IHC), and confocal microscopy enabling 

robust multimodal validation across matched liver tissue sections. Clinical characteristics 

were comparable across SNH, AIH and donors (Fig. 1B). 

 

Firstly, we performed spatial transcriptomics using the CosMx Spatial Molecular Imager on 

eight liver samples (3 SNH, 2 AIH, 3 donors) and subsequently selected 951 fields of view 

(FOVs) (Supplementary Fig. 5). All liver tissues contain areas of both parenchyma and non-

parenchyma, capturing a total of 989,651 individual cells. Unsupervised clustering using the 

Leiden algorithm was applied to gene expression data, and clusters were annotated into 13 

distinct cell types based on canonical marker genes (Fig. 1C, Supplementary Fig. 6A-C). 

Further sub-clustering of selected cell types includes macrophages, B cells, T cells, and 

hepatocytes which allow increased resolution of key immune and parenchymal populations 

in hepatic lobules (Fig. 1C, Supplementary Fig. 6D-K). Spatial resolution was inherently 

limited to 1,000-gene targeted transcriptome CosMx panel. To visualise the spatial 

organisation of these annotated cell types within hepatic lobules, we overlaid the cell-type 

cluster map with the corresponding immunofluorescence images, revealing distinct 

localisation patterns of immune cells across tissue compartments (Fig. 1D). 
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Hepatic macrophages are significantly upregulated in seronegative hepatitis and 

express viral related markers 

 

To quantify changes in the liver immune microenvironment, we analysed cell-type 

proportions across the three cohorts using CosMx spatial transcriptome. As expected, 

hepatocytes were the most abundant cell type in all groups (Fig. 2A). 

 

To spatially contextualise these changes, we developed a custom annotation workflow in 

Python—guided by an expert consultant liver pathologist—to manually delineate 

parenchymal and non-parenchymal regions across all CosMx images (Supplementary Fig. 

2). This approach enabled anatomically accurate classification of liver compartments for 

downstream spatial analyses. In non-parenchymal regions, SNH samples displayed a 

significant increase in the proportion of hepatic macrophages (Kupffer cells) compared to 

AIH and donor livers (Fig. 2B; p < 0.05), indicating a selective enrichment of these cells in 

the inflamed microenvironment of SNH livers (Fig. 2C). By contrast, donor samples showed 

a significantly higher proportion of hepatocytes in parenchymal regions (Supplementary Fig. 

7A-B), consistent with preserved architecture and reduced parenchymal injury. Ripley’s G 

analysis showed overlapping curves for parenchymal and non-parenchymal areas in SNH 

samples indicating similar spatial mixing, whereas in AIH and donor samples the curves 

were clearly separated, reflecting distinct spatial organisation (Supplementary Fig. 7C).  

 

To investigate whether hepatic macrophages (Kupffer cells) in SNH patients exhibit distinct 

transcriptional profiles, we subclustered CosMx-identified hepatic macrophages into six 

subsets based on differential gene expression: anti-inflammatory, APOC1hi, LYZ hi, Mregs, 

pro-inflammatory, and THBS1hi macrophages (Supplementary Fig. 7D). The relative 

frequencies of these macrophage subsets were comparable across SNH, AIH, and donor 

samples indicating that differences in hepatic macrophage are related to transcriptional 

changes rather than altered subset composition. 
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Notably, hepatic macrophages in SNH samples showed consistent upregulation of multiple 

interferon-stimulated genes (ISGs), including MX1, OAS1, OAS2, ISG15, IFIT3 and IFI44L 

(Fig. 2D). These genes are canonical markers of antiviral response and were significantly 

enriched in SNH compared to both AIH and donor livers (Fig. 2E; p < 0.05) and showed 

upregulation of these markers in hepatic macrophages (Supplementary Fig. 7E).  

 

We selected MX1, ISG15, OAS2 and first, we showed molecule expression of these markers 

on the spatial map (Fig. 2F). To validate these findings at the protein level, we used matched 

patients’ samples demonstrating the expression of MX1 on macrophages in SNH patients 

using immunofluorescent imaging (Fig. 2G) as well as the expression of ISG15 and OAS2 

comparing between SNH, AIH and donor samples confirming increased protein expression 

in SNH tissues compared to AIH and donor controls (Fig. 2H). 

 

Furthermore, antiviral gene expression levels significantly correlated with total bilirubin 

concentrations in SNH patients (Fig. 2I, Supplementary Fig. 8A), suggesting a potential link 

between innate immune cells: macrophage activation and extensive necrotic liver injury. 

 

Seronegative hepatitis is characterised by pronounced hepatic macrophage 

clustering and macrophage-centred immune neighbourhoods 

 

To investigate the spatial organisation of immune and parenchymal cells in SNH liver 

disease, we first assessed clustering within individual cell types using Ripley’s G function. 

Compared with random expectation, multiple immune cell types, including macrophages, T 

cells, B cells and monocytes, demonstrated significant clustering patterns in SNH livers, 

indicating that these populations preferentially aggregate rather than distribute randomly 

(Fig. 3A, Supplementary Fig. 8B-C). We next quantified neighbourhood enrichment to 

evaluate preferential cell-cell co-localisation. Across SNH samples, the strongest co-
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localised enrichment was observed between hepatic macrophages and other cell types, 

including macrophages-macrophages, macrophages-T cells and macrophages-monocytes 

pairs (Fig. 3B). These hepatic macrophage-centred co-localisations consistently rank among 

the most enriched neighbourhoods. In contrast, the strongest co-localisation did not include 

macrophages in AIH and donor cohorts (Supplementary Fig. 9A-B). Direct comparison 

across disease groups confirmed that hepatic macrophage increased colocalization with 

other hepatic macrophages, T cells and monocytes and this is a distinguishing feature of 

SNH tissue (Fig. 3C). Macrophage-Hepatocyte co-localisation was significantly reduced in 

SNH samples, suggesting disruption of homeostatic immune-parenchymal interactions and a 

shift towards immune-immune clustering such as macrophage-T cells. 

 

Furthermore, global differential neighbourhood enrichment analysis further highlighted the 

specificity of macrophage-driven spatial immune crosstalk networks in SNH. Compared with 

donor tissue, SNH demonstrated strong enrichment of macrophage-macrophage enrichment 

(Fig. 3D, top, Supplementary Fig. 9C-D). This was also highlighted in SNH compared to AIH 

samples (Fig. 3D, bottom). Together, these findings demonstrate that SNH is characterised 

by pronounced macrophage clustering and macrophage-centred immune neighbourhoods, 

distinguishing it from both AIH and donor liver tissue. 

 

MX1+hepatocytes are significantly expressed in seronegative hepatitis 

 

Sub-clustering hepatocytes revealed distinct hepatocyte subsets defined by stress and 

antiviral signatures, including MX1+, IGFBP7+/SPINK1+, and INSR+ populations, which were 

disproportionately expanded in SNH compared with AIH and donor tissue (Fig. 3E). Due to 

MX1+ hepatocytes being significantly increased in SNH with minimal expression in AIH and 

donor samples (Fig. 3F), and to the increased expression of MX1 on macrophages in SNH 

samples, we showed localisation of MX1 transcripts in hepatocytes of SNH patients (Fig. 

3G) and validated this finding with immunofluorescence staining on matched SNH liver 
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tissues demonstrating co-localisation of MX1 protein with the hepatocyte marker ASGR1 

(Fig. 3H). 

 

Non-parenchyma region of seronegative hepatitis are enriched with viral response 

signatures  

 

To complement the high-resolution CosMx findings and capture comprehensive 

transcriptomic changes, we applied the 10X Genomics Visium spatial transcriptomics 

platform to liver tissues from same patients (SNH=6, AIH=5). H&E staining and expert 

pathological annotation delineated parenchymal and non-parenchymal regions, including 

fibrotic and portal areas (Fig. 4A, Supplementary Fig. 10A-C). 

 

Due to the 55 µm spot size, some Visium spots contained mixed tissue compartments. To 

ensure spatial specificity, we defined “deep parenchyma” and “deep non-parenchyma” by 

selecting spots located at least two barcodes away from boundaries (Fig. 4A). Unsupervised 

clustering and UMAP projection confirmed distinct gene expression profiles separating 

parenchymal and non-parenchymal compartments (Fig. 4B, Supplementary Fig. 10D-G). 

 

Cell-type deconvolution using integrated liver scRNAseq references identified 11 major 

intrahepatic cell types with broadly similar frequencies between SNH and AIH, with the 

exception for an increase in non-inflammatory macrophages specifically within the SNH 

deep parenchyma (Supplementary Fig. 11A–D). 

 

Importantly, differential gene expression analysis revealed a pronounced signatures 

associating host response to virus which is predominantly enriched in SNH non-parenchymal 

areas, characterized by upregulation of genes involved in viral processing, immune cell 

death, and tissue regeneration (Fig. 4C). In contrast, AIH non-parenchyma exhibited gene 

signatures associated with cell-cell signalling, immunometabolism, and coagulation inhibition 
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typical of end-stage liver disease as expected by disease pathology (Supplementary Fig. 

11E), AIH parenchyma did not have enough pathways to form a network (Supplementary 

Fig. 11F). 

 

In parenchymal areas of SNH livers, pathways related to antigen presentation, innate and 

adaptive immune activation (including NK and B cells), and macrophage migration were 

enriched, reflecting an active immune microenvironment within hepatocyte-rich zones (Fig. 

4D). 

 

Together, these data demonstrate that liver parenchymal and non-parenchymal 

compartments possess unique transcriptomic profiles, with a specific enrichment of viral 

processing pathways and host response to virus in the non-parenchymal regions of SNH 

livers, highlighting a compartmentalised antiviral immune response that distinguishes SNH 

from AIH pathology. 

 

CD63 is selectively upregulated in seronegative hepatitis liver tissue and localised to 

hepatic macrophages 

 

To identify spatially relevant genes differentiating SNH and AIH, we performed differential 

expression analysis using Visium spatial transcriptomics in both parenchymal and non-

parenchymal regions. Our analysis showed CD63, MMP12, HM13, and C1QA genes were 

significantly upregulated in SNH compared to AIH across both tissue compartments (Fig. 5A-

B; Supplementary Fig. 12A-B). 

 

To validate these findings at the protein level, we performed immunohistochemical staining 

on matched FFPE samples from the same patients’ liver tisse from SNH, AIH and donor 

livers. CD63 molecule showed significantly increased staining intensity in SNH liver samples 

compared to all other groups (Fig. 5C-D). In contrast, MMP12 was upregulated in both SNH 
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and AIH compared to donor tissue, while HM13 and C1QA did not show significant protein-

level differences (Supplementary Fig. 12C-D). Quantification was performed using QuPath, 

with automated detection and intensity scoring across matched tissue regions. 

 

Applying our CosMx data set, we visualised the distribution of CD63 expression across 

annotated cell types. Notably, CD63 expression in macrophages was strongest and most 

consistent in SNH samples (Fig. 5E). To evaluate whether CD63 expression was disease-

specific, we examined publicly available single-cell RNA-seq data of liver mononuclear 

phagocytes (https://shiny.igc.ed.ac.uk/7efa5350ba94425388e47ea7cdd5aa64/). CD63 

expression was minimal in healthy and acetaminophen (APAP) overdose livers, but 

consistently observed in Non-A, Non-E (seronegative) liver disease, supporting its relevance 

to SNH pathology (Fig. 5F). 

 

Meta-transcriptomics analysis reveals transcriptionally active HERVs in seronegative 

hepatitis and autoimmune hepatitis livers 

 

To further elucidate the viral gene signatures observed in SNH patients, we performed meta-

transcriptomic analysis on same patients matched livers RNA samples from SNH (n = 6), 

AIH (n = 5), and donor liver tissues (n = 4). This approach enabled unbiased detection of 

transposable element (TE) activity, including human endogenous retroviruses. We detected 

the transcripts of human endogenous retrovirus (HERV), which is expressed in the germline 

in all SNH and AIH samples, but they were absent in donor livers, supporting the disease 

specificity of HERV activation. In SNH, we identified nine differentially expressed TEs (seven 

upregulated, two downregulated), the majority of which were HERV elements. These 

included HERVH_1q32.1a/b, HERVK14C_1q32.1, HERVW_1q32.1, HML1_1q32.1, and 

HML3_1q32.1b, all located on chromosome 1q32.1 (Fig. 6A-B). Similarly, in AIH, 13 

differentially expressed TEs were identified (nine upregulated, four downregulated), including 

eight HERVs and five LINE-1 (L1) elements (Fig. 6C-D). Several HERVs were shared 

https://shiny.igc.ed.ac.uk/7efa5350ba94425388e47ea7cdd5aa64/
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between AIH and SN, including HERVH_1q32.1b, HERVK14C_1q32.1, and 

HERVW_1q32.1, suggesting overlapping activation patterns in both SNH and AIH liver 

disease. Annotation with Telescope confirmed that all differentially expressed HERV loci 

were non-protein coding (Supplementary Table 5). 

 

To assess whether HERV activation translated to protein expression, we performed 

immunohistochemistry, with an expert liver pathologist, for HERV-K Gag protein on matched 

FFPE tissues from same patients with SNH and AIH. Robust staining was observed by 

expert pathologist predominantly in SNH samples, with expression localised primarily to 

hepatic macrophages, while no liver tissue expression was detected in AIH and donor livers 

(Fig. 6E). 

 

These findings provide direct evidence that HERV elements are transcriptionally and 

translationally active in SNH, but only transcriptionally in AIH liver tissues and absent in 

donor controls. Importantly, this HERV activation occurs alongside the upregulation of 

interferon-stimulated genes such as MX1, OAS1, and ISG15 in SNH samples, suggesting a 

potential association between endogenous retroviral activity and the antiviral immune 

signature observed in these livers. 

 

Intrahepatic immune cells and hepatic parenchyma cells interactions reveal 

upregulation of the LIGHT pathway in seronegative hepatitis 

Thus far, our data suggested host response to virus, CD63 molecule which may relate to 

viral processing and hepatic macrophages are involved in SNH pathogenesis. To further 

dissect host response to viral response we compare cell-cell interaction to donor and AIH 

and donor and SNH samples. We explored cell–cell interactions within parenchymal and 

non-parenchymal regions defined by CosMx spatial data.  
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AIH livers exhibited fewer interactions overall and lower interaction signal strength in both 

tissue compartments (Supplementary Fig. 13A-B). Visualisation of interaction networks 

showed distinct differences in cell-type communication patterns between patient groups 

(Supplementary Fig. 13C–F). 

Notably, analysis of ligand–receptor pairs revealed significant upregulation of the LIGHT 

(homologous to lymphotoxin, exhibits inducible expression and competes with HSV 

glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T 

lymphocytes) pathway (TNFSF14–TNFRSF14 and TNFSF14–LTBR, also known as LIGHT-

HVEM (herpesvirus entry mediator) and LIGHT-LTBR (lymphotoxin beta receptor) 

respectively) in SNH samples compared to AIH and donor cohorts (Fig. 7A). Cross-condition 

comparisons demonstrated that SNH displayed the highest expression of all three genes 

across all cell populations (p<0.0001, Fig. 7B). To understand the cell-specific expression of 

TNFSF14, TNFRSF14 and LTBR we looked across the diseases on all cell types, this 

showed a broad expression of TNFSF14 and TNFRSF14 in SNH but a lacking expression of 

TNFSF14 in immune cells in AIH and donor samples (Fig. 7C-D, Supplementary Fig. 13G). 

High resolution multiple immunofluorescence imaging validated expression of TNFSF14 

(LIGHT) on CD68+ macrophages and its counterpart co-stimulatory receptor TNFRSF14 

(HVEM) on hepatocytes in SNH samples but lacking in AIH and donor samples (Fig. 7E). 
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DISCUSSION 

 

In this study, we investigate the immunopathogenesis mechanism and possible triggers of 

seronegative hepatitis, comparing them with autoimmune hepatitis and donor livers. A 

unique feature of our study is the use of the same patient samples across all experimental 

platforms to explore underlying pathogenesis in a robust and physiological approach. We 

applied high-plex spatial transcriptomics to provide an in-depth spatial and transcriptional 

comparison, integrating CosMx single-cell spatial resolution data with Visium whole 

transcriptome profiling. We uncovered distinct immune signatures that highlight the unique 

immunopathology of SNH compared to AIH and homeostatic state of normal liver. 

Our most striking finding was the significant expansion of hepatic macrophages (Kupffer 

cells) in SNH livers, particularly within non-parenchymal portal tract regions. The most likely 

explanation is pan-acinar hepatocyte necrosis in SNH, leading to collapse of the liver lobule 

and accumulation of hepatic macrophages around the portal regions. This finding is 

accompanied by an enrichment for canonical type I interferon-stimulated genes (ISGs) such 

as MX1, OAS1, ISG15 and IFIT3 on these macrophages. MX1 is induced by interferon, a 

signalling protein released by cells in response to viral infection. There is a high level of type 

1 interferon in acutely inflamed liver31,32 such as SNH. MX1 binds to and disrupts the 

interaction between viral proteins, specifically basic protein 2 (PB2) and the nucleoprotein33. 

Type I interferon responses are well-established mediators of antiviral immunity, typically 

induced during viral infections or viral mimicry states34. Thus, a viral trigger may play a role 

in SNH, and macrophages are primed for antiviral defence, whereas in AIH T cells 

orchestrate an immune-mediated inflammation to autoantigens such as soluble liver 

antigen35. The enrichment of ISGs in SNH macrophages suggests an innate immune 

activation that may be triggered by viral components or endogenous danger signals, similar 

to a previous study where macrophage-driven type I interferon signatures correlate with 

disease severity36. Spatial analysis further revealed increased proximity of macrophages–
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macrophages, macrophages-T cells and macrophages-monocytes in SNH livers, implying 

that disrupted tissue architecture or local microenvironmental cues may modulate 

macrophage activation and contribute to persistent inflammation. Hepatic macrophages are 

phagocytic cells in the liver and such macrophage activation states have been linked to 

failed resolution of inflammation and tissue damage37.  

Sub-massive hepatocyte necrosis or pan-acinar necrosis is a typical histology finding in 

SNH. Due to necrosis of parenchyma hepatocytes, we compare both parenchymal versus 

non-parenchymal regions. In SNH, non-parenchyma regions have accumulation of immune 

cells which explains liver lobule collapse leading to dense concentrations of immune cells in 

non-parenchyma or portal tract regions of SNH. However, this stands in contrast to acute 

AIH, where liver inflammation is often more spatially diffuse and the balance between injury 

and repair more sustainable over time. These regional patterns not only reflect the known 

spatial organisation of hepatic cell types but also highlight disease-specific pathophysiology. 

Thus, we applied spatial transcriptomic profiling using Visium which revealed marked 

compartmentalisation of gene expression in SNH livers, with distinct molecular programs 

operating in parenchymal versus non-parenchymal regions.  

Non-parenchymal regions in SNH samples showed significant upregulation of genes 

involved in viral processing, innate immune activation, apoptosis, and cell death—signatures 

that align with the spatially focused on regions enriched for innate macrophages. In the 

parenchyma, SNH livers exhibited increased expression of genes linked to antigen 

presentation, cytotoxicity, and cell cycle dysregulation. These findings imply that hepatocytes 

in SNH are active target of tissue destruction of immune cells with attempted hepatocyte 

regeneration and proliferation. The enrichment of cytotoxicity and mitotic genes further 

suggests a dynamic but ultimately failing regenerative attempt in the face of overwhelming 

immune-mediated injury. Upregulation of pathways involved in macrophage migration also 

demonstrates that a hepatic environment of persistent inflammation and attempted 
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phagocytosis and repair is occurring in SNH livers38. However, this regenerative response 

appears insufficient to counteract the extensive damage, contributing to the fulminant 

disease course characteristic of SNH, indicating a skewed balance toward injury as seen in 

acetaminophen overdose patients39,40. These spatial data provide insights towards the 

pathogenesis of SNH suggesting that the destructive trajectory of SNH linking with viral 

processing and innate hepatic macrophages in necrotic and collapsed hepatocyte 

parenchyma.  

A notable molecular distinction between SNH and AIH was the upregulation of CD63, 

observed at both gene and protein levels. CD63 is a member of the tetraspanin family 

involved in vesicle trafficking, exosome biogenesis, immune cell activation, and cell adhesion 

41. Its increased expression in SNH was localised to hepatic macrophages, consistent with a 

heightened state of immune activation and cellular stress. Additionally, CD63 is associated 

with innate immune cell apoptosis 42, suggesting that its expression may also reflect 

clearance of apoptotic immune cells in inflamed tissue. CD63 is also prominently expressed 

on the surface of exosomes, and its upregulation in SNH may relate to increased 

intercellular signalling via CD63-enriched vesicles. These exosomes can carry microRNAs 

from virus that modulate local immune responses, potentially exacerbating inflammation and 

driving disease progression 43. Importantly, CD63 plays a functional role in viral infection 

biology. It is enriched in late endosomes and multivesicular bodies and facilitates membrane 

organisation and intracellular trafficking of viruses including HIV, HPV, and influenza A virus 

44 45-49. In addition to its role in innate immunity, CD63 has been implicated in extracellular 

matrix remodelling and fibrosis 50, processes that are known to be more pronounced in SNH 

due to the extensive architectural disruption observed in sub-massive hepatic necrosis 

disease 8,51-53. 

In SNH, CD63 expression coincided with robust interferon-stimulated gene signatures and 

active HERV transcription, suggesting a coordinated antiviral response. Importantly, CD63 
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upregulation distinguished SNH from AIH, reflecting stronger viral and immune-mediated 

inflammatory processes. Together, these findings support a model in which endogenous 

viral element activation, particularly pronounced in SNH, exacerbates immune dysregulation 

and accelerates hepatocyte inflammation and necrosis. 

 

Complementing the macrophage-driven antiviral signature and CD63 upregulation in SNH, 

our meta-transcriptomic analyses detected active transcription of human endogenous 

retroviruses (HERVs) in both SNH and AIH liver tissues, but not in donor livers. We 

confirmed these findings with immunohistochemistry tissue staining on same liver tissues of 

SNH which we used for Visium and CosMx analysis. This finding supports the hypothesis 

that reactivation of endogenous retroelements may occur in inflamed human livers triggering 

innate immune responses including macrophages. However, HERVs signature is not seen in 

homeostatic state such as normal livers. The localization of HERV-K proteins to 

macrophages in SNH further strengthens the link between HERV expression and immune 

activation. Although previous studies have implicated HERV reactivation in systemic 

autoimmune conditions such as multiple sclerosis and lupus54,55 - where HERV-derived 

nucleic acids and proteins stimulate type I interferon pathways and contribute to chronic 

inflammation56 - recent mechanistic data show that Epstein–Barr virus (EBV) infection can 

directly drive multiple sclerosis by expanding central nervous system-homing T-bet⁺CXCR3⁺ 

B cells that recruit inflammatory T cells to the brain. Thus, HERV reactivation in autoimmune 

contexts may represent a secondary or amplifying response to upstream initial immune 

triggers, such as environmental insult or viral infection, rather than the initiating cause57. 

Notably, the majority of differentially expressed HERVs in our cohort mapped to 

chromosome 1q32.1, a locus previously associated with autoimmunity and epigenetic 

dysregulation58-61. While it remains unclear whether HERV activation is a cause or 

consequence of liver inflammation, its presence in both SNH and AIH highlights a shared 



 33 

pathogenic mechanism involving viral mimicry. This data provides evidence of tissue-level 

HERV expression suggests that endogenous retroviral elements may contribute to sustained 

immune activation, adding complexity to the immunopathogenesis of SNH and AIH. This 

aligns with previous suggestions that viruses could play a role in triggering immune 

responses in genetically predisposed individuals62. In addition, we identified shared 

upregulation of five non-coding HERV loci on chromosome 1q32.1 in both SNH and AIH 

livers, suggesting a common mechanism of endogenous retroviral activation. Although non-

coding, HERV transcripts can stimulate innate immune sensors and promote inflammation63. 

Notably, SNH showed a broader and more dysregulated transcriptional response, 

particularly in macrophages, which may underlie its more aggressive clinical course. 

The absence of HERV expression in donor tissue confirms the disease specificity of this 

signal and supports the hypothesis that HERV reactivation might be a pathological feature of 

both SNH and AIH. Given recent evidence from EBV-associated autoimmune diseases, it is 

most likely that HERV is a secondary response to unknown upstream immune stimulation, 

rather than a primary driver, but it remains closely associated with hepatic macrophage 

activation and CD63 upregulation. 

 

We then investigate the reason for fulminant hepatocyte necrosis from aberrant immune 

activation in SNH. Spatial cell–cell interaction analysis revealed significant upregulation of 

the TNFSF14 (LIGHT)–TNFRSF14 (HVEM) signalling axes in SNH livers compared to AIH 

and donor tissues. We confirmed this by staining LIGHT on hepatic macrophages (Kupffer 

cells) and HVEM on hepatocytes in SNH. LIGHT is a member of the TNF superfamily that 

plays critical roles in promoting immune cell activation, regulating immune homeostasis, and 

driving fibrotic responses. In SNH samples, LIGHT was highly expressed on macrophages, 

while its receptor HVEM was broadly expressed on hepatic macrophages, hepatocytes and 

epithelial cells respectively, suggesting widespread engagement of this immunostimulatory 
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pathway. These findings align with previous studies demonstrating that LIGHT-HVEM 

signalling contributes to excessive inflammation and tissue damage in autoimmune 

contexts64,65. Notably, LIGHT signalling has been implicated as an activation signal to its 

receptor HVEM66. In the context of SNH, where we observe accelerated liver damage and 

failure for regeneration and remodelling, the upregulation of LIGHT signalling may reflect a 

key pathogenic axis linking excessive and aberrant immune activation with hepatic tissue 

excessive necrosis. Moreover, LIGHT-HVEM interactions can amplify type I interferon 

responses and synergise with antiviral pathways. Considering the robust interferon-

stimulated gene expression as discussed previously from our findings and HERV activation 

observed in SNH livers, it is plausible that LIGHT contributes to sustaining or amplifying 

these antiviral immune response programs. This raises the possibility that the LIGHT 

pathway serves as a molecular bridge between viral trigger, immune cells crosstalk, and 

progressive tissue damage in SNH. The lack of expression of LIGHT in AIH compared with 

SNH liver disease highlights its potential as a diagnostic biomarker to distinguish between 

the clinically overlapping conditions. Moreover, given the pathogenic role of the LIGHT axis 

in other autoimmune disorders, our findings suggest that therapeutic targeting of LIGHT-

HVEM interactions may represent a novel treatment strategy. 

Our results support a model whereby hepatic macrophage-driven antiviral responses in SNH 

represent a key pathogenic axis distinct from classical AIH, potentially explaining the 

aggressive clinical course by aberrant immune activation, uncontrolled hepatocyte necrosis 

leading to liver failure observed in SNH patients. These findings provide a novel 

immunopathological framework for SNH, highlighting macrophages and their interferon 

response as potential promising targets for future therapeutic intervention to prevent liver 

transplantation for SNH patients. This study defines SNH liver disease as a unique spatial 

and transcriptional immune entity characterised by expanded hepatic macrophage 

populations with antiviral signatures, CD63 expression, altered and aberrant intercellular 

immune activation, and evidence of HERV exposure from liver tissue from an unknown 
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trigger. While AIH and SNH share some common features, we now reveal with a multi-

OMICs approach that they are fundamentally distinct in their spatial immunobiology. These 

findings highlight the value of spatial transcriptomics in resolving the tissue context of 

autoimmune liver diseases and provide new insights into the drivers of immune activation in 

SN, with potential diagnostic and therapeutic implications.  

 

Limitations and future directions 

A limitation of this study is the use of archival explant liver samples, with no access to freshly 

collected explant liver, biopsies or peripheral blood, as patients were often incubated during 

hospital arrival thus unable to consent for use of fresh tissue. This precluded the possibility 

of performing additional experimental validations or functional assays. Furthermore, there 

are currently no representative mouse models for seronegative liver disease, which limits the 

ability to perform in vivo mechanistic studies. Despite these constraints, we leveraged 

precious explant human liver samples from SNH and AIH that are matched across all 

experimental platforms in this study. For the first time, we comprehensively applied spatial 

transcriptomics using both Visium and CosMx, integrated meta-transcriptomics and validated 

these findings using tissue protein expression confirmed in collaboration with a liver 

histopathologist. These analyses provide first ever valuable insights into the 

immunopathology of seronegative liver disease, which require liver transplantation in almost 

all cases. Future work may benefit from prospective collection of fresh samples with consent 

from family members and the development of suitable animal models to further advance 

understanding of disease mechanisms and potential diagnostic and therapeutic avenues for 

the health and well-being of these patients with discovery science. 
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DATA AVAILABILITY 

 

Our CosMx spatial transcriptomics data are freely available for user-friendly interactive 

browsing online (bham.ac.uk website in progress). All raw and processed sequencing data 

for Visium and meta-transcriptomics work are deposited in ArrayExpress under accession 

numbers E-MTAB-15851 and E-MTAB-15835 respectively. CosMx SMI raw and processed 

data is available on BioImage Archive accession number S-BIAD2346. Lists of genes used 

to identify cell subsets for analysis and clustering results are available as Supplementary 

Tables provided with this paper. 

 

CODE AVAILABILITY 

 

All code is available on GitHub: 

https://github.com/AmberBozward/SNH_AIH_spatial_transcriptome 

 

  

https://github.com/AmberBozward/SNH_AIH_spatial_transcriptome
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Fig.1| Overview of study design, patient samples, clinical features and spatial cell type 

mapping.  
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A An outline of the samples collected and used for various methods throughout the study. B 

Clinical characteristics of patients included in the spatial transcriptomics work from 

Autoimmune hepatitis (AIH), seronegative hepatitis liver disease (SN) and donor control (D) 

explant liver samples. C CosMx cell types identified at a broad resolution outlining the 

number of high-quality transcriptomes (989,651 cells) and fine resolution cell subsets of 

Macrophages, T cells, B cells and Hepatocytes from all samples combined. D Cell types 

identified using the gene signatures viewed spatially and the stained immunofluorescence 

image for DNA, histone, membrane, CK8/18 and CD45. 

SN: Seronegative hepatitis, AIH: Autoimmune hepatitis, D: Donor 
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Fig.2| Hepatic macrophages are significantly upregulated in SN and express anti-viral 

markers.  

A-F CosMx 1k-plex panel using Autoimmune hepatitis (AIH), seronegative hepatitis liver 

disease (SN) and donor control (D) samples. A Stacked bar plot showing the relative 

abundance of annotated cell types in samples from AIH, SN and D samples. Each bar 

represents the percentage contribution of each cell type to the total cell population within a 

sample. B Areas of parenchyma and non-parenchyma were spatially differentiated for each 
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sample and combined to determine cell abundances for each cohort. Cell counts for areas of 

non-parenchyma were plotted and compared between AIH, SN and D cohorts using (Mann-

Whitney test). C Representative spatial transcriptomics images showing the distribution of 

cell types between AIH, SN and D samples each colour represents a different cell type. D 

Volcano plot comparing markers upregulated on macrophages in SN samples compared to 

macrophages in AIH samples. Highlighting significantly upregulated anti-viral associated 

markers. E Comparison of anti-viral markers IFI44L, IFIT3, ISG15, MX1, OAS1 and OAS2 

between AIH, SN and D samples using Mann-Whitney test. F Representative CosMx spatial 

transcriptomics map showing segmented cells coloured by annotated cell type. A selected 

macrophage region (black outline) is enlarged to display single-molecule resolution of 

transcripts for MX1 (red), OAS2 (blue) and ISG15 (green) on SN liver tissue. G 

Immunoflourescence images showing the expression of MX1 (yellow) on seronegative liver 

disease, using the same tissue samples profiled with CosMx. Macrophages are denoted by 

CD68 (Green) and DAPI (blue) staining. H Immunohistochemistry staining of ISG15 and 

OAS2 (brown) in explant liver tissue from SN, AIH and donor samples, performed on the 

same samples profiled with CosMx analysis. I Pearson correlation coefficients (r) between 

clinical parameters (bilirubin, ALT, INR and albumin) and anti-viral associated genes (IFI44L, 

IFIT3, ISG15, MX1, OAS1 and OAS2) in SN liver samples. Positive correlations are shown 

in red and negative correlations in blue, with intensity reflecting correlation strength. 

SN: Seronegative hepatitis, AIH: Autoimmune hepatitis, D: Donor 
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Fig.3| Spatial clustering and neighbourhood enrichment of immune and parenchymal 

cells in seronegative (SN), autoimmune hepatitis (AIH) and donor (D) liver tissue. 

Hepatocyte antiviral responses and immune cell composition in SN liver disease. 
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A Average Ripley’s G function for selected immune cells types compared with random 

expectation, demonstrating significant clustering across SN liver samples. Shaded areas 

represent variability across samples. B Top 20 neighbourhood enrichment Z-scores for cell-

cell clustering localisation in SN samples, ranked by median value across patients. Red 

boxes highlight macrophage-macrophage, macrophage-T cells and macrophage–monocyte 

co-localisations. C Boxplot showing neighbourhood enrichment Z-scores for selected cell-

cell interactions across conditions (SN, AIH, D). Significant differences (Mann Whitney test) 

are indicated on each plot. D Heatmaps of differential neighbourhood enrichment (Δ Z-score) 

comparing SN with donor (left) and SN with AIH (right). Positive values (Red) indicate 

increased enrichment in SN, while negative values (blue) indicate reduced colocalization 

relative to the comparator group. E Stacked bar plot showing the proportions of hepatocyte 

subpopulations across conditions (AIH, D, SN). F Boxplot of MX1 expression in hepatocytes 

across conditions, demonstrating significant upregulation in SN. G Representative CosMx 

spatial transcriptomics map showing segmented cells coloured by annotated cell type. A 

selected hepatocyte region (black outline) is enlarged to display single-molecule resolution 

of transcripts for MX1 (red) on SN liver tissue. H Immunoflourescence images showing the 

distribution of expression of MX1 (red) in seronegative liver disease, using the same tissue 

samples profiled with CosMx. Hepatocytes are denoted by asialoglycoprotein receptor 

(ASGR1; green) and DAPI (blue) staining.  

SN: Seronegative hepatitis, AIH: Autoimmune hepatitis, D: Donor 
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Fig.4| Tissue segmentation, spatial annotation, and pathway analysis of seronegative 

hepatitis and autoimmune hepatitis explant liver tissue.  

A Representative H&E-stained explant liver sections with corresponding computational 

segmentation in parenchyma (red), deep parenchyma (dark red), non-parenchyma (blue), 

deep non-parenchyma (dark blue), and other tissue regions (grey). B UMAP projections 

showing separation of parenchymal (red) and non-parenchymal (blue) compartments across 

all samples. C-D Functional network analysis of differentially expressed genes between C 

non-parenchyma and D parenchyma compartments. Networks are annotated with enriched 

biological processes. 

 



 51 

 

Fig.5| CD63 expression is enriched in seronegative liver disease.  

A Boxplot showing increased CD63 expression in parenchymal and non-parenchymal areas 

of patients with SN liver disease compared to lower expression in AIH samples. B Visium 

spatial transcriptomics visualisation showing CD63 expression distribution across a SN liver 

tissue sample. C Immunohistochemistry staining of CD63 (brown) in explant liver tissue from 

Donor (top), AIH (middle) and SN (bottom) samples, performed on the same samples 

profiled with spatial transcriptomics analysis. D Boxplot quantifying the expression of CD63 

stained using immunohistochemistry on AIH, donor and SN FFPE matched liver samples 

(Mann Whitney test). E Representative CosMx spatial transcriptomics map showing 

segmented cells coloured by annotated cell type. A selected macrophage region (black 

outline) is enlarged to display single-molecule resolution of transcripts for CD63 (red) on SN 

liver tissue. F Violin plot showing the expression of CD63 on mononuclear phagocytes in 

healthy control, acetaminophen (APAP) and NAE liver samples from a publicly available 

scRNAseq dataset (https://shiny.igc.ed.ac.uk/7efa5350ba94425388e47ea7cdd5aa64/).  

 

https://shiny.igc.ed.ac.uk/7efa5350ba94425388e47ea7cdd5aa64/


 52 

 

Fig.6| Seronegative liver disease patient samples contain HERV virus. 

A Volcano Plot of the comparison AIH vs. donors. Red points are differentially expressed 

transposable element quantified by Telescope and green points are differentially expressed 

genes quantified by Salmon. B Differentially expressed transposable element in SN patients 

quantified by Telescope. C Volcano Plot of the comparison AIH vs. donors. Red points are 

differentially expressed transposable element quantified by Telescope and green points are 

differentially expressed genes quantified by Salmon. D Differentially expressed transposable 

element in AIH patients quantified by Telescope. E Immunohistochemistry staining of HERV 
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(brown) in explant liver tissue from SN (top), AIH (middle) and donor (bottom) samples, 

performed on the same samples profiled with spatial transcriptomics analysis. 

 

 



 54 

Fig.7| LIGHT pathway signalling is upregulated in seronegative liver disease and 

enriched in macrophages. 

A CellChat analysis of ligand-receptor interactions outgoing from macrophages to all other 

cell types comparing between SN and donor samples in non-parenchymal areas. The red 

outline highlights the LIGHT pathway interactions. B Comparison of LIGHT pathway markers 

TNFSF14, TNFRSF14 and LTBR between AIH, SN and D samples using Mann-Whitney 

test. C Cell-type resolved violin plots of TNFSF14, TNFRSF14 and LTBR expression across 

liver cell populations in SN (left), AIH (middle) and donor (right) samples. D Representative 

CosMx spatial transcriptomics map showing segmented cells coloured by annotated cell 

type. Two selected regions (black outline) highlighting areas of 1) epithelial cells and 2) 

macrophages are enlarged to display single-molecule resolution of transcripts for TNFSF14 

(red), TNFRSF14 (blue) and LTBR (green) on SN liver tissue. E Immunofluorescence 

images showing the distribution of tumor necrosis factor superfamily member 14 

(TNFSF14/LIGHT), Herpesvirus entry mediator (HVEM) and Lymphotoxin β receptor (LTβR; 

magenta) in liver tissues from non-cirrhotic donor livers (left) or explants livers from patients 

with seropositive autoimmune hepatitis (AIH; middle) or seronegative liver disease (SN; 

right). Hepatocytes and macrophages are denoted by asialoglycoprotein receptor (ASGR1; 

grey) and CD68 (yellow) staining, respectively. 

SN: Seronegative hepatitis, AIH: Autoimmune hepatitis, D: Donor 
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