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S1. Characterization studies
To investigate the phase formation and crystal structure of the α-Al2O3 catalysts, powder X-ray diffraction (XRD) was performed using a Malvern PANalytical Empyrean-DY2584 diffractometer (45 kV, 40 mA), with Ni-filtered Cu Kα radiation over a 2θ range of 5–90°. Raman spectroscopy was conducted on a Horiba LabRAM spectrometer equipped with a 532 nm laser, scanning from 100–1400 cm⁻¹ to identify metal oxide phases. The morphology and particle size were analyzed using transmission electron microscopy (TEM) on a JEOL JEM-F200 operated at 200 kV, with samples prepared on carbon-coated 200 mesh Cu grids. The morphology of α-Al2O3 catalysts and the PET reaction mechanism were studied by SEM analysis (SEM CARL ZEISS EVO18 instrument) in a scanning range from 50 nm to 1 mm using an electron beam range of 200 V–30 kV. The samples were prepared in an ethanol solution, subsequently spin-coated onto a silicon surface, and then sputtered with gold. 
Textural properties, including specific surface area and porosity, were determined via N2 adsorption–desorption isotherms using a Micromeritics Tristar 3000 analyzer at −196 °C. The chemical states of Al and O were studied using X-ray photoelectron spectroscopy (XPS) on a Thermo Fisher K-Alpha system with Al Kα radiation; binding energies were calibrated using the C 1s peak at 284.6 eV. Acidity was evaluated using NH3 temperature-programmed desorption (NH3-TPD) on a BEL/CAT2 system. Samples were pretreated in helium at 150 °C for 80 min, saturated with NH3/He for 60 min, and purged with He to remove physisorbed NH₃. Atomic force microscopy (AFM) images were obtained using a Bruker Multimode Veeco 8 instrument. The α-Al2O3 550 sample, dispersed in ethanol, was drop-cast onto silicon wafers for imaging. Tapping mode AFM was employed, utilizing a probe with a tip radius of less than 10 nm, a force constant of approximately 200 N·m⁻¹, and a resonance frequency in the range of 459–506 kHz.
The monomer product bis(2-aminoethyl) terephthalamide (BAET), formed via PET aminolysis, was characterized by 1H, 13C, and DEPT NMR on a Bruker Avance III 400 MHz spectrometer. Its crystallinity was verified using powder XRD, while functional groups were identified using FT-IR spectroscopy (Bruker Alpha, 600–4000 cm⁻¹, DTGS detector). High-resolution mass spectrometry (HR-MS) was carried out on an Agilent 6538 UHD Q-TOF using both ESI and APCI modes. Thermal stability was assessed via thermogravimetric analysis (TGA) on a TA SDT Q600 from 50–800 °C at 10 °C/min under nitrogen. The melting behavior was determined using differential scanning calorimetry (DSC) on a TA Q200 instrument.
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Figure S1. HR-TEM of fresh α-Al2O3 550 catalyst.
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Figure S2. (a) Al 2p XP and (b) O 1s XP spectra of fresh and spent α-Al2O3 550 catalysts.
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Figure S3: FT-IR spectrum of PET, AOET (dimer), and BAET.
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Figure S6. 1H NMR of AOET (dimer).
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bis(2-amino ethyl) terephthalamide (BAET)
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Figure S8. HR-MS m/z: [M + Na]+ calculated for bis(2-amino ethyl) terephthalamide (BAET) (C12H18N4O2) (found 250.1430)
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α,ω-aminoligo (ethylene terephthalamide) (AOET) dimer
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Figure S9. HR-MS m/z: [M + Na]+ calculated for α,ω-aminoligo (ethylene terephthalamide) as a dimer with the molecular formula (C22H28N6O4) (found 440.2172)
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Figure S10. (a)TGA and (b) DSC thermographs of PET.
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Figure S11. (a) TGA and (b) DSC thermographs of BAET and AOET (dimer).









Table S1.  Aminolysis of various colored PET bottles at optimized reaction conditions.  

	S. No.
	Colored PET bottle
	Colored PET chips
	Product (BAET)
	Yield (%)a

	1
	[image: ]Kinley white PET
	[image: ]
	[image: ]
	92

	2
	[image: ]Mountain Dew green PET
	[image: ]
	[image: ]
	82

	3
	[image: ]Ocean fruit drink purple PET
	[image: ]
	[image: ]
	80

	4
	[image: ][image: ][image: ]Mixed PET
	[image: ]
	[image: ]
	80



Reaction conditions: colored PET (1 g), ethylene diamine (5.5 mL), α-Al2O3 550 (50 mg), 70 °C, 7 h. aIsolated yields.





S2. Green metrics calculations
The environmental impact and sustainability of the glycolysis of PET to BAET were systematically evaluated using green chemistry metrics. 
Mass of the EDA = 5 g (5.5 mL) 
Molar mass of BAET = 250.14 g/mol
Molar mass of the PET repeating unit = 192.2 g/mol
Mass of the catalyst = 0.05 g 
Mass of the PET = 1 g 
1. Environmental factor (E-factor)1
In green chemistry, the E-factor is a key parameter for evaluating the sustainability of chemical processes. It reflects the quantity of waste generated in relation to the amount of desired product, thus providing an understanding of process efficiency. A value of 0.1 in the applied formula indicates that approximately 10% of the solvent is lost during filtration. Generally, a larger E-factor implies higher waste formation and greater environmental concern.





2. Energy economy coefficient (ε)1 
The energy economy coefficient (ε) links the product yield to the operating temperature and reaction time. This metric helps in comparing reaction efficiency across different systems. A higher ε value signifies better energy utilization and economic feasibility of the process.

Where Y is the yield of product (in mole fraction), T is the reaction temperature (°C), and t is the reaction time (in min).
Yield = 92%, Temperature = 70 °C, Time = 420 min:



3. Solvent intensity (SI)2 
The solvent intensity measures the mass of solvent used relative to the product obtained. Higher SI values indicate more solvent usage, increasing costs, and potential environmental burden. For this solvent-free system, no solvent is consumed, resulting in an SI of zero.
Yield = 92%, Mass of product at 92% yield = 1.196 g, Mass of solvent = 0 (solvent-free conditions) 



4. Process mass intensity (PMI)2,3
The process mass intensity quantifies the total mass of materials used (including reactants and catalysts) per unit mass of product formed. Lower PMI values represent environmentally benign processes with reduced material input. In this case, solvents used during filtration are excluded from calculations.
PET = 1 g, Catalyst = 0.05 g, Ethylenediamine = 5 g, Yield = 92%, Mass of product at 92% yield = 1.196 g. We have not included any solvent that is used during the filtration process. 





5. Renewable intensity (RI)4
The renewable intensity expresses the fraction of renewable feedstocks relative to the product mass. A higher RI indicates greater use of renewable resources in the reaction process.
Ethylenediamine = 5 g, Yield = 92%, Mass of product at 92% yield = 1.196 g 




6. Renewable percentage (RP)4,5
The renewable percentage compares renewable intensity with PMI to assess how sustainable the overall process is. A higher RP denotes a greener process.
Renewable intensity = 4.18, Process mass intensity = 5.05 




S3. Carbon balance calculation of PET aminolysis6

Mass of PET used in the reaction: 1 g
Mass of recrystallized BAET monomer: 1.196 g
Molar mass of PET monomer or single unit: 192.2 g/mol
Molar mass of BAET molecule: 250.14 g/mol



                                                              

The carbon ratio before and after the reaction = 


91.41% of the carbon in the PET reactant was converted into BAET monomers; the remaining are oligomers.

S4. HR-MS analysis of reactants, oligomers, and monomer 




Ethylene glycol
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Figure S12. HR-MS m/z: [M + Na]+ calculated for ethylene glycol with the molecular formula (C2H6O2) (found 62.0368).












Ethylenediamine (EDA)
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Figure S13. HR-MS m/z: [M]+ calculated for ethylenediamine with the molecular formula (C2H8N2) (found 60.0687).





bis(2-hydroxyethyl) terephthalate (BHET) detected at 5 h, and 5 h of reaction
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Figure S14. HR-MS m/z: [M + 2Na]+2 calculated for bis(2-hydroxyethyl) terephthalate with the molecular formula (C12H14O6) (found 254.0790).







2-hydroxyethyl 4-((2-aminoethyl) carbamoyl) benzoate (HACB) detected at 3 h, and 6 h of reaction
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Figure S15. HR-MS m/z: [M + Na]+ calculated for 2-hydroxyethyl 4-((2-aminoethyl) carbamoyl) benzoate with the molecular formula (C12H16N2O4) (found 252.1110).






BAET trimer
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Figure S16. HR-MS m/z: [M + K]+ calculated for BAET trimer with the molecular formula (C32H38N8O6) (found 630.2914).








BAET tetramer
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Figure S17. HR-MS m/z: [M + 2Na]+2 calculated for BAET tetramer with the molecular formula (C42H48N10O8) (found 820.3657).






amide-based tetramer (a) detected at 1 h, 2 h, and 7 h of reaction
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Figure S18. HR-MS m/z: [M + 2H]+2 calculated for amide-based tetramer (a) with the molecular formula (C42H40N2O16) (found 828.2378).





ester-based tetramer (b) detected at 1 h reaction time
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Figure S19. HR-MS m/z: [M + Na]+ calculated for ester-based tetramer (b) with the molecular formula (C42H38O18) (found 830.2058).






trimeric ester-based oligomer (c) detected at 2 h, 3 h, and 6 h of reaction
[image: ]

Figure S20. HR-MS m/z: [M + NH4]+2 calculated for trimeric ester-based oligomer (c) with the molecular formula (C32H30O14) (found 638.1636).






trimeric amide-based oligomer (d) detected at 3 h, 4 h, 5 h, and 6 h of reaction
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Figure S21. HR-MS m/z: [M + NH4]+2 calculated for trimeric amide-based oligomer (d) with the molecular formula (C32H32N2O12) (found 636.1955).






dimeric ester-based oligomer (e) detected at 4 h of reaction
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Figure S22. HR-MS m/z: [M + H2O]+ calculated for dimeric ester-based oligomer (e) with the molecular formula (C22H22O10) (found 446.1213).






dimeric diamide-based oligomer (f) detected at 4 h of reaction
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Figure S23. HR-MS m/z: [M + 2(H2O)]+2 calculated for dimeric diamide-based oligomer (f) with the molecular formula (C22H26N4O6) (found 442.1852).






dimeric amide-based oligomer (g) detected at 4 h of reaction
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Figure S24. HR-MS m/z: [M + 2Na]+2 calculated for dimeric amide-based oligomer (g) with the molecular formula (C22H24N2O8) (found 444.1533).






trimeric diamide-based oligomer (h) detected at 5 h of reaction
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Figure S25. HR-MS m/z: [M]+ calculated for trimeric diamide-based oligomer (h) with the molecular formula (C32H34N4O10) (found 634.2275).






tetrameric diamide-based oligomer (i) detected at 7 h of reaction
[image: A graph of a graph

AI-generated content may be incorrect.]

Figure S26. HR-MS m/z: [M + 2NH4]+2 calculated for tetrameric diamide-based oligomer (i) with the molecular formula (C42H42N4O14) (found 826.2698).






dimeric diamide-based oligomer
[image: A screen shot of a graph
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Figure S27. HR-MS m/z: [M + Na]+ calculated for dimeric diamide-based oligomer
with the molecular formula (C22H26N4O6) (found 442.1852).






trimeric triamide-based oligomer 
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Figure S28. HR-MS m/z: [M + 2(NH4)]+2 calculated for trimeric triamide-based oligomer
with the molecular formula (C32H36N6O8) (found 632.2595). 









tetrameric triamide-based oligomer

[image: ]
Figure S29. HR-MS m/z: [M + 2(NH4)]+2 calculated for tetrameric triamide-based oligomer with the molecular formula (C42H44N6O12) (found 824.3017).







tetrameric tetramide-based oligomer 
[image: A graph of a graph
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Figure S30. HR-MS m/z: [M + 2(NH4)]+2 calculated for tetrameric tetramide-based oligomer with the molecular formula (C42H46N8O10) (found 822.3337).
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