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Fig. S1. Side-gated vOECT architecture along with a microscope photo of the channel area.
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[bookmark: _Hlk206429625][bookmark: OLE_LINK7]Fig. S2. Fabrication process of the side-gated vOECT. i) Thermal evaporation of the bottom and gate electrodes with a shadow mask; ii) Spin-coating and photo-patterning of the p- or n-type OMIEC channel layer; iii) Thermal evaporation of the top electrode with a shadow mask; iv) Spin-coating and photopatterning of the SU-8 encapsulation layer, where the channel areas are left open. v) Drop casting of Ag/AgCl paste as the gate electrode; vi) Coating uncured PDMS solution around the device and adhering polyimide template (PI, with a thickness of 0.3 mm) to the PDMS; vii) Placing a high-transmittance glass (with a thickness of 0.7 mm) on the PI template to achieve semi-sealing of the device; viii) Application of 1× PBS solution (10–30 μL) into the vacancy between the glass and the vOECT.

[image: ]
[bookmark: OLE_LINK34]Fig. S3. Chemical structures of used materials. a, OMIECs, including BBL, Homo-gDPP, p(g2T-T), and gDPP-g2T. b, Crosslinkers, including GDA and DA.
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Fig. S4. Laser spot position of LDV-M on vOECT channels with different OMIECs. (a)BBL; (b) Homo-gDPP:GDA; (c) Homo-gDPP:DA; (d) p(g2T-T):GDA; (e) p(g2T-T):DA; (f) gDPP-g2T:GDA; (g) gDPP-g2T:DA.
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[bookmark: OLE_LINK16]Fig. S5. OMIEC film swelling characterized by EQCM. Relative active swelling responses of (a) BBL and (b) p(g2T-T):DA films under varying working electrode biases.



Table. S1. Summary of active swelling characteristics of different OMIECs.
	Type
	Drain current
transient time
	Film
Thickness
(nm)
	f = 3.3 Hz
	f = 11.1 Hz
	f = 111.1 Hz

	
	
	
	Swelling 
magnitudea)
(nm)
	Swelling percentageb)
	Swelling 
magnitudea)
(nm)
	Swelling percentageb)
	Swelling 
magnitudea)
(nm)
	Swelling percentageb)

	BBL
	[bookmark: OLE_LINK36]7.6 ms (ON)
1.5 ms (OFF)
	130.2±7.8
	[bookmark: _Hlk207872295]115.9±1.5
	89.2±1.1%
	106.6±1.8
	82.0±1.4%
	19.5±0.7
	15.0±0.5%

	Homo-gDPP: GDA
	1.0ms (ON)
0.2 ms (OFF)
	113.5±5.6
	22.8±1.1
	20.7±1.0%
	22.2±1.7
	20.2±1.5%
	16.8±1.3
	15.3±1.1%

	[bookmark: OLE_LINK1]Homo-gDPP: DA
	5.8 ms (ON)
0.4 ms (OFF)
	110.1±4.5
	[bookmark: _Hlk207872317]10.9±2.7
	9.9±2.5%
	9.0±1.6
	8.2±1.5%
	5.8±1.6
	5.3±1.5%

	p(g2T-T): GDA
	0.8 ms (ON)
0.2 ms (OFF)
	80.2±3.8
	10.1±0.5
	12.6±0.6%
	8.8±0.6
	11±0.8%
	4.7±0.8
	5.9±1.0%

	p(g2T-T): DA
	6.8 ms (ON)
0.8 ms (OFF)
	78.8±3.1
	4.1±0.2
	5.1±0.3%
	3.9±0.4
	4.9±0.5%
	2.5±0.4
	3.1±0.5%

	gDPP-g2T: GDA
	2.6 ms (ON)
0.2 ms (OFF)
	106.4±4.8
	20.0±1.4
	18.8±1.3%
	17.5±1.8
	16.5±1.7%
	9.8±0.42
	9.2±0.4%

	gDPP-g2T: DA
	6.7ms (ON)
0.5 ms (OFF)
	104.1±5.1
	7.6±1.3
	7.1±1.2%
	6.7±1.5
	6.3±1.4%
	4.9±1.0
	4.6±0.9%


a) Standard deviations are based on the performance of at least 5 cycles.
b) Percentage of swelling magnitude compared to original film thickness. The original film thickness was characterized by AFM before the film made contacts with electrolyte.
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Fig. S6. Swelling baseline shifts under 111.1 Hz switching frequencies. vOECTs based on (a) BBL and (b) p(g2T-T):DA, respectively.
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Fig. S7. Active swelling rate of vOECT based on BBL. Active swelling rate at switching frequencies of (a) 3.3Hz, (b) 11.1Hz, and (c) 111.1Hz. The active swelling rate is calculated by taking the first-order derivative of the swelling curves under different operating frequencies.



Table. S2. Summary of active swelling response times of vOECTs with different OMIECs.
	Type
	Active swelling response time (ms) a)

	
	(3, 3) b)
	(1, 3) b)
	(3, 4) b)

	BBL
	22.2±0.4
	10.0±0.3
	10.3±0.2

	Homo-gDPP:GDA
	4.8±0.3
	4.5±0.5
	4.6±0.1

	Homo-gDPP:DA
	5.0±0.4
	4.6±0.3
	4.6±0.2

	p(g2T-T):GDA
	9.1±0.6
	2.7±0.3
	4.9±0.9

	p(g2T-T):DA
	21.1±0.8
	9.3±0.8
	13.4±0.9

	gDPP-g2T:GDA
	11.1±0.5
	7.8±0.4
	8.7±0.6

	gDPP-g2T:DA
	26.3±1.5
	18.1±0.5
	18.9±0.9


a) Standard deviations are based on the data of at least 5 cycles.
b) Laser spot position.


The calculation method for active swelling response time is as follows: First, the moment a doping VG is applied is selected as the starting time point of active swelling. Then, the moment when active swelling reaches 90% of saturation is chosen as the endpoint. The time difference between these two points is assigned as the active swelling response time.

[image: ]
Fig. S8. BBL channel morphological variations characterized by optical microscope and AFM. a, ID transient curve of the device switched 1000 times with VD = VS = 0V. b, Optical images of the device channel area before and after 1000 switching cycles. c, Zoomed in optical image of the device channel region after operation, and (d) height image characterized by AFM with obvious swelling. 
[image: ]
Fig. S9. Optical images of vOECTs with conventional and optimized encapsulations. vOECT channels based on (a) BBL, (b) Homo-gDPP:DA, (c) Homo-gDPP:GDA, (d) p(g2T-T):DA, (e) p(g2T-T):GDA, (f) gDPP-g2T:DA, and (g) gDPP-g2T:GDA.
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[bookmark: OLE_LINK22]Fig. S10. Channel with optimized encapsulation. a, Optical image of the channel, where the red box indicates the encapsulated layer opening and the blue circle marks the position of the laser spot. Notably, the spot is outside the encapsulated layer opening. b, Swelling behavior of the device at the laser spot position, showing no swelling at this location, indicating that encapsulation can effectively suppress swelling.
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[bookmark: OLE_LINK37]Fig. S11. 3D swell mapping of BBL-based vOECTs with different encapsulations. a, Top view of the channel with optimized encapsulation and 4 × 4 mapping point diagram, along with the swell mapping of the channel under (b) doping and (c) dedoping states under a switching frequency of 3.3 Hz. d, Top view of the channel with conventional encapsulation and 4 × 4 mapping point diagram, along with the swell mapping of the channel under (e) doping and (f) dedoping states with a switching frequency of 3.3 Hz.



 Table. S3. Summary of reported cycling stability of OECTs.
	Architecture
	Transistor
type
	Material
	Cycling number
	Operation time (h)
	Current retention
	Ref

	cOECT a)
	P
	h-DPP-g2T
	1,500
	1.7
	/
	1

	
	P
	PDPP-3EG
	600
	1.5
	99%
	2

	
	P
	PDPP-4EG
	600
	1.5
	88%
	2

	
	P
	P3
	60
	0.2
	/
	3

	
	P
	p(gPyDPP-MeOT2)
	400
	0.4
	92%
	4

	
	P
	gBDT-MeOT2
	300
	0.5
	93%
	5

	
	P
	p(g1T2-g5T2)
	720
	2
	98%
	6

	
	P
	p(g0T2-g6T2)
	720
	2
	98%
	6

	
	P
	P(g42T-TT)
	510
	1.4
	85%
	7

	
	P
	p(g3T2):C60F48
	4,600
	25
	61%
	8

	vOECT

	P
	p(g2T-T): DA
	100,000
	1.1
	99%
	9

	
	P
	gDPP-g2T: Cin-Cell
	50,000
	1.4
	/
	10

	
	N
	Homo-gDPP: Cin-Cell
	50,000
	1.4
	/
	10

	
	P
	p(g2T-T): DA
	200,000
	4.4
	/
	11

	
	N
	BBL/PEI
	1M
	2.8
	97%
	12

	
	P
	p(g2T-T): DA
	1M
	13.9
	100%
	This work

	
	P
	p(g2T-T): DA
	5M
	69.4
	95%
	

	
	P
	p(g2T-T): DA
	10M
	138.9
	89%
	

	
	P
	p(g2T-T): DA
	15M
	208.3
	82%
	

	
	N
	Homo-gDPP: DA
	1M
	13.9
	98%
	

	
	
	
	1.4M
	19.4
	79%
	

	
	N
	BBL
	126,000
	2.8
	100%
	

	
	
	
	1M
	22.2
	95%
	

	
	
	
	2.8M
	62.2
	79%
	


a) cOECT: conventional planar OECT.
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Fig. S12. Complementary inverter based on vOECTs with optimized encapsulation. a, Microscope image of the inverter. b, Transfer and (c) transient curves of a p-type vOECT. d, Transfer and (e) transient curves of an n-type vOECT. (f) Voltage transfer curves and (g) gain characteristics of the vOECT-based inverter with VDD varying from 0.5 V to 0.8 V. (h) Switching behavior of the inverter with VIN switching between 0 V and 0.7 V at frequencies ranging from 50 Hz to 1,250 Hz.

[image: ]
Fig. S13. Fabrication process of a vOECN. i) thermal evaporation of the bottom electrodes with a shadow mask; ii) Spin-coating of the p-type semiconducting layer and pattern the polymer with LPKF R4; iii) thermal evaporation of the middle electrodes with a shadow mask; iv) Spin-coating of the n-type semiconducting layer and pattern the polymer with LPKF R4; v) thermal evaporation of top electrodes with a shadow mask; vi) Spin-coating/photopatterning/developing of the SU-8 encapsulation layer, where the channel areas are left open; vii) Drop casting of Ag/AgCl and capacitor pasting.



Table. S4. Types and fire frequency range of different organic neurons.
	Type
	Membrane capacitance
(nF)
	Input current
(μA)
	Fire frequency
(Hz)
	Footprint 
(mm2)
	Ref

	Multi-
order 
complexity
	/
	30
	32
	[bookmark: OLE_LINK39]1.6×10-3
(wiring pads excluded)
	13

	
	/
	1.8
	1.4
	
	

	Axon- Hillock
	1
	100
	147.1
	3.7×101
	14

	
	1,000
	0.2
	0.13
	
	

	
	100
	10
	0.25
	1.2×103
	15

	
	10,000
	1
	0.05
	
	

	
	0
	3
	11
	/
	16

	
	0
	0.6
	2
	
	

	
	0
	6
	1.9
	/
	17

	
	0
	0.25
	1
	
	

	
	0
	100
	55
	/
	12

	
	0
	5
	8
	
	

	
	2.2
	0.3
	5.0
	5×101
	18

	
	15
	0.3
	1.0
	
	

	Hodgkin-Huxley
	1,000
	40
	8.3
	/
	19

	
	2,200
	30
	1.7
	
	

	
	1,000
	6.3
	100
	2×102
	20

	
	1,000
	2
	5
	
	

	
	100
	10
	23
	/
	21

	
	500
	3
	1.8
	
	

	Axon- Hillock
	0.5
	50
	1,111.1
	3×101
	This work

	
	50
	0.5
	0.5
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