

1 Supplementary Information for

2

3 Statistical inference of keystone taxa reshaping the assembly
4 rules of forest root microbiomes

5

6 Mikihito Noguchi¹⁻³, Kenta Suzuki^{4,5}, Hiroaki Fujita^{2,6}, and Hirokazu Toju^{2,6}

7

8 ¹Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2133, Japan

9 ²Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto
10 University, Kyoto 606-8501, Japan

11 ³Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan

12 ⁴Integrated Bioresource Information Division, BioResource Research Center, RIKEN, Tsukuba,
13 Ibaraki 305-0074, Japan.

14 ⁵Institute for Multidisciplinary Sciences, Yokohama National University, Yokohama, Kanagawa 240-
15 8501, Japan.

16 ⁶Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto
17 University, Kyoto 606-8501, Japan

18

19 Correspondence:

20 Mikihito Noguchi: noguchi.mikihito.57s@st.kyoto-u.ac.jp

21 Hirokazu Toju: toju.hirokazu.4c@kyoto-u.ac.jp

22 **Supplementary Methods**

23 **Root microbiome data**

24 We compiled the root-tip fungal community datasets described in our previous study with newly
25 obtained prokaryotic data¹. Briefly, root-tip samples (1 cm terminal roots) were sampled in the
26 research forest of Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Ueda,
27 Nagano Prefecture, Japan (36.524 °N; 138.349 °E; 1,340 m a.s.l.). The root tips were sonicated in
28 0.5% tween 20 and surface sterilized subsequently with NaClO (Nakalaitesque, effective chlorine
29 concentration ca. 11%) diluted to 1% (v/v), sterile distilled water (three times), and 99.5% ethanol¹.
30 After DNA extraction with a cetyltrimethylammonium bromide (CTAB) method, the internal
31 transcribed spacer (ITS) region of fungi and the 16S rRNA region of prokaryotes were PCR-amplified
32 and the purified amplicons were sequenced in an Illumina MiSeq sequencer¹. The obtained
33 134,066,687 and 73,183,237 sequencing reads of ITS and 16S rRNA region were converted into
34 FASTQ files using bcl2fastq (version 1.8.4) and demultiplexed with Claident v0.9.2022.01.26^{2,3}. From
35 these outputs, amplicon sequence variants (ASVs) were constructed by adaptor trimming by Cutadapt⁴
36 (version. 3.7), quality filtering and denoising by DADA2⁵ v.1.18.0 of R 4.2.2⁶. Contaminant ASVs
37 were removed with the R package “decontam” (the method “prevalence”) ⁷. Taking into account
38 duplication error in PCR, the ASVs were re-clustered into operational taxonomic units (OTUs) with a
39 97% similarity threshold using the program VSEARCH v2.21.1⁸. The taxonomic assignments of
40 fungal and prokaryotic OTUs were performed based on the UNITE⁹ general FASTA release for
41 eukaryotes 2. Version 18.07.2023 and the SILVA¹⁰ version 138 database using the naive Bayesian
42 classifier method in DADA2^{5,11}. The root sample which had less than 1,000 fungal/prokaryotic reads
43 were discarded. Then, obtained fungal/prokaryotic OTU matrices of the samples whose host plants
44 (described elsewhere¹) were detected more than 50 times (*Acer*, *Betula*, *Juglans*, *Larix*, *Pinus* and
45 *Populus*) were rarefied with coverage-based method using “vegan” package v.2.6-8¹². In total, both
46 fungal and prokaryotic community data were obtained for 1,270 root samples collected from the 125
47 sampling points. In total, 2,249 fungal and 12,479 prokaryotic OTUs were obtained from those root
48 samples.

49

50 **Host preference of the fungal/prokaryotic families**

51 To evaluate the host specificity of the fungal and prokaryotic families used in energy landscape
52 estimation, we calculated the d' metrics of interaction specificity¹³ and two dimensional preference of
53 plant fungal associations (2DP)¹⁴ for the 34 fungal and 45 prokaryotic families (selected in
54 Supplementary Figs. S1, S3) with the same way as our previous study¹. In this analyses, the
55 fungal/prokaryotic community data were binarized with the same criteria as energy landscape analysis
56 (described detail below). The standardized indices and their statistical significances were assessed by
57 comparing the observed data with null model simulations. Specifically, the host plant information was
58 shuffled among root samples collected at the same sampling positions (10,000 permutations), and the

59 indices calculated from the randomized datasets were compared to the original one. For each fungal
60 and prokaryotic family, a standardized d' metrics was calculated as follows:

61
$$[d'_{\text{original}} - \text{Mean}(d'_{\text{randomized}})] / \text{SD}(d'_{\text{randomized}}),$$

62 where d'_{original} was the d' estimate of the original data and $\text{Mean}(d'_{\text{randomized}})$ and $\text{SD}(d'_{\text{randomized}})$ were
63 the mean and standard deviation of the d' of randomized data matrices. For each pair of six host plants
64 and fungal/prokaryotic family, standardized $2DP$ was also calculated as follows:

65
$$[N_{\text{original}}(i, j) - \text{Mean}(N_{\text{randomized}}(i, j))] / \text{SD}(N_{\text{randomized}}(i, j)),$$

66 where $N_{\text{original}}(i, j)$ denoted the number of root samples from which a focal combination of a symbiont
67 family and a host plant was observed in the original data, and the $\text{Mean}(N_{\text{randomized}}(i, j))$ and $\text{SD}(N_{\text{randomized}}(i, j))$ were the mean and standard deviation of the number of samples for the focal
68 symbiont-plant pair across randomized matrices. False discovery rates [FDR¹⁵] were also calculated to
69 evaluate the statistical significance of the two indices (d' metrics ; one-tailed tests, $2DP$; two-tailed
70 tests).
71

72

73 **Preparation of data matrices for energy landscape analysis**

74 After excluding five and three samples in which more than 50% of sequence reads could not be
75 annotated at the family level in fungal and prokaryotic communities respectively, the fungal and
76 prokaryotic data matrices were converted into a binary format. The threshold of the binarization was
77 set as $\text{Mean}(\log(X_i)) - 2 \text{SD}(\log(X_i))$, where X_i denotes the read counts of taxon i across the
78 samples in which it was detected. To make exploration within assembly graphs (2^S possible
79 community states, where S is the number of taxa) computationally feasible, we prioritized and selected
80 families, respectively, in the fungal and prokaryotic data. Specifically, a series of permutational
81 analyses of variance (PerMANOVA)¹⁶ was performed for the relative abundance matrix of fungal or
82 prokaryotic data by setting the presence/absence of a target family as an explanatory variable (10,000
83 iterations). In the PerMANOVA, the Bray-Curtis metric was used to calculate community dissimilarity
84 between root samples, and the host plants and sampling points were set as additional explanatory
85 variables (i.e., covariates). Families were then ordered depending on their explanatory power (R^2) in
86 the PerMANOVA. The optimal set (number) of families to be analyzed in the energy landscape
87 analysis was subsequently explored for the fungal and prokaryotic data, respectively. To apply a
88 simple criterion, we evaluated correspondence between the community dissimilarity values calculated
89 based on the original relative abundance data (Bray-Curtis distance for quantitative data) and those
90 calculated based on the binarized data (Jaccard distance for binary data). An optimal binarized data
91 matrix (sets of families) preserving the information of original relative abundance data was selected
92 based on the Kendall's rank correlation coefficient for the correspondence between quantitative and
93 binary data.

94 **Supplementary references**

95 1. Noguchi, M. & Toju, H. Mycorrhizal and endophytic fungi structure forest below-ground
96 symbiosis through contrasting but interdependent assembly processes. *Environ. Microbiome* **19**,
97 84 (2024).

98 2. Tanabe, A. S. & Toju, H. Two New Computational Methods for Universal DNA Barcoding: A
99 Benchmark Using Barcode Sequences of Bacteria, Archaea, Animals, Fungi, and Land Plants.
100 *PLoS ONE* **8**, e76910 (2013).

101 3. Tanabe, A. S. Claident v0.9.2022.01.26. 2022. (2022).

102 4. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
103 *EMBnet.journal* **17**, 10–12 (2011).

104 5. Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina amplicon data.
105 *Nat. Methods* **13**, 581–583 (2016).

106 6. R Core Team. R: A language and environment for statistical computing. (2022).

107 7. Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical
108 identification and removal of contaminant sequences in marker-gene and metagenomics data.
109 *Microbiome* **6**, 226 (2018).

110 8. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool
111 for metagenomics. *PeerJ* **4**, e2584 (2016).

112 9. Abarenkov, K. *et al.* UNITE general FASTA release for eukaryotes 2. UNITE Community.
113 <https://doi.org/10.15156/BIO/2938070> (2023).

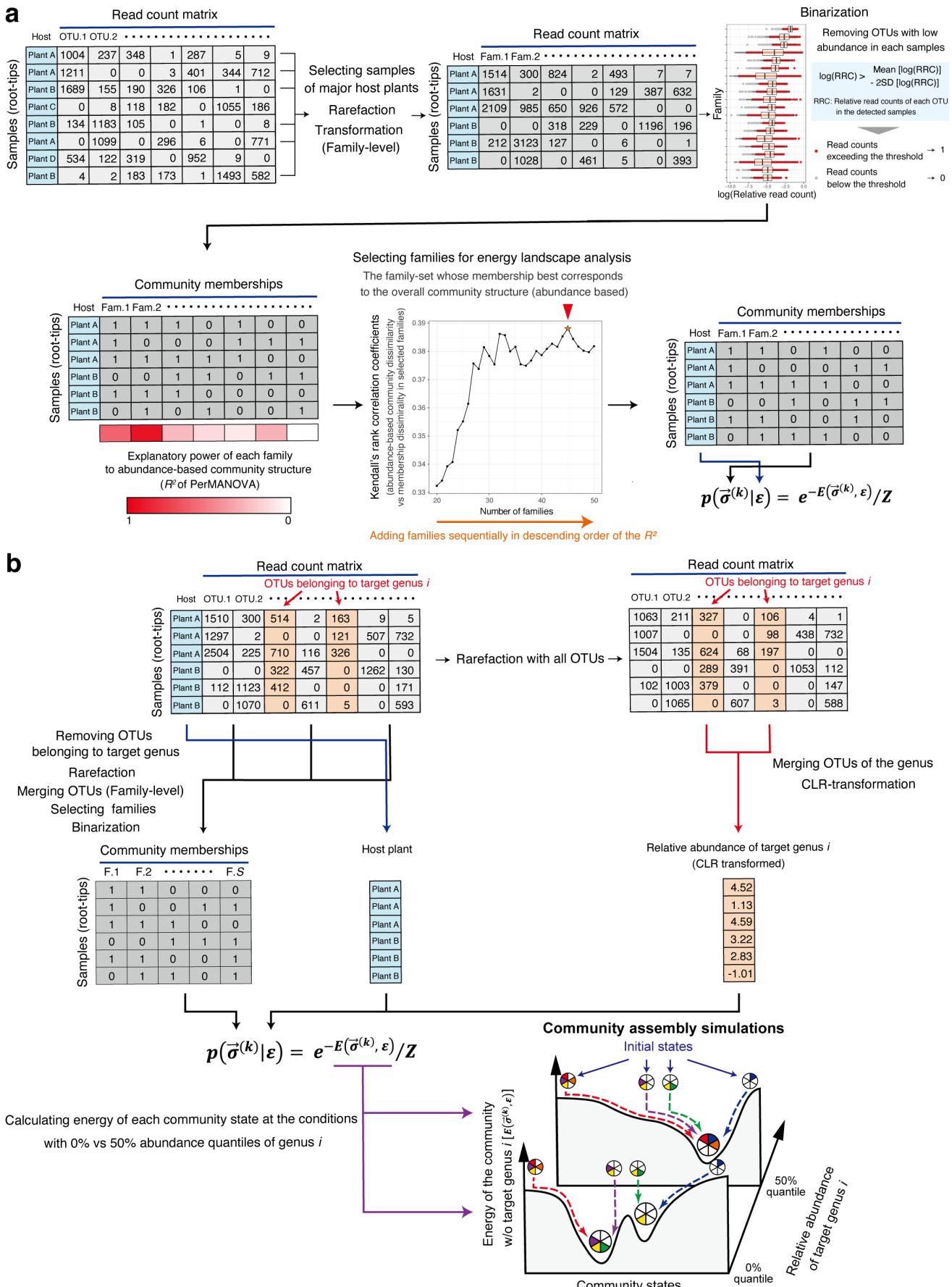
114 10. Quast, C. *et al.* The SILVA ribosomal RNA gene database project: improved data processing and
115 web-based tools. *Nucleic Acids Res.* **41**, D590–D596 (2013).

116 11. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian Classifier for Rapid
117 Assignment of rRNA Sequences into the New Bacterial Taxonomy. *Appl. Environ. Microbiol.* **73**,
118 5261–5267 (2007).

119 12. Oksanen, O. *et al.* vegan: Community Ecology Package. (2022).

120 13. Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B. & Blüthgen, N. Specialization, Constraints, and

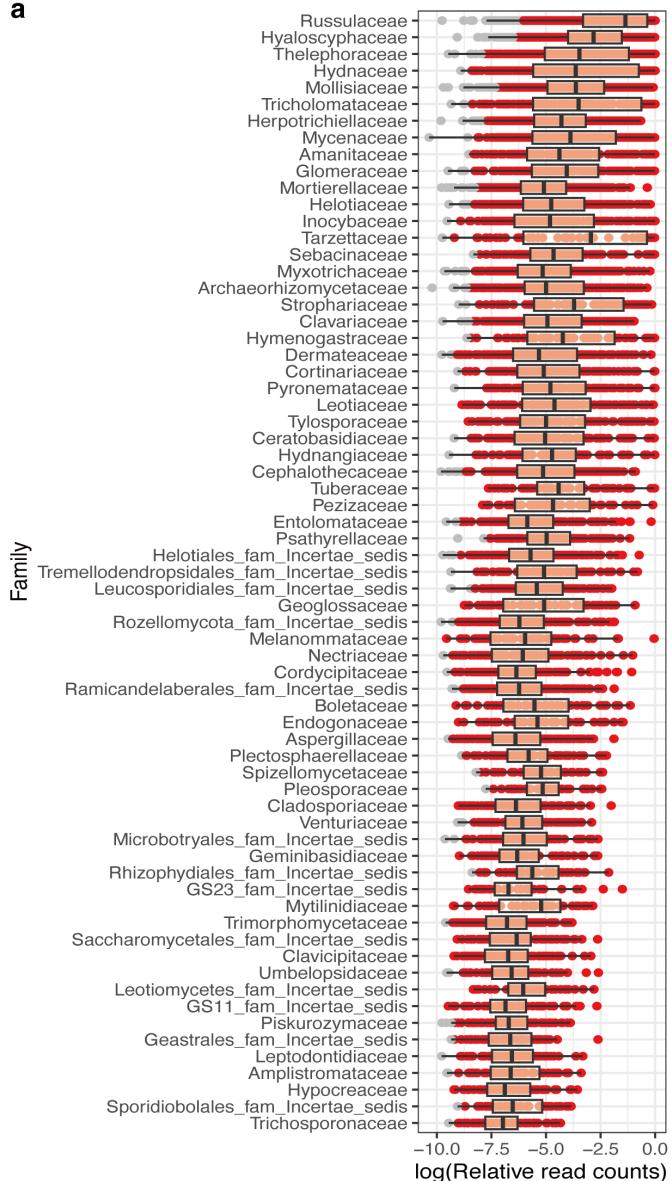
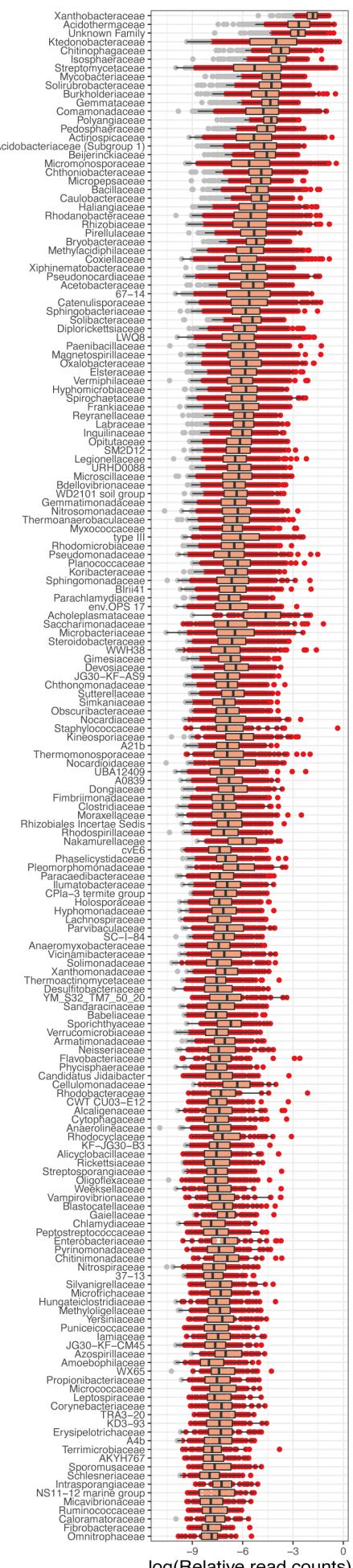
121 Conflicting Interests in Mutualistic Networks. *Curr. Biol.* **17**, 341–346 (2007).


122 14. Toju, H., Tanabe, A. S. & Ishii, H. S. Ericaceous plant–fungus network in a harsh alpine–subalpine
123 environment. *Mol. Ecol.* **25**, 3242–3257 (2016).

124 15. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful
125 Approach to Multiple Testing. *J. R. Stat. Soc. Ser. B Methodol.* **57**, 289–300 (1995).

126 16. Anderson, M. J. A new method for non-parametric multivariate analysis of variance. *Austral Ecol.*
127 **26**, 32–46 (2001).

128

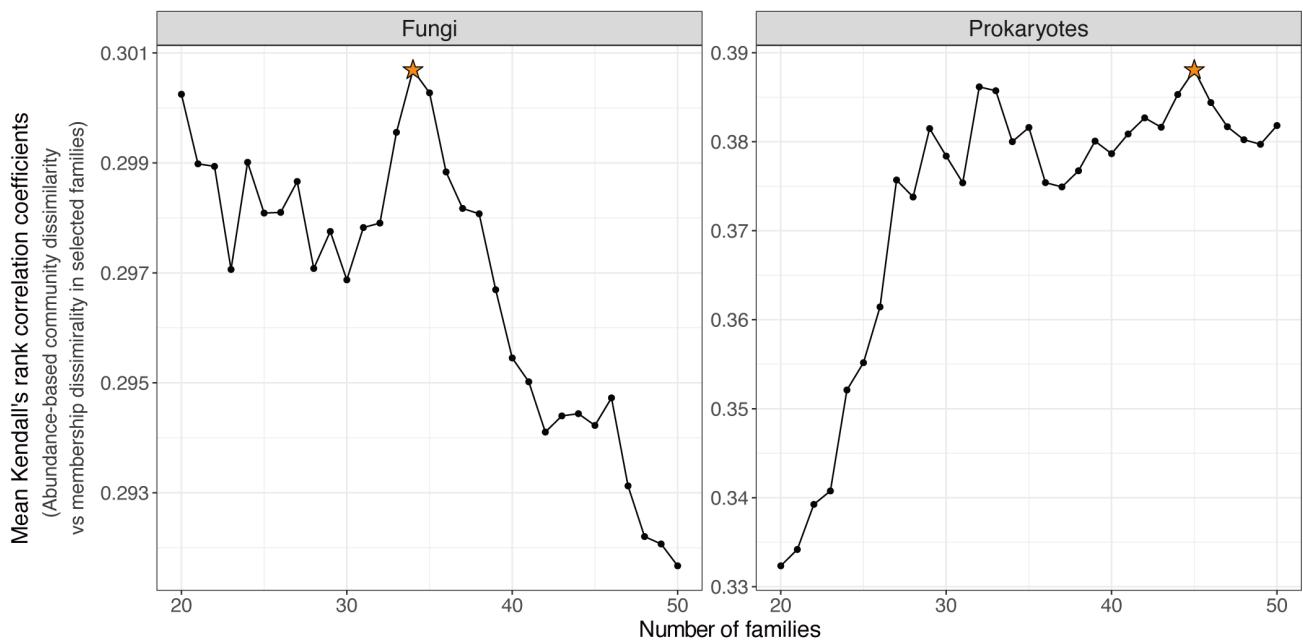


129

130

131 **Supplementary Fig. S1 | Workflow for energy landscape analysis and evaluation of**
 132 **“keystone”** (a) Input data for energy landscape analysis. We performed coverage-based

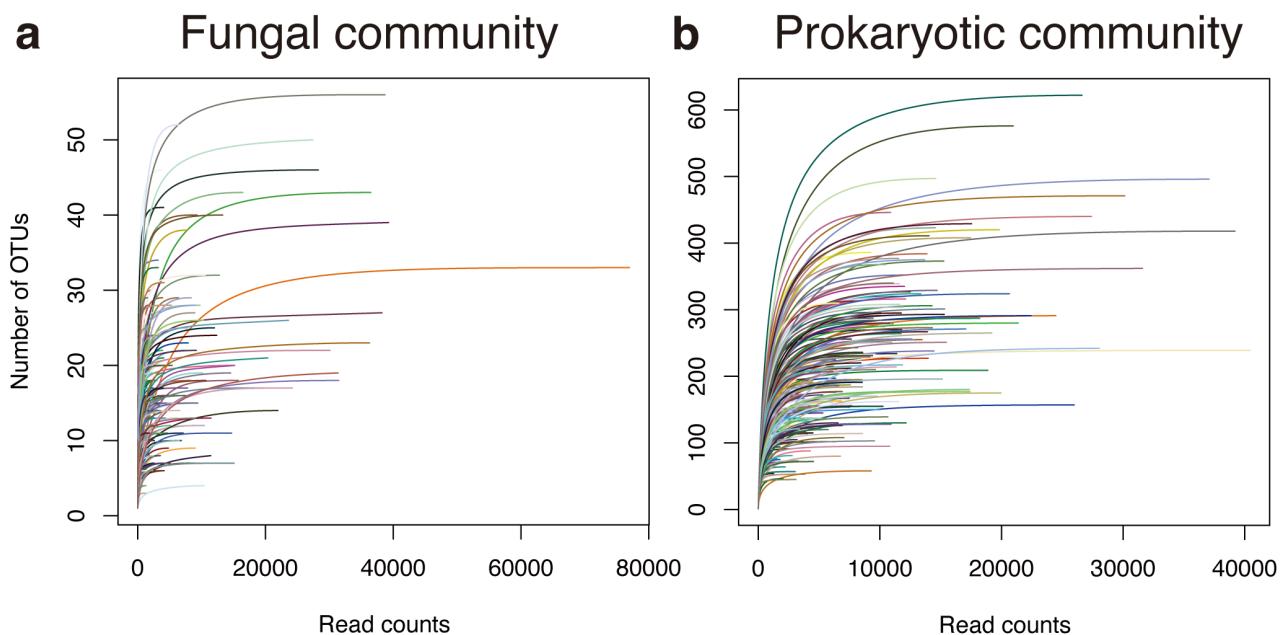
133 rarefaction for the root samples. In a matrix of family-level taxonomic compositions, relative read
134 counts of each family were binarized with a threshold described in Methods and Supplementary
135 Figure S2. To make the subsequent statistical analysis (energy landscape analysis) computationally
136 feasible, we prioritized and selected families based on their contribution to overall community
137 structure, evaluated by PerMANOVA (R^2 ; Supplementary Tables S1 and S2). The family set showing
138 the highest correspondence between its binarized pattern and the abundance-based community
139 structure was selected among candidate sets determined by their R^2 values. Energy landscape analysis
140 was then conducted using the family-set with host plant genera (encoded as dummy variables) as
141 explanatory variables. **(b)** Input data for the keystone exploration. From the original data matrix
142 excluding OTUs annotated as a focal genus, coverage-based rarefaction was conducted. Binarization
143 was applied to the same set of families as in **(a)**. In parallel, the whole community matrix was rarefied,
144 and the genus-level compositions were subjected to CLR transformation. Energy landscape analysis
145 was performed by including host plant genera (dummy variables) and CLR-transformed relative read
146 counts (+1) of the focal genus as external factors. Two types of indices for identifying potential
147 keystone taxa were calculated by comparing the landscape topography inferred in the absence of the
148 focal species/taxon with that estimated under the assumption of an intermediate abundance level
149 (25%, 50%, or 75% quantiles of abundance across samples in which the focal taxon was present) (Fig.
150 1g).

a**b**


Binarization thresholds for energy landscape analysis

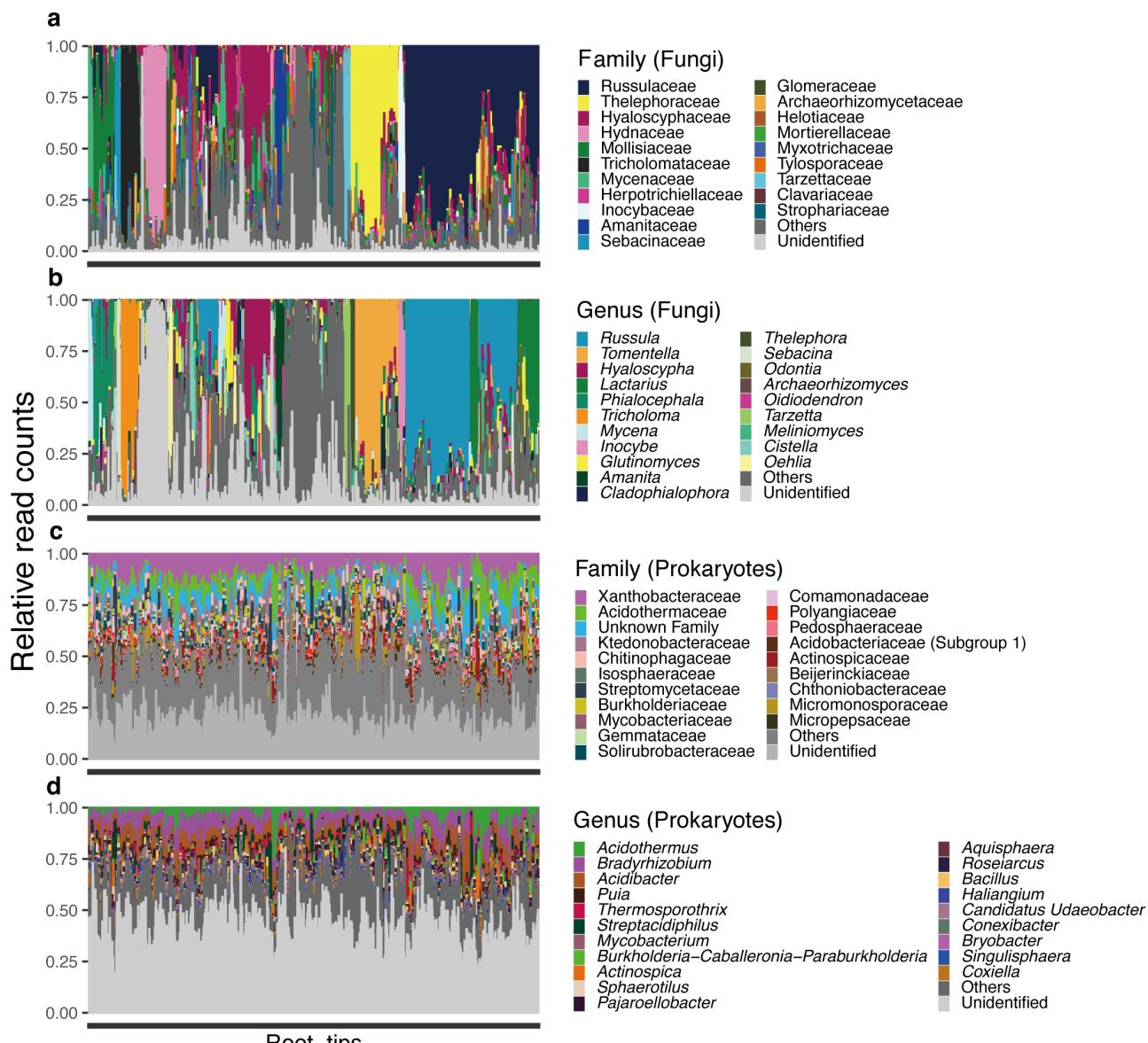
$$\log(RRC) > \text{Mean} [\log(RRC)] - 2\text{SD} [\log(RRC)]$$

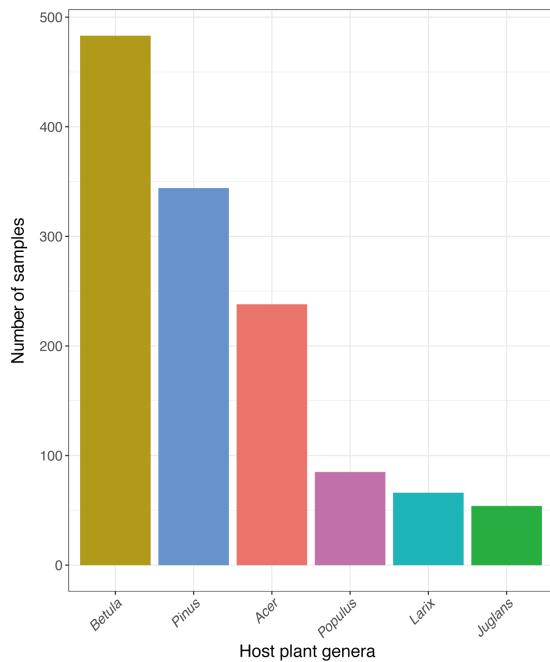
RRC: Relative read counts of each OTU
in the detected samples


Read counts exceeding the threshold Read counts below the threshold

152 **Supplementary Fig. S2 | Relative abundances of microbial families | (a)** Distribution of relative
153 read counts of each fungal family in samples from which it was detected. To remove potential
154 sequencing contaminants, the threshold for binarization was defined for each family as Mean [log
155 (RRC)] – 2SD [log (RRC)], where Mean [log (RRC)] and SD [log (RRC)] denote the mean and
156 standard deviation of the log-transformed relative read counts of the focal family, respectively. **(b)**
157 Distribution of relative read counts for each prokaryotic family.

158


159 **Supplementary Fig. S3 | Selecting optimal family sets for energy landscape analysis.** The optimal
 160 sets (numbers) of fungal and prokaryotic families were determined to best preserve the information
 161 contained in the original community data during the filtering process for energy landscape analysis
 162 (see Supplementary Fig. S1 and Methods for details). Specifically, to make the exploration of optimal
 163 fungal and prokaryotic family sets computationally feasible, we first ordered 50 families based on
 164 their explanatory power for the overall community structure (R^2 in the PerMANOVA; see
 165 Supplementary Tables S1 and S2). We then evaluated the correlations between community
 166 dissimilarity values calculated from the binarized data of each candidate family set (Jaccard distance)
 167 and those calculated from the original relative abundance data (Bray–Curtis distance). The selected
 168 fungal and prokaryotic family sets are indicated by star-shaped symbols.
 169


170

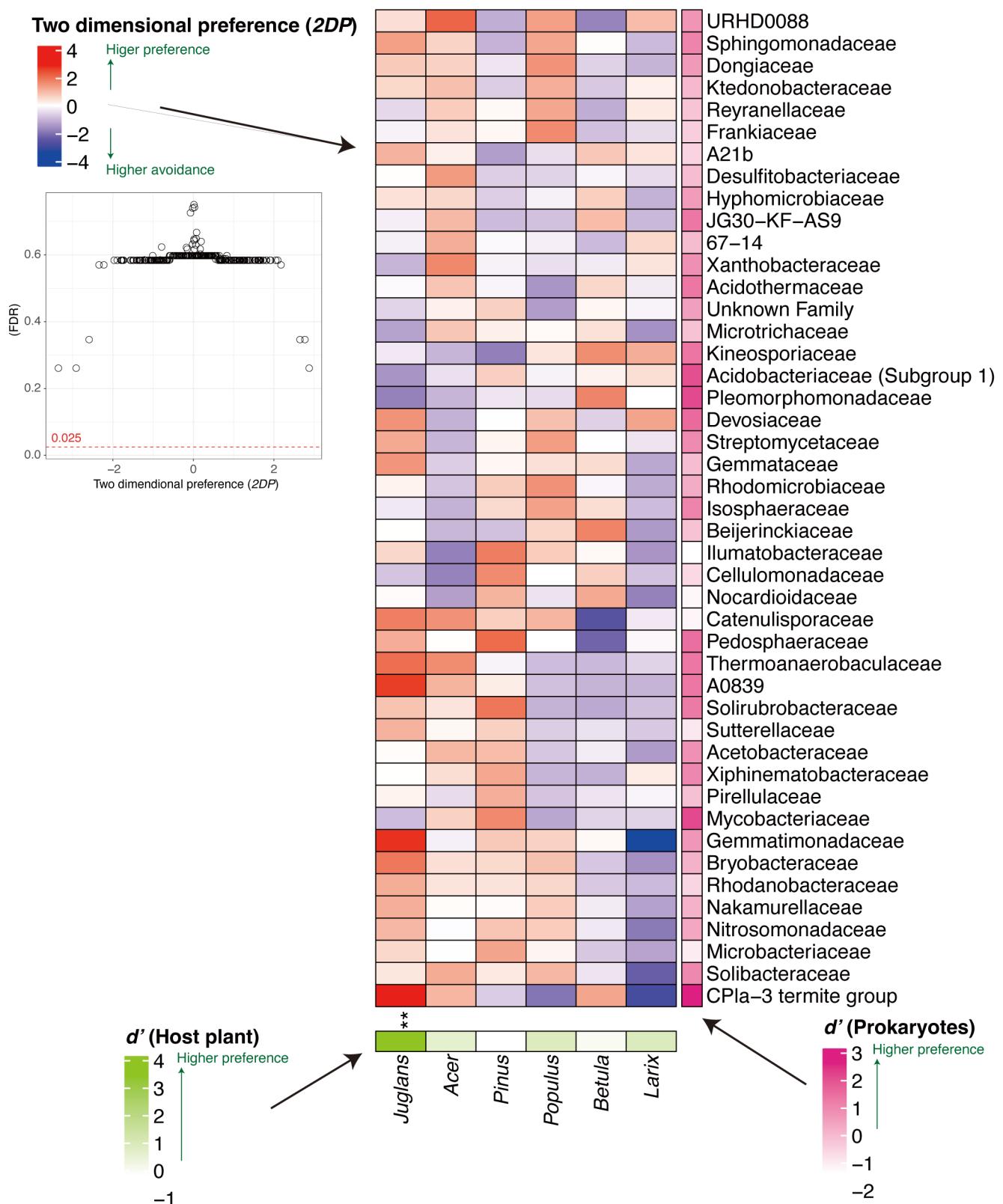
171 **Supplementary Fig. S4 | Rarefaction curves.** (a) Number of fungal OTUs detected in root samples.
 172 For visualization, the relationships between the number of sequencing reads and the number of fungal
 173 OTUs detected in 200 randomly selected samples are shown. (b) Number of prokaryotic OTUs.

174

177 **Supplementary Fig. S5 | Fungal and prokaryotic community compositions.** (a) Family-level
178 taxonomic compositions of fungal communities across 1,270 root-tip samples. (b) Genus-level
179 taxonomic compositions of fungal communities. (c) Family-level taxonomic compositions of
180 prokaryotic communities. (d) Genus-level taxonomic compositions of prokaryotic communities.

181

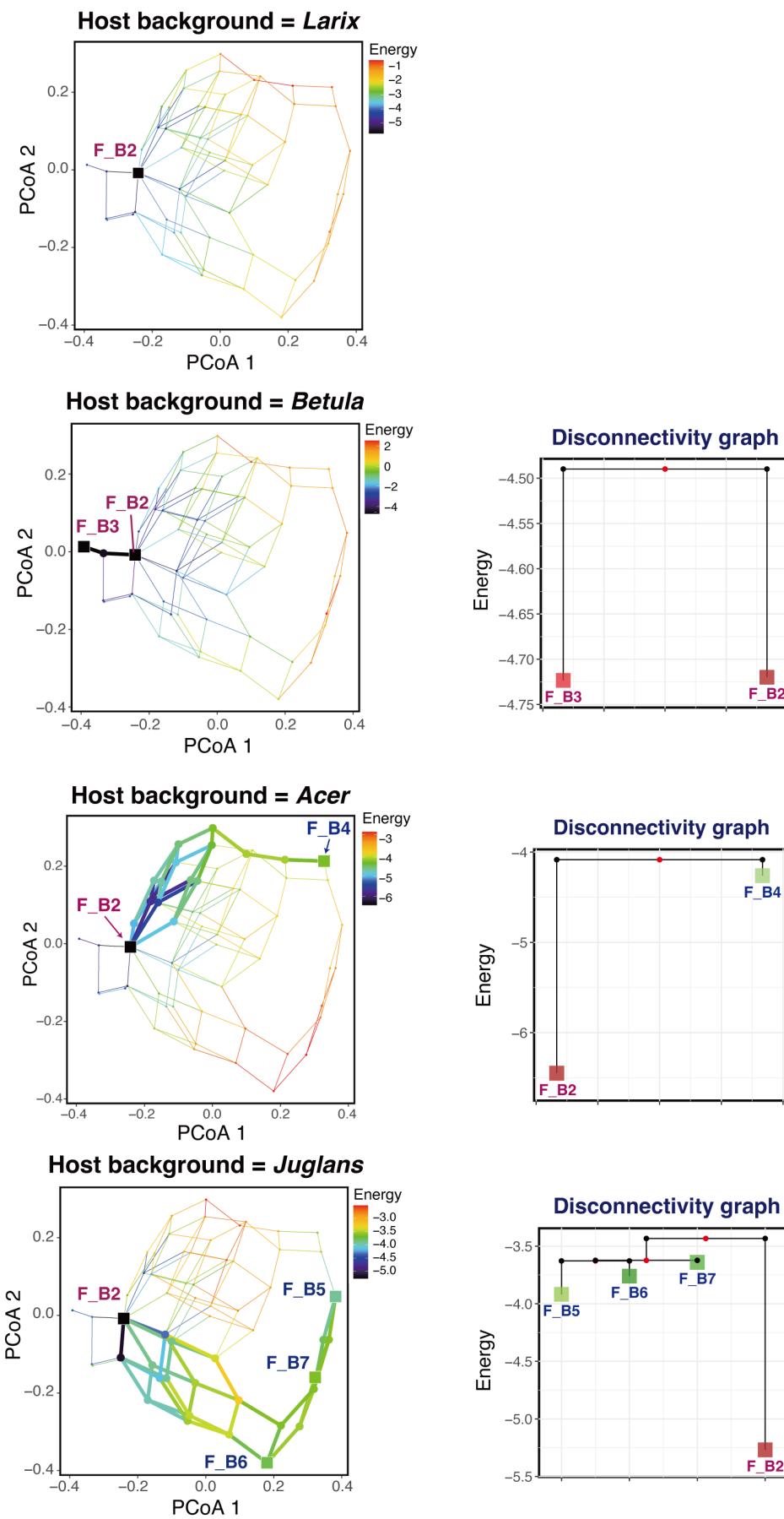
182 **Supplementary Fig. S6 | Number of the samples from each host plant.** The sample size of each
 183 host plant genera used in energy landscape analysis is shown. After a series of quality filtering, 1,270
 184 root samples identified as those of major six plant genera (i.e., plant genera with more than 50
 185 samples) were used in the statistical analysis.


186

Two dimensional preference (2DP)

188 **Supplementary Fig. S7 | Preferences in plant–fungus associations.** Host preferences of the fungal
189 families analyzed in the energy landscape analysis (rows) and symbiont preferences of the six host
190 plant genera (column) are shown as z -standardized d' estimates. In addition, specificity of each host–
191 symbiont pair is represented with a two-dimensional preference ($2DP$) estimate in the matrix heatmap,
192 which indicates the extent to which the association of a target plant–fungal pair is observed more or
193 less frequently than expected by chance. Significance of the z -standardized d' (one-tailed test) and
194 $2DP$ estimates (two-tailed test) are evaluated with the null model simulations (See Supplementary
195 Methods; ***, $P(FDR) < 0.001$; **, $P(FDR) < 0.01$; *, $P(FDR) < 0.05$). The relationship between
196 the $2DP$ estimates and FDR-corrected P values are also shown in the left-side panel.

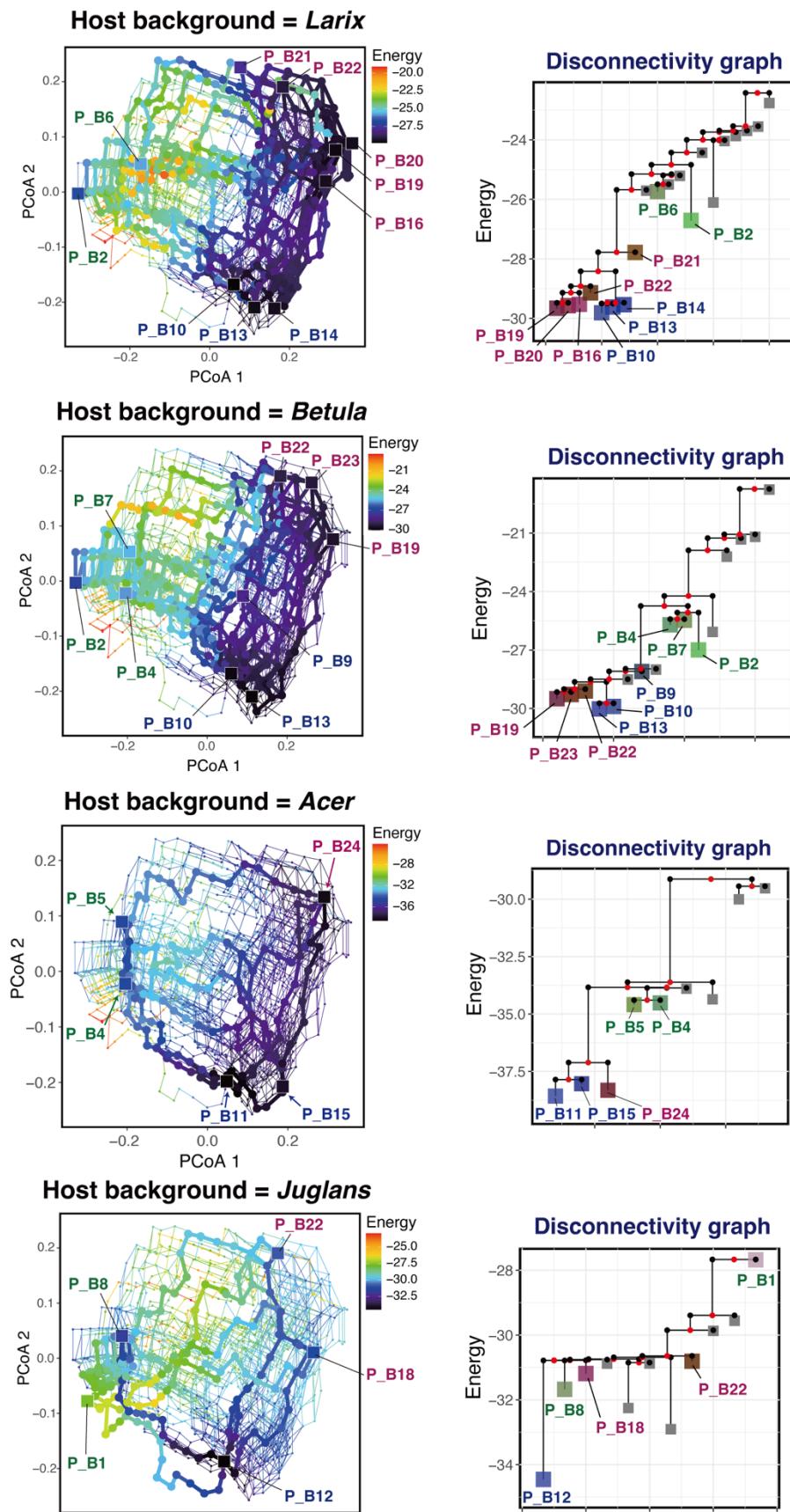
197



198

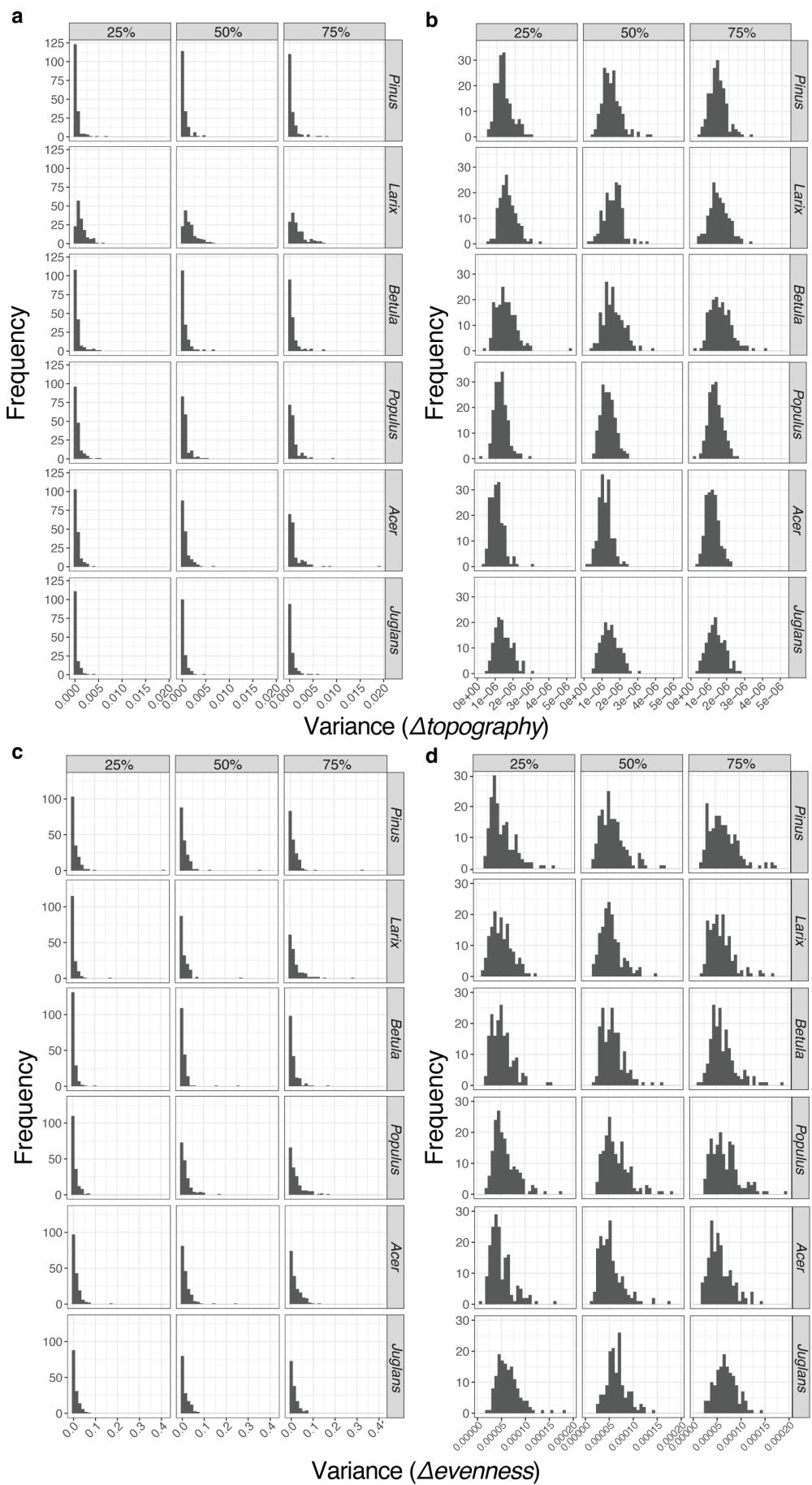
199 **Supplementary Fig. S8 | Preferences in plant-prokaryote associations.** Host preferences of the
 200 prokaryotic families analyzed in the energy landscape analysis (rows) and symbiont preferences of the
 201 six host plant genera (column) are shown with the z -standardized d' estimates. In addition, specificity
 202 of each host-symbiont pair is represented with a two-dimensional preference (2DP) estimate in the
 203 matrix heatmap, which indicates the extent to which the association of a target plant-prokaryote pair

204 is observed more or less frequently than expected by chance. Significance of the z-standardized d'
205 (one-tailed test) and $2DP$ estimates (two-tailed test) are evaluated with the null model simulations
206 (See Supplementary Methods; ***, $P(FDR) < 0.001$; **, $P(FDR) < 0.01$; *, $P(FDR) < 0.05$). The
207 relationship between the $2DP$ estimates and FDR-corrected P values are also shown in the left-side
208 panel.

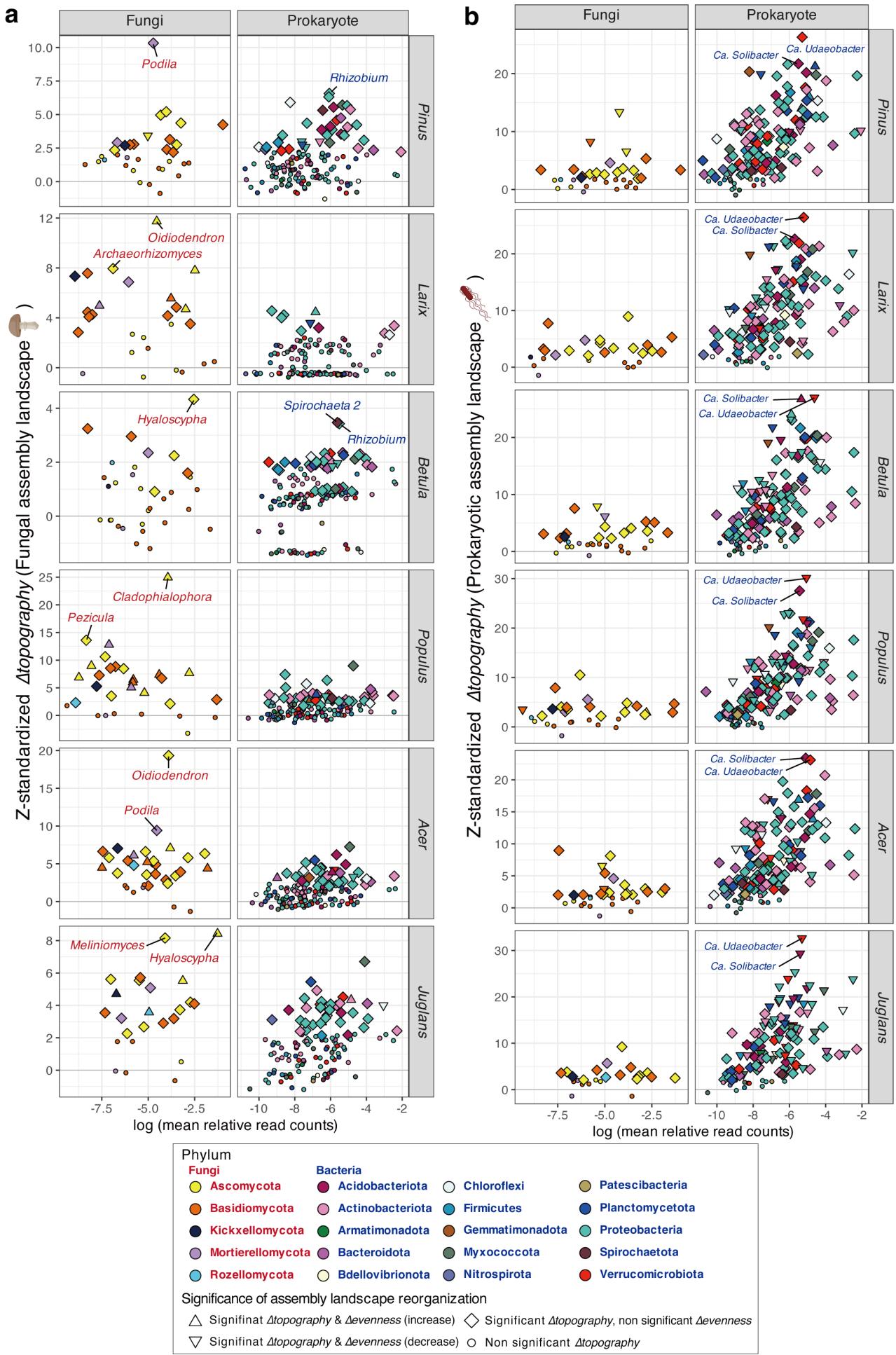

209

210

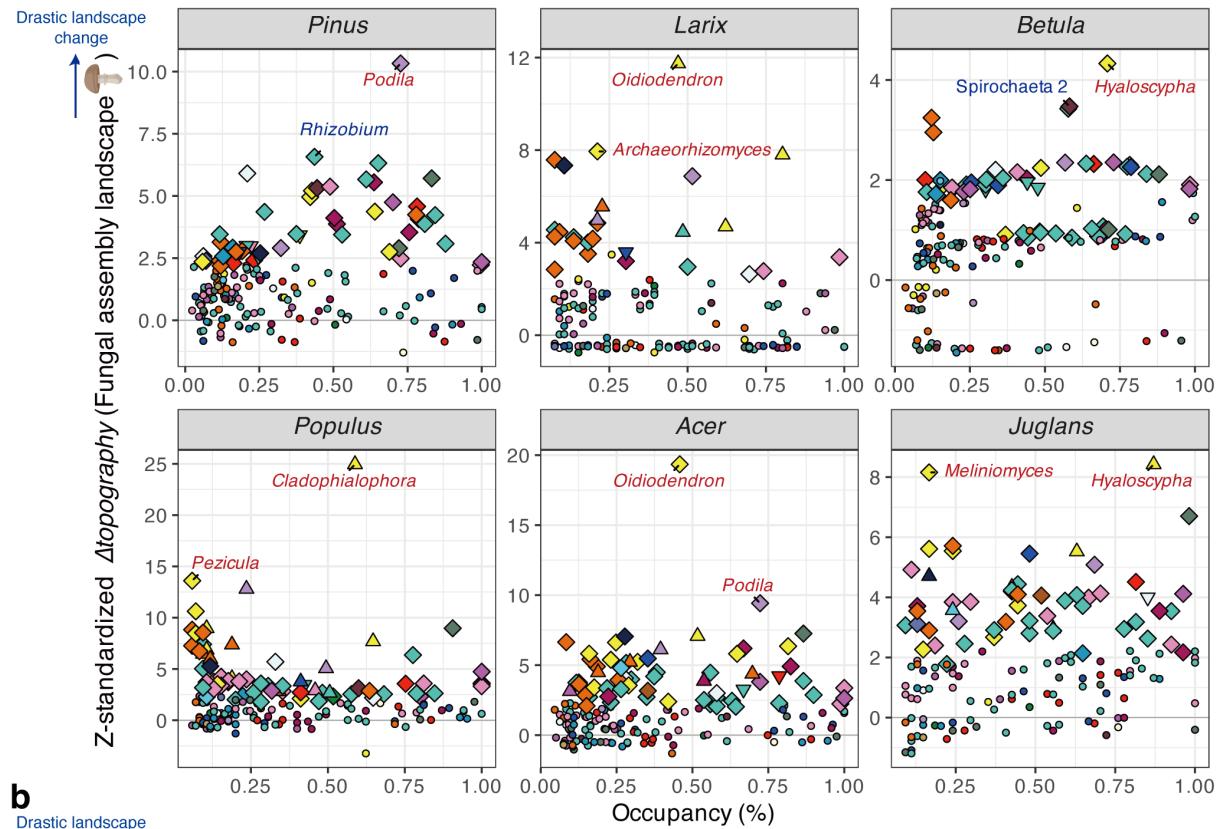
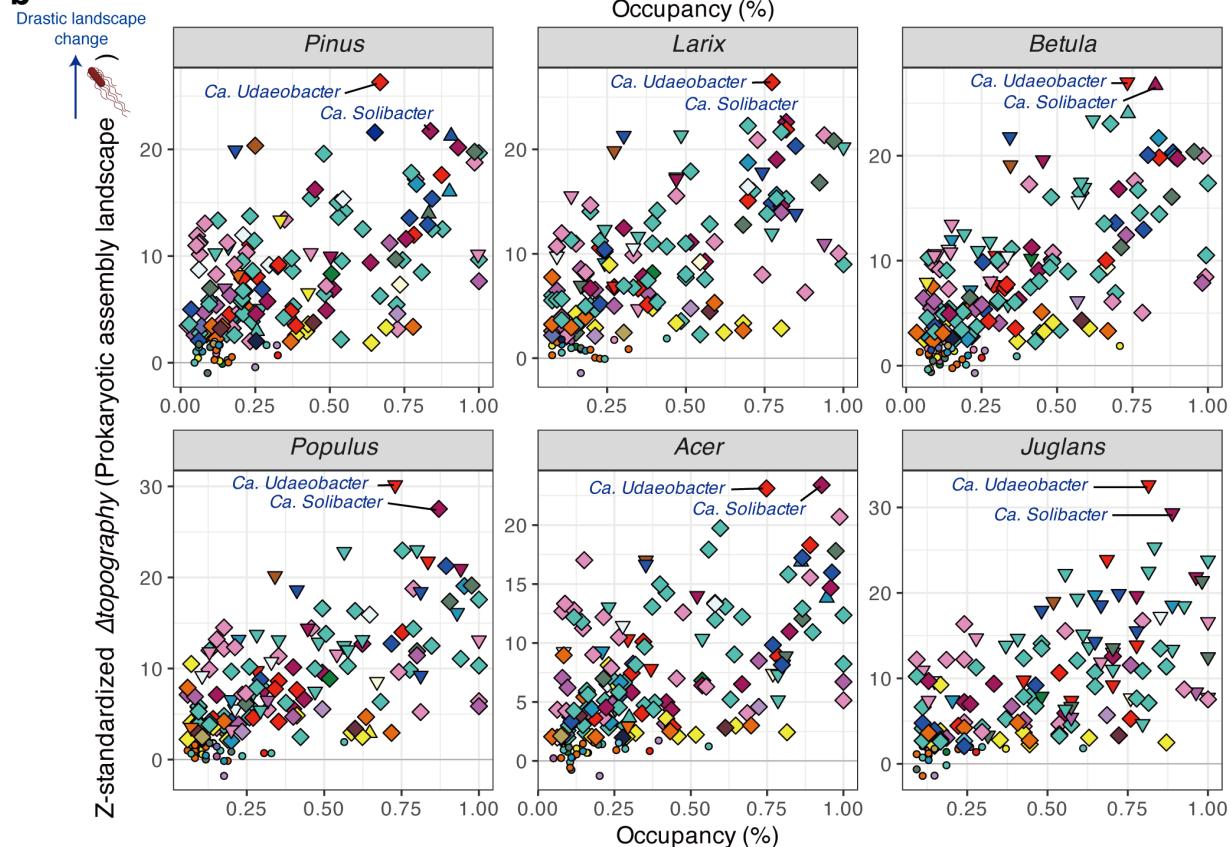
211 **Supplementary Fig. S9 | Energy landscapes of the fungal community inferred by assuming**
 212 ***Larix, Betula, Acer* or *Juglans* host-plant backgrounds.** The identity of host plants is included as an


213 explicit factor in the statistical model (Fig. 1b). We calculate energy of each community state and
214 reconstructed energy-weighted assembly graph in each host-plant background. The basin bottoms
215 (squares), the intermediate states (circles) and the lowest-energy transition pathways between them
216 (thick lines) are visualized on the PCoA surface representing community states. Pathways and
217 intermediates states for the basin bottoms inferred in other host-plant backgrounds are shown by thin
218 lines and small circles, respectively. The "energy" of basin bottoms and boundary states between them
219 is detailed in the "disconnectivity graphs".

220


221 **Supplementary Fig. S10 | Energy landscapes of the prokaryotic community inferred by**
 222 **assuming *Larix*, *Betula*, *Acer* or *Juglans* host-plant backgrounds.** The identity of host plants is

223 included as an explicit factor in the statistical model (Fig. 1b). We calculate energy of each
224 community state and reconstructed energy-weighted assembly graph in each host-plant background.
225 The basin bottoms (squares), the intermediate states (circles) and the lowest-energy transition
226 pathways between them (thick lines) are visualized on the PCoA surface representing community
227 states. Pathways and intermediates states for the basin bottoms inferred in other host-plant
228 backgrounds are shown by thin lines and small circles, respectively. The "energy" of basin bottoms
229 and boundary states between them is detailed in the "disconnectivity graphs".

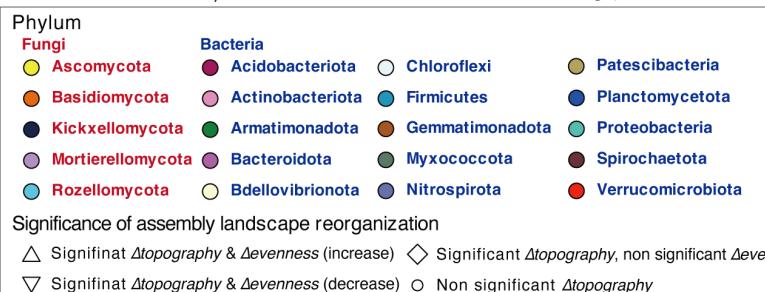
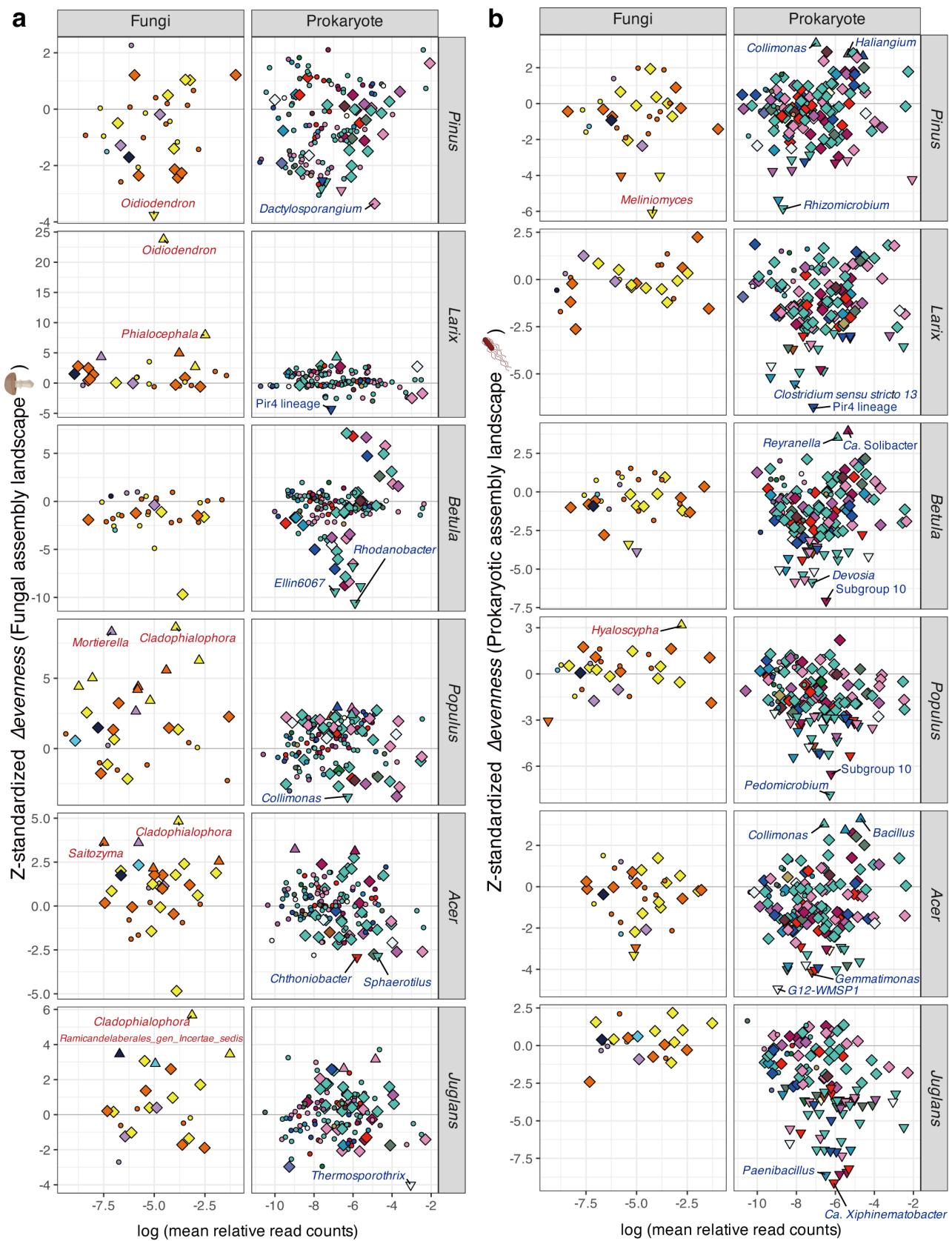
232 The Δ topography and Δ evenness values of each genus analyzed in Figure 4 were recalculated 30 times
233 using different sets of 20,000 randomly initialized community states. Calculations were performed for
234 each of the six host plants (rows), assuming different abundance quantile levels (columns; 25%, 50%,
235 and 75% quantiles of relative read counts in samples in which the focal microbial taxon was present).
236 (a) Δ topography for the fungal assembly landscape. (b) Δ topography for the prokaryotic assembly
237 landscape. (c) Δ evenness for the fungal assembly landscape. (d) Δ evenness for the prokaryotic
238 assembly landscape.

239

241 **Supplementary Fig. S12 | Potential impacts on the overall energy landscape architecture and the**
242 **abundance of each microbial genus.** (a) Z-standardized Δ topography of individual microbial genera
243 in fungal energy landscapes. Genera whose abundance changes are inferred to substantially reshape
244 the fungal community destinations within the energy landscape are highlighted in each host-plant
245 background. The effects of fungal and prokaryotic genera are presented separately (left-side panels:
246 fungal genera, right-side panels: prokaryotic genera). (b) Z-standardized Δ topography of individual
247 microbial genera in prokaryotic energy landscapes.

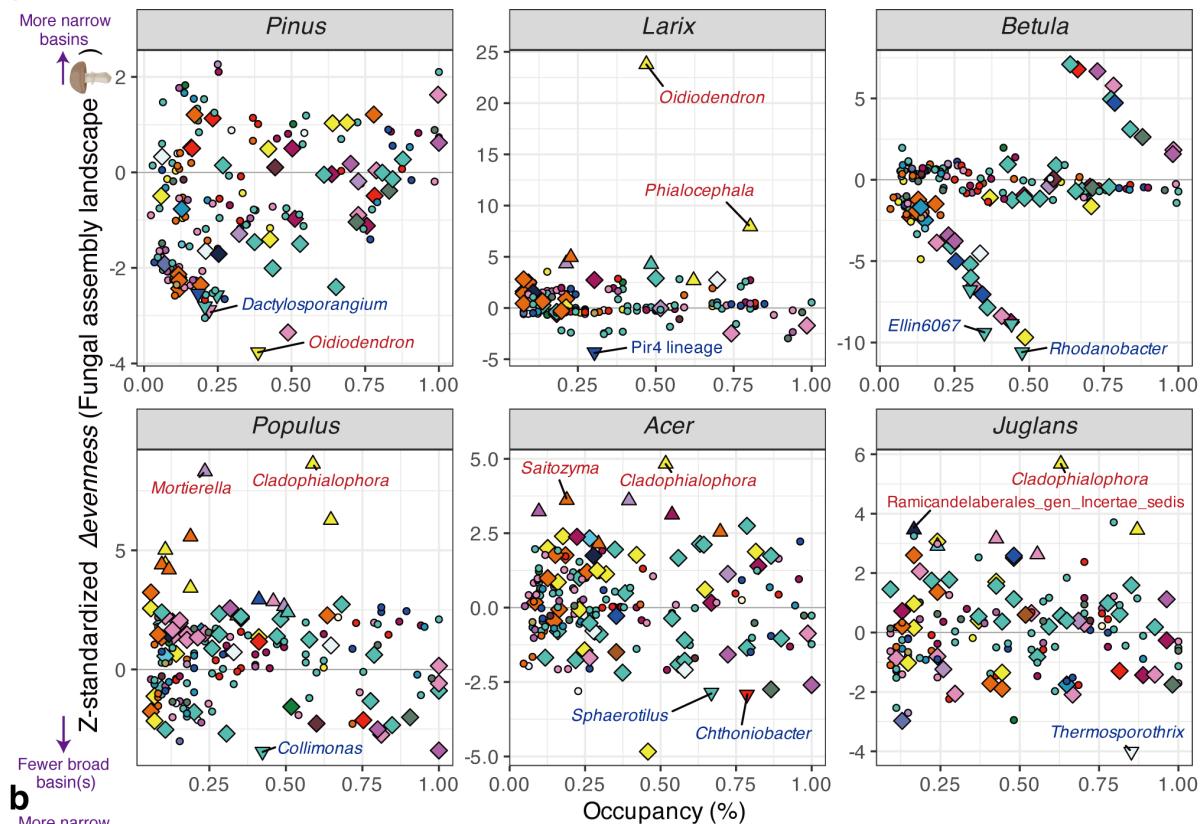
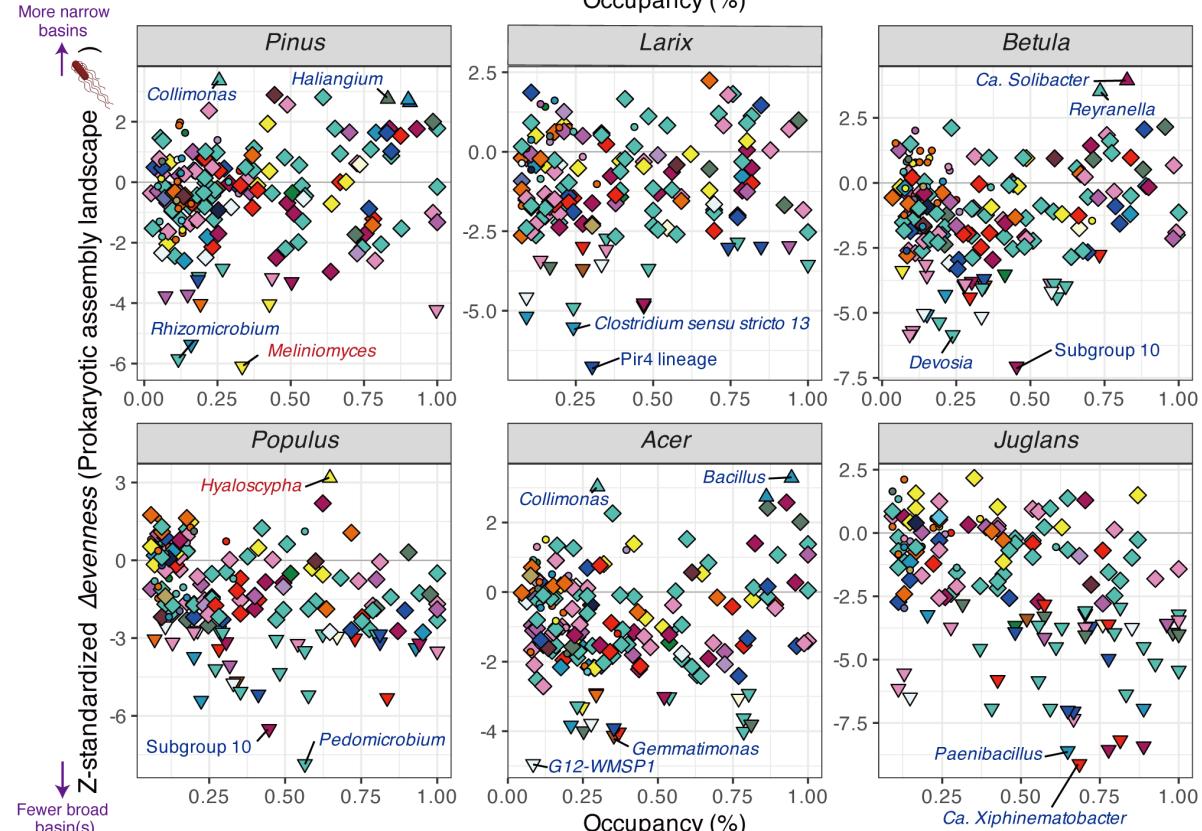
a**b**

Phylum		Bacteria		Fungi	
Fungi		Bacteria			
Ascomycota	Acidobacteriota	Chloroflexi	Patescibacteria		
Basidiomycota	Actinobacteriota	Firmicutes	Planctomycetota		
Kickxellomycota	Armatimonadota	Gemmamimonadota	Proteobacteria		
Mortierellomycota	Bacteroidota	Myxococcota	Spirochaetota		
Rozellomycota	Bellolobivirionota	Nitrospirota	Verrucomicrobiota		



Significance of assembly landscape reorganization

Δ Significat Δ topography & Δ evenness (increase) \diamond Significant Δ topography, non significant Δ evenness

∇ Significat Δ topography & Δ evenness (decrease) \circ Non significant Δ topography



249 **Supplementary Fig. S13 | Potential impacts on the overall energy landscape architecture and the**
250 **occupancy of each microbial genus. (a)** Z-standardized Δ topography of individual microbial genera
251 in fungal energy landscapes. Genera whose abundance changes are inferred to substantially reshape
252 the fungal community destinations within the energy landscape are highlighted in each host plant
253 background. **(b)** Z-standardized Δ topography of individual microbial genera in prokaryotic energy
254 landscapes.

255

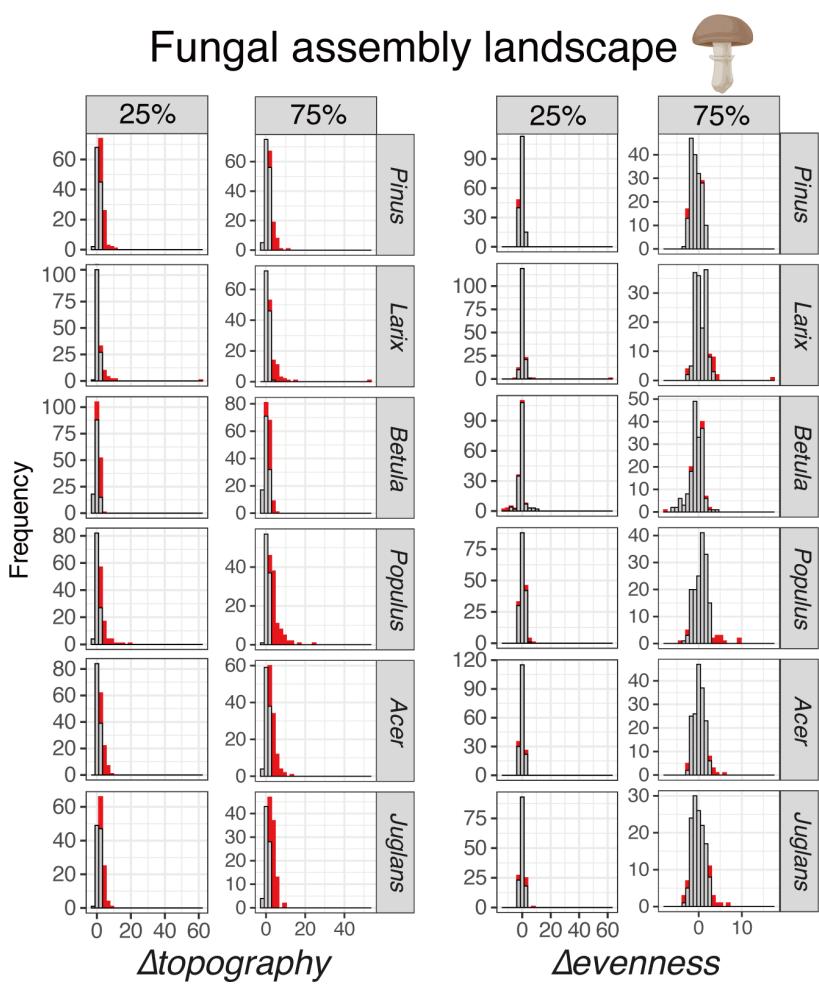
257 **Supplementary Fig. S14 | Potential impacts on the evenness of the basin distributions and the**
258 **relative abundance of each microbial genus. (a)** Z-standardized Δ evenness of individual microbial
259 genera in fungal energy landscapes. Genera whose abundance changes are inferred to substantially
260 alter the basin distributions and frequencies within the energy landscape are highlighted in each host
261 plant background. The effects of fungal and prokaryotic genera are presented separately (left-side
262 panels: fungal genera, right-side panels: prokaryotic genera). **(b)** Z-standardized Δ evenness of
263 individual microbial genera in prokaryotic energy landscapes.

264

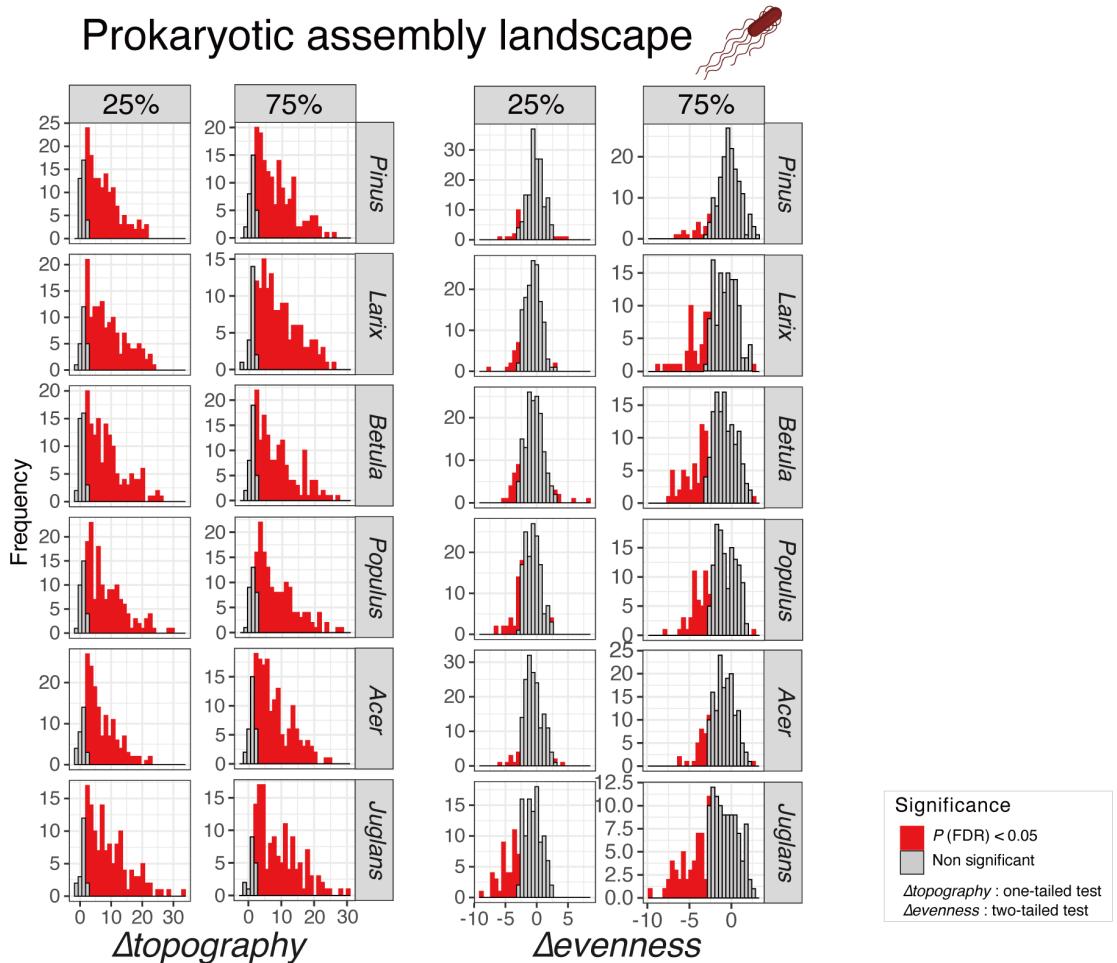
a**b**

Phylum		Bacteria			
Fungi		Bacteria			
Ascomycota		Acidobacteriota	Chloroflexi		Patescibacteria
Basidiomycota		Actinobacteriota	Firmicutes		Planctomycetota
Kickxellomycota		Armatimonadota	Gemmamimonadota		Proteobacteria
Mortierellomycota		Bacteroidota	Myxococcota		Spirochaetota
Rozellomycota		Bdellovibrionota	Nitrospirota		Verrucomicrobiota

Significance of assembly landscape reorganization

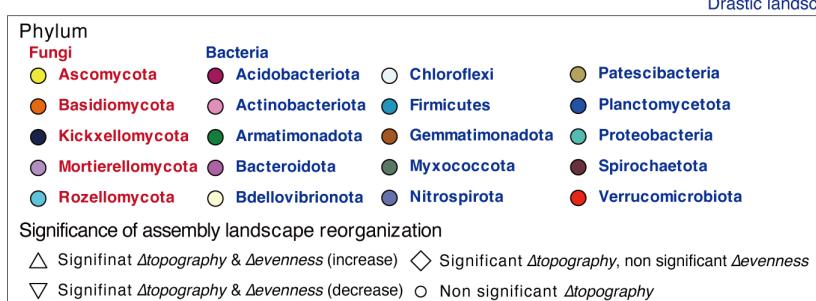
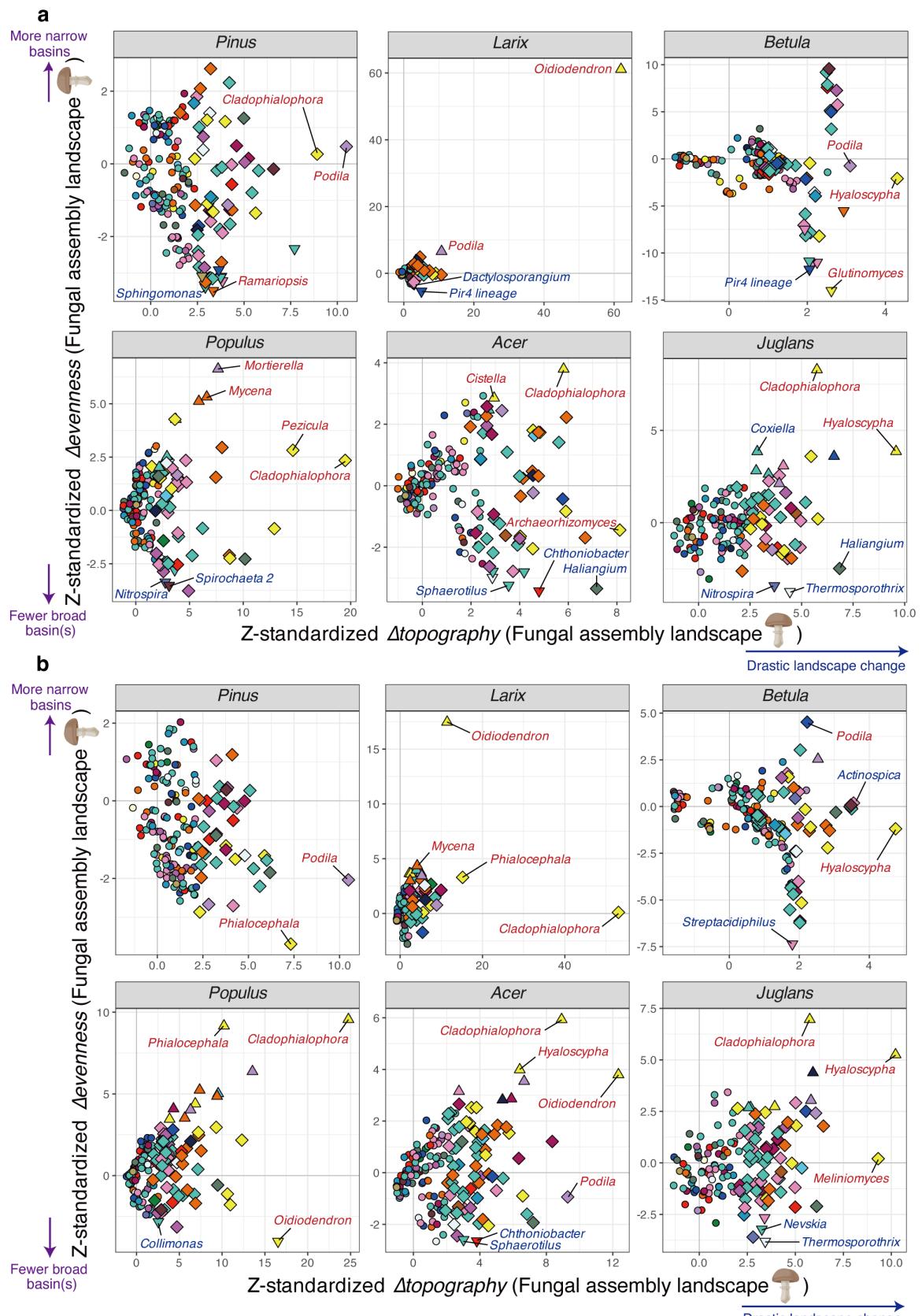

△ Significant Δ topography & Δ evenness (increase) ◇ Significant Δ topography, non significant Δ evenness

▽ Significant Δ topography & Δ evenness (decrease) ○ Non significant Δ topography

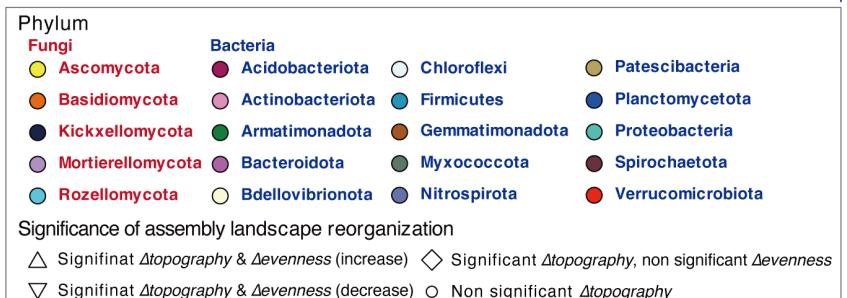
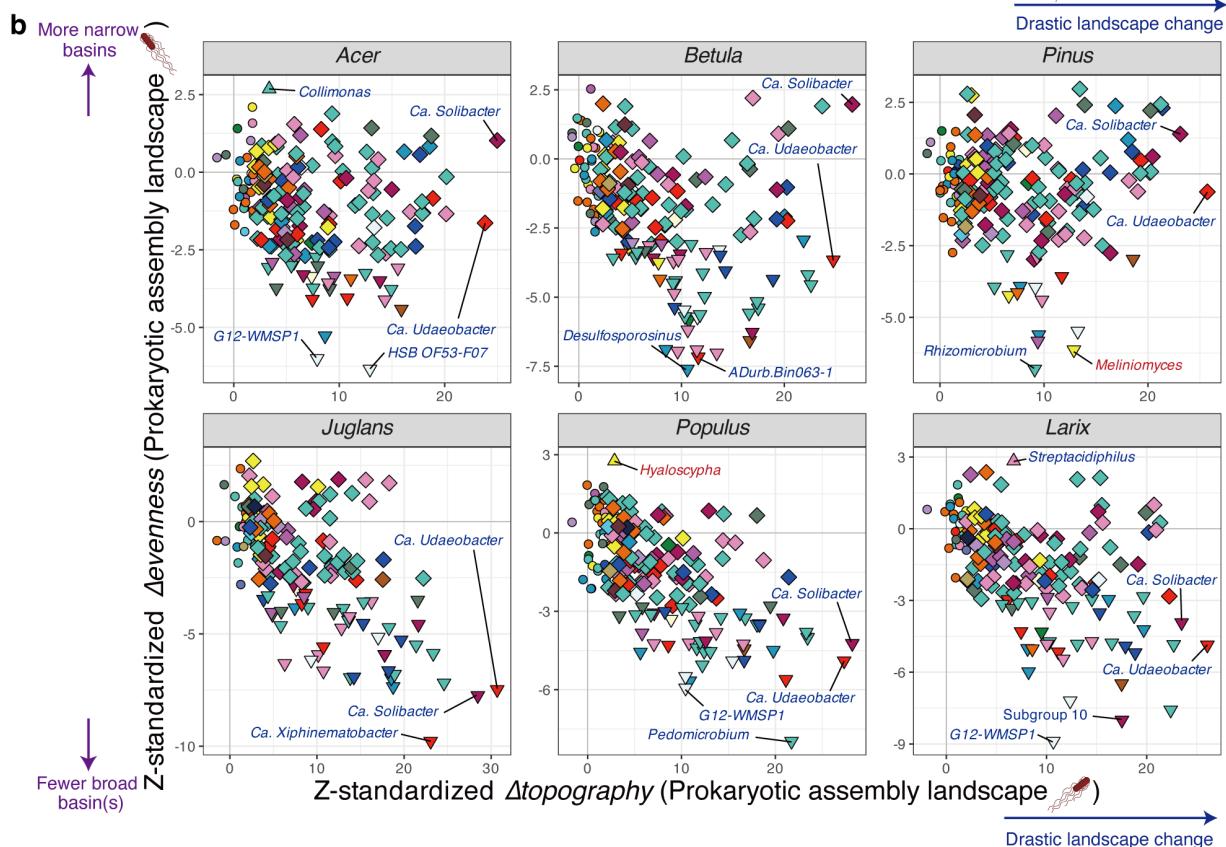
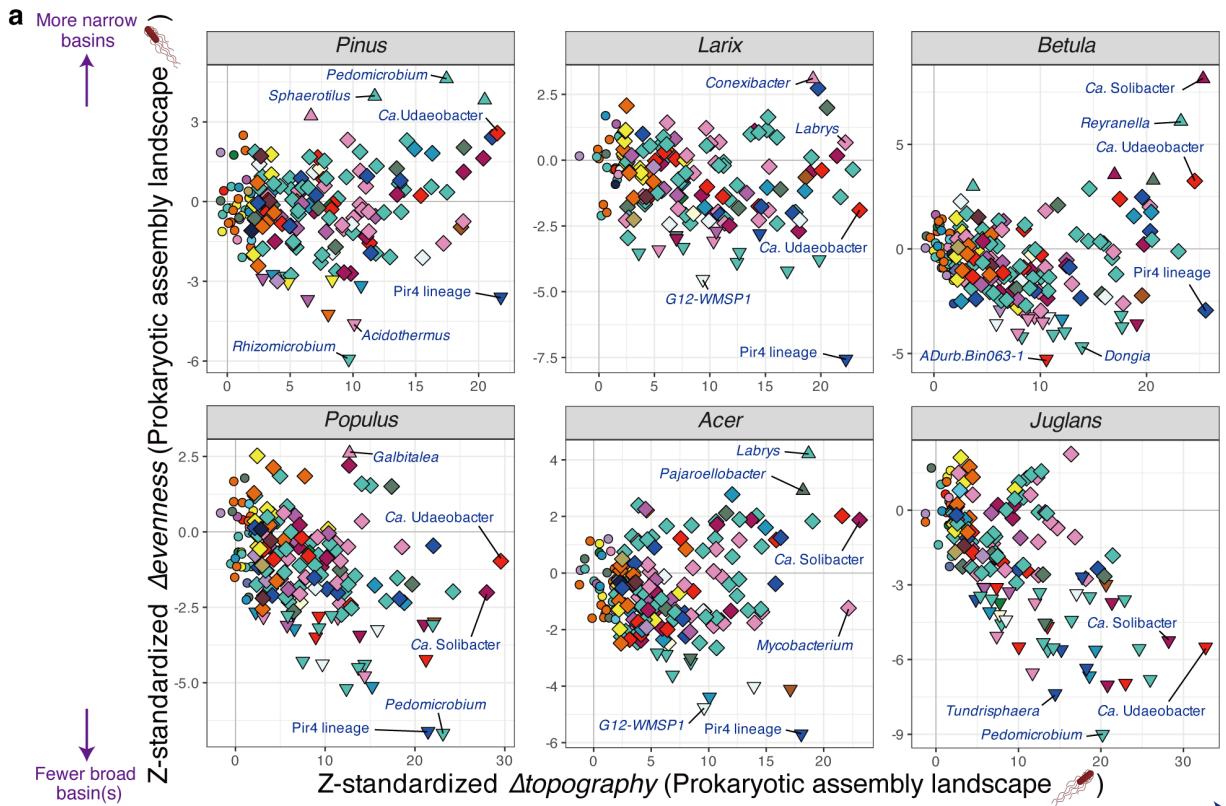

266 **Supplementary Fig. S15 | Potential impacts on the evenness of the basin distributions and the**
267 **occupancy of each microbial genus. (a)** Z-standardized Δ evenness of individual microbial genera in
268 fungal energy landscapes. Genera whose abundance changes are inferred to substantially alter the
269 basin distributions and frequencies within the energy landscape are highlighted in each host plant
270 background. **(b)** Z-standardized Δ evenness of individual microbial genera in prokaryotic energy
271 landscapes.

272

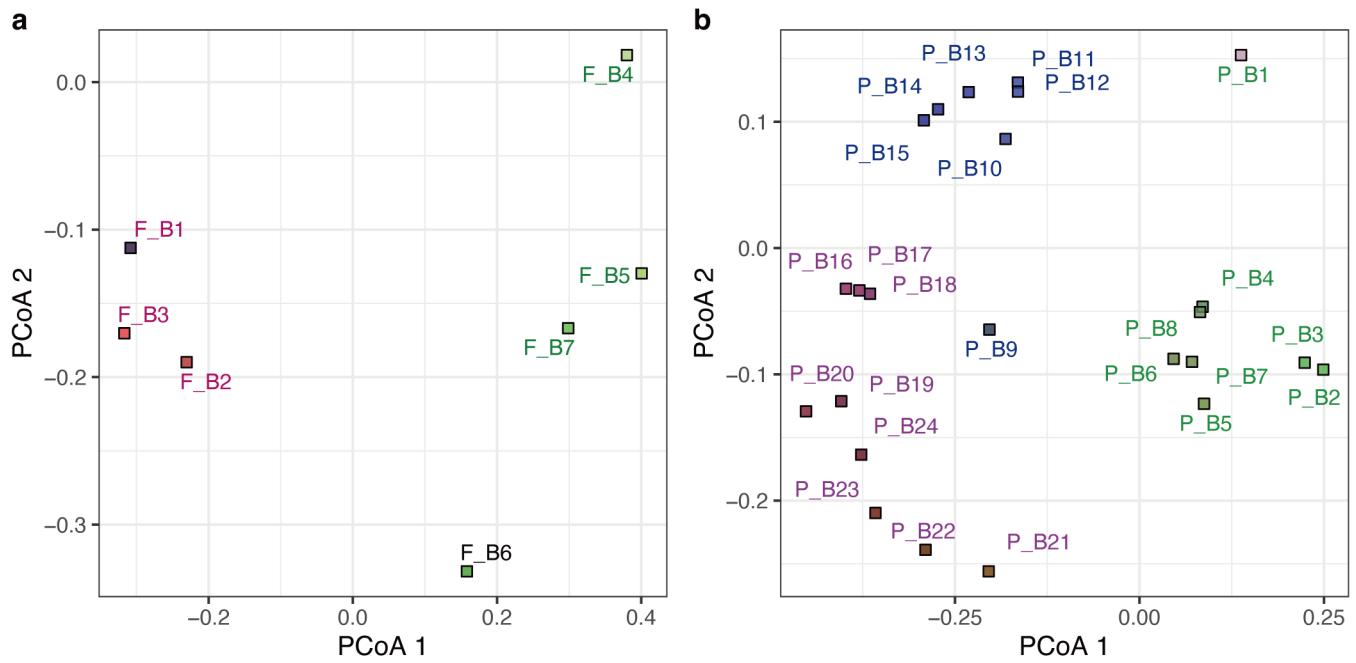
Fungal assembly landscape

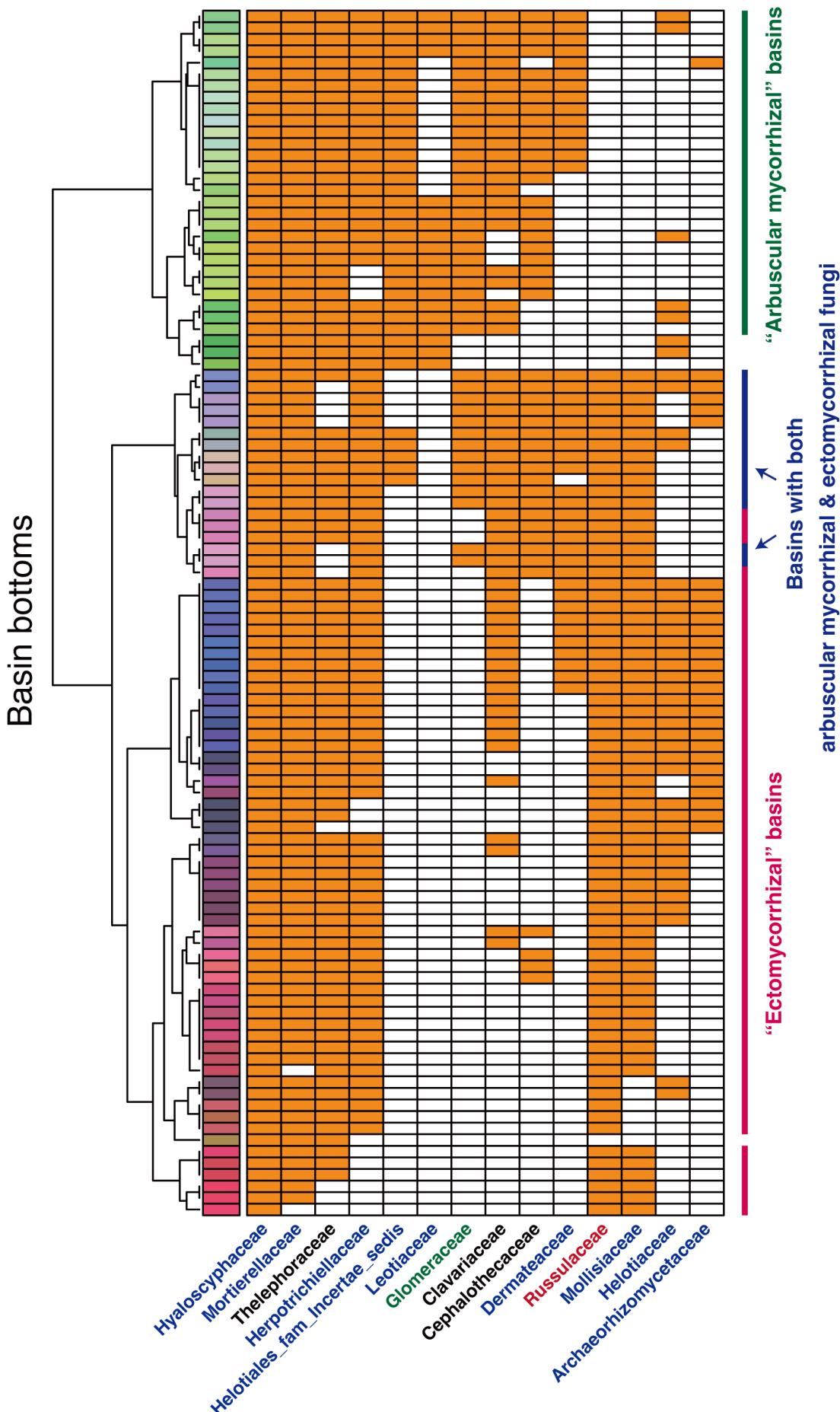
Prokaryotic assembly landscape

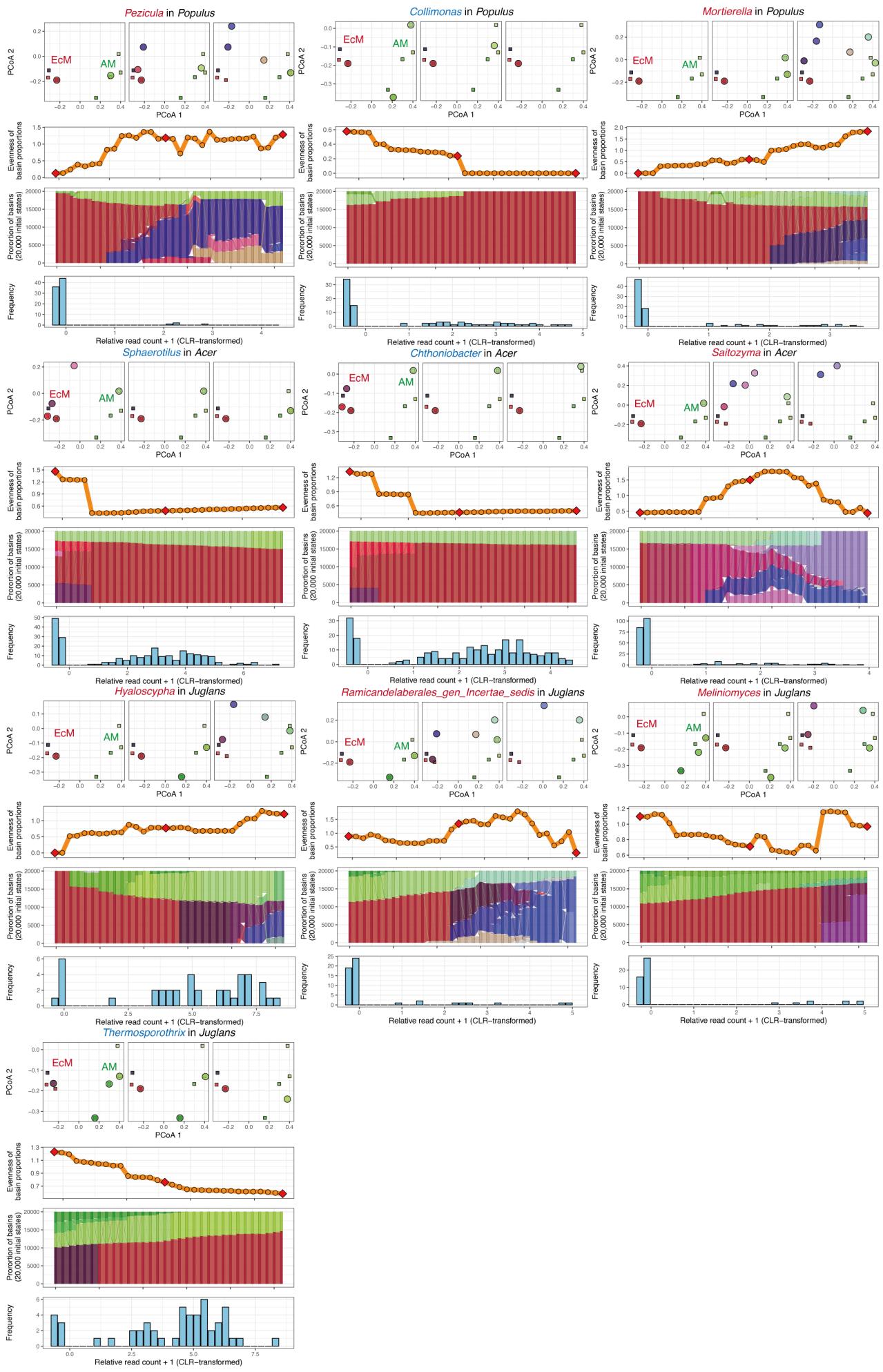
274 **Supplementary Fig. S16 | Histograms of “keystoneness” metrics based on 25% and 75%**
275 **quantiles of the relative abundances of each microbial genus.** The z-standardized $\Delta topography$ and
276 $\Delta evenness$ metrics respectively represent changes in the overall topography and evenness of basin
277 distributions in fungal and prokaryotic energy landscape architecture along the two abundance
278 gradients of a focal genus (see Fig. 1d-g). Results are shown separately for each host-plant
279 background.


280

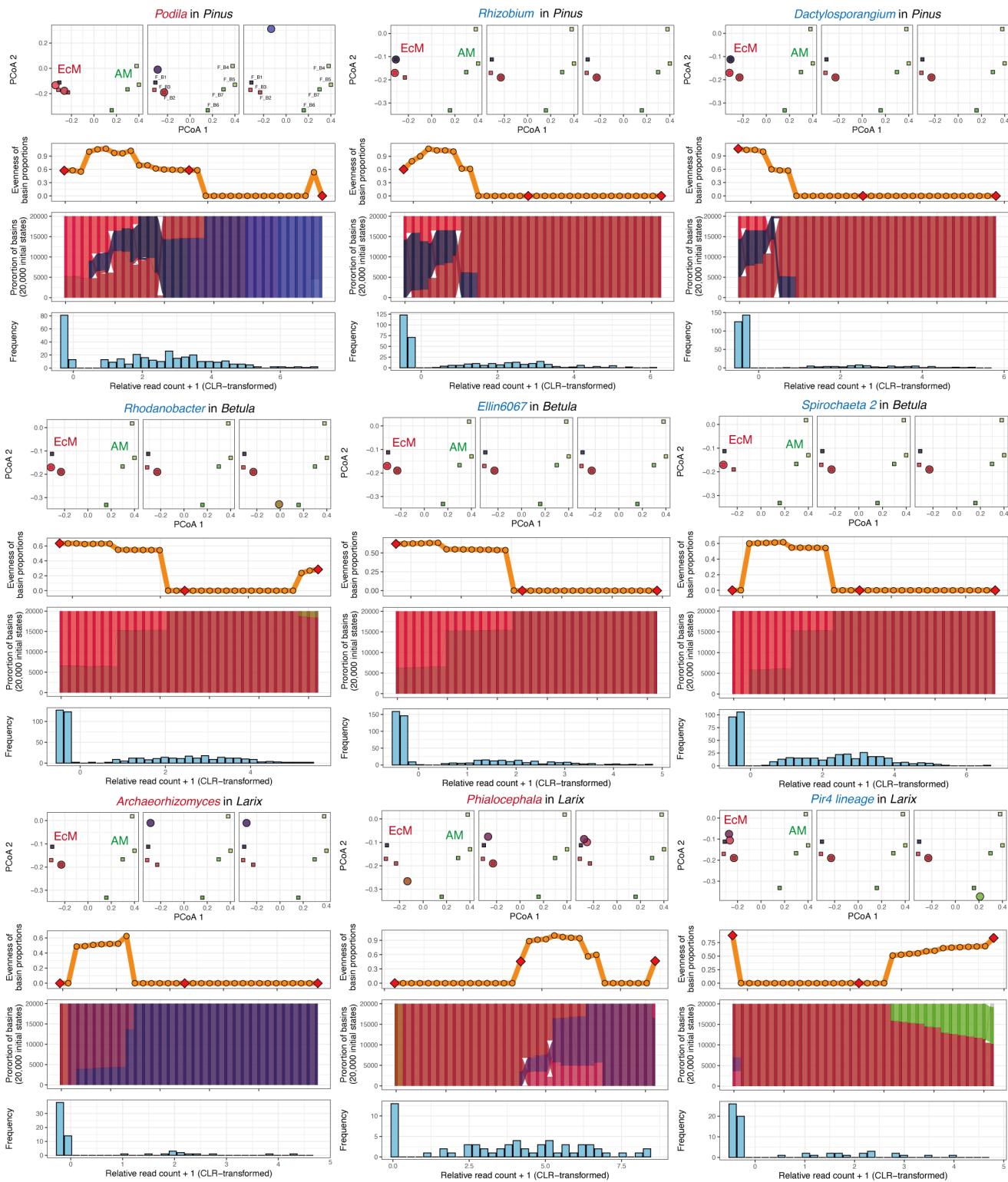
282 **Supplementary Fig. S17 | Potential impacts on the fungal community assembly along the two**
283 **representative abundance gradients of each microbial genus. (a)** Taxa strongly associated with the
284 energy landscape reorganizations along their abundance gradients from 0% (absence) to 25% quantile.
285 On two-dimensional planes defined by $\Delta_{topography}$ and $\Delta_{evenness}$, microbial genera whose
286 abundance changes were inferred to substantially reshape the energy landscape architecture of root-
287 associated fungal communities are highlighted. **(b)** Taxa strongly associated with the energy landscape
288 reorganizations along their abundance gradients from 0% (absence) to 75% quantile.



290 **Supplementary Fig. S18 | Potential impacts on the prokaryotic community assembly along the**
291 **two representative abundance gradients of each microbial genus. (a)** Taxa strongly associated
292 with the energy landscape reorganizations along their abundance gradients from 0% (absence) to 25%
293 quantile. On two-dimensional planes defined by $\Delta_{topography}$ and $\Delta_{evenness}$, microbial genera whose
294 abundance changes were inferred to substantially reshape the energy landscape architecture of root-
295 associated prokaryotic communities are highlighted. **(b)** Taxa strongly associated with the energy
296 landscape reorganizations along their abundance gradients from 0% (absence) to 75% quantile.

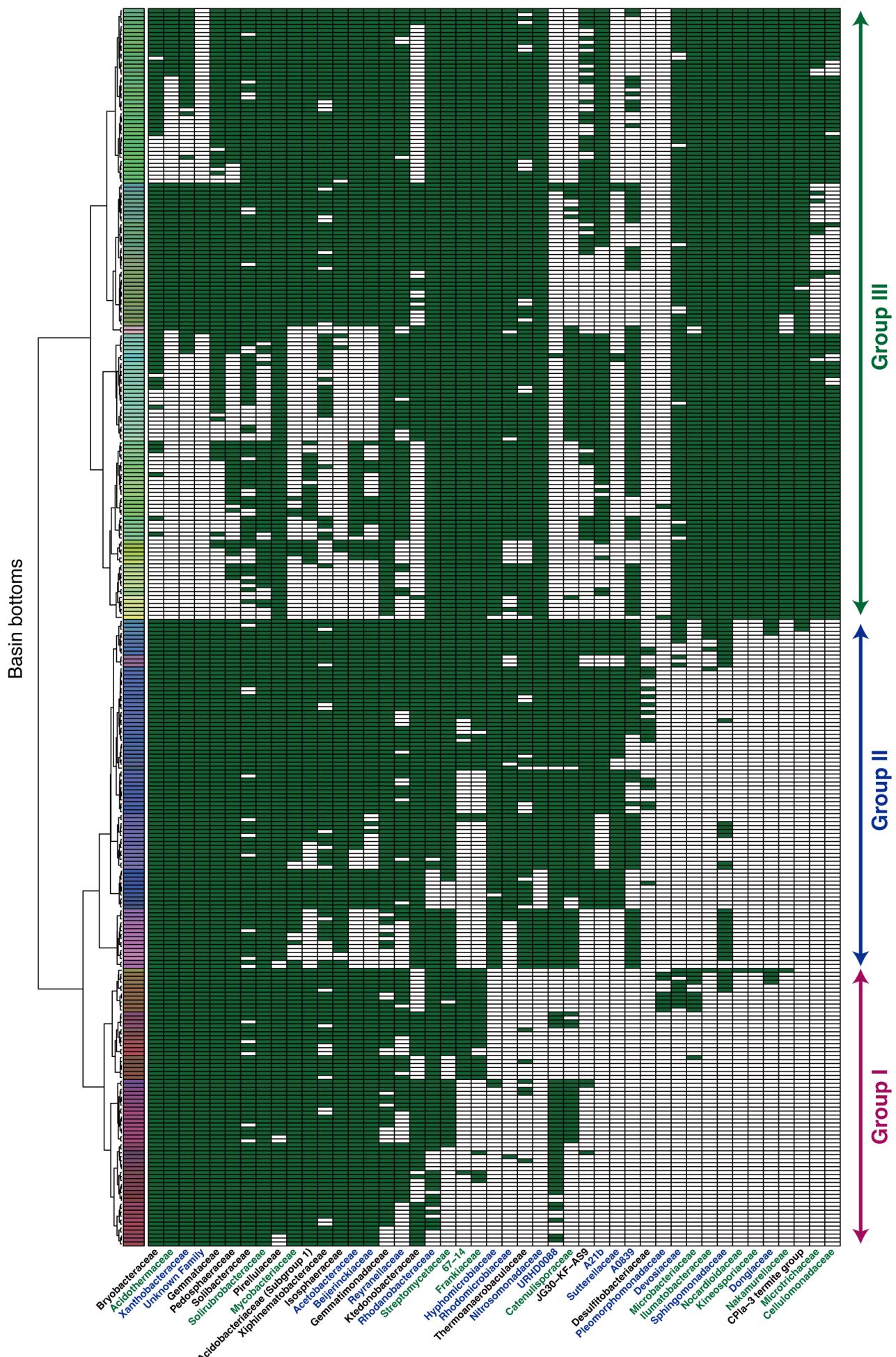

297

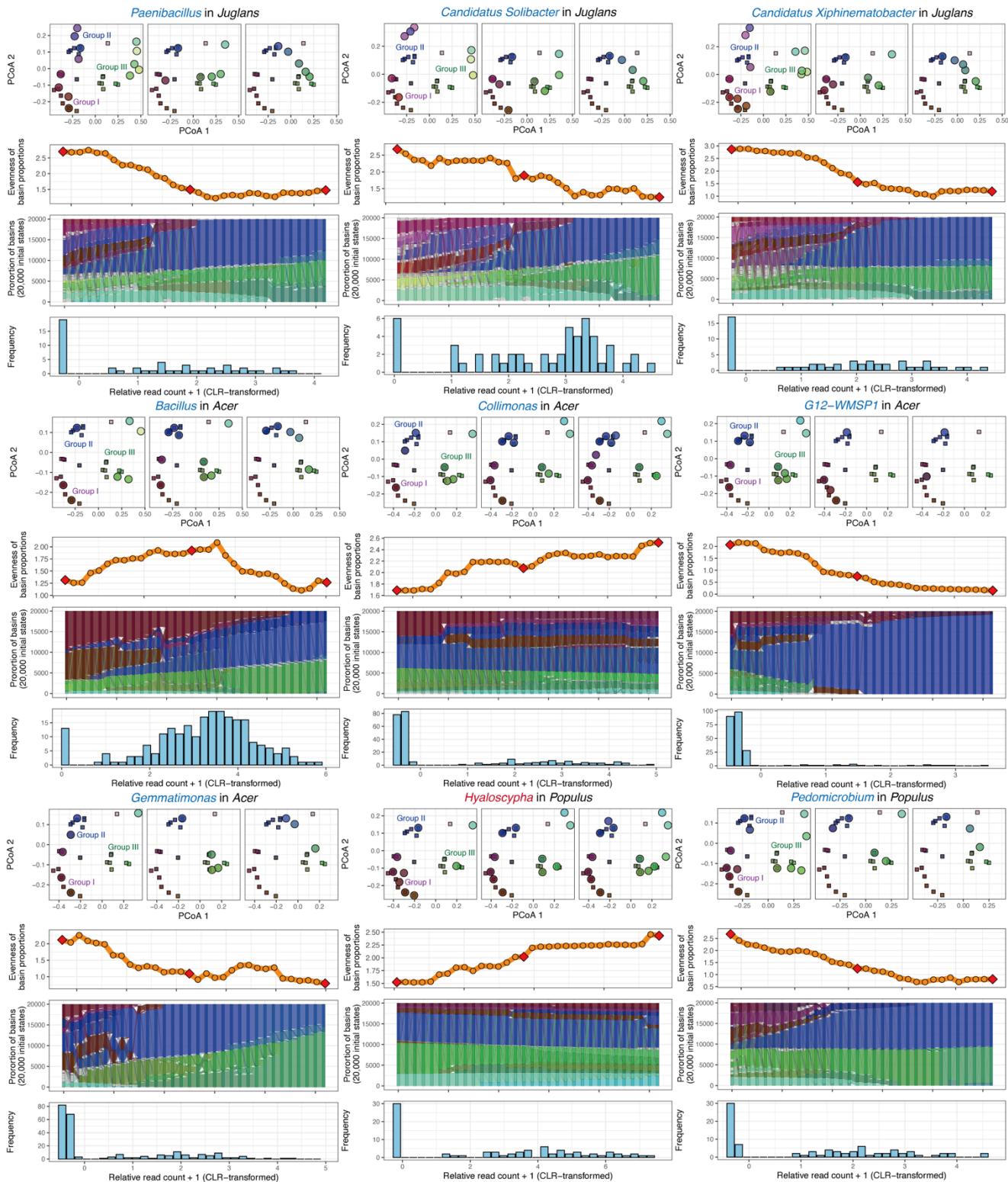
298 **Supplementary Fig. S19 | Community structures of the basin bottoms.** (a) Principal coordinate
 299 analysis (PCoA) of the fungal basin bottoms shown in Figure 2c. Dissimilarities among the bottom
 300 states are calculated based on Jaccard distance. The colors correspond to those in Figure 2c and
 301 Supplementary Figure S20. (b) PCoA of the prokaryotic basin bottoms shown in Figure 3c. The colors
 302 correspond to those in Figure 3c and Supplementary Figure S23.



305 basin bottoms inferred across the six host-plant backgrounds in Figures 2c and 5 as well as in
306 Supplementary Figures S21 and S22 are shown with a dendrogram representing taxonomic
307 membership similarity. The color gradient of left-side panel represents the degree of
308 similarity/dissimilarity among community states, corresponding to those illustrated in the flow
309 diagrams (see Fig. 5 and Supplementary Figs. S21 and S22). Depending on the presence/absence of
310 Glomeraceae and Russulaceae, "arbuscular mycorrhizal" and "ectomycorrhizal" basins are tentatively
311 defined. In addition to the basins in Figures 2c, some basins including both Glomeraceae and
312 Russulaceae were detected. Fungal families are colored according to functional guilds: green,
313 arbuscular mycorrhizal; red, ectomycorrhizal; blue, potentially endophytic; black, families with
314 multiple or other functions.

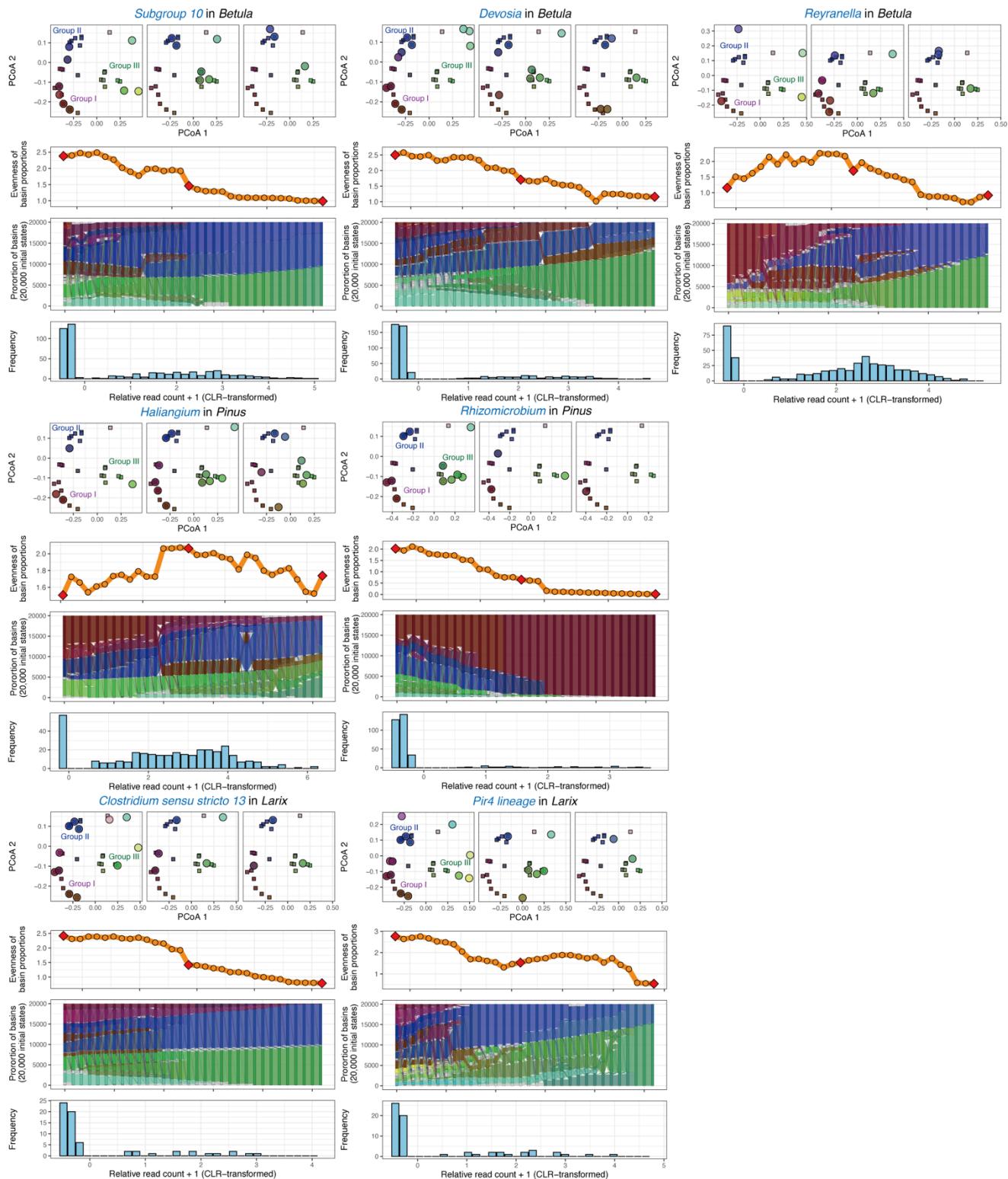
315


317 **Supplementary Fig. S21 | Fungal energy landscape reorganization in the dual mycorrhizal host-**
318 **plant backgrounds.** Along the abundance gradient of each microbial genus highlighted in Figure 4b
319 (*Populus*, *Acer* and *Juglans*), changes in the frequency distribution of fungal energy landscape basins
320 are shown. Frequencies are evaluated through 20,000 simulations of community assemblies from
321 randomly generated initial states, under 32 abundance conditions ranging from absence to the
322 maximum observed abundance in the host. On the PCoA planes, the basin bottoms detected at three
323 representative abundance levels within 32 equally spaced relative abundance steps—absence (step 1),
324 intermediate abundance (step 16), and maximum abundance (step 32)—are shown as circles, together
325 with the states detected in Figure 2c (see Supplementary Fig. S19a). The Shannon entropy of the basin
326 frequencies is also shown along the abundance axis (CLR-transformed relative read counts of a focal
327 genus). In addition, the destinations of the initial communities in each condition of the focal genus's
328 abundance are indicated in the flow diagrams with the histograms of their relative abundances in the
329 hosts. Each bar plot depicts the frequency of basin bottoms detected under the corresponding
330 abundance condition. The bottoms which the same initial community state converged across adjacent
331 abundance conditions (steps) are connected with bands. Colors represent community compositional
332 similarity based on Jaccard distance, with more similar compositions rendered in more similar colors
333 (see Fig. 2c; Supplementary Fig. S20).
334


335

336 **Supplementary Fig. S22 | Fungal energy landscape reorganization in the ectomycorrhizal host-**
 337 **plant backgrounds.** Along the abundance gradient of each microbial genus highlighted in figure 4b
 338 (*Pinus*, *Betula* and *Larix*), changes in the frequency distribution of fungal energy landscape basins are
 339 shown. Frequencies are evaluated through 20,000 simulations of community assemblies from
 340 randomly generated initial states, under 32 abundance conditions ranging from absence to the
 341 maximum observed abundance in the host. On the PCoA planes, the basin bottoms detected at three
 342 representative abundance levels within 32 equally spaced relative abundance steps—absence (step 1),

343 intermediate abundance (step 16), and maximum abundance (step 32)—are shown as circles, together
344 with the states detected in Figure 2c (see Supplementary Fig. S19a). The Shannon entropy of the basin
345 frequencies is also shown along the abundance axis (CLR-transformed relative read counts of a focal
346 genus). In addition, the destinations of the initial communities in each condition of the focal genus's
347 abundance are indicated in the flow diagrams with the histograms of their relative abundances in the
348 hosts. Each bar plot depicts the frequency of basin bottoms detected under the corresponding
349 abundance condition. The bottoms which the same initial community state converged across adjacent
350 abundance conditions (steps) are connected with bands. Colors represent community compositional
351 similarity based on Jaccard distance, with more similar compositions rendered in more similar colors
352 (see Fig. 2c; Supplementary Fig. S20).


354 **Supplementary Fig. S23 | Community states at basin bottoms of prokaryotic energy landscapes.**
355 The basin bottoms inferred across the six host plant backgrounds in Figures 3c and 6, Supplementary
356 Figures S24 and S25 are shown with a dendrogram representing taxonomic membership similarity.
357 The color gradient of left-side panel represents the degree of similarity/dissimilarity among
358 community states, corresponding to those illustrated in the flow diagrams (see Fig. 6 and
359 Supplementary Figs. S24 and S25). The basins are tentatively classified into three categories: Group I,
360 consisting primarily of commonly observed families; Group II, characterized by the presence of
361 additional Pseudomonadota families; and Group III, characterized by the presence of additional
362 Actinomycetota families. Prokaryotic families are colored according to their phylum-level taxonomy:
363 blue, Pseudomonadota; green, Actinomycetota; black, other phyla.

364

365 **Supplementary Fig. S24 | Prokaryotic energy landscape reorganization in the dual mycorrhizal**
 366 **host-plant backgrounds.** Along the abundance gradient of each microbial genus highlighted in
 367 Figure 4d (*Juglans*, *Acer* and *Populus*), changes in the frequency distribution of prokaryotic energy
 368 landscape basins are shown. Frequencies are evaluated through 20,000 simulations of community
 369 assemblies from randomly generated initial states, under 32 abundance conditions ranging from
 370 absence to the maximum observed abundance in the host. On the PCoA planes, the basin bottoms
 371 detected at three representative abundance levels within 32 equally spaced relative abundance—

372 absence (step 1), intermediate abundance (step 16), and maximum abundance (step 32)—are shown as
373 circles, together with the states detected in Figure 3c (see Supplementary Fig. S19b). The Shannon
374 entropy of the basin frequencies is also shown along the abundance axis (CLR-transformed relative
375 read counts of a focal genus). In addition, the destinations of the initial communities in each condition
376 of the focal genus's abundance are indicated in the flow diagrams with the histograms of their relative
377 abundances in the hosts. Each bar plot depicts the frequency of basin bottoms detected under the
378 corresponding abundance condition. The bottoms which the same initial community state converged
379 across adjacent abundance conditions (steps) are connected with bands. Colors represent community
380 compositional similarity based on Jaccard distance, with more similar compositions rendered in more
381 similar colors (see Fig. 3c; Supplementary Fig. S23).

382

383 **Supplementary Fig. S25 | Prokaryotic energy landscape reorganization in the ectomycorrhizal**
384 **host-plant backgrounds.** Along the abundance gradient of each microbial genus highlighted in
385 Figure 4d (*Betula*, *Pinus*, and *Larix*), changes in the frequency distribution of prokaryotic energy
386 landscape basins are shown. Frequencies are evaluated through 20,000 simulations of community
387 assemblies from randomly generated initial states, under 32 abundance conditions ranging from
388 absence to the maximum observed abundance in the host. On the PCoA planes, the basin bottoms

389 detected at three representative abundance levels within 32 equally spaced relative abundance steps—
390 absence (step 1), intermediate abundance (step 16), and maximum abundance (step 32)—are shown as
391 circles, together with the states detected in Figure 3c (see Supplementary Fig. S19b). The Shannon
392 entropy of the basin frequencies is also shown along the abundance axis (CLR-transformed relative
393 read counts of a focal genus). In addition, the destinations of the initial communities in each condition
394 of the focal genus’s abundance are indicated in the flow diagrams with the histograms of their relative
395 abundances in the hosts. Each bar plot depicts the frequency of basin bottoms detected under the
396 corresponding abundance condition. The bottoms which the same initial community state converged
397 across adjacent abundance conditions (steps) are connected with bands. Colors represent community
398 compositional similarity based on Jaccard distance, with more similar compositions rendered in more
399 similar colors (see Fig. 3c; Supplementary Fig. S23).

400 **Supplementary Table S1 | Prioritization of fungal families based on their contributions to**
 401 **overall community structure.** To select candidate family sets for subsequent analyses (see
 402 Supplementary Figs. S1 and S3), individual fungal families were prioritized according to their
 403 explanatory power for the abundance-based fungal community structure. Specifically, a PerMANOVA
 404 was performed on the relative abundance matrix of fungal data using the presence/absence of each
 405 family as an explanatory variable (10,000 iterations). In the PerMANOVA, Bray-Curtis distance was
 406 used to quantify community dissimilarity between root samples, and the host plant backgrounds and
 407 sampling points were included as additional explanatory variables (i.e., covariates).

Family	R^2	P (FDR)
Russulaceae	3.76×10^{-2}	< 0.001
Thelephoraceae	1.50×10^{-2}	< 0.001
Hydnaceae	1.30×10^{-2}	< 0.001
Tricholomataceae	1.26×10^{-2}	< 0.001
Hyaloscyphaceae	1.12×10^{-2}	< 0.001
Glomeraceae	1.11×10^{-2}	< 0.001
Mollisiaceae	1.08×10^{-2}	< 0.001
Mycenaceae	9.92×10^{-3}	< 0.001
Herpotrichiellaceae	8.50×10^{-3}	< 0.001
Clavariaceae	6.55×10^{-3}	< 0.001
Dermateaceae	5.53×10^{-3}	< 0.001
Cephalothecaceae	5.24×10^{-3}	< 0.001
Amanitaceae	4.74×10^{-3}	< 0.001
Helotiaceae	4.49×10^{-3}	< 0.001
Mortierellaceae	4.44×10^{-3}	< 0.001
Hymenogastraceae	4.32×10^{-3}	< 0.001
Helotiales_fam_Incertae_sedis	4.31×10^{-3}	< 0.001
Inocybaceae	3.84×10^{-3}	< 0.001
Tarzettaceae	3.47×10^{-3}	< 0.001
Leotiaceae	3.42×10^{-3}	< 0.001
Myxotrichaceae	3.42×10^{-3}	< 0.001
Ceratobasidiaceae	3.40×10^{-3}	< 0.001
Archaeorhizomycetaceae	2.76×10^{-3}	< 0.001
Cortinariaceae	2.71×10^{-3}	< 0.001
Rozellomycota_fam_Incertae_sedis	2.70×10^{-3}	< 0.001
Strophariaceae	2.64×10^{-3}	< 0.001
Sebacinaceae	2.61×10^{-3}	< 0.001
Aspergillaceae	2.27×10^{-3}	< 0.001
Hydnangiaceae	2.25×10^{-3}	0.001
Pyronemataceae	2.24×10^{-3}	< 0.001

Geoglossaceae	2.21×10^{-3}	< 0.001
Trimorphomycetaceae	2.20×10^{-3}	0.002
Tylosporaceae	2.20×10^{-3}	< 0.001
Tremellobendropsidales_fam_Incertae_sedis	2.12×10^{-3}	< 0.001
Ramicandelaberales_fam_Incertae_sedis	2.05×10^{-3}	0.002
Entolomataceae	1.92×10^{-3}	0.001
Leucosporidiales_fam_Incertae_sedis	1.91×10^{-3}	< 0.001
Pezizaceae	1.85×10^{-3}	0.003
Tuberaceae	1.83×10^{-3}	< 0.001
Venturiaceae	1.76×10^{-3}	0.007
Trichosporonaceae	1.72×10^{-3}	0.004
Leptodontidiaceae	1.69×10^{-3}	0.010
Melanommataceae	1.58×10^{-3}	0.008
Psathyrellaceae	1.57×10^{-3}	0.009
Endogonaceae	1.51×10^{-3}	0.006
Cladosporiaceae	1.46×10^{-3}	0.015
Clavicipitaceae	1.43×10^{-3}	0.005
Hypocreaceae	1.43×10^{-3}	0.016
Nectriaceae	1.39×10^{-3}	0.008
Umbelopsidaceae	1.38×10^{-3}	0.014
Microbotryales_fam_Incertae_sedis	1.27×10^{-3}	0.017
Cordycipitaceae	1.24×10^{-3}	0.017
Piskurozymaceae	1.23×10^{-3}	0.016
GS11_fam_Incertae_sedis	1.20×10^{-3}	0.013
Pleosporaceae	1.19×10^{-3}	0.042
Mytilinidiaceae	1.06×10^{-3}	0.048

409 **Supplementary Table S2 | Prioritization of prokaryotic families based on their contributions to**
 410 **overall community structure.** To select candidate family sets for subsequent analyses (see
 411 Supplementary Figs. S1 and S3), individual prokaryotic families were prioritized according to their
 412 explanatory power for the abundance-based prokaryotic community structure. Specifically, a
 413 PerMANOVA was performed on the relative abundance matrix of prokaryotic data, using the
 414 presence/absence of each family as an explanatory variable (10,000 iterations). In the PerMANOVA,
 415 Bray-Curtis distance was used to quantify community dissimilarity between root samples, and the host
 416 plant backgrounds and sampling points were included as additional explanatory variables (i.e.,
 417 covariates).

Family	R^2	P (FDR)
Microbacteriaceae	2.10×10^{-2}	< 0.001
Kineosporiaceae	1.97×10^{-2}	< 0.001
Dongiaceae	1.97×10^{-2}	< 0.001
67-14	1.89×10^{-2}	< 0.001
Catenulisporaceae	1.79×10^{-2}	< 0.001
Ktedonobacteraceae	1.75×10^{-2}	< 0.001
Nocardioidaceae	1.70×10^{-2}	< 0.001
Xanthobacteraceae	1.56×10^{-2}	< 0.001
JG30-KF-AS9	1.48×10^{-2}	< 0.001
Hyphomicrobiaceae	1.42×10^{-2}	< 0.001
Sutterellaceae	1.39×10^{-2}	< 0.001
Frankiaceae	1.36×10^{-2}	< 0.001
Solibacteraceae	1.32×10^{-2}	< 0.001
Unknown Family	1.29×10^{-2}	< 0.001
Acetobacteraceae	1.27×10^{-2}	< 0.001
Nakamurellaceae	1.27×10^{-2}	< 0.001
Devosiaceae	1.23×10^{-2}	< 0.001
Thermoanaerobaculaceae	1.15×10^{-2}	< 0.001
URHD0088	1.13×10^{-2}	< 0.001
Beijerinckiaceae	1.12×10^{-2}	< 0.001
Microtrichaceae	1.12×10^{-2}	< 0.001
Solirubrobacteraceae	1.11×10^{-2}	< 0.001
Cellulomonadaceae	1.08×10^{-2}	< 0.001
Isosphaeraceae	1.05×10^{-2}	< 0.001
Pirellulaceae	1.05×10^{-2}	< 0.001
Xiphinematobacteraceae	1.03×10^{-2}	< 0.001
Acidothermaceae	1.03×10^{-2}	< 0.001
Nitrosomonadaceae	1.02×10^{-2}	< 0.001
Pedosphaeraceae	1.02×10^{-2}	< 0.001

Desulfobacteriaceae	9.98×10^{-3}	< 0.001
A21b	9.65×10^{-3}	< 0.001
Bryobacteraceae	9.62×10^{-3}	< 0.001
Rhodomicrobiaceae	9.47×10^{-3}	< 0.001
Streptomycetaceae	9.37×10^{-3}	< 0.001
Acidobacteriaceae (Subgroup 1)	9.35×10^{-3}	< 0.001
Rhodanobacteraceae	9.28×10^{-3}	< 0.001
Sphingomonadaceae	9.24×10^{-3}	< 0.001
Pleomorphomonadaceae	9.22×10^{-3}	< 0.001
A0839	9.19×10^{-3}	< 0.001
CPla-3 termite group	9.13×10^{-3}	< 0.001
Ilumatobacteraceae	9.13×10^{-3}	< 0.001
Gemmamimonadaceae	9.07×10^{-3}	< 0.001
Reyranellaceae	8.88×10^{-3}	< 0.001
Gemmataceae	8.82×10^{-3}	< 0.001
Mycobacteriaceae	8.80×10^{-3}	< 0.001
Rhizobiaceae	8.32×10^{-3}	< 0.001
Micromonosporaceae	8.16×10^{-3}	< 0.001
Paenibacillaceae	8.03×10^{-3}	< 0.001
Burkholderiaceae	8.03×10^{-3}	< 0.001
Vermiphilaceae	7.94×10^{-3}	< 0.001
SC-I-84	7.90×10^{-3}	< 0.001
Legionellaceae	7.86×10^{-3}	< 0.001
Steroidobacteraceae	7.78×10^{-3}	< 0.001
WD2101 soil group	7.66×10^{-3}	< 0.001
Labraceae	7.65×10^{-3}	< 0.001
Microscillaceae	7.62×10^{-3}	< 0.001
Gimesiaceae	7.45×10^{-3}	< 0.001
Sphingobacteriaceae	7.42×10^{-3}	< 0.001
Myxococcaceae	7.42×10^{-3}	< 0.001
Pseudonocardiaceae	7.41×10^{-3}	< 0.001
Comamonadaceae	7.37×10^{-3}	< 0.001
LWQ8	7.32×10^{-3}	< 0.001
Rhizobiales Incertae Sedis	7.27×10^{-3}	< 0.001
Anaerolineaceae	7.03×10^{-3}	< 0.001
Polyangiaceae	7.02×10^{-3}	< 0.001
Oxalobacteraceae	6.71×10^{-3}	< 0.001
Magnetospirillaceae	6.71×10^{-3}	< 0.001
Spirochaetaceae	6.69×10^{-3}	< 0.001
Hyphomonadaceae	6.64×10^{-3}	< 0.001

Sporichthyaceae	6.40×10^{-3}	< 0.001
Blastocatellaceae	6.03×10^{-3}	< 0.001
Methylacidiphilaceae	6.02×10^{-3}	< 0.001
env.OPS 17	6.01×10^{-3}	< 0.001
WWH38	5.91×10^{-3}	< 0.001
Saccharimonadaceae	5.71×10^{-3}	< 0.001
Anaeromyxobacteraceae	5.55×10^{-3}	< 0.001
Chthoniobacteraceae	5.52×10^{-3}	< 0.001
Bacillaceae	5.42×10^{-3}	< 0.001
Lachnospiraceae	5.34×10^{-3}	< 0.001
Micropepsaceae	5.21×10^{-3}	< 0.001
Opitutaceae	5.08×10^{-3}	< 0.001
Clostridiaceae	5.07×10^{-3}	< 0.001
Actinospicaceae	5.07×10^{-3}	< 0.001
Caulobacteraceae	4.96×10^{-3}	< 0.001
KF-JG30-B3	4.81×10^{-3}	< 0.001
Phycisphaeraceae	4.79×10^{-3}	< 0.001
JG30-KF-CM45	4.78×10^{-3}	< 0.001
Chthomonadaceae	4.76×10^{-3}	< 0.001
Koribacteraceae	4.70×10^{-3}	< 0.001
Haliangiaceae	4.54×10^{-3}	< 0.001
Sandaracinaceae	4.44×10^{-3}	< 0.001
Parvibaculaceae	4.35×10^{-3}	< 0.001
Pyrinomonadaceae	4.34×10^{-3}	< 0.001
Xanthomonadaceae	4.27×10^{-3}	< 0.001
Bdellovibrionaceae	4.22×10^{-3}	< 0.001
Simkaniaceae	4.15×10^{-3}	< 0.001
Parachlamydiaceae	4.13×10^{-3}	< 0.001
BIrii41	4.04×10^{-3}	< 0.001
A4b	3.99×10^{-3}	< 0.001
Pseudomonadaceae	3.76×10^{-3}	< 0.001
Phaselicystidaceae	3.74×10^{-3}	< 0.001
Chitinophagaceae	3.72×10^{-3}	< 0.001
SM2D12	3.67×10^{-3}	< 0.001
Thermomonosporaceae	3.65×10^{-3}	< 0.001
Rhodospirillaceae	3.63×10^{-3}	< 0.001
Amoebophilaceae	3.60×10^{-3}	< 0.001
CWT CU03-E12	3.60×10^{-3}	< 0.001
Nitrospiraceae	3.57×10^{-3}	< 0.001
Alicyclobacillaceae	3.54×10^{-3}	< 0.001

Inquilinaceae	3.53×10^{-3}	< 0.001
cvE6	3.53×10^{-3}	< 0.001
Coxiellaceae	3.50×10^{-3}	< 0.001
Verrucomicrobiaceae	3.45×10^{-3}	< 0.001
Elsteraceae	3.38×10^{-3}	< 0.001
UBA12409	3.37×10^{-3}	< 0.001
Chlamydiaceae	3.29×10^{-3}	< 0.001
Flavobacteriaceae	3.26×10^{-3}	< 0.001
Obscuribacteraceae	3.21×10^{-3}	< 0.001
Gaiellaceae	3.19×10^{-3}	< 0.001
Vicinamibacteraceae	3.10×10^{-3}	< 0.001
Propionibacteriaceae	3.03×10^{-3}	< 0.001
WX65	3.02×10^{-3}	< 0.001
Thermoactinomycetaceae	3.02×10^{-3}	< 0.001
Babeliaceae	2.99×10^{-3}	< 0.001
Fimbriimonadaceae	2.87×10^{-3}	< 0.001
Diplorickettsiaceae	2.82×10^{-3}	< 0.001
TRA3-20	2.75×10^{-3}	< 0.001
AKYH767	2.74×10^{-3}	< 0.001
Holosporaceae	2.71×10^{-3}	< 0.001
Schlesneriaceae	2.62×10^{-3}	< 0.001
37-13	2.59×10^{-3}	< 0.001
Methyloligellaceae	2.56×10^{-3}	< 0.001
Peptostreptococcaceae	2.49×10^{-3}	< 0.001
Moraxellaceae	2.42×10^{-3}	< 0.001
Terrimicrobiaceae	2.28×10^{-3}	< 0.001
Iamiaceae	2.27×10^{-3}	< 0.001
Leptospiraceae	2.27×10^{-3}	0.002
Azospirillaceae	2.24×10^{-3}	0.002
Paracaedibacteraceae	2.14×10^{-3}	< 0.001
Rickettsiaceae	2.12×10^{-3}	< 0.001
Planococcaceae	2.12×10^{-3}	0.001
Candidatus Jidaibacter	2.10×10^{-3}	0.001
Streptosporangiaceae	1.95×10^{-3}	0.002
Armatimonadaceae	1.91×10^{-3}	< 0.001
Rhodobacteraceae	1.88×10^{-3}	0.008
Yersiniaceae	1.87×10^{-3}	0.008
Erysipelotrichaceae	1.86×10^{-3}	0.001
KD3-93	1.81×10^{-3}	0.005
Achopleplasmataceae	1.68×10^{-3}	0.002

Rhodocyclaceae	1.66×10^{-3}	0.003
Oligoflexaceae	1.62×10^{-3}	0.002
YM_S32_TM7_50_20	1.60×10^{-3}	0.002
Cytophagaceae	1.60×10^{-3}	0.003
Vampirovibrionaceae	1.48×10^{-3}	0.006
Nocardiaceae	1.47×10^{-3}	0.011
Chitinimonadaceae	1.41×10^{-3}	0.011
type III	1.40×10^{-3}	0.006
Intrasporangiaceae	1.39×10^{-3}	0.029
NS11-12 marine group	1.30×10^{-3}	0.034
Ruminococcaceae	1.28×10^{-3}	0.007
Solimonadaceae	1.21×10^{-3}	0.016
Neisseriaceae	1.15×10^{-3}	0.021
Micavibrionaceae	1.06×10^{-3}	0.029
Puniceicoccaceae	1.02×10^{-3}	0.032

419 **Supplementary Table S3 | Genera that exhibited the greatest potential impacts on the fungal**
 420 **assembly landscape along their abundance gradients.** The Δ topography and Δ evenness indices
 421 respectively represented changes in the overall topography and evenness of energy landscape
 422 architecture along the abundance gradients of a focal genus (from absence to their median abundance
 423 condition; Fig. 1d-g). The z-standardized metrics of Δ topography and Δ evenness are obtained based
 424 on the randomization analysis in which the abundance of a focal genus was shuffled within the root
 425 samples of the same host plant (10,000 iterations). For each host plant background, the two
 426 fungal/prokaryotic genera with the highest and significant Δ topography are listed.

Genus	Host plant	z-standardized Δ topography	P (FDR) [Δ topography]	z-standardized Δ evenness	P (FDR) [Δ evenness]
<i>Hyaloscypha</i>	<i>Betula</i>	4.33	< 0.001	-1.63	0.170
<i>Spirochaeta 2</i>	<i>Betula</i>	3.47	< 0.001	0.05	0.517
<i>Podila</i>	<i>Pinus</i>	1.03 × 10	< 0.001	-0.19	0.482
<i>Rhizobium</i>	<i>Pinus</i>	6.57	< 0.001	-2.01	0.063
<i>Oidiodendron</i>	<i>Acer</i>	1.93 × 10	< 0.001	-4.84	0.030
<i>Podila</i>	<i>Acer</i>	9.42	< 0.001	1.13	0.252
<i>Cladophialophora</i>	<i>Populus</i>	2.50 × 10	< 0.001	8.63	0.002
<i>Pezicula</i>	<i>Populus</i>	1.36 × 10	< 0.001	2.56	0.129
<i>Oidiodendron</i>	<i>Larix</i>	1.18 × 10	0.001	2.38 × 10	0.005
<i>Archaeorhizomyces</i>	<i>Larix</i>	7.94	< 0.001	0.06	0.703
<i>Hyaloscypha</i>	<i>Juglans</i>	8.43	< 0.001	3.45	0.002
<i>Melinomyces</i>	<i>Juglans</i>	8.16	< 0.001	0.97	0.290

427

428 **Supplementary Table S4 | Ectomycorrhizal fungal genera for which significant impacts on the**
 429 **fungal assembly landscape were inferred.** The Δ topography and Δ evenness indices respectively
 430 represented changes in the overall topography and evenness of energy landscape architecture along
 431 the abundance gradients of a focal genus (from absence to their median abundance condition; Fig. 1d-
 432 g). The z-standardized metrics of Δ topography and Δ evenness are obtained based on the
 433 randomization analysis in which the abundance of a focal genus was shuffled within the root samples
 434 of the same host plant (10,000 iterations). The ectomycorrhizal genera exhibited significant
 435 Δ topography are listed.

436

Genus	Host plant	z-standardized Δ topography	P (FDR) [Δ topography]	z-standardized Δ evenness	P (FDR) [Δ evenness]
<i>Amanita</i>	<i>Populus</i>	8.83	< 0.001	3.23	0.081
<i>Russula</i>	<i>Acer</i>	4.38	< 0.001	2.55	0.020
<i>Russula</i>	<i>Juglans</i>	4.10	< 0.001	-1.89	0.086
<i>Tomentella</i>	<i>Populus</i>	2.87	< 0.001	2.27	0.081
<i>Russula</i>	<i>Pinus</i>	4.24	0.001	1.21	0.155
<i>Thelephora</i>	<i>Populus</i>	6.73	0.001	1.47	0.192
<i>Tomentella</i>	<i>Juglans</i>	3.19	0.001	-1.72	0.123
<i>Sebacina</i>	<i>Acer</i>	3.64	0.002	0.99	0.311
<i>Amanita</i>	<i>Larix</i>	4.85	0.006	0.89	0.311
<i>Amanita</i>	<i>Acer</i>	2.85	0.007	-0.45	0.372
<i>Amanita</i>	<i>Pinus</i>	3.14	0.009	-2.43	0.098
<i>Sebacina</i>	<i>Larix</i>	2.84	0.012	2.79	0.025
<i>Tricholoma</i>	<i>Betula</i>	1.60	0.027	-1.49	0.365
<i>Thelephora</i>	<i>Larix</i>	4.17	0.029	-0.28	0.710
<i>Lactarius</i>	<i>Acer</i>	2.09	0.030	1.77	0.151
<i>Sebacina</i>	<i>Pinus</i>	2.39	0.035	-2.14	0.148
<i>Thelephora</i>	<i>Pinus</i>	2.19	0.042	-2.26	0.157
<i>Lactarius</i>	<i>Larix</i>	3.52	0.048	-0.59	0.687

437

438

439 **Supplementary Table S5 | Genera that exhibited the greatest potential impacts on the**
 440 **prokaryotic assembly landscape along their abundance gradients.** The Δ topography and
 441 Δ evenness indices respectively represented changes in the overall topography and evenness of energy
 442 landscape architecture along the abundance gradients of a focal genus (from absence to their median
 443 abundance condition; Fig. 1d-g). The z-standardized metrics of Δ topography and Δ evenness are
 444 obtained based on the randomization analysis in which the abundance of a focal genus was shuffled
 445 within the root samples of the same host plant (10,000 iterations). For each host plant background, the
 446 two fungal/prokaryotic genera with the highest and significant Δ topography are listed.

Genus	Host plant	z-standardized Δ topography	P (FDR) [Δ topography]	z-standardized Δ evenness	P (FDR) [Δ evenness]
<i>Candidatus</i> <i>Udaeobacter</i>	<i>Betula</i>	2.70×10	< 0.001	-2.76	0.020
<i>Candidatus</i> <i>Solibacter</i>	<i>Betula</i>	2.67×10	< 0.001	3.94	0.005
<i>Candidatus</i> <i>Udaeobacter</i>	<i>Pinus</i>	2.63×10	< 0.001	4.49×10^{-5}	0.532
<i>Candidatus</i> <i>Solibacter</i>	<i>Pinus</i>	2.17×10	< 0.001	1.77	0.124
<i>Candidatus</i> <i>Solibacter</i>	<i>Acer</i>	2.34×10	< 0.001	2.57	0.039
<i>Candidatus</i> <i>Udaeobacter</i>	<i>Acer</i>	2.31×10	< 0.001	-0.42	0.434
<i>Candidatus</i> <i>Udaeobacter</i>	<i>Populus</i>	3.02×10	< 0.001	-3.02	0.012
<i>Candidatus</i> <i>Solibacter</i>	<i>Populus</i>	2.75×10	< 0.001	-2.73	0.029
<i>Candidatus</i> <i>Udaeobacter</i>	<i>Larix</i>	2.64×10	< 0.001	-2.00	0.090
<i>Candidatus</i> <i>Solibacter</i>	<i>Larix</i>	2.26×10	< 0.001	-0.51	0.407
<i>Candidatus</i> <i>Udaeobacter</i>	<i>Juglans</i>	3.26×10	< 0.001	-8.18	0.002
<i>Candidatus</i> <i>Solibacter</i>	<i>Juglans</i>	2.93×10	< 0.001	-8.42	0.002

447

448 **Supplementary Table S6 | Genera that exhibited the greatest potential impacts on the fungal**
 449 **assembly landscape at the 25% quantiles of their abundance.** The z-standardized Δ topography and
 450 Δ evenness indices respectively calculated along the abundance gradients of a focal genus (from
 451 absence to their 25% quantiles of their abundances within the detected samples; Fig. 1d-g). For each
 452 host plant background, the two fungal/prokaryotic genera with the highest and significant
 453 Δ topography are listed.

Genus	Host plant	z-standardized Δ topography	P (FDR) [Δ topography]	z-standardized Δ evenness	P (FDR) [Δ evenness]
<i>Archaeorhizomyces</i>	<i>Acer</i>	8.12	< 0.001	-1.44	0.091
<i>Haliangium</i>	<i>Acer</i>	7.16	< 0.001	-3.35	0.026
<i>Hyaloscypha</i>	<i>Betula</i>	4.30	< 0.001	-2.09	0.107
<i>Podila</i>	<i>Betula</i>	3.10	< 0.001	-0.74	0.287
<i>Hyaloscypha</i>	<i>Juglans</i>	9.58	< 0.001	3.86	0.002
<i>Haliangium</i>	<i>Juglans</i>	6.85	< 0.001	-2.48	0.035
<i>Oidiodendron</i>	<i>Larix</i>	6.20	< 0.001	6.11×10	0.002
<i>Podila</i>	<i>Larix</i>	1.08	0.001	6.58	0.002
<i>Podila</i>	<i>Pinus</i>	1.05	< 0.001	0.48	0.301
<i>Cladophialophora</i>	<i>Pinus</i>	8.92	< 0.001	0.27	0.112
<i>Cladophialophora</i>	<i>Populus</i>	1.95×10	< 0.001	2.34	0.105
<i>Pezicula</i>	<i>Populus</i>	1.46	< 0.001	2.82	0.112

454

455 **Supplementary Table S7 | Genera that exhibited the greatest potential impacts on the**
 456 **prokaryotic assembly landscape at the 25% quantiles of their abundance.** The z-standardized
 457 Δ topography and Δ evenness indices respectively calculated along the abundance gradients of a focal
 458 genus (from absence to their 25% quantiles of their abundances within the detected samples; Fig. 1d-
 459 g). For each host plant background, the two fungal/prokaryotic genera with the highest and significant
 460 Δ topography are listed.

Genus	Host plant	z-standardized Δ topography	P (FDR) [Δ topography]	z-standardized Δ evenness	P (FDR) [Δ evenness]
<i>Candidatus Solibacter</i>	<i>Acer</i>	2.31×10	< 0.001	1.88	0.120
<i>Mycobacterium</i>	<i>Acer</i>	2.22×10	< 0.001	-1.24	0.225
<i>Pir4 lineage</i>	<i>Betula</i>	2.56×10	< 0.001	-2.93	0.034
<i>Candidatus Solibacter</i>	<i>Betula</i>	2.53×10	< 0.001	8.14	0.002
<i>Candidatus Udaeobacter</i>	<i>Juglans</i>	3.27×10	< 0.001	-5.50	0.002
<i>Candidatus Udaeobacter</i>	<i>Juglans</i>	2.82×10	< 0.001	-5.24	0.002
<i>Candidatus Udaeobacter</i>	<i>Larix</i>	2.35×10	< 0.001	-1.90	0.106
<i>Labrys</i>	<i>Larix</i>	2.29×10	< 0.001	-0.36	0.447
<i>Pir4 lineage</i>	<i>Pinus</i>	2.18×10	< 0.001	-3.59	0.007
<i>Candidatus Udaeobacter</i>	<i>Pinus</i>	2.15×10	< 0.001	2.58	0.043
<i>Candidatus Udaeobacter</i>	<i>Populus</i>	2.96×10	< 0.001	-0.97	0.285
<i>Candidatus Solibacter</i>	<i>Populus</i>	2.80×10	< 0.001	-2.01	0.092

461

462 **Supplementary Table S8 | Genera that exhibited the greatest potential impacts on the fungal**
 463 **assembly landscape at the 75% quantiles of their abundance.** The z-standardized $\Delta_{topography}$ and
 464 $\Delta_{evenness}$ indices respectively calculated along the abundance gradients of a focal genus (from
 465 absence to their 75% quantiles of their abundances within the detected samples; Fig. 1d-g). For each
 466 host plant background, the two fungal/prokaryotic genera with the highest and significant
 467 $\Delta_{topography}$ are listed.

Genus	Host plant	z-standardized $\Delta_{topography}$	P (FDR) [$\Delta_{topography}$]	z-standardized $\Delta_{evenness}$	P (FDR) [$\Delta_{evenness}$]
<i>Hyaloscypha</i>	<i>Betula</i>	4.75	< 0.001	-1.19	0.387
<i>Actinospica</i>	<i>Betula</i>	3.55	< 0.001	0.19	0.419
<i>Podila</i>	<i>Pinus</i>	1.05×10	< 0.001	-2.04	0.045
<i>Phialocephala</i>	<i>Pinus</i>	7.32	< 0.001	-3.69	0.039
<i>Oidiodendron</i>	<i>Acer</i>	1.23×10	< 0.001	3.80	0.016
<i>Podila</i>	<i>Acer</i>	9.28	< 0.001	-0.94	0.246
<i>Cladophialophora</i>	<i>Populus</i>	2.48×10	< 0.001	9.56	0.002
<i>Oidiodendron</i>	<i>Populus</i>	1.65×10	< 0.001	-4.03	0.020
<i>Cladophialophora</i>	<i>Larix</i>	5.30×10	< 0.001	0.10	0.944
<i>Phialocephala</i>	<i>Larix</i>	1.52×10	< 0.001	3.30	0.049
<i>Hyaloscypha</i>	<i>Juglans</i>	1.02×10	< 0.001	5.25	0.002
<i>Meliomyces</i>	<i>Juglans</i>	9.31	< 0.001	0.20	0.487

468

469 **Supplementary Table S9 | Genera that exhibited the greatest potential impacts on the**
 470 **prokaryotic assembly landscape at the 75% quantiles of their abundance.** The z-standardized
 471 Δ topography and Δ evenness indices respectively calculated along the abundance gradients of a focal
 472 genus (from absence to their 75% quantiles of their abundances within the detected samples; Fig. 1d-
 473 g). For each host plant background, the two fungal/prokaryotic genera with the highest and significant
 474 Δ topography are listed.

Genus	Host plant	z-standardized Δ topography	P (FDR) [Δ topography]	z-standardized Δ evenness	P (FDR) [Δ evenness]
<i>Candidatus</i> <i>Solibacter</i>	<i>Betula</i>	2.66×10	< 0.001	1.97	0.115
<i>Candidatus</i> <i>Udaeobacter</i>	<i>Betula</i>	2.48×10	< 0.001	-3.66	0.004
<i>Candidatus</i> <i>Udaeobacter</i>	<i>Pinus</i>	2.57×10	< 0.001	-0.62	0.375
<i>Candidatus</i> <i>Solibacter</i>	<i>Pinus</i>	2.31×10	< 0.001	1.39	0.196
<i>Candidatus</i> <i>Solibacter</i>	<i>Acer</i>	2.50×10	< 0.001	1.02	0.285
<i>Candidatus</i> <i>Udaeobacter</i>	<i>Acer</i>	2.38×10	< 0.001	-1.63	0.151
<i>Candidatus</i> <i>Solibacter</i>	<i>Populus</i>	2.82×10	< 0.001	-4.23	0.002
<i>Candidatus</i> <i>Udaeobacter</i>	<i>Populus</i>	2.73×10	< 0.001	-4.90	0.002
<i>Candidatus</i> <i>Udaeobacter</i>	<i>Larix</i>	2.61×10	< 0.001	-4.86	0.002
<i>Candidatus</i> <i>Solibacter</i>	<i>Larix</i>	2.35×10	< 0.001	-3.93	0.002
<i>Candidatus</i> <i>Udaeobacter</i>	<i>Juglans</i>	3.07×10	< 0.001	-7.48	0.002
<i>Candidatus</i> <i>Solibacter</i>	<i>Juglans</i>	2.85×10	< 0.001	-7.74	0.002

475