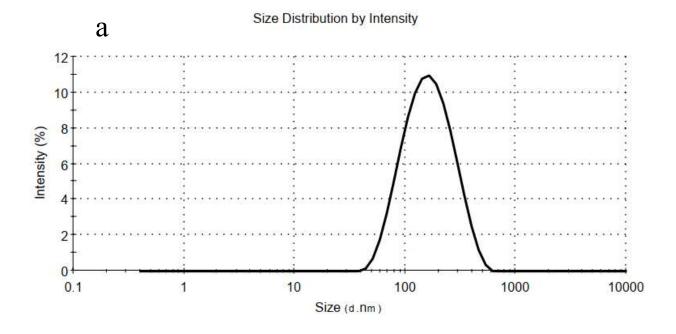
Supporting Information

Hyaluronic Acid-Functionalized Bismuth Sulfide Nanoparticles as Targeted CT Contrast Agents


Farahnaz Seyedabutorabi¹, Mohammad Hosntalab¹, Samad Muhammadnejad², Farshid Babapour Mofrad¹ & Hamid Delavari³*

*Corresponding author: Hamid Delavari (email: hamid.delavari@gmail.com)

Table S1. Hydrodynamic diameters, polydispersity index (PDI) and intercept of $Bi_2S_3@BSA$ and $Bi_2S_3@BSA$ —HA NPs obtained from dynamic light scattering (DLS) at 25 °C (water, $\eta = 0.8872$ cP).

Sample	Distribution type	Size (d, nm)	PDI	Intercept
Bi ₂ S ₃ @BSA	Intensity	178	0.2	0.9
	Volume	141	0.2	0.9
	Number	69.8	0.2	0.9
Bi ₂ S ₃ @BSA–HA	Intensity	75.3	0.2	0.9
	Volume	13.0	0.2	0.9
	Number	12.4	0.2	0.9

- Intensity (%): relative contribution of particle size populations to total scattered light intensity in DLS analysis.
- **PDI:** Polydispersity index; PDI < 0.2 nearly monodisperse, 0.2–0.4 moderate, ≥0.4 broad distribution.
- Intercept: initial amplitude of correlation function $g_2(\tau)$; values 0.9–1.0 indicate excellent signal quality.
- Measurement details: Malvern Zetasizer, DTS v4.20; clear disposable zeta cell.

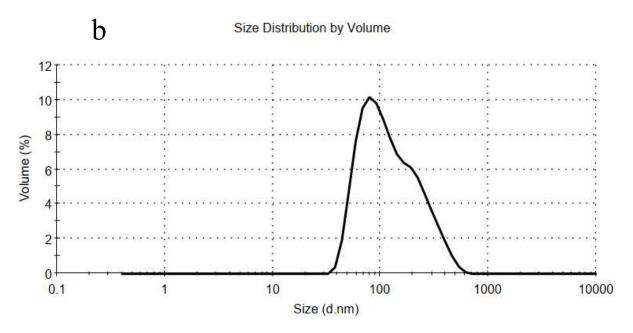
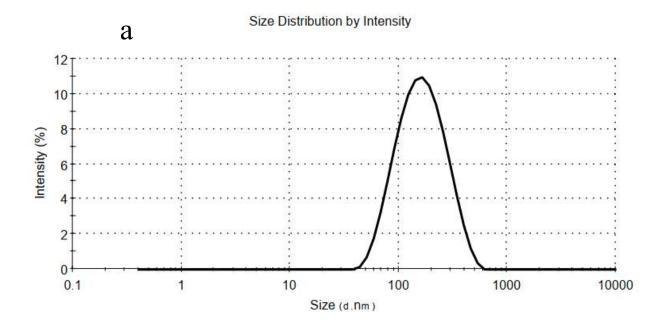
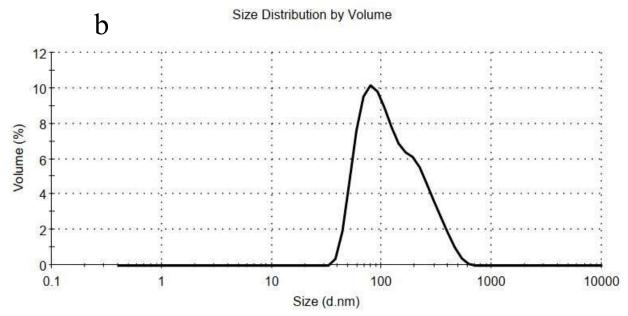




Figure S1. Dynamic light scattering (DLS) size distributions of $Bi_2S_3@BSA$ NPs obtained using (a) intensity- and (b) volume-weighted analysis. Measurements were performed in distilled water at 25 °C. The number-weighted distribution is presented in Fig. 1c of the main text

Figure S2. DLS size distributions of $Bi_2S_3@BSA$ –HA NPs obtained using (a) intensity- and (b) volume-weighted analysis. Measurements were performed in distilled water at 25 °C. The number-weighted distribution is presented in Fig. 1d of the main text.

Table S2. Zeta potential parameters of Bi₂S₃@BSA and Bi₂S₃@BSA–HA NPs measured by electrophoretic light scattering (Smoluchowski model) at 25 °C.

Sample	Zeta potential (mV)	Peak (mV)	Width (mV)	Conductivity (mS cm ⁻¹)	Count rate (kcps)
Bi ₂ S ₃ @BSA	-19.4 ± 4.0	-15.6	22	8.20	2891
Bi ₂ S ₃ @BSA-HA	-35.5 ± 6.1	-35.5	16.3	1.32	5806

- Peak (mV): Most frequent (mode) value in the zeta potential distribution.
- Width (mV): Distribution width (half-height range) representing sample polydispersity in surface charge.
- Conductivity (mS cm⁻¹): Electrical conductivity of the dispersant medium influencing electrophoretic mobility-to-zeta
 potential conversion.
- Count rate (kcps): Photon count rate indicating the quality and stability of the light scattering signal during
 measurement.
- Model: Conversion model used by the instrument (Smoluchowski for aqueous dispersions)

Table S3. Linear regression equations and coefficients of determination (R^2) describing the relationship between CT number (HU) and Bi concentration (mg Bi mL⁻¹) for Bi₂S₃@BSA-HA, Bi₂S₃@BSA, and Omnipaque at tube voltages of 80, 110, and 130 kVp.

Voltage (kVp)	CT Number (HU)				
	Bi ₂ S ₃ @BSA–HA	Bi ₂ S ₃ @BSA	Omnipaque		
80	Y = 91.92*X + 6.169	Y = 64.67*X + 6.865	Y = 44.33*X - 1.665		
	$R^2 = 0.98$	$R^2 = 0.97$	$R^2 = 0.92$		
110	Y = 77.55 * X + 2.881	Y = 52.45*X + 7.565	Y = 31.80*X + 1.034		
	$R^2 = 0.98$	$R^2 = 0.95$	$R^2 = 0.93$		
130	Y = 73.65*X + 2.578	Y = 50.20*X + 6.394	Y = 30.57*X - 6.825		
	$R^2 = 0.98$	$R^2 = 0.95$	$R^2 = 0.91$		

Table S4. Linear regression equations and coefficients of determination (R^2) describing the relationship between contrast-to-noise ratio (CNR) and Bi concentration (mg Bi mL⁻¹) for Bi₂S₃@BSA-HA, Bi₂S₃@BSA, and Omnipaque at tube voltages of 80, 110, and 130 kVp.

Voltage (kVp)	CNR			
	Bi ₂ S ₃ @BSA–HA	Bi ₂ S ₃ @BSA	Omnipaque	
80	Y = 13.93*X + 0.9345 $R^2 = 0.98$	Y = 9.861*X + 1.174 $R^2 = 0.98$	Y = 6.819*X - 0.03411 $R^2 = 0.93$	
110	Y = 12.33*X + 1.147 $R^2 = 0.95$	Y = 8.126*X + 1.527 $R^2 = 0.96$	$Y = 4.900*X + 0.3320$ $R^2 = 0.93$	
130	$Y = 11.39*X + 0.8837$ $R^2 = 0.98$	Y = 7.748*X + 1.270 $R^2 = 0.96$	$Y = 4.651*X - 0.5746$ $R^2 = 0.92$	