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Supplementary Table 1. Amino acid sequences for the proteins used in the study

# Name Sequence

1 sc- M K QLEEIAK QLEEIAQ QLKKIAE QLKKIAE GEPSAQG
apCC- K QLEEIAK QLEEIAQ QLKKIAE QLKKIAE GPDSV
4-SP K QLEEIAK QLEEIAQ QLKKIAE QLKKIAE GGTWSGG
(#1) K QLEEIAK QLEEIAQ QLKKIAE QLKKIAE *

2 sc- M E QLKKIAE QLKKIAQ QLEEIAK QLEEIAK GEPSAQG
apCC- K QLEEIAK QLEEIAQ QLKKIAE QLKKIAE GPDSV
4-#2 E QLKKIAE QLKKIAQ QLEEIAK QLEEIAK GGTWSGG

K QLEEIAK QLEEIAQ QLKKIAE QLKKIAE

3 sc- M E QLEEIAK QLKKIAQ QLEEIAE QLKKIAK GEPSAQG
apCC- E QLEEIAK QLKKIAQ QLEEIAE QLKKIAK GPDSV
4-#3 E QLEEIAK QLKKIAQ QLEEIAE QLKKIAK GGTWSGG

E QLEEIAK QLKKIAQ QLEEIAE QLKKIAK*

4 sc- M E QLEEIAK QLKKIAQ QLEEIAE QLKKIAK GEPSAQG
apCC- K QLKKIAE QLEEIAQ QLKKIAK QLEEIAE GPDSV
4-#4 K QLKKIAE QLEEIAQ QLKKIAK QLEEIAE GGTWSGG

E QLEEIAK QLKKIAQ QLEEIAE QLKKIAK*

5 sc- M E QLEEIAK QLKKIAQ QLEEIAE QLKKIAK GEPSAQG
apCC- K QLKKIAK QLKKIAQ QLEEIAE QLEEIAE GPDSV
4-#5 E QLEEIAK QLKKIAQ QLEEIAE QLKKIAK GGTWSGG

K QLKKIAK QLKKIAQ QLEEIAE QLEEIAE*

6 sc- M E QLEEIAE QLEEIAQ QLKKIAK QLKKIAK GEPSAQG
apCC- E QLEEIAE QLEEIAQ QLKKIAK QLKKIAK GPDSV
4-LP E QLEEIAE QLEEIAQ QLKKIAK QLKKIAK GGTWSGG
(#6) E QLEEIAE QLEEIAQ QLKKIAK QLKKIAK *

7 sc- M E QLEEIAE QLEEIAQ QLKKIAK QLKKIAK GEPSAQG
apCC- K QLKKIAK QLKKIAQ QLEEIAE QLEEIAE GPDSV
4-#7 K QLKKIAK QLKKIAQ QLEEIAE QLEEIAE GGTWSGG

E QLEEIAE QLEEIAQ QLKKIAK QLKKIAK*

8 sc- M E QLEEIAE QLEEIAQ QLEEIAE QLEEIAE GEPSAQG
apCC- K QLKKIAK QLKKIAQ QLKKIAK QLKKIAK GPDSV
4-#8 E QLEEIAE QLEEIAQ QLEEIAE QLEEIAE GGTWSGG

K QLKKIAK QLKKIAQ QLKKIAK QLKKIAK*

9 sc- M E QLEEIAE QLEEGAQ QAKKAAK QLKKIAK GEPSAQG
apCC- E QLEEIAE QVEEIAQ QIKKIAK QLKKIAK GPDSV
4-LP- E QLEEIAE QLEEIAQ QVKKIAK QLKKIAK GGTWSGG
NR-1 E QLEEIAE QAEEGAQ QAKKIAK QLKKIAK*

10 | sc- M E QLEEIAE QLEEGAQ QTKKNAK QLKKIAK GEPSAQG
apCC- E QLEEIAE QAEEIAQ QSKKIAK QLKKIAK GPDSV
4-LP- E QLEEIAE QLEEIAQ QAKKGAK QLKKIAK GGTWSGG
NR-2 E QLEEIAE QAEEGAQ QAKKIAK QLKKIAK*

11 | sc- M QLEEIAQ QLEEGAK QAKKAAE QLKKIAE GEPSAQG
apCC- QLEEIAQ QVEEIAQ QIKKIAW QLKKIAE GPDSV
4-NR-1 QLEEIAQ QLEEIAK QVKKIAE QLKKIAE GGTSGG

QLEEIAQ QAEEGAQ QAKKIAW QLKKIAE GS*

12 | sc- M QLEEIAQ QLEEGAK QTKKNAE QLKKIAE GEPSAQG
apCC- QLEEIAQ QAEEIAQ QSKKIAW QLKKIAE GPDSV
4-NR-2 QLEEIAQ QLEEIAK QAKKGAE QLKKIAE GGTSGG

QLEEIAQ QAEEGAQ QAKKIAW QLKKIAE GS*

13 | DB-SP- | MKQLEEIAKQLEEIAQQLKKIAEQLKKIAEGEPSAQGKQLEEIAKQLEEIAQQLKKIAE

GFP QLKKIAEGPDSVKQLEEIAKQLEEIAQQLKKIAEQLKKIAEGGTWSGGKQLEEIAKQLE

EIAQQLKKIAEQLKKIAEGASPEPQPKPSGDPOSKQTPEPSRSQGMGVSKGEELFTGVV
PILVELDGDVNGHKFSVSGEGEGDATYGKLTLKEFICTTGKLPVPWPTLVTTLTYGVQCEFE
ARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDF




KEDGNILGHKLEYNYNSHKVYITADKOKNGIKVNFKTRHNIEDGSVQLADHYQONTPIG
DGPVLLPDNHYLSTQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYKGASPEPQPKP
SGDPQOSKQTPEPSRSQGMKQLEEIAKQLEETAQQLKKIAEQLKKIAEGEPSAQGKQLEE
IAKQLEEIAQQLKKIAEQLKKIAEGPDSVKQLEEIAKQLEEIAQQLKKIAEQLKKIAEG
GTWSGGKQLEETIAKQLEETAQQLKKIAEQLKKIAE*

14

DB-LP-
GFP

MEQLEETAEQLEETAQQLKKIAKQLKKIAKGEPSAQGEQLEETAEQLEETAQQLKKIAK
QLKKIAKGPDSVEQLEETAEQLEEIAQQLKKIAKQLKKIAKGGTWSGGEQLEETAEQLE
ETAQOQLKKIAKQLKKIAKGASPEPQPKPSGDPOSKQTPEPSRSQGMGVSKGEELFTGVV
PILVELDGDVNGHKFSVSGEGEGDATYGKLTLKEFICTTGKLPVPWPTLVTTLTYGVQCEFE
ARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDF
KEDGNILGHKLEYNYNSHKVYITADKOKNGIKVNFKTRHNIEDGSVQLADHYQONTPIG
DGPVLLPDNHYLSTQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYKGASPEPQPKP
SGDPQOSKQTPEPSRSQGMEQLEEIAEQLEETAQQLKKIAKQLKKIAKGEPSAQGEQLEE
IAEQLEEIAQQLKKIAKQLKKIAKGPDSVEQLEEIAEQLEEIAQQLKKIAKQLKKIAKG
GTWSGGEQLEEIAEQLEETAQQLKKIAKQLKKIAKGSGGS*

15

sc-
apCC-
4-LP-
[loop3:
GFP]

MEQLEETAEQLEETAQQLKKIAKQLKKIAKGEPSAQGEQLEETAEQLEETIAQQLKKIAK
QLKKIAKGPDSVEQLEEIAEQLEETAQQLKKIAKQLKKIAKGGTWMVSKGEELETGVVP
ILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFA
RYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFEFK
EDGNILGHKLEYNYNSHKVYITADKOKNGIKVNFKTRHNIEDGSVQLADHYQQONTPIGD
GPVLLPDNHYLSTQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYKSGGEQLEETIAE
QLEETIAQQLKKIAKQLKKIAK*

16

sc-
apCC-
4-
LP:GS5
:GFP

MEQLEETAEQLEETAQQLKKIAKQLKKIAKGEPSAQGEQLEETAEQLEETAQQLKKIAK
QLKKIAKGPDSVEQLEEIAEQLEETAQQLKKIAKQLKKIAKGGTWSGGEQLEEIAEQLE
EIAQQLKKIAKQLKKIAKGSGSGMVSKGEELFTGVVPILVELDGDVNGHKESVSGEGEG
DATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFARYPDHMKQHDFEFKSAMPEGYVQ
ERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHKVYIT
ADKQKNGIKVNEFKTRHNIEDGSVQLADHYQONTPIGDGPVLLPDNHYLSTQSKLSKDPN
EKRDHMVLLEFVTAAGITLGMDELYK*

17

sc-
apCC-
4-
LP:L:G
FP

MEQLEETAEQLEETAQQLKKIAKQLKKIAKGEPSAQGEQLEETAEQLEETIAQQLKKIAK
QLKKIAKGPDSVEQLEEIAEQLEETAQQLKKIAKQLKKIAKGGTWSGGEQLEEIAEQLE
EIAQOQLKKIAKQLKKIAKGSASPEPQPKPSGDPQSKQTPEPSRSQGMGVSKGEELETGV
VPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQC
FARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGID
FKEDGNILGHKLEYNYNSHKVYITADKQKNGIKVNFKTRHNIEDGSVQLADHYQONTPI
GDGPVLLPDNHYLSTQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYK*

18

DB-LP-
GFP-
NR-1

MEQLEETAEQLEEGAQQAKKAAKQLKKIAKGEPSAQGEQLEETAEQVEETAQQIKKIAK
QLKKIAKGPDSVEQLEEIAEQLEETAQQVKKIAKQLKKIAKGGTWSGGEQLEEIAEQAE
EGAQQAKKIAKQLKKIAKGSASPEPQPKPSGDPQSKQTPEPSRSQGMGVSKGEELETGV
VPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQC
FARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGID
FKEDGNILGHKLEYNYNSHKVYITADKQKNGIKVNFKTRHNIEDGSVQLADHYQONTPI
GDGPVLLPDNHYLSTQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYKTSGASPEPQ
PKPSGDPQSKQTPEPSRSQGMEQLEEIAEQLEETAQQLKKIAKQLKKIAKGEPSAQGEQ
LEETAEQLEETAQQLKKIAKQLKKIAKGPDSVEQLEETIAEQLEETAQQLKKIAKQLKKT
AKGGTWSGGEQLEEIAEQLEETIAQQLKKIAKQLKKIAK*

19

DB-LP-
GFP-
NR-2

MEQLEETAEQLEEGAQQTKKNAKQLKKIAKGEPSAQGEQLEETAEQAEETAQQOSKKIAK
QLKKIAKGPDSVEQLEEIAEQLEETAQQAKKGAKQLKKIAKGGTWSGGEQLEEIAEQAE
EGAQQAKKIAKQLKKIAKGSASPEPQPKPSGDPQSKQTPEPSRSQGMGVSKGEELETGV
VPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQC
FARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGID
FKEDGNILGHKLEYNYNSHKVYITADKQKNGIKVNFKTRHNIEDGSVQLADHYQONTPI
GDGPVLLPDNHYLSTQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYKTSGASPEPQ
PKPSGDPQSKQTPEPSRSQGMEQLEEIAEQLEETAQQLKKIAKQLKKIAKGEPSAQGEQ
LEETAEQLEETAQQLKKIAKQLKKIAKGPDSVEQLEETIAEQLEETAQQLKKIAKQLKKI
AKGGTWSGGEQLEEIAEQLEETIAQQLKKIAKQLKKIAK*
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DB-LP-
NR-1

MEQLEETAEQLEETAQQLKKIAKQLKKIAKGEPSAQGEQLEETAEQLEETIAQQLKKIAK
QLKKIAKGPDSVEQLEEIAEQLEETAQQLKKIAKQLKKIAKGGTWSGGEQLEEIAEQLE
EIAQOLKKIAKQLKKIAKGASPEPQPKPSGDPOSKQTPEPSRSQGMOLEETAQQLEEGA
KOAKKAAEQLKKIAEGEPSAQGQLEEIAQQVEETAQQIKKIAWQLKKIAEGPDSVQLEE
IAQQLEEIAKQVKKIAEQLKKIAEGGTSGGQLEETIAQQAEEGAQQAKKIAWQLKKIAEG
ASPEPQPKPSGDPQSKQTPEPSRSQGMEQLEEIAEQLEETAQOLKKIAKQLKKIAKGEP
SAQGEQLEEIAEQLEETAQQLKKIAKQLKKIAKGPDSVEQLEETIAEQLEETAQQLKKIA
KQLKKIAKGGTWSGGEQLEETIAEQLEETAQQLKKIAKQLKKIAK*

21

DB-LP-
NR-2

MEQLEETAEQLEETAQQLKKIAKQLKKIAKGEPSAQGEQLEETAEQLEETAQQLKKIAK
QLKKIAKGPDSVEQLEEIAEQLEETAQQLKKIAKQLKKIAKGGTWSGGEQLEEIAEQLE
EIAQOLKKIAKQLKKIAKGASPEPQPKPSGDPOSKQTPEPSRSQGMOLEETAQQLEEGA
KOTKKNAEQLKKIAEGEPSAQGOQLEETIAQQOAEEIAQQSKKIAWQLKKIAEGPDSVQLEE
IAQQLEETIAKQAKKGAEQLKKIAEGGTSGGQLEETIAQQAEEGAQQAKKIAWQLKKIAEG
ASPEPQPKPSGDPQSKQTPEPSRSQGMEQLEEIAEQLEETAQQOLKKIAKQLKKIAKGEP
SAQGEQLEEIAEQLEETAQQLKKIAKQLKKIAKGPDSVEQLEEIAEQLEETAQQLKKIA
KQLKKIAKGGTWSGGEQLEETIAEQLEETAQQLKKIAKQLKKIAK*

22

KIF5C :

DB-LP-
GFP

MADPAECSIKVMCRFRPLNEAEILRGDKFIPKFKGEETVVIGQGKPYVEDRVLPPNTTQ
EQVYNACAKQIVKDVLEGYNGTIFAYGQTSSGKTHTMEGKLHDPQLMGIIPRIAHDIED
HIYSMDENLEFHIKVSYFEIYLDKIRDLLDVSKTNLAVHEDKNRVPYVKGCTEREVSSP
EEVMDVIDEGKANRHVAVTNMNEHSSRSHSIFLINIKQENVETEKKLSGKLYLVDLAGS
ERKVSKTGAEGAVLDEAKNINKSLSALGNVISALAEGTKTHVPYRDSKMTRILODSLGGN
CRTTIVICCSPSVENEAETKSTLMFGORAKTIKNTVSVNLELTAEEWKKKYEKEKEKNK
ALKSVIQHLEVELNRWRNGEAVPEDEQISAKDOQKNLEPCDNTPIIDNITPVTGGSGSGS
GGTMEQLEEIAEQLEETAQQLKKIAKQLKKIAKGEPSAQGEQLEETIAEQLEETAQQLKK
TAKQLKKTIAKGPDSVEQLEETIAEQLEETAQQLKKIAKQLKKIAKGGTWSGGEQLEEIAE
OLEEIAQQOLKKIAKQLKKIAKGASPEPQPKPSGDPQOQSKQTPEPSRSQGMGVSKGEELET
GVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGV
QCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKG
IDFKEDGNILGHKLEYNYNSHKVYITADKQKNGIKVNFKTRHNIEDGSVQLADHYQONT
PIGDGPVLLPDNHYLSTQSKLSKDPNEKRDHMVLLEEVTAAGITLGMDELYKGASPEPQ
PKPSGDPQSKQTPEPSRSQGMEQLEEIAEQLEETAQQLKKIAKQLKKIAKGEPSAQGEQ
LEETIAEQLEETAQQLKKIAKQLKKIAKGPDSVEQLEETIAEQLEETAQQLKKIAKQLKKI
AKGGTWSGGEQLEETAEQLEETIAQQLKKIAKQLKKIAKGSGGS*

23

KIF5C :

GFP

MADPAECSIKVMCRFRPLNEAEILRGDKFIPKFKGEETVVIGQGKPYVEDRVLPPNTTQ
EQVYNACAKQIVKDVLEGYNGTIFAYGQTSSGKTHTMEGKLHDPQLMGIIPRIAHDIED
HIYSMDENLEFHIKVSYFEIYLDKIRDLLDVSKTNLAVHEDKNRVPYVKGCTEREFVSSP
EEVMDVIDEGKANRHVAVTNMNEHSSRSHSIFLINIKQENVETEKKLSGKLYLVDLAGS
EKVSKTGAEGAVLDEAKNINKSLSALGNVISALAEGTKTHVPYRDSKMTRILODSLGGN
CRTTIVICCSPSVENEAETKSTLMFGORAKTIKNTVSVNLELTAEEWKKKYEKEKEKNK
ALKSVIQHLEVELNRWRNGEAVPEDEQISAKDOQKNLEPCDNTPIIDNITPVTGGSGSGS
GGTMGVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKEICTTGKLP
VPWPTLVTTLTYGVQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVK
FEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHKVYITADKQKNGIKVNFKTRHNIE
DGSVQLADHYQONTPIGDGPVLLPDNHYLSTQSKLSKDPNEKRDHMVLLEFVTAAGITL
GMDELYK

24

KIF5C :

DB-LP-
mCh

MADPAECSIKVMCRFRPLNEAEILRGDKFIPKFKGEETVVIGQGKPYVEDRVLPPNTTQ
EQVYNACAKQIVKDVLEGYNGTIFAYGQTSSGKTHTMEGKLHDPQLMGIIPRIAHDIED
HIYSMDENLEFHIKVSYFEIYLDKIRDLLDVSKTNLAVHEDKNRVPYVKGCTEREVSSP
EEVMDVIDEGKANRHVAVTNMNEHSSRSHSIFLINIKQENVETEKKLSGKLYLVDLAGS
EKVSKTGAEGAVLDEAKNINKSLSALGNVISALAEGTKTHVPYRDSKMTRILODSLGGN
CRTTIVICCSPSVENEAETKSTLMFGORAKTIKNTVSVNLELTAEEWKKKYEKEKEKNK
ALKSVIQHLEVELNRWRNGEAVPEDEQISAKDOQKNLEPCDNTPIIDNITPVTGGSGSGS
GGTMEQLEEIAEQLEETAQQLKKIAKQLKKIAKGEPSAQGEQLEETIAEQLEETAQQLKK
TAKQLKKIAKGPDSVEQLEETIAEQLEETAQQLKKIAKQLKKIAKGGTWSGGEQLEEIAE
OLEETIAQQLKKIAKQLKKIAKGASPEPQPKPSGDPQSKQTPEPSRSQGMVSKGEEDNMA
ITKEFMREFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQF
MYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQODSSLODGEFIYKVKL
RGTNFPSDGPVMOKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKA
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KKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYKGASPEPQPKPS
GDPQOSKQTPEPSRSQGMEQLEEIAEQLEETIAQQLKKIAKQLKKIAKGEPSAQGEQLEET
AEQLEETAQQLKKIAKQLKKIAKGPDSVEQLEETAEQLEETAQQLKKIAKQLKKIAKGG
TWSGGEQLEEIAEQLEETAQQLKKIAKQLKKIAKY*

25

KIF5C :
mCherr

MADPAECSIKVMCRFRPLNEAEILRGDKFIPKFKGEETVVIGQGKPYVEDRVLPPNTTQ
EQVYNACAKQIVKDVLEGYNGTIFAYGOQTSSGKTHTMEGKLHDPQLMGIIPRIAHDIED
HIYSMDENLEFHIKVSYFEIYLDKIRDLLDVSKTNLAVHEDKNRVPYVKGCTEREFVSSP
EEVMDVIDEGKANRHVAVTNMNEHSSRSHSIFLINIKQENVETEKKLSGKLYLVDLAGS
ERKVSKTGAEGAVLDEAKNINKSLSALGNVISALAEGTKTHVPYRDSKMTRILODSLGGN
CRTTIVICCSPSVENEAETKSTLMFGORAKTIKNTVSVNLELTAEEWKKKYEKEKEKNK
ALKSVIQHLEVELNRWRNGEAVPEDEQISAKDOQKNLEPCDNTPIIDNITPVTGGSGSGS
GGTMVSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKG
GPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQD
SSLODGEFIYKVKLRGTNEPSDGPVMOKKTMGWEASSERMYPEDGALKGE IKQRLKLKD
GGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDE
LYK
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Supplementary Table 2. AlphaFold2 and AlphaFold3 predictions of 3D structures for sc-

apCC-4 and DB-GFP variants
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Supplementary Table 3. Literature data for protein dynamics

probe/environment

FRAP recovery

Diff. Coefficient

viscosity (mpa-S)

Source

half-time (s) (um?/s)
FUS-GFP/ FUS granules in | ~0.1-1.0 10-100 !
cytoplasm of HelLa
DDX4'"" / DDX4"" BCs ~2.5 0.3+ 0.1 (FRAP) 2
DDX4N + DDX4'™ / in vitro ~ 60 0.4+0.1(FRAP) 2
LAF-1/in vitro 161+42s 0.010 *= 0.003 8
(FRAP)
LAF-1 + RNA/ in vitro 143 28 0.011 = 0.002 3
(FRAP)
hnRNPA1-Oregon-green + | 3.72 (fast) and 4
hnRNPA1 /in vitro 31.6 (slow)
hnRNPA1-Oregon-green /| 4.2 4
stress granules
NPM1/ X. laevis nucleoli 44 +6 740+ 60 °
NPM1 /in vitro 161 °
EGFP / cytoplasm of Hela NA 56 =11 (FCS) 1.93+0.38* 6
EGFP / cytoplasm of Hela NA 50.6 (FCS) 2.14* /

* Calculated using the data from literature
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Supplementary Table 4. Summary of fitting the in vitro FRAP data for DB-LP-GFP

protein.

Conditions: 4 mg/mL protein, Tris 20 mM pH 7.5, NaCl 150 mM, 2% PEG3350, 37 °C.

Model Parameter Value SD Half-time [s] R? Red. chi’
a -0.709 0.019
Monoeexponential b 1.00 0.05 0.6928 0.823 0.002515
C 0.798 0.003
al -0.64 0.04
bl 0.58 0.06
Biexponential a2 -0.17 0.04 0.5311 0.8467 | 0.002186
b2 4.09 0.96
C 0.815 0.005
Stretched a -0.88 0.04
exponential b 0.73 0.07
(Anomalous alpha 0.64 0.04 0.4074 0.8387 | 0.002296
diffusion) C 0.806 0.003

Supplementary Table 5. Summary of fitting the in vivo FRAP data for DB-LP-GFP protein

expressed in HeLa. The measurements performed 24 hours after transfection at 37 °C.

Model | Parameter Value SD Half-time R? Red. chi®
a -0.528 0.014
Monoexp b 3.3 0.3 0.9077 0.002684
C 0.690 0.009
al -0.45 0.03
b1 4.7 0.6
Biexp a2 -0.27 0.06 0.9232 0.002262
b2 0.34 0.12
C 0.713 0.012
A 0.89 0.16
Stretched k 0.38 0.08
Exp beta 0.46 0.10 0.9222 0.002276
C -0.100 0.110




38

39

40

41

Supplementary Table 6. The results of fitting autocorrelated functions (Fig. 2E) measured

for the diffusion of the probe protein using anomalous diffusion model.

Probe / | Probe Number of | 7p, r1(%) | r2(%) | An. Diff. coefficient Diff. coefficient viscosity

environment hydrodynamic | molecules (N) (slow) factor (um?/s) [fast] (um?/s) [slow] (mpaS$) [high]
radius [nm]

DB-LP-mCherry - / | 4.40 6562.51* 22440 52 48 0.67 72.1+2.6 0.36+0.02 1439

DB-LP-GFP BCs +1301

mCherry / DB-LP- | 2.1 48.19 236 = 0.57 34.3+7 3.2+0.7

GFP BCs 49

DB-LP-mCherry / | 4.40 12.75 342 = 0.74 23.7+0.9 2.18+0.09

cytoplasm 12

mCherry /|21 41.69 122 =+ 0.62 66.5+6 1.63+0.14

cytoplasm 10
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2 Supplementary figures

DB-LP-GFP MitoTracker Red Hoechst 33342 Overlay

ER-Tracker Blue

CellMark Deep Red

Supplementary Figure 1. Live confocal images of HelLa cells in 24 hours of transfection
with the DB-LP protein and stained with organelle-specific fluorescent markers. Columns 1-
3 correspond to the green, red, and blue channels respectively. The last column is showing

the overlay of all channels in respective colours.
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Supplementary Figure 2. Both sticker domains are required for BC formation in live
cells. Confocal images of HeLa cells that transiently overexpressed sc-apCC-4-LP fusions
to GFP: the loop fusion (15t column) in which GFP was inserted into the 3™ loop of the sc-
apCC-4-; the linear fusion (2" column) in which GFP was fused to the C-terminus of sc-
apCC-4-LP with a short 5-residue long flexible GS linker, and another linear fusion with the
same 25-residue long linker as in the dumbbell constructs (3™ column) matching the one in

DB constructs. Scalebars = 20 ym.
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Supplementary Figure 3. CD spectra at 5 °C (A, B,
222 nm (E, F, G, H) of sc-apCC-4-SP (A, E), sc-apCC-4-LP (B, F), DB-SP-GFP (C, G), and

DB-LP-GFP (D, H) at 150 mM (blue line) and 500 mM (dark red line) NaCl before (solid line)
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C, D) and thermal response curves at

and after (dashed line) annealing. Conditions: 50 mM Tris pH 7.5.
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Supplementary Figure 4. Analytical size-exclusion chromatography traces for the designer
proteins sc-apCC-4-SP, sc-apCC-4-LP, DB-SP-GFP, DB-LP-GFP. Conditions: 50 mM Tris

pH 7.5, 500 mM NaCl, 0.8 mL/min, Sephadex 75pg Increase.

ok S — . — 0 0—r L N . —
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Sedimentation coefficient [S] Sedimentation coefficient [S] Sedimentation coefficient [S]

Supplementary Figure 5. Sedimentation velocity (SV) AUC traces of the de novo proteins
designed for this study: A) sc-apCC-4-SP, B) sc-apCC-4-LP, C) DB-LP-GFP. Fits returned
weights of 0.98, 1.04, and 1.02x monomer weight, respectively. 80 yM sc-apCC-4-SP and

sc-apCC-4-LP, 15 uM DB-LP-GFP. Conditions: 50 mM Tris pH 7.5, 500 mM NaCl, 20 °C.
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Supplementary Figure 6. CD spectra of DB-LP-GFP protein at 500 mM (A) and 150 mM

(B) NaCl at various temperatures upon heating from 5 to 95 °C. Conditions: 50 mM Tris pH

7.5.
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Supplementary Figure 7. Sedimentation equilibrium (SE) AUC data for DB-LP-GFP

between 16 and 48 krpm. Fitted single-ideal species model curves are overlaid (dashed

lines) and gave a molecular weight of 65.6 kDa which corresponds to 1.03x DB-LP-GFP

monomer weight. 15 yM DB-LP-GFP. Conditions: 50 mM Tris pH 7.5, 500 mM NacCl, 20 °C.
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87 Supplementary Figure 8. The best-fit models for the SAXS data for A) DB-SP-GFP and B)

88 DB-LP-GFP obtained using MultiFoXS (see Methods).
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90 Supplementary Figure 9. APBS® and MaSIF® predictions for sc-apCC-4-SP and sc-apCC-

91 4-LP.
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93 Supplementary Figure 10. PROPKA 3 prediction of the protein net charge at various pH
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99 Supplementary Figure 11. Fitting the in vitro FRAP data for DB-LP-GFP protein with mono-
100 , bi- and stretched exponential funcitons. Conditions: 4 mg/mL protein, Tris 20 mM pH 7.5,

101 NaCl 150 mM, 2% PEG3350, 37 °C.

_ 1.0-

=

= 0.8

e | St S

3 0.6 L8

o

2 0.4 N

© ¥ Data average

E 0.2- f Monoexp fit

o ! -—= Biexp fit

= 0.0- Stretched exp fit

0 5 10 15 20

102 Time [s]

103 Supplementary Figure 12. Fitting the in vivo FRAP data for DB-LP-GFP protein expressed

104 in HeLa. The measurements performed 24 hours after transfection at 37 °C.
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Supplementary Figure 13. Confocal fluorescence images of live HeLa cells expressing DB-

3 \,\/\%{p\/ Nile Blue
DB-LP-GFP-NR-1 ML~ O C
*= LI
J

DB-LP-GFP

LP-GFP-NR-1 (top row) and DB-LP-GFP (bottom row) and stained with Hoechst 33342 and
Nile Blue (NB).
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Supplementary Figure 14. Confocal fluorescence images of live HeLa cells expressing DB-

LP-GFP-NR-2 stained with Nile Red (NR).
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Supplementary Figure 15. Confocal fluorescence images of live HeLa cells expressing DB-

LP-NR-2 stained with Nile Red (NR).
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Supplementary Figure 16. Confocal fluorescence images of live HelLa cells co-expressing
DB-LP-NR-1 with A) DB-LP-GFP, and B) KIF5C:DB-LP-GFP, and C) KIF5C:GFP fusions or

D) DB-LP-NR-1 with KIF5C:GFP, and stained with Hoechst 33342 and Nile Red.
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Supplementary Figure 17. Quantification of the distribution of the free DB construct (75%
by DNA) in the presence of an overexpressed motor either fused to a dummy seed (GFP)
or to a full length DB-LP-GFP (25% by DNA). Intensity in the outer 25% of cell was measured

in a minimum of 25 cells.
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