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Supplementary Methods
Root microbiome data

We compiled the root-tip fungal community datasets described in our previous study with newly
obtained prokaryotic data!. Briefly, root-tip samples (1 cm terminal roots) were sampled in the
research forest of Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Ueda,
Nagano Prefecture, Japan (36.524 °N; 138.349 °E; 1,340 m a.s.l.). The root tips were sonicated in
0.5% tween 20 and surface sterilized subsequently with NaClO (Nakalaitesque, effective chlorine
concentration ca. 11%) diluted to 1% (v/v), sterile distilled water (three times), and 99.5% ethanol'.
After DNA extraction with a cetyltrimethylammonium bromide (CTAB) method, the internal
transcribed spacer (ITS) region of fungi and the 16S rRNA region of prokaryotes were PCR-amplified
and the purified amplicons were sequenced in an [llumina MiSeq sequener!. The obtained
134,066,687 and 73,183,237 sequencing reads of ITS and 16S rRNA region were converted into
FASTQ files using bcl2fastq (version 1.8.4) and demultiplexed with Claident v0.9.2022.01.26*3. From
these outputs, amplicon sequence variants (ASVs) were constructed by adaptor trimming by Cutadapt*
(version. 3.7), quality filtering and denoising by DADA2° v.1.18.0 of R 4.2.2. Contaminant ASV's
were removed with the R package “decontam” (the method “prevalence”) 7. Taking into account
duplication error in PCR, the ASVs were re-clustered into operational taxonomic units (OTUs) with a
97% similarity threshold using the program VSEARCH v2.21.18. The taxonomic assignments of
fungal and prokaryotic OTUs were performed based on the UNITE® general FASTA release for
eukaryotes 2. Version 18.07.2023 and the SILVA!? version 138 database using the naive Bayesian
classifier method in DADA2>!!. The root sample which had less than 1,000 fungal/prokaryotic reads
were discarded. Then, obtained fungal/prokaryotic OTU matrices of the samples whose host plants
(described elsewhere!) were detected more than 50 times (Acer, Betula, Juglans, Larix, Pinus and
Populus) were rarefied with coverage-based method using “vegan” package v.2.6-8'2. In total, both
fungal and prokaryotic community data were obtained for 1,270 root samples collected from the 125
sampling points. In total, 2,249 fungal and 12,479 prokaryotic OTUs were obtained from those root

samples.

Host preference of the fungal/prokaryotic families

To evaluate the host specificity of the fungal and prokaryotic families used in energy landscape
estimation, we calculated the d’ metrics of interaction specificity!® and two dimensional preference of
plant fungal associations (2DP)'* for the 34 fungal and 45 prokaryotic families (selected in
Supplementary Figs. S1, S3) with the same way as our previous study'. In this analyses, the
fungal/prokaryotic community data were binarized with the same criteria as energy landscape analysis
(described detail below). The standardized indices and their statistical significances were assessed by
comparing the observed data with null model simulations. Specifically, the host plant information was

shuffled among root samples collected at the same sampling positions (10,000 permutations), and the
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indices calculated from the randomized datasets were compared to the original one. For each fungal

and prokaryotic family, a standardized d' metrics was calculated as follows:

[d ’original — Mean (d }randomized)] / SD (d ’ randomized),

where d original Was the d’ estimate of the original data and Mean (d randomized) and SD (d randomized) Were
the mean and standard deviation of the d’ of randomized data matrices. For each pair of six host plants

and fungal/prokaryotic family, standardized 2DP was also calculated as follows:
[Noriginal (l,]) — Mean (Nrandomized (l,]))] / SD (Nrandomized (l, ])),

where Noriginal (7, j) denoted the number of root samples from which a focal combination of a symbiont
family and a host plant was observed in the original data, and the Mean (Nrandomized (7, 7)) and SD
(Nrandomized (7, j)) were the mean and standard deviation of the number of samples for the focal
symbiont-plant pair across randomized matrices. False discovery rates [FDR!’] were also calculated to
evaluate the statistical significance of the two indices (d' metrics ; one-tailed tests, 2DP; two-tailed
tests).

Preparation of data matrices for energy landscape analysis

After excluding five and three samples in which more than 50% of sequence reads could not be
annotated at the family level in fungal and prokaryotic communities respectively, the fungal and
prokaryotic data matrices were converted into a binary format. The threshold of the binarization was
set as Mean(log(X;)) — 2 SD(log(X;)), where X; denotes the read counts of taxon i across the
samples in which it was detected. To make exploration within assembly graphs (25 possible
community states, where S is the number of taxa) computationally feasible, we prioritized and selected
families, respectively, in the fungal and prokaryotic data. Specifically, a series of permutational
analyses of variance (PerMANOVA)!® was performed for the relative abundance matrix of fungal or
prokaryotic data by setting the presence/absence of a target family as an explanatory variable (10,000
iterations). In the PerMANOVA, the Bray-Curtis metric was used to calculate community dissimilarity
between root samples, and the host plants and sampling points were set as additional explanatory
variables (i.e., covariates). Families were then ordered depending on their explanatory power (R?) in
the PerMANOVA. The optimal set (number) of families to be analyzed in the energy landscape
analysis was subsequently explored for the fungal and prokaryotic data, respectively. To apply a
simple criterion, we evaluated correspondence between the community dissimilarity values calculated
based on the original relative abundance data (Bray-Curtis distance for quantitative data) and those
calculated based on the binarized data (Jaccard distance for binary data). An optimal binarized data
matrix (sets of families) preserving the information of original relative abundance data was selected
based on the Kendall’s rank correlation coefficient for the correspondence between quantitative and

binary data.
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rarefaction for the root samples. In a matrix of family-level taxonomic compositions, relative read
counts of each family were binarized with a threshold described in Methods and Supplementary
Figure S2. To make the subsequent statistical analysis (energy landscape analysis) computationally
feasible, we prioritized and selected families based on their contribution to overall community
structure, evaluated by PerMANOVA (R? Supplementary Tables S1 and S2). The family set showing
the highest correspondence between its binarized pattern and the abundance-based community
structure was selected among candidate sets determined by their R? values. Energy landscape analysis
was then conducted using the family-set with host plant genera (encoded as dummy variables) as
explanatory variables. (b) Input data for the keystone exploration. From the original data matrix
excluding OTUs annotated as a focal genus, coverage-based rarefaction was conducted. Binarization
was applied to the same set of families as in (a). In parallel, the whole community matrix was rarefied,
and the genus-level compositions were subjected to CLR transformation. Energy landscape analysis
was performed by including host plant genera (dummy variables) and CLR-transformed relative read
counts (+1) of the focal genus as external factors. Two types of indices for identifying potential
keystone taxa were calculated by comparing the landscape topography inferred in the absence of the
focal species/taxon with that estimated under the assumption of an intermediate abundance level

(25%, 50%, or 75% quantiles of abundance across samples in which the focal taxon was present) (Fig.
lg).
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Supplementary Fig. S2 | Relative abundances of microbial families | (a) Distribution of relative
read counts of each fungal family in samples from which it was detected. To remove potential
sequencing contaminants, the threshold for binarization was defined for each family as Mean [log
(RRC)] —2SD [log (RRC)], where Mean [log (RRC)] and SD [log (RRC)] denote the mean and
standard deviation of the log-transformed relative read counts of the focal family, respectively. (b)

Distribution of relative read counts for each prokaryotic family.
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Supplementary Fig. S3 | Selecting optimal family sets for energy landscape analysis. The optimal
sets (numbers) of fungal and prokaryotic families were determined to best preserve the information
contained in the original community data during the filtering process for energy landscape analysis
(see Supplementary Fig. S1 and Methods for details). Specifically, to make the exploration of optimal
fungal and prokaryotic family sets computationally feasible, we first ordered 50 families based on
their explanatory power for the overall community structure (R? in the PerMANOVA; see
Supplementary Tables S1 and S2). We then evaluated the correlations between community
dissimilarity values calculated from the binarized data of each candidate family set (Jaccard distance)
and those calculated from the original relative abundance data (Bray—Curtis distance). The selected

fungal and prokaryotic family sets are indicated by star-shaped symbols.
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Supplementary Fig. S4 | Rarefaction curves. (a) Number of fungal OTUs detected in root samples.
For visualization, the relationships between the number of sequencing reads and the number of fungal

OTUs detected in 200 randomly selected samples are shown. (b) Number of prokaryotic OTUs.
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Supplementary Fig. S5 | Fungal and prokaryotic community compositions. (a) Family-level

taxonomic compositions of fungal communities across 1,270 root-tip samples. (b) Genus-level

taxonomic compositions of fungal communities. (¢) Family-level taxonomic compositions of

prokaryotic communities. (d) Genus-level taxonomic compositions of prokaryotic communities.
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Supplementary Fig. S6 | Number of the samples from each host plant. The sample size of each

host plant genera used in energy landscape analysis is shown. After a series of quality filtering, 1,270

root samples identified as those of major six plant genera (i.e., plant genera with more than 50

samples) were used in the statistical analysis.
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Supplementary Fig. S7 | Preferences in plant—fungus associations. Host preferences of the fungal
families analyzed in the energy landscape analysis (rows) and symbiont preferences of the six host
plant genera (column) are shown as z-standardized d’ estimates. In addition, specificity of each host—
symbiont pair is represented with a two-dimensional preference (2DP) estimate in the matrix heatmap,
which indicates the extent to which the association of a target plant—fungal pair is observed more or
less frequently than expected by chance. Significance of the z-standardized d’ (one-tailed test) and
2DP estimates (two-tailed test) are evaluated with the null model simulations (See Supplementary
Methods; *** P (FDR) <0.001; ** P (FDR) <0.01; *, P (FDR) < 0.05). The relationship between

the 2DP estimates and FDR-corrected P values are also shown in the left-side panel.
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Supplementary Fig. S8 | Preferences in plant—prokaryote associations. Host preferences of the

prokaryotic families analyzed in the energy landscape analysis (rows) and symbiont preferences of the

six host plant genera (column) are shown with the z-standardized d’ estimates. In addition, specificity

of each host-symbiont pair is represented with a two-dimensional preference (2DP) estimate in the

matrix heatmap, which indicates the extent to which the association of a target plant—prokaryote pair
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is observed more or less frequently than expected by chance. Significance of the z-standardized d’
(one-tailed test) and 2DP estimates (two-tailed test) are evaluated with the null model simulations
(See Supplementary Methods; ***, P (FDR) < 0.001; ** P (FDR) <0.01; *, P (FDR) < 0.05). The
relationship between the 2DP estimates and FDR-corrected P values are also shown in the left-side

panel.
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Supplementary Fig. S9 | Energy landscapes of the fungal community inferred by assuming
Larix, Betula, Acer or Juglans host-plant backgrounds. The identity of host plants is included as an
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219

explicit factor in the statistical model (Fig. 1b). We calculate energy of each community state and
reconstructed energy-weighted assembly graph in each host-plant background. The basin bottoms
(squares), the intermediate states (circles) and the lowest-energy transition pathways between them
(thick lines) are visualized on the PCoA surface representing community states. Pathways and
intermediates states for the basin bottoms inferred in other host-plant backgrounds are shown by thin
lines and small circles, respectively. The "energy" of basin bottoms and boundary states between them
is detailed in the "disconnectivity graphs".
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221 Supplementary Fig. S10 | Energy landscapes of the prokaryotic community inferred by
222 assuming Larix, Betula, Acer or Juglans host-plant backgrounds. The identity of host plants is
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included as an explicit factor in the statistical model (Fig. 1b). We calculate energy of each

community state and reconstructed energy-weighted assembly graph in each host-plant background.

The basin bottoms (squares), the intermediate states (circles) and the lowest-energy transition
pathways between them (thick lines) are visualized on the PCoA surface representing community
states. Pathways and intermediates states for the basin bottoms inferred in other host-plant
backgrounds are shown by thin lines and small circles, respectively. The "energy" of basin bottoms
and boundary states between them is detailed in the "disconnectivity graphs".
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231 Supplementary Fig. S11 | Histograms of the estimation variances in “keystoneness” metrices.
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239

The Atopography and Adevenness values of each genus analyzed in Figure 4 were recalculated 30 times
using different sets of 20,000 randomly initialized community states. Calculations were performed for
each of the six host plants (rows), assuming different abundance quantile levels (columns; 25%, 50%,
and 75% quantiles of relative read counts in samples in which the focal microbial taxon was present).
(a) Atopography for the fungal assembly landscape. (b) Atopography for the prokaryotic assembly
landscape. (¢) devenness for the fungal assembly landscape. (d) devenness for the prokaryotic

assembly landscape.
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Supplementary Fig. S12 | Potential impacts on the overall energy landscape architecture and the
abundance of each microbial genus. (a) Z-standardized Atopography of individual microbial genera
in fungal energy landscapes. Genera whose abundance changes are inferred to substantially reshape
the fungal community destinations within the energy landscape are highlighted in each host-plant
background. The effects of fungal and prokaryotic genera are presented separately (left-side panels:
fungal genera, right-side panels: prokaryotic genera). (b) Z-standardized Atopography of individual

microbial genera in prokaryotic energy landscapes.
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Supplementary Fig. S13 | Potential impacts on the overall energy landscape architecture and the
occupancy of each microbial genus. (a) Z-standardized Atopography of individual microbial genera
in fungal energy landscapes. Genera whose abundance changes are inferred to substantially reshape
the fungal community destinations within the energy landscape are highlighted in each host plant
background. (b) Z-standardized Atopography of individual microbial genera in prokaryotic energy

landscapes.
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Supplementary Fig. S14 | Potential impacts on the evenness of the basin distributions and the
relative abundance of each microbial genus. (a) Z-standardized devenness of individual microbial
genera in fungal energy landscapes. Genera whose abundance changes are inferred to substantially
alter the basin distributions and frequencies within the energy landscape are highlighted in each host
plant background. The effects of fungal and prokaryotic genera are presented separately (left-side
panels: fungal genera, right-side panels: prokaryotic genera). (b) Z-standardized devenness of

individual microbial genera in prokaryotic energy landscapes.
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Supplementary Fig. S15 | Potential impacts on the evenness of the basin distributions and the
occupancy of each microbial genus. (a) Z-standardized devenness of individual microbial genera in
fungal energy landscapes. Genera whose abundance changes are inferred to substantially alter the
basin distributions and frequencies within the energy landscape are highlighted in each host plant
background. (b) Z-standardized Adevenness of individual microbial genera in prokaryotic energy

landscapes.
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Supplementary Fig. S16 | Histograms of “keystoneness” metrics based on 25% and 75%
quantiles of the relative abundances of each microbial genus. The z-standardized Atopography and
Aevenness metrics respectively represent changes in the overall topography and evenness of basin
distributions in fungal and prokaryotic energy landscape architecture along the two abundance
gradients of a focal genus (see Fig. 1d-g). Results are shown separately for each host-plant

background.
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Supplementary Fig. S17 | Potential impacts on the fungal community assembly along the two
representative abundance gradients of each microbial genus. (a) Taxa strongly associated with the
energy landscape reorganizations along their abundance gradients from 0% (absence) to 25% quantile.
On two-dimensional planes defined by Atopography and devenness, microbial genera whose
abundance changes were inferred to substantially reshape the energy landscape architecture of root-
associated fungal communities are highlighted. (b) Taxa strongly associated with the energy landscape

reorganizations along their abundance gradients from 0% (absence) to 75% quantile.
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Supplementary Fig. S18 | Potential impacts on the prokaryotic community assembly along the
two representative abundance gradients of each microbial genus. (a) Taxa strongly associated
with the energy landscape reorganizations along their abundance gradients from 0% (absence) to 25%
quantile. On two-dimensional planes defined by Afopography and Aevenness, microbial genera whose
abundance changes were inferred to substantially reshape the energy landscape architecture of root-
associated prokaryotic communities are highlighted. (b) Taxa strongly associated with the energy

landscape reorganizations along their abundance gradients from 0% (absence) to 75% quantile.
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Supplementary Fig. S19 | Community structures of the basin bottoms. (a) Principal coordinate
analysis (PCoA) of the fungal basin bottoms shown in Figure 2c. Dissimilarities among the bottom
states are calculated based on Jaccard distance. The colors correspond to those in Figure 2¢ and
Supplementary Figure S20. (b) PCoA of the prokaryotic basin bottoms shown in Figure 3c. The colors
correspond to those in Figure 3c and Supplementary Figure S23.
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304  Supplementary Fig. S20 | Community states at basin bottoms of fungal energy landscapes. The
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basin bottoms inferred across the six host-plant backgrounds in Figures 2c and 5 as well as in
Supplementary Figures S21 and S22 are shown with a dendrogram representing taxonomic
membership similarity. The color gradient of left-side panel represents the degree of
similarity/dissimilarity among community states, corresponding to those illustrated in the flow
diagrams (see Fig. 5 and Supplementary Figs. S21 and S22). Depending on the presence/absence of
Glomeraceae and Russulaceae, "arbuscular mycorrhizal" and "ectomycorrhizal" basins are tentatively
defined. In addition to the basins in Figures 2c, some basins including both Glomeraceae and
Russulaceae were detected. Fungal families are colored according to functional guilds: green,
arbuscular mycorrhizal; red, ectomycorrhizal; blue, potentially endophytic; black, families with

multiple or other functions.
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Supplementary Fig. S21 | Fungal energy landscape reorganization in the dual mycorrhizal host-
plant backgrounds. Along the abundance gradient of each microbial genus highlighted in Figure 4b
(Populus, Acer and Juglans), changes in the frequency distribution of fungal energy landscape basins
are shown. Frequencies are evaluated through 20,000 simulations of community assemblies from
randomly generated initial states, under 32 abundance conditions ranging from absence to the
maximum observed abundance in the host. On the PCoA planes, the basin bottoms detected at three
representative abundance levels within 32 equally spaced relative abundance steps—absence (step 1),
intermediate abundance (step 16), and maximum abundance (step 32)—are shown as circles, together
with the states detected in Figure 2¢ (see Supplementary Fig. S19a). The Shannon entropy of the basin
frequencies is also shown along the abundance axis (CLR-transformed relative read counts of a focal
genus). In addition, the destinations of the initial communities in each condition of the focal genus’s
abundance are indicated in the flow diagrams with the histograms of their relative abundances in the
hosts. Each bar plot depicts the frequency of basin bottoms detected under the corresponding
abundance condition. The bottoms which the same initial community state converged across adjacent
abundance conditions (steps) are connected with bands. Colors represent community compositional
similarity based on Jaccard distance, with more similar compositions rendered in more similar colors

(see Fig. 2c; Supplementary Fig. S20).
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Supplementary Fig. S22 | Fungal energy landscape reorganization in the ectomycorrhizal host-
plant backgrounds. Along the abundance gradient of each microbial genus highlighted in figure 4b
(Pinus, Betula and Larix), changes in the frequency distribution of fungal energy landscape basins are
shown. Frequencies are evaluated through 20,000 simulations of community assemblies from
randomly generated initial states, under 32 abundance conditions ranging from absence to the
maximum observed abundance in the host. On the PCoA planes, the basin bottoms detected at three

representative abundance levels within 32 equally spaced relative abundance steps—absence (step 1),
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intermediate abundance (step 16), and maximum abundance (step 32)—are shown as circles, together
with the states detected in Figure 2¢ (see Supplementary Fig. S19a). The Shannon entropy of the basin
frequencies is also shown along the abundance axis (CLR-transformed relative read counts of a focal
genus). In addition, the destinations of the initial communities in each condition of the focal genus’s
abundance are indicated in the flow diagrams with the histograms of their relative abundances in the
hosts. Each bar plot depicts the frequency of basin bottoms detected under the corresponding
abundance condition. The bottoms which the same initial community state converged across adjacent
abundance conditions (steps) are connected with bands. Colors represent community compositional
similarity based on Jaccard distance, with more similar compositions rendered in more similar colors

(see Fig. 2c; Supplementary Fig. S20).

44



Il dnoun Il dnoun | dnoay

swonoq uiseg

353



354
355
356
357
358
359
360
361
362
363

Supplementary Fig. S23 | Community states at basin bottoms of prokaryotic energy landscapes.
The basin bottoms inferred across the six host plant backgrounds in Figures 3¢ and 6, Supplementary
Figures S24 and S25 are shown with a dendrogram representing taxonomic membership similarity.
The color gradient of left-side panel represents the degree of similarity/dissimilarity among
community states, corresponding to those illustrated in the flow diagrams (see Fig. 6 and
Supplementary Figs. S24 and S25). The basins are tentatively classified into three categories: Group I,
consisting primarily of commonly observed families; Group II, characterized by the presence of
additional Pseudomonadota families; and Group III, characterized by the presence of additional
Actinomycetota families. Prokaryotic families are colored according to their phylum-level taxonomy:

blue, Pseudomonadota; green, Actinomycetota; black, other phyla.
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Supplementary Fig. S24 | Prokaryotic energy landscape reorganization in the dual mycorrhizal

host-plant backgrounds. Along the abundance gradient of each microbial genus highlighted in

Figure 4d (Juglans, Acer and Populus), changes in the frequency distribution of prokaryotic energy

landscape basins are shown. Frequencies are evaluated through 20,000 simulations of community

assemblies from randomly generated initial states, under 32 abundance conditions ranging from

absence to the maximum observed abundance in the host. On the PCoA planes, the basin bottoms

detected at three representative abundance levels within 32 equally spaced relative abundance steps—
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absence (step 1), intermediate abundance (step 16), and maximum abundance (step 32)—are shown as
circles, together with the states detected in Figure 3¢ (see Supplementary Fig. S19b). The Shannon
entropy of the basin frequencies is also shown along the abundance axis (CLR-transformed relative
read counts of a focal genus). In addition, the destinations of the initial communities in each condition
of the focal genus’s abundance are indicated in the flow diagrams with the histograms of their relative
abundances in the hosts. Each bar plot depicts the frequency of basin bottoms detected under the
corresponding abundance condition. The bottoms which the same initial community state converged
across adjacent abundance conditions (steps) are connected with bands. Colors represent community
compositional similarity based on Jaccard distance, with more similar compositions rendered in more

similar colors (see Fig. 3¢c; Supplementary Fig. S23).
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Supplementary Fig. S25 | Prokaryotic energy landscape reorganization in the ectomycorrhizal

host-plant backgrounds. Along the abundance gradient of each microbial genus highlighted in

Figure 4d (Betula, Pinus, and Larix), changes in the frequency distribution of prokaryotic energy

landscape basins are shown. Frequencies are evaluated through 20,000 simulations of community

assemblies from randomly generated initial states, under 32 abundance conditions ranging from

absence to the maximum observed abundance in the host. On the PCoA planes, the basin bottoms
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detected at three representative abundance levels within 32 equally spaced relative abundance steps—
absence (step 1), intermediate abundance (step 16), and maximum abundance (step 32)—are shown as
circles, together with the states detected in Figure 3¢ (see Supplementary Fig. S19b). The Shannon
entropy of the basin frequencies is also shown along the abundance axis (CLR-transformed relative
read counts of a focal genus). In addition, the destinations of the initial communities in each condition
of the focal genus’s abundance are indicated in the flow diagrams with the histograms of their relative
abundances in the hosts. Each bar plot depicts the frequency of basin bottoms detected under the
corresponding abundance condition. The bottoms which the same initial community state converged
across adjacent abundance conditions (steps) are connected with bands. Colors represent community
compositional similarity based on Jaccard distance, with more similar compositions rendered in more

similar colors (see Fig. 3¢c; Supplementary Fig. S23).
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Supplementary Table S1 | Prioritization of fungal families based on their contributions to

overall community structure. To select candidate family sets for subsequent analyses (see

Supplementary Figs. S1 and S3), individual fungal families were prioritized according to their

explanatory power for the abundance-based fungal community structure. Specifically, a PerMANOVA

was performed on the relative abundance matrix of fungal data using the presence/absence of each

family as an explanatory variable (10,000 iterations). In the PerMANOVA, Bray-Curtis distance was

used to quantify community dissimilarity between root samples, and the host plant backgrounds and

sampling points were included as additional explanatory variables (i.e., covariates).

Family R’ P (FDR)
Russulaceae 3.76x1072 <0.001
Thelephoraceae 1.50x102 <0.001
Hydnaceae 1.30x107 <0.001
Tricholomataceae 1.26x1072 <0.001
Hyaloscyphaceae 1.12x102 <0.001
Glomeraceae 1.11x1072 <0.001
Mollisiaceae 1.08x1072 <0.001
Mycenaceae 9.92x1073 <0.001
Herpotrichiellaceae 8.50x1073 <0.001
Clavariaceae 6.55x107 <0.001
Dermateaceae 5.53x107 <0.001
Cephalothecaceae 5.24x107 <0.001
Amanitaceae 4.74x1073 <0.001
Helotiaceae 4.49x1073 <0.001
Mortierellaceae 4.44x1073 <0.001
Hymenogastraceae 4.32x1073 <0.001
Helotiales fam Incertae sedis 431x107 <0.001
Inocybaceae 3.84x107 <0.001
Tarzettaceae 3.47x107 <0.001
Leotiaceae 3.42x107 <0.001
Myxotrichaceae 3.42x107 <0.001
Ceratobasidiaceae 3.40x107 <0.001
Archaeorhizomycetaceae 2.76x1073 <0.001
Cortinariaceae 2.71x1073 <0.001
Rozellomycota fam Incertae sedis 2.70x1073 <0.001
Strophariaceae 2.64x107 <0.001
Sebacinaceae 2.61x1073 <0.001
Aspergillaceae 2.27x107 <0.001
Hydnangiaceae 2.25x1073 0.001
Pyronemataceae 2.24x1073 <0.001
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408

Geoglossaceae

Trimorphomycetaceae

Tylosporaceae
Tremellodendropsidales_fam Incertae sedis
Ramicandelaberales_fam Incertae_sedis
Entolomataceae
Leucosporidiales_fam_Incertae sedis
Pezizaceae

Tuberaceae

Venturiaceae

Trichosporonaceae
Leptodontidiaceae
Melanommataceae

Psathyrellaceae

Endogonaceae

Cladosporiaceae

Clavicipitaceae

Hypocreaceae

Nectriaceae

Umbelopsidaceae
Microbotryales fam Incertae sedis
Cordycipitaceae

Piskurozymaceae

GS11_fam Incertae sedis
Pleosporaceae

Mytilinidiaceae

2.21x107
2.20x1073
2.20x1073
2.12x10°3
2.05%1073
1.92x10°
1.91x10°
1.85x10°3
1.83x10°3
1.76x107
1.72x10°
1.69x10°
1.58x1073
1.57x1073
1.51x1073
1.46x10°3
1.43x10°3
1.43x10°3
1.39x10°
1.38x10°3
1.27x10°
1.24x10°3
1.23x10°3
1.20x10°3
1.19x10°
1.06x10°3

<0.001
0.002
<0.001
<0.001
0.002
0.001
<0.001
0.003
<0.001
0.007
0.004
0.010
0.008
0.009
0.006
0.015
0.005
0.016
0.008
0.014
0.017
0.017
0.016
0.013
0.042
0.048
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Supplementary Table S2 | Prioritization of prokaryotic families based on their contributions to
overall community structure. To select candidate family sets for subsequent analyses (see
Supplementary Figs. S1 and S3), individual prokaryotic families were prioritized according to their
explanatory power for the abundance-based prokaryotic community structure. Specifically, a
PerMANOVA was performed on the relative abundance matrix of prokaryotic data, using the
presence/absence of each family as an explanatory variable (10,000 iterations). In the PerMANOVA,
Bray-Curtis distance was used to quantify community dissimilarity between root samples, and the host

plant backgrounds and sampling points were included as additional explanatory variables (i.e.,

covariates).
Family R’ P (FDR)
Microbacteriaceae 2.10x10%? <0.001
Kineosporiaceae 1.97x102 <0.001
Dongiaceae 1.97x102 <0.001
67-14 1.89x107 <0.001
Catenulisporaceae 1.79x102 <0.001
Ktedonobacteraceae 1.75x1072 <0.001
Nocardioidaceae 1.70x1072 <0.001
Xanthobacteraceae 1.56x1072 <0.001
JG30-KF-AS9 1.48x1072 <0.001
Hyphomicrobiaceae 1.42x102 <0.001
Sutterellaceae 1.39x107 <0.001
Frankiaceae 1.36x1072 <0.001
Solibacteraceae 1.32x107 <0.001
Unknown Family 1.29x1072 <0.001
Acetobacteraceae 1.27x107 <0.001
Nakamurellaceae 1.27x107 <0.001
Devosiaceae 1.23x1072 <0.001
Thermoanaerobaculaceae 1.15x107 <0.001
URHDO0088 1.13x1072 <0.001
Beijerinckiaceae 1.12x1072 <0.001
Microtrichaceae 1.12x1072 <0.001
Solirubrobacteraceae 1.11x1072 <0.001
Cellulomonadaceae 1.08x1072 <0.001
Isosphaeraceae 1.05x102 <0.001
Pirellulaceae 1.05x1072 <0.001
Xiphinematobacteraceae 1.03x1072 <0.001
Acidothermaceae 1.03x1072 <0.001
Nitrosomonadaceae 1.02x1072 <0.001
Pedosphaeraceae 1.02x102 <0.001
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Desulfitobacteriaceae
A21b
Bryobacteraceae
Rhodomicrobiaceae
Streptomycetaceae
Acidobacteriaceae (Subgroup 1)
Rhodanobacteraceae
Sphingomonadaceae
Pleomorphomonadaceae
A0839

CPla-3 termite group
[lumatobacteraceae
Gemmatimonadaceae
Reyranellaceae
Gemmataceae
Mycobacteriaceae
Rhizobiaceae
Micromonosporaceae
Paenibacillaceae
Burkholderiaceae
Vermiphilaceae
SC-1-84
Legionellaceae
Steroidobacteraceae
WD2101 soil group
Labraceae
Microscillaceae
Gimesiaceae
Sphingobacteriaceae
Myxococcaceae
Pseudonocardiaceae
Comamonadaceae
LWQ8

Rhizobiales Incertae Sedis
Anaerolineaceae
Polyangiaceae
Oxalobacteraceae
Magnetospirillaceae
Spirochaetaceae

Hyphomonadaceae

9.98x1073
9.65%1073
9.62x1073
9.47x1073
9.37x1073
9.35x1073
9.28x1073
9.24x1073
9.22x1073
9.19x1073
9.13x1073
9.13x1073
9.07x1073
8.88x107
8.82x107
8.80x107
8.32x107
8.16x107
8.03x107
8.03x107
7.94x1073
7.90x1073
7.86x1073
7.78%1073
7.66x1073
7.65x107
7.62x1073
7.45x107
7.42x1073
7.42x1073
7.41x1073
7.37x1073
7.32x1073
7.27x1073
7.03x1073
7.02x1073
6.71x1073
6.71x1073
6.69x1073
6.64x107

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
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Sporichthyaceae
Blastocatellaceae
Methylacidiphilaceae
env.OPS 17

WWH38

Saccharimonadaceae

Anaeromyxobacteraceae

Chthoniobacteraceae
Bacillaceae
Lachnospiraceae
Micropepsaceae
Opitutaceae
Clostridiaceae
Actinospicaceae
Caulobacteraceae
KF-JG30-B3
Phycisphaeraceae
JG30-KF-CM45
Chthonomonadaceae
Koribacteraceae
Haliangiaceae
Sandaracinaceae
Parvibaculaceae
Pyrinomonadaceae
Xanthomonadaceae
Bdellovibrionaceae
Simkaniaceae
Parachlamydiaceae
Blrii41

Adb
Pseudomonadaceae
Phaselicystidaceae
Chitinophagaceae
SM2D12

Thermomonosporaceae

Rhodospirillaceae
Amoebophilaceae
CWT CUO03-E12
Nitrospiraceae

Alicyclobacillaceae

6.40x107
6.03x107
6.02x107
6.01x107
5.91x103
5.71x107
5.55%x107
5.52x107
5.42x107
5.34x10°
5.21x107
5.08x107
5.07x107
5.07x107
4.96x107
4.81x107
4.79x10°
4.78x10°
4.76x107
4.70x10°
4.54x107
4.44x10°
4.35%107
4.34x10°
4.27x10°
4.22x10°3
4.15%10°
4.13x10°
4.04x107
3.99x1073
3.76x1073
3.74x1073
3.72x1073
3.67x1073
3.65x107
3.63x107
3.60x107
3.60x107
3.57x107
3.54x107

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
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Inquilinaceae

cvE6

Coxiellaceae
Verrucomicrobiaceae
Elsteraceae
UBA12409
Chlamydiaceae
Flavobacteriaceae
Obscuribacteraceae
Gaiellaceae
Vicinamibacteraceae
Propionibacteriaceae

WX65

Thermoactinomycetaceae

Babeliaceae
Fimbriimonadaceae
Diplorickettsiaceae
TRA3-20

AKYH767
Holosporaceae
Schlesneriaceae
37-13
Methyloligellaceae
Peptostreptococcaceae
Moraxellaceae
Terrimicrobiaceae
Iamiaceae
Leptospiraceae
Azospirillaceae
Paracaedibacteraceae
Rickettsiaceae
Planococcaceae
Candidatus Jidaibacter
Streptosporangiaceae
Armatimonadaceae
Rhodobacteraceae
Yersiniaceae
Erysipelotrichaceae
KD3-93

Acholeplasmataceae

3.53x107
3.53x107
3.50x107
3.45x107
3.38x10°
3.37x1073
3.29x1073
3.26x107
3.21x107
3.19x1073
3.10x107
3.03x107
3.02x107
3.02x107
2.99x10°
2.87x107
2.82x1073
2.75x1073
2.74x10°
2.71x10°
2.62x107
2.59x10°
2.56x107
2.49x10°
2.42x107
2.28x1073
2.27x10°
2.27x10°
2.24x107
2.14x10°
2.12x1073
2.12x1073
2.10x10°3
1.95x10°
1.91x10°
1.88x10°3
1.87x10°
1.86x10°3
1.81x10°3
1.68x10°3

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
0.002
0.002
<0.001
<0.001
0.001
0.001
0.002
<0.001
0.008
0.008
0.001
0.005
0.002
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418

Rhodocyclaceae
Oligoflexaceae
YM_S32 TM7 50 20
Cytophagaceae
Vampirovibrionaceae
Nocardiaceae
Chitinimonadaceae
type III
Intrasporangiaceae
NS11-12 marine group
Ruminococcaceae
Solimonadaceae
Neisseriaceae
Micavibrionaceae

Puniceicoccaceae

1.66x107
1.62x107
1.60x107
1.60x107
1.48x107
1.47x10°
1.41x10°
1.40x107
1.39x10°
1.30x10°
1.28x107
1.21x10°
1.15x10°
1.06x107
1.02x10°

0.003
0.002
0.002
0.003
0.006
0.011
0.011
0.006
0.029
0.034
0.007
0.016
0.021
0.029
0.032
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419
420
421
422
423
424
425
426

427

Supplementary Table S3 | Genera that exhibited the greatest potential impacts on the fungal

assembly landscape along their abundance gradients. The Afopography and Aevenness indices

respectively represented changes in the overall topography and evenness of energy landscape

architecture along the abundance gradients of a focal genus (from absence to their median abundance

condition; Fig. 1d-g). The z-standardized metrics of Atopography and Aevenness are obtained based

on the randomization analysis in which the abundance of a focal genus was shuffled within the root

samples of the same host plant (10,000 iterations). For each host plant background, the two

fungal/prokaryotic genera with the highest and significant Atopography are listed.

S Host plant z-standardized P (FDR) z-standardized P (FDR)
Atopography [dtopography) Aevenness [devenness]
Hyaloscypha Betula 4.33 <0.001 -1.63 0.170
Spirochaeta 2 Betula 3.47 <0.001 0.05 0.517
Podila Pinus 1.03 x10 <0.001 -0.19 0.482
Rhizobium Pinus 6.57 <0.001 -2.01 0.063
Oidiodendron Acer 1.93 x10 <0.001 -4.84 0.030
Podila Acer 9.42 <0.001 1.13 0.252
Cladophialophora Populus 2.50 x10 <0.001 8.63 0.002
Pezicula Populus 1.36 x10 <0.001 2.56 0.129
Oidiodendron Larix 1.18 x10 0.001 2.38 x10 0.005
Archaeorhizomyces Larix 7.94 <0.001 0.06 0.703
Hyaloscypha Juglans 8.43 <0.001 345 0.002
Meliniomyces Juglans 8.16 <0.001 0.97 0.290
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428
429
430
431
432
433
434
435
436

437
438

Supplementary Table S4 | Ectomycorrhizal fungal genera for which significant impacts on the

fungal assembly landscape were inferred. The Afopography and Aevenness indices respectively

represented changes in the overall topography and evenness of energy landscape architecture along

the abundance gradients of a focal genus (from absence to their median abundance condition; Fig. 1d-

g). The z-standardized metrics of Afopography and Aevenness are obtained based on the

randomization analysis in which the abundance of a focal genus was shuffled within the root samples

of the same host plant (10,000 iterations). The ectomycorrhizal genera exhibited significant

Atopography are listed.
o Host plant z-standardized P (FDR) z-standardized P (FDR)
Atopography [dtopography) Aevenness [devenness]
Amanita Populus 8.83 <0.001 3.23 0.081
Russula Acer 4.38 <0.001 2.55 0.020
Russula Juglans 4.10 <0.001 -1.89 0.086
Tomentella Populus 2.87 <0.001 2.27 0.081
Russula Pinus 4.24 0.001 1.21 0.155
Thelephora Populus 6.73 0.001 1.47 0.192
Tomentella Juglans 3.19 0.001 -1.72 0.123
Sebacina Acer 3.64 0.002 0.99 0.311
Amanita Larix 4.85 0.006 0.89 0.311
Amanita Acer 2.85 0.007 -0.45 0.372
Amanita Pinus 3.14 0.009 -2.43 0.098
Sebacina Larix 2.84 0.012 2.79 0.025
Tricholoma Betula 1.60 0.027 -1.49 0.365
Thelephora Larix 4.17 0.029 -0.28 0.710
Lactarius Acer 2.09 0.030 1.77 0.151
Sebacina Pinus 2.39 0.035 -2.14 0.148
Thelephora Pinus 2.19 0.042 -2.26 0.157
Lactarius Larix 3.52 0.048 -0.59 0.687
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439
440
441
442
443
444
445
446

447

Supplementary Table S5 | Genera that exhibited the greatest potential impacts on the
prokaryotic assembly landscape along their abundance gradients. The Afopography and
Aevenness indices respectively represented changes in the overall topography and evenness of energy
landscape architecture along the abundance gradients of a focal genus (from absence to their median
abundance condition; Fig. 1d-g). The z-standardized metrics of Afopography and Aevenness are
obtained based on the randomization analysis in which the abundance of a focal genus was shuffled
within the root samples of the same host plant (10,000 iterations). For each host plant background, the
two fungal/prokaryotic genera with the highest and significant Atopography are listed.

z-standardized P (FDR) z-standardized P (FDR)
Genus Host plant
Atopography [4topography) Aevenness [devenness]

Candidatus

Betula 2.70x10 <0.001 -2.76 0.020
Udaeobacter
Candidatus

Betula 2.67x10 <0.001 3.94 0.005
Solibacter
Candidatus

Pinus 2.63x10 <0.001 4.49x107 0.532
Udaeobacter
Candidatus

Pinus 2.17x10 <0.001 1.77 0.124
Solibacter
Candidatus

Acer 2.34x10 <0.001 2.57 0.039
Solibacter
Candidatus

Acer 2.31x10 <0.001 -0.42 0.434
Udaeobacter
Candidatus

Populus 3.02x10 <0.001 -3.02 0.012
Udaeobacter
Candidatus

Populus 2.75%x10 <0.001 -2.73 0.029
Solibacter
Candidatus

Larix 2.64x10 <0.001 -2.00 0.090
Udaeobacter
Candidatus

Larix 2.26x10 <0.001 -0.51 0.407
Solibacter
Candidatus

Juglans 3.26x10 <0.001 -8.18 0.002
Udaeobacter
Candidatus

Juglans 2.93x10 <0.001 -8.42 0.002
Solibacter
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448  Supplementary Table S6 | Genera that exhibited the greatest potential impacts on the fungal

449  assembly landscape at the 25% quantiles of their abundance. The z-standardized Atopography and
450  Aevenness indices respectively calculated along the abundance gradients of a focal genus (from

451  absence to their 25% quantiles of their abundances within the detected samples; Fig. 1d-g). For each
452 host plant background, the two fungal/prokaryotic genera with the highest and significant

453 Atopography are listed.

i Host plant z-standardized P (FDR) z-standardized P (FDR)
Atopography [dtopography) Aevenness [devenness]
Archaeorhizomyces Acer 8.12 < 0.001 -1.44 0.091
Haliangium Acer 7.16 <0.001 -3.35 0.026
Hyaloscypha Betula 4.30 <0.001 -2.09 0.107
Podila Betula 3.10 <0.001 -0.74 0.287
Hyaloscypha Juglans 9.58 <0.001 3.86 0.002
Haliangium Juglans 6.85 <0.001 -2.48 0.035
Oidiodendron Larix 6.20 <0.001 6.11x10 0.002
Podila Larix 1.08 0.001 6.58 0.002
Podila Pinus 1.05 <0.001 0.48 0.301
Cladophialophora Pinus 8.92 <0.001 0.27 0.112
Cladophialophora Populus 1.95%10 <0.001 2.34 0.105
Pezicula Populus 1.46 <0.001 2.82 0.112
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455  Supplementary Table S7 | Genera that exhibited the greatest potential impacts on the

456  prokaryotic assembly landscape at the 25% quantiles of their abundance. The z-standardized
457  Atopography and devenness indices respectively calculated along the abundance gradients of a focal
458  genus (from absence to their 25% quantiles of their abundances within the detected samples; Fig. 1d-
459  g). For each host plant background, the two fungal/prokaryotic genera with the highest and significant
460  Atopography are listed.

z-standardized P (FDR) z-standardized P (FDR)
Genus Host plant
Atopography [dtopography) Aevenness [devenness]

Candidatus Solibacter Acer 2.31x10 <0.001 1.88 0.120
Mycobacterium Acer 2.22x10 <0.001 -1.24 0.225
Pird lineage Betula 2.56x10 <0.001 -2.93 0.034
Candidatus Solibacter Betula 2.53%10 <0.001 8.14 0.002
Candidatus

Juglans 3.27x10 <0.001 -5.50 0.002
Udaeobacter
Candidatus Solibacter Juglans 2.82x10 <0.001 -5.24 0.002
Candidatus

Larix 2.35x10 <0.001 -1.90 0.106
Udaeobacter
Labrys Larix 2.29%10 <0.001 -0.36 0.447
Pird lineage Pinus 2.18%10 <0.001 -3.59 0.007
Candidatus

Pinus 2.15x10 <0.001 2.58 0.043
Udaeobacter
Candidatus

Populus 2.96x10 <0.001 -0.97 0.285
Udaeobacter
Candidatus Solibacter Populus 2.80%10 <0.001 -2.01 0.092
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462  Supplementary Table S8 | Genera that exhibited the greatest potential impacts on the fungal

463  assembly landscape at the 75% quantiles of their abundance. The z-standardized Atopography and
464  Aevenness indices respectively calculated along the abundance gradients of a focal genus (from

465  absence to their 75% quantiles of their abundances within the detected samples; Fig. 1d-g). For each
466  host plant background, the two fungal/prokaryotic genera with the highest and significant

467  Atopography are listed.

i Host plant z-standardized P (FDR) z-standardized P (FDR)
Atopography [dtopography) Aevenness [devenness]
Hyaloscypha Betula 4.75 <0.001 -1.19 0.387
Actinospica Betula 3.55 <0.001 0.19 0.419
Podila Pinus 1.05x10 <0.001 -2.04 0.045
Phialocephala Pinus 7.32 <0.001 -3.69 0.039
Oidiodendron Acer 1.23%10 <0.001 3.80 0.016
Podila Acer 9.28 <0.001 -0.94 0.246
Cladophialophora Populus 2.48%10 <0.001 9.56 0.002
Oidiodendron Populus 1.65%10 <0.001 -4.03 0.020
Cladophialophora Larix 5.30x10 <0.001 0.10 0.944
Phialocephala Larix 1.52x10 <0.001 3.30 0.049
Hyaloscypha Juglans 1.02x10 <0.001 5.25 0.002
Meliniomyces Juglans 9.31 <0.001 0.20 0.487
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469
470
471
472
473
474

475

Supplementary Table S9 | Genera that exhibited the greatest potential impacts on the

prokaryotic assembly landscape at the 75% quantiles of their abundance. The z-standardized

Atopography and Adevenness indices respectively calculated along the abundance gradients of a focal

genus (from absence to their 75% quantiles of their abundances within the detected samples; Fig. 1d-

g). For each host plant background, the two fungal/prokaryotic genera with the highest and significant

Atopography are listed.
z-standardized P (FDR) z-standardized P (FDR)
Genus Host plant
Atopography [dtopography) Aevenness [devenness]

Candidatus

Betula 2.66x10 <0.001 1.97 0.115
Solibacter
Candidatus

Betula 2.48%10 <0.001 -3.66 0.004
Udaeobacter
Candidatus

Pinus 2.57x10 <0.001 -0.62 0.375
Udaeobacter
Candidatus

Pinus 2.31x10 <0.001 1.39 0.196
Solibacter
Candidatus

Acer 2.50x10 <0.001 1.02 0.285
Solibacter
Candidatus

Acer 2.38x10 <0.001 -1.63 0.151
Udaeobacter
Candidatus

Populus 2.82x10 <0.001 -4.23 0.002
Solibacter
Candidatus

Populus 2.73%10 <0.001 -4.90 0.002
Udaeobacter
Candidatus

Larix 2.61x10 <0.001 -4.86 0.002
Udaeobacter
Candidatus

Larix 2.35x10 <0.001 -3.93 0.002
Solibacter
Candidatus

Juglans 3.07x10 <0.001 -7.48 0.002
Udaeobacter
Candidatus

Juglans 2.85%10 <0.001 -7.74 0.002
Solibacter
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