# **ASINAGRO** AGRONOMIC ADVICE AND RESEARCH

# TEST WITH ADDITIVE FOR FERTILIZERS HUMUS - RICE

Second section – Thirty-Three - Uruguay

2023-2024 HARVEST

### INTRODUCTION

The essay is based on a little-known topic for rice cultivation in our country: the use of the fertilizer additive Humus from the Paraguayan company Tiróleo .

The bioactivation of fertilizers, with additives such as humus, aims to optimize their assimilation in order to reduce their consumption, maximizing the use of nutrients and minimizing losses that affect the environment and the producers' economy.

Agricultural activities today face challenges in finding ways to ensure the preservation of natural resources for future generations, minimize environmental impacts, help mitigate climate change, and produce food of proven safety and quality.

In this context, there are various strategies and visions regarding the paths to be taken. In our case, we see a priority in advancing paths that promote gradual changes in inputs, management, and processes, reducing the environmental footprint and maintaining or improving the productivity and quality of the rice produced.

The incorporation of bioinputs, such as the additive Humus de Tyróleo, is a key tool to generate valid alternatives to a traditional sustainable and high-productivity management system.

In response to this challenge, an exact basal fertilization trial using the Humus additive from the company Tiróleo was installed in the second section of the Treinta y Tres department, on a farm with a long history of cultivation.

Starting with the NPK fertilizer dosage recommended by a technical expert based on soil analysis, two doses of humus were tested, both in addition to and in place of the fertilizer, and compared with a commercial control (fertilizer alone). Furthermore, all treatments were applied in duplicate, incorporated into the row or broadcast as a cover crop, to compare the effectiveness of both localization methods.

This report presents data on the test setup, materials and methods, results, statistical analysis of performance, and final comments. Illustrative photographs are also included.

### **GOALS**

- > To evaluate the effectiveness of the fertilizer additive Humus in rice cultivation.
- Contrast between online application and random coverage.
- > Adjust the application of Humus in relation to replacement or addition with NPK fertilizer.
- Quantify its impact on crop yield.

### **MATERIALS AND METHODS**

Product evaluated: fertilizer additive

#### Humus

Bioactivating additive with the same physical characteristics as a granulated fertilizer, making it suitable for mixing prior to application.

It is obtained from plant remains that go through a fermentation process where a set of microorganisms – Microbiome – are incorporated, which interact with each other , in balance and conditioned by the soil and the chemical processes that direct them.

Nutrient release depends on the existing microbiology in the soil, but the use of the additive increases this dynamic because the incorporated microbiome favors the processes that make nutrients available to plants.

Treatments: (Dose kg/ha)

| TRT | Humus | NPK (1) | Location          | Relationship<br>Humus: NPK |
|-----|-------|---------|-------------------|----------------------------|
| 1-  | 0     | 150     | Line              | Control                    |
| 2-  | 0     | 150     | Broadcast seeding | Control                    |
| 3-  | 50    | 150     | Line              | Additive                   |
| 4-  | 50    | 150     | Broadcast seeding | Additive                   |
| 5-  | 50    | 100     | Line              | Replacement (2)            |
| 6-  | 50    | 100     | Broadcast seeding | Replacement (2)            |
| 7-  | 20    | 150     | Line              | Additive                   |
| 8-  | 20    | 150     | Broadcast seeding | Additive                   |
| 9-  | 20    | 100     | Line              | Replacement (3)            |
| 10- | 20    | 100     | Broadcast seeding | Replacement (3)            |

- (1) NPK base fertilizer: 0 20/20 30
- (2) Complete 1:1 replacement with a 33% reduction in NPK dosage
- (3) Partial replacement 0.4:1 with 33% reduction in NPK dosage

### Design

Random blocks with three repetitions Plots of 20 m<sup>2</sup> (4 m wide by 5 m long).

### **Distribution of treatments:**

| 5  | 6 | 4 | 7 | 3  |
|----|---|---|---|----|
| 10 | 1 | 9 | 2 | 8  |
| 1  | 3 | 5 | 7 | 9  |
| 2  | 4 | 6 | 8 | 10 |
| 10 | 9 | 8 | 7 | 6  |
| 1  | 2 | 3 | 4 | 5  |

## **Test facility**

| Locality       | Producer        | Planting date | Cultivate  |
|----------------|-----------------|---------------|------------|
| The Charqueada | Hernán Zorrilla | October 16    | INIA Merín |

Representative location of the traditional rice-growing basin of Laguna Merín. The area near the town of La Charqueada in the department of Treinta y Tres corresponds to the unit of the same name on the Uruguayan Soil Survey Chart, scale 1:1,000,000, and the dominant soil where the

trial was conducted is a Planosol. Subeutric Ocher with silty loam texture , with Solods Associated ochrics .

### Soil analysis -

Predecessor: legume meadow

Management: Spring glyphosate – pre-tillage (disk and leveling)

| pH (H2O)               | 5.9  |
|------------------------|------|
| MO`(%)                 | 2.1  |
| P – citric acid (ppm)  | 5    |
| K ( meq /100 gr soil)  | 0.17 |
| Mg ( meq /100 gr soil) | 2.1  |
| Mg/K ratio             | 12.3 |

#### **Recommended Dose**

The recommendation for fertilizing rice with phosphorus and potassium is determined by the information contained in INIA Technical Sheet No. 46, based on chemical analysis of the soil.

For phosphorus adjustment, the soil analysis data was considered (range between 3 - 5 ppm), in a medium soil (30 - 50% clay) and taking as a fertilization strategy the criterion of "sufficiency", which consists of adding nutrients up to a critical level, above which the probability of finding a yield response is low.

For the potassium adjustment, the soil analysis data (0.14-0.17 meq / 100 gr soil) was considered with ammonium acetate extraction, with a Mg / K ratio (< 15) and taking the "sufficiency" criterion as a fertilization strategy.

According to the tables, the fertilization recommendation would be:

- $P_2O_5 = 42 \text{ units / ha}$
- $K_2O = 50 \text{ units / ha}$

For the commercial Control NPK (0 - 20/20 - 30) it is adjusted to 150 kg/ ha (treatment 1).

### **Description of the environment**

The trial was installed in a rice crop, planted on a Planosol Subeutric Ocher with a silty loam texture, associated with a Solods Ocrico belonging to the La Charqueada unit.

The sowing date of the farm corresponds to mid-October with the INIA Merín cultivar of Indica genotype, long cycle and resistant to *Pyricularia oryzae*. When planted at the recommended time, this high-yield variety, with adequate P and K adjustments, has shown a strong response to nitrogen fertilization. Since its release in 2015, its area has been increasing, currently positioning itself as the one with the largest planted area, reaching 50% of the rice area in the last harvest.

### **Crop management:**

Sowing: Date: 16-10-23

Sowing conditions: Good sowing preparation

Soil with low humidity

Sowing type: row - seeder: John Deere pneumatic Cultivar: INIA Merín / Sowing

density: 140 kg/ ha

Basal fertilization:

Date: 5-11-23 with the crop emerged (rice 1 leaf)

Dosage: according to treatments



 $Photo \ 1-State \ of \ the \ trial \ at \ the \ time \ of \ installation, \ marking \ the \ lines \ for \ manual \ fertilization \ in \ the \ furrow.$ 



Photo 2 – Left: Fertilization treatments in the row. Right: Fertilization treatment at Broadcast seeding in coverage.

30 - 11 - 2023: first coverage with urea (46-0/0-0): 150 kg/ ha at the beginning of tillering

03 - 12 - 2023: start of permanent flooding

26 - 12 - 2023: second coverage with urea (46-0/0-0): 50 kg/ha at primordium

## Climatic characterization of the harvest determining the yield potential

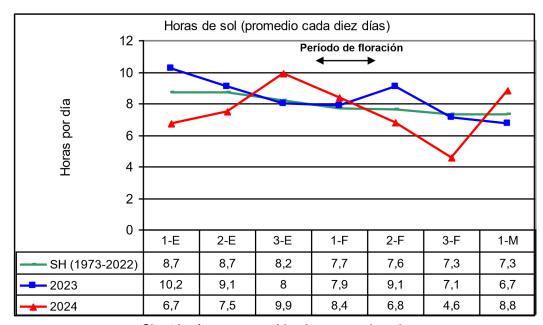
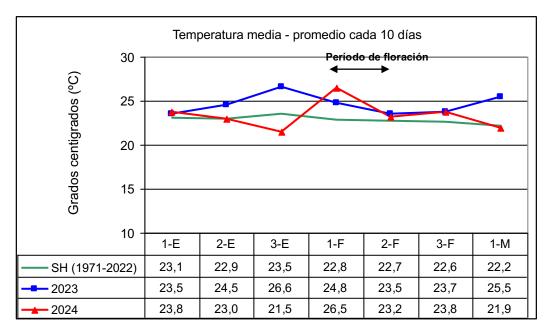




Chart I – Average sunshine hours per decade

Source: Agroclimatology Bulletin – Inia Treinta y Tres Laguna Pass Station



Graph II - Average temperature per decade

Source: Agroclimatology Bulletin – Inia Treinta y Tres Laguna Pass Station

This harvest showed lower luminosity, 3.6% lower than the historical series and 7.5% below the previous one, in the critical period defined by Stansel , J (1975), which covers the 21 days before and 21 days after flowering, where sunlight hours have the greatest impact on yields. On the other hand, the average temperature, except in the last decade of January, was higher than the historical series during the reproductive stage, which is the most sensitive time to determine grain sterility due to the incidence of low temperatures. This factor is identified as one of the main causes that explain the instability of yields in the eastern part of our country.

For the October planting season, climatic factors showed similar results to the historical series, but with strong fluctuations, mainly in sunlight hours. Therefore, yields with high variability between fields could be expected, in response to the technological management employed by the producer.

**PERFORMANCES**Kg/ ha corrected to 13% humidity



| Treatments | Yo    | II    | III   | Average |
|------------|-------|-------|-------|---------|
| 1          | 9851  | 9403  | 9537  | 9597    |
| 2          | 10299 | 9627  | 10030 | 9985    |
| 3          | 10612 | 10746 | 10254 | 10537   |
| 4          | 10164 | 9851  | 10791 | 10269   |
| 5          | 10701 | 10881 | 11060 | 10881   |
| 6          | 10567 | 10343 | 10030 | 10313   |
| 7          | 10254 | 10612 | 10746 | 10537   |
| 8          | 11194 | 10030 | 10343 | 10522   |
| 9          | 10075 | 10522 | 10299 | 10299   |
| 10         | 10254 | 9896  | 9627  | 9925    |

Overall average of the test: 10287 kg/ ha (206 dry bags/ ha)

| TRT | Humus | NPK | Location          |
|-----|-------|-----|-------------------|
| 1-  | 0     | 150 | Line              |
| 2-  | 0     | 150 | Broadcast seeding |
| 3-  | 50    | 150 | Line              |
| 4-  | 50    | 150 | Broadcast seeding |
| 5-  | 50    | 100 | Line              |
| 6-  | 50    | 100 | Broadcast seeding |
| 7-  | 20    | 150 | Line              |

| 8-  | 20 | 150 | Broadcast seeding |
|-----|----|-----|-------------------|
| 9-  | 20 | 100 | Line              |
| 10- | 20 | 100 | Broadcast seeding |

## STATISTICAL ANALYSIS

| FV         | gl | SC      | СМ     | F      |
|------------|----|---------|--------|--------|
| Blocks     | 2  | 215460  | 107730 |        |
| Treatments | 9  | 3696770 | 410752 | 3.57 * |
| Mistake    | 18 | 2070127 | 115007 |        |
| Total      | 29 | 5982357 |        |        |

CV: 3.30%

With a general average of the test of 10287 kg/ ha , statistically significant differences were found at 5%, due to the treatments.

| Treatments | Average Yield (kg | g/ ha ) |
|------------|-------------------|---------|
| 5          | 10881             | to      |
| 3          | 10537             | ab      |
| 7          | 10537             | ab      |
| 8          | 10522             | ab      |
| 6          | 10313             | bc      |
| 9          | 10299             | bc      |
| 4          | 10269             | bc      |
| 2          | 9985              | CD      |
| 10         | 9925              | CD      |
| 1          | 9597              | d       |

DMS = 411 kg/ ha

Means with a common letter are not significantly different (p > 0.05)

| TRT | Humus | NPK | Location          |
|-----|-------|-----|-------------------|
| 1-  | 0     | 150 | Line              |
| 2-  | 0     | 150 | Broadcast seeding |
| 3-  | 50    | 150 | Line              |
| 4-  | 50    | 150 | Broadcast seeding |
| 5-  | 50    | 100 | Line              |

| 6-  | 50 | 100 | Broadcast seeding |
|-----|----|-----|-------------------|
| 7-  | 20 | 150 | Line              |
| 8-  | 20 | 150 | Broadcast seeding |
| 9-  | 20 | 100 | Line              |
| 10- | 20 | 100 | Broadcast seeding |
|     |    |     | seeding           |

## Average yield per treatment

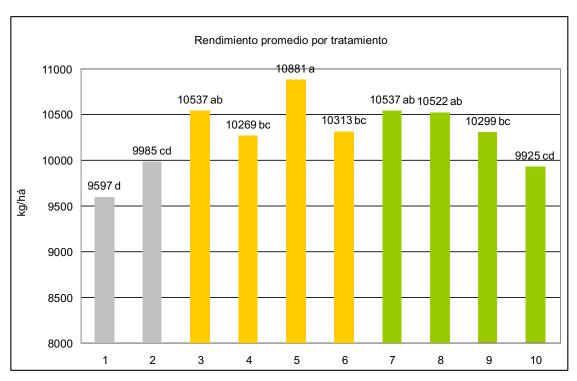
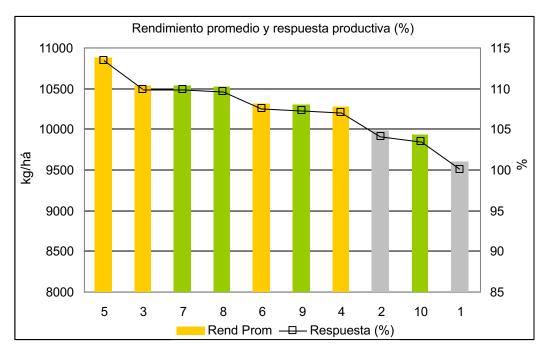



Chart No. 1 - Average yield (kg/ ha ) per treatment. With separation of averages.

Means with a common letter are not significantly different (p > 0.05)




| TRT | Humus | NPK | Location          |
|-----|-------|-----|-------------------|
| 1-  | 0     | 150 | Line              |
| 2-  | 0     | 150 | Broadcast seeding |
| 3-  | 50    | 150 | Line              |
| 4-  | 50    | 150 | Broadcast seeding |
| 5-  | 50    | 100 | Line              |
| 6-  | 50    | 100 | Broadcast seeding |
| 7-  | 20    | 150 | Line              |
| 8-  | 20    | 150 | Broadcast seeding |
| 9-  | 20    | 100 | Line              |
| 10- | 20    | 100 | Broadcast seeding |

# Ordered decreasing average yield and productive response

| Treatments | Rend Average ( kg/<br>ha ) | Rend Prom<br>( bls / ha ) (1) | Productive response (<br>%) (2) |
|------------|----------------------------|-------------------------------|---------------------------------|
| 5          | 10881                      | 218                           | 113                             |
| 3          | 10537                      | 211                           | 110                             |
| 7          | 10537                      | 211                           | 110                             |
| 8          | 10522                      | 210                           | 110                             |
| 6          | 10313                      | 206                           | 107                             |
| 9          | 10299                      | 206                           | 107                             |
| 4          | 10269                      | 205                           | 107                             |
| 2          | 9985                       | 200                           | 104                             |
| 10         | 9925                       | 199                           | 103                             |
| 1          | 9597                       | 192                           | 100                             |

<sup>(1)</sup> Average yield: in dry bags of 50 kg/ ha(2) Productive response on the commercial Control (treatment 1)\_ Base = 100%



Graph No. 2 - Average yield ordered decreasing (kg/ ha ) and productive response (%)



| TRT | Humus | NPK | Location          |
|-----|-------|-----|-------------------|
| 1-  | 0     | 150 | Line              |
| 2-  | 0     | 150 | Broadcast seeding |
| 3-  | 50    | 150 | Line              |
| 4-  | 50    | 150 | Broadcast seeding |
| 5-  | 50    | 100 | Line              |
| 6-  | 50    | 100 | Broadcast seeding |
| 7-  | 20    | 150 | Line              |
| 8-  | 20    | 150 | Broadcast seeding |
| 9-  | 20    | 100 | Line              |
| 10- | 20    | 100 | Broadcast seeding |

# Average yields (kg/ ha ) grouped by:

## 1- Dose of Humus and NPK fertilizer 2- Location method

| Dose (kg/ ha ) (1) | Line  | Broadcast seeding | Average |
|--------------------|-------|-------------------|---------|
| 0 + 150            | 9597  | 9985              | 9791    |
| 20 + 100           | 10299 | 9925              | 10112   |
| 50 + 100           | 10881 | 10313             | 10597   |
| 20 + 150           | 10537 | 10522             | 10530   |

| 50 + 150 | 10537 | 10269 | 10403 |
|----------|-------|-------|-------|
| Average  | 10370 | 10203 |       |

## (1): Humus + Fertilizer

Grouping yields by location method, the overall average for in-line applications showed a 1.6% increase compared to the average for broadcast treatments applied to the cover crop.

The doses of 50 + 100 and 20 + 150, of Humus + NPK fertilizer, recorded the highest average yield, considering all the dose combinations evaluated.

# Yields (kg/ha) depending on the response to doses of Humus + NPK fertilizer

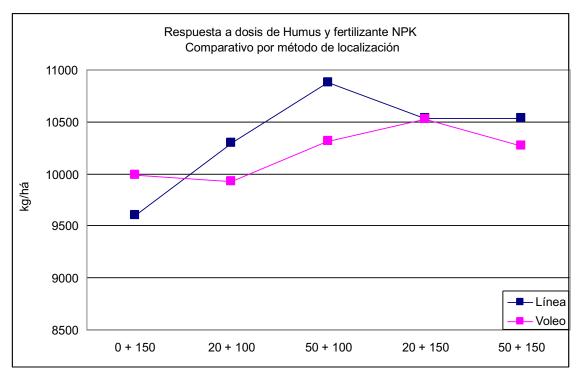



Chart 3 - Response to doses of humus + NPK fertilizer. Comparison of different localization methods.

### Yields grouped by dose of Humus and NPK fertilizer

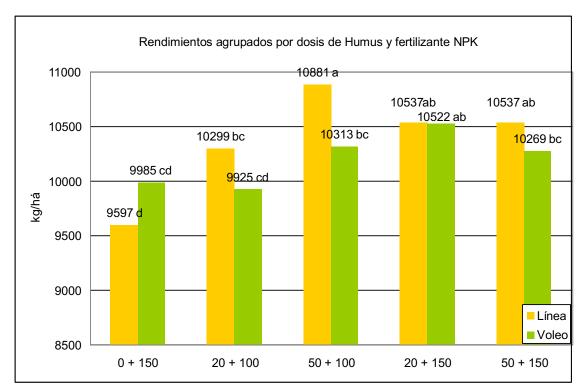



Chart 4 - Yields grouped by dose of humus and NPK fertilizer. With separation of averages.

Means with a common letter are not significantly different (p > 0.05)

- □ With the dose of Humus 50 + NPK 100, the localization treatment on the line significantly exceeded that of broadcast application on the cover.
- □ In the remaining dose combinations, no statistically significant differences were found by location method.
- □ In most cases, a trend of higher yield was observed for treatments applied in the line compared to broadcast treatments, except in the case of fertilization with NPK alone, where the trend was the opposite.

### Yields grouped by location method

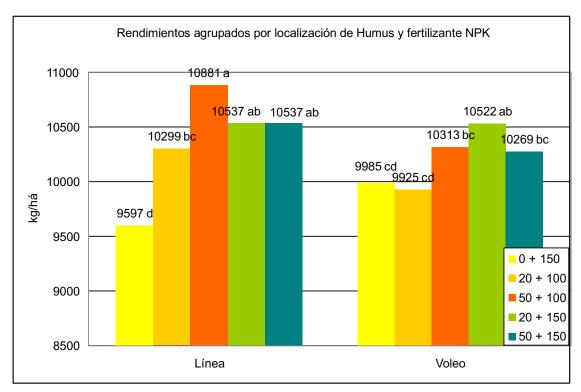



Chart 5 - Yields grouped by location method. With mean separation.

Means with a common letter are not significantly different (p > 0.05)

- By applying Humus and NPK fertilizer to the line, all treatments with the bioactivator significantly outperformed the commercial control (NPK fertilizer only).
- □ With this application method, the treatment with Humus 50 + NPK 100 stood out, being positioned in a first step of performance, but did not differ statistically from the treatments of 20 + 150 and 50 + 150, of Humus and NPK respectively.
- □ When applying humus and NPK fertilizer broadcast on the cover crop, only the treatment with Humus 20 + NPK 150 significantly outperformed the commercial control (NPK fertilizer only). The other combinations did not differ statistically from the control.
- In general terms, four combinations of Humus and NPK fertilizer achieved significant productive response over the best commercial control (only NPK fertilizer broadcast), three of them were applied in line and one broadcast.
- □ The responses were variable, in one case the addition of Humus replacing the NPK fertilizer dose 1:1 caused a significant increase in yield and in the three remaining cases the response was achieved by adding the bioactivator to the NPK control dose.

Photo 3: In the foreground, the commercial NPK 150 control applied in-line. It presented the lowest test performance, not differing statistically from only two treatments and being significantly outperformed by the rest.





Photo 4: The commercial Control NPK 150 applied by broadcasting was significantly surpassed by four combinations of Humus + fertilizer, three of them in line and one broadcast.

Photo 5: Treatment 3 (Humus 50 + NPK 150 applied in line) was the best in terms of yields step and significantly outperformed the best commercial Control (fertilizer NPK lone).





Photo 6: Treatment 4 (Humus 50 + NPK 150 applied by broadcasting) did not differ statistically from best commercial Control (only fertilizer) and NPK by Broadcast seeding).

#### **FINAL COMMENTS**

The essay is based on a little-known topic for rice cultivation in our country: the use of the fertilizer additive Humus from the Paraguayan company Tiróleo .

Starting with the NPK fertilizer dosage recommended by a technical expert based on soil analysis, two doses of humus were tested, both in addition to and in place of the fertilizer, and compared with a commercial control (fertilizer alone). Furthermore, all treatments were applied in duplicate, incorporated into the row or broadcast as a cover crop, to compare the effectiveness of both localization methods.

The trial was installed in a commercial farm of the INIA Merín variety, which occupies 50% of the rice area, in the second section of the department of Treinta y Tres, on Planosol soils . Subeutrics Ocricos with a silty loam texture , associated with Solods Ocricos belonging to the La Charqueada unit.

#### CONCLUSIONS

#### **Performance**

With a general average of the test of 10287 kg/ ha, statistically significant differences were found at 5%, due to the treatments.

Treatment 5 (Humus 50 + NPK 100 applied to the line) was at the top of the yields, not differing statistically from three treatments, but significantly surpassing the rest (see graph No. 1).

The other treatments that were positioned in that first performance step were 3 (Humus 50 + NPK 150 applied in line) and 7 and 8 (Humus 20 + NPK 150 applied in line and broadcast respectively).

These four top-performing treatments achieved significant productive response over the best commercial control (only broadcast NPK fertilizer), highlighting that three of them were applied in line and one broadcast.

Grouping yields by location method, the overall average for application in the row showed a 1.6% increase compared to the average for broadcast topdressing treatments. Furthermore, the 50 + 100 and 20 + 150 doses of humus + NPK fertilizer recorded the highest average yields among all dose combinations evaluated.

Observing the different productive responses by grouping treatments by additive and fertilizer dose allows us to compare the effectiveness achieved based on the application method. The most eloquent result was recorded with the Humus 50 + NPK 100 dose, where the in-row application significantly outperformed the broadcast application. On the other hand, with the remaining dose combinations, no statistically significant differences were found based on the application method. However, in most cases, a trend of higher yield was observed for the in-row treatments compared to the broadcast treatments, except in the case of NPK fertilization alone, where the trend was the opposite (see graph 4).

Grouping the results by the location method (see graph No. 5) allows us to highlight the main conclusions drawn from this test:

I) By applying Humus and NPK fertilizer to the line, all treatments with the bioactivator significantly outperformed the commercial control (only NPK fertilizer), with the treatment with Humus 50 + NPK 100 standing out, which was positioned at the first level of performance, but did not differ statistically from the treatments of 20 + 150 and 50 + 150, of Humus and NPK respectively.

II) When applying humus and NPK fertilizer broadcast on the cover crop, only the treatment with Humus 20 + NPK 150 significantly outperformed the commercial control (NPK fertilizer only). The other combinations did not differ statistically from the control.

In summary, four combinations of humus and NPK fertilizer achieved significant yield responses compared to the best commercial control (only broadcast NPK fertilizer). Three of these were applied in-row and one broadcast. The responses varied; in one case, the addition of humus, replacing the NPK fertilizer dose 1:1, led to a significant increase in yield, and in the remaining three cases, the response was achieved by adding the bioactivator to the NPK control dose.

The results with the Humus fertilizer additive are promising and generate good prospects for commercial adoption. However, the technological changes it entails in terms of adjusting the base fertilizer dosage and the location method require further research and validation to generate solidly supported technical recommendations.

# **ASINAGRO** AGRONOMIC ADVICE AND RESEARCH

# TEST WITH ADDITIVE FOR FERTILIZERS HUMUS - SOYBEANS

Third section – Thirty-Three - Uruguay

2023-2024 HARVEST

### INTRODUCTION

The essay is based on a little-known topic for soybean cultivation in our country: the use of the fertilizer additive Humus from the Paraguayan company Tiróleo.

The bioactivation of fertilizers, with additives such as humus, aims to optimize their assimilation in order to reduce their consumption, maximizing the use of nutrients and minimizing losses that affect the environment and the producers' economy.

Agricultural activities today face challenges in finding ways to ensure the preservation of natural resources for future generations, minimize environmental impacts, help mitigate climate change, and produce food of proven safety and quality.

In this context, there are various strategies and visions regarding the paths to be taken. In our case, we see a priority in advancing paths that promote gradual changes in inputs, management, and processes, reducing the environmental footprint and maintaining or improving the productivity and quality of the rice produced.

The incorporation of bioinputs, such as the additive Humus de Tyróleo, is a key tool to generate valid alternatives to a traditional sustainable and high-productivity management system.

In response to this challenge, an exact basal fertilization test using the Humus additive from the company Tiróleo was installed in the third section of the department of Treinta y Tres, on a farm where the rice-soybean rotation is carried out.

Starting with the NPK fertilizer dosage recommended by a technical expert based on soil analysis, two doses of humus were tested, both in addition to and in place of the fertilizer, and compared with a commercial control (fertilizer alone). Furthermore, all treatments were applied in duplicate, incorporated into the row or broadcast as a cover crop, to compare the effectiveness of both localization methods.

This report presents data on the test setup, materials and methods, results, statistical analysis of performance, and final comments. Illustrative photographs are also included.

### **GOALS**

- > To evaluate the effectiveness of the fertilizer additive Humus in soybean cultivation.
- Contrast between online application and random coverage.
- Adjust the application of Humus in relation to replacement or addition with NPK fertilizer.
- Quantify its impact on crop yield.

### **MATERIALS AND METHODS**

Product evaluated: fertilizer additive

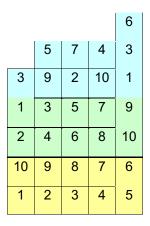
#### Humus

Bioactivating additive with the same physical characteristics as a granulated fertilizer, making it suitable for mixing prior to application.

It is obtained from plant remains that go through a fermentation process where a set of microorganisms – Microbiome – are incorporated, which interact with each other, in balance and conditioned by the soil and the chemical processes that direct them.

Nutrient release depends on the existing microbiology in the soil, but the use of the additive increases this dynamic because the incorporated microbiome favors the processes that make nutrients available to plants.

Treatments: (Dose kg/ ha)


| TRT | Humus | NPK (1) | Location          | Relationship<br>Humus: NPK |
|-----|-------|---------|-------------------|----------------------------|
| 1-  | 0     | 200     | Line              | Control                    |
| 2-  | 0     | 200     | Broadcast seeding | Control                    |
| 3-  | 50    | 200     | Line              | Additive                   |
| 4-  | 50    | 200     | Broadcast seeding | Additive                   |
| 5-  | 50    | 150     | Line              | Replacement (2)            |
| 6-  | 50    | 150     | Broadcast seeding | Replacement (2)            |
| 7-  | 20    | 200     | Line              | Additive                   |
| 8-  | 20    | 200     | Broadcast seeding | Additive                   |
| 9-  | 20    | 150     | Line              | Replacement (3)            |
| 10- | 20    | 150     | Broadcast seeding | Replacement (3)            |

- (1) NPK base fertilizer: 0 20/20 30
- (2) Complete 1:1 replacement with 25% reduction in NPK dosage
- (3) Partial replacement 0.4:1 with 25% reduction in NPK dosage

### Design

Random blocks with three repetitions Plots of 20 m<sup>2</sup> (4 m wide by 5 m long).

## **Distribution of treatments:**



# **Test facility**

| Locality | Producer        | Planting date | Cultivate |
|----------|-----------------|---------------|-----------|
| Vergara  | Hernán Zorrilla | December 1st  | DM 60i62  |

Representative location of the traditional rice-growing basin of Laguna Merín, the area included in the third section of the department of Treinta y Tres corresponds to the "Rincón de Ramírez"

unit of the Soil Recognition Chart of Uruguay, scale 1:1,000,000, and the soil where the test was installed is a Planosol Distric Ocher with a silty loam texture.

### Soil analysis -

Predecessor: rice stubble

Management: Spring glyphosate - pre-tillage (disk and leveling)

| pH (H2O)              | 5.5  |  |
|-----------------------|------|--|
| MO (%)                | 1.8  |  |
| P – citric acid (ppm) | 6    |  |
| K ( meq /100 gr soil) | 0.21 |  |
|                       |      |  |

### **Recommended Dose**

The recommendation for phosphorus and potassium fertilization for soybeans is determined based on soil chemical analysis and the production system that alternates soybeans with rice in a 1:1 rotation.

- $P_2O_5 = 40 \text{ units / ha}$
- K<sub>2</sub>O = 60 units / ha

For the commercial Control NPK (0 - 20/20 - 30) it is adjusted to 200 kg/ ha (treatment 1).

### **Description of the environment**

The trial was installed in a rice crop, planted on a Planosol Distric Ochric with a silty loam texture belonging to the Rincón de Ramírez unit.

The planting date for the farm is early December, with the Don Mario genetic variety, DM 60i62 IPRO, with a short sixth cycle and indeterminate growth habit. Its main characteristics include its excellent adaptation to medium-yield environments and rice plain soils.

## **Crop management:**

Sowing:

Date: 1st-12-2023

Sowing conditions: Good sowing preparation

Soil with good humidity

Planting type: row – seeder: John Deere planter

Variety: DM 60i62 IPRO / Sowing density: 13 seeds/m linear

Basal fertilization:

Date: 6-12-23 with the germinated culture

Dosage: according to treatments



Photo 1 – Sowing the test.



Photo 2 – Installation of the test with location of Humus and NPK fertilizer in the furrow for treatments

### Climatic characterization of the harvest determining the yield potential

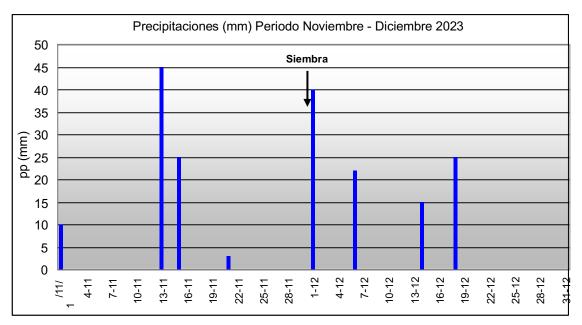
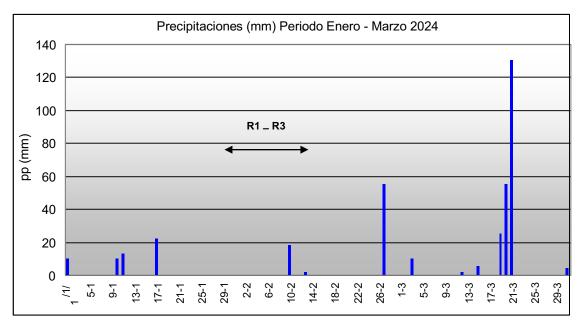




Chart I – Daily rainfall (mm) – Period November – December 2023 Source: Producer's own data.

Immediately after sowing, rainfall occurred which, due to its volume, could affect the establishment of the crop on soils with flat topography and poor drainage. However, in the trial, a good recovery of plants was achieved, achieving a population of 280,000 plants/ ha .



Graph II – Daily rainfall (mm) – Period January – March 2024 Source: Producer's own data.

Prior to and during the critical yield-generating stage, between R1 and R3, there was no significant rainfall, but the crop nevertheless showed acceptable development and realized very good yield potential, favored by timely rainfall during grain filling.

## **EVALUATIONS**

## Plant development - 35 days after emergence -



Photo 3: In the foreground, treatment 10 (Humus 20 + NPK 150 applied broadcast). In the background, treatment 9 (same dose but placed in a row) was seen to have developed more than the treatment mentioned above, 35 days after emergence.



Photo 4: On the left, treatment 5 (Humus 50 + NPK 150 applied in the row). On the right

Treatment 7 (20 + 200). They presented similar plant development in the first evaluation.



Photo 5: Treatment 5 in the foreground (Humus 50 + NPK 150 located on the line). In the background Treatment 6 (same dose but applied randomly). They showed a similar development of plants, 35 days after emergence.

### Plant development - 55 days after emergence -



Photo 6: In the foreground is the commercial control (NPK 200 applied in line). In the background is located the treatment 3 (Humus 50 + NPK 200 in line) with greater plant development and inter-row coverage than the Control, 55 days after the emergency.



Photo 7: In the foreground, treatment 10 (Humus 20 + NPK 150 applied broadcast). In the background, treatment 9 (same dose but placed in a row) was seen to have developed more than the treatment mentioned above, 55 days after emergence.





Photos 8 and 9: In the foreground, the commercial control (NPK 200 applied broadcast). In the background, treatment 7 (Humus 20 + NPK 200 applied in the row) with a notable response in plant development and inter-row coverage, 55 days after emergence.

## Root development - 65 days after emergence -



TRT. 3 (50 + 200 line) / TRT. 4 (50 + 200 broadcast seeding) / TRT. 7 (20 + 200 line) / TRT. 8 (20 + 200 broadcast seeding)

Small differences in root size were observed in favor of treatments with higher doses of humus, regardless of the location method. The superior root development was reflected in the aerial parts of the crop, with greater plant development.

## Plant development - 85 days after emergence -



Photo 11: in the foreground the commercial Control (NPK 200 applied broadcast) and in the background the Control commercial applied in the line. The first mentioned showed a slightly higher development of plants, 85 days after emergence.



Photo 12: in the foreground treatment 4 (Humus 20 + NPK 150 applied by broadcasting) and in the background the Treatment 3 (same dose but located online), did not record significant differences in the **plant** development, 85 days after emergence.



Photo 13: in the foreground treatment 6 (Humus 20 + NPK 150 applied by broadcasting) and in the background the Treatment 5 (same dose but located online). The first one was highlighted by a superior plant development, 85 days after emergence.



Photo 14: in the foreground treatment 10 (Humus 20 + NPK 150 applied by broadcasting) and in the background Treatment 9 (same dose but located online). As in the evaluations Previously, the latter was observed with greater plant development than the former.

**PERFORMANCES**Kg/ ha corrected to 12% humidity



| Treatments | Yo   | II   | III  | Average |
|------------|------|------|------|---------|
| 1          | 3400 | 3225 | 3550 | 3392    |
| 2          | 3250 | 3400 | 3600 | 3417    |
| 3          | 4000 | 3700 | 3800 | 3833    |
| 4          | 3450 | 3675 | 3775 | 3633    |
| 5          | 3875 | 3975 | 4025 | 3958    |
| 6          | 4075 | 4350 | 4300 | 4242    |
| 7          | 4200 | 4125 | 3925 | 4083    |
| 8          | 3775 | 4000 | 3525 | 3767    |
| 9          | 3375 | 3650 | 3500 | 3508    |
| 10         | 3325 | 3675 | 3275 | 3425    |

□ Overall average of the test: 3726 kg/ ha

| TRT | Humus | NPK | Location          |
|-----|-------|-----|-------------------|
| 1-  | 0     | 200 | Line              |
| 2-  | 0     | 200 | Broadcast seeding |
| 3-  | 50    | 200 | Line              |
| 4-  | 50    | 200 | Broadcast seeding |
| 5-  | 50    | 150 | Line              |
| 6-  | 50    | 150 | Broadcast seeding |
| 7-  | 20    | 200 | Line              |
| 8-  | 20    | 200 | Broadcast seeding |
| 9-  | 20    | 150 | Line              |
| 10- | 20    | 150 | Broadcast seeding |

## STATISTICAL ANALYSIS

| FV         | gl | SC      | СМ     | F      |
|------------|----|---------|--------|--------|
| Blocks     | 2  | 55167   | 27583  |        |
| Treatments | 9  | 2444354 | 271595 | 9.73 * |
| Mistake    | 18 | 502333  | 27907  |        |
| Total      | 29 | 3001854 |        |        |

CV: 4.48%

With a general average of the test of 3726 kg/ ha , statistically significant differences were found at 5%, due to the treatments.

| Treatments | Average Yield (kg/ ha ) |    |
|------------|-------------------------|----|
| 6          | 4242                    | to |
| 7          | 4083                    | ab |
| 5          | 3958                    | bc |
| 3          | 3833                    | CD |
| 8          | 3767                    | CD |
| 4          | 3633                    | of |
| 9          | 3508                    | ef |
| 10         | 3425                    | F  |
| 2          | 3417                    | F  |
| 1          | 3392                    | F  |

DMS = 203 kg/ ha

Means with a common letter are not significantly different (p > 0.05)

| TRT | Humus | NPK | Location          |
|-----|-------|-----|-------------------|
| 1-  | 0     | 200 | Line              |
| 2-  | 0     | 200 | Broadcast seeding |
| 3-  | 50    | 200 | Line              |
| 4-  | 50    | 200 | Broadcast seeding |
| 5-  | 50    | 150 | Line              |
| 6-  | 50    | 150 | Broadcast seeding |
| 7-  | 20    | 200 | Line              |
| 8-  | 20    | 200 | Broadcast seeding |
| 9-  | 20    | 150 | Line              |
| 10- | 20    | 150 | Broadcast seeding |

## Average yield per treatment

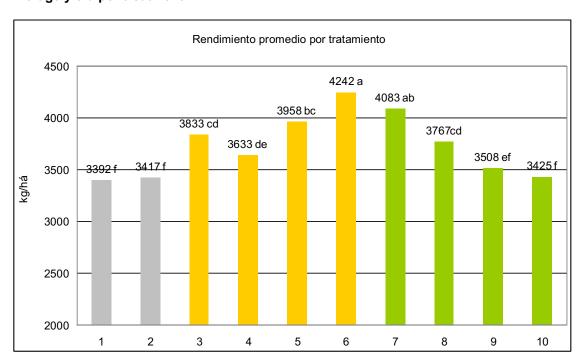
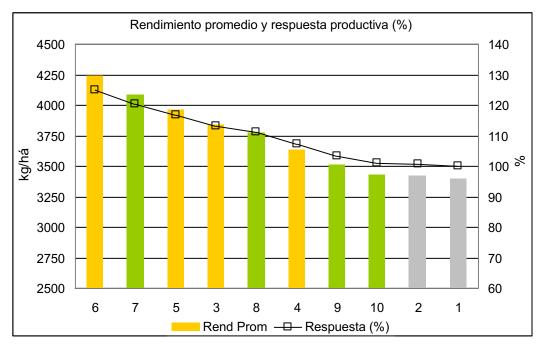



Chart No. 1 - Average yield (kg/ ha ) per treatment. With separation of averages.

Means with a common letter are not significantly different (p > 0.05)




| TRT | Humus | NPK | Location          |
|-----|-------|-----|-------------------|
| 1-  | 0     | 200 | Line              |
| 2-  | 0     | 200 | Broadcast seeding |
| 3-  | 50    | 200 | Line              |
| 4-  | 50    | 200 | Broadcast seeding |
| 5-  | 50    | 150 | Line              |
| 6-  | 50    | 150 | Broadcast seeding |
| 7-  | 20    | 200 | Line              |
| 8-  | 20    | 200 | Broadcast seeding |
| 9-  | 20    | 150 | Line              |
| 10- | 20    | 150 | Broadcast seeding |

# Ordered decreasing average yield and productive response

| Treatments | Rend Average ( kg/ | Productive response ( |  |
|------------|--------------------|-----------------------|--|
|            | ha )               | %) (1)                |  |
| 6          | 4242               | 125                   |  |
| 7          | 4083               | 120                   |  |
| 5          | 3958               | 117                   |  |
| 3          | 3833               | 113                   |  |
| 8          | 3767               | 111                   |  |
| 4          | 3633               | 107                   |  |
| 9          | 3508               | 103                   |  |
| 10         | 3425               | 101                   |  |
| 2          | 3417               | 101                   |  |
| 1          | 3392               | 100                   |  |

(1) Productive response on the commercial Control (treatment 1)\_ Base = 100%



Graph No. 2 - Average yield ordered decreasing (kg/ ha ) and productive response (%)

|  | Controls without Humus | Humus 20 kg/ ha Humus |
|--|------------------------|-----------------------|
|  | 50 kg/ ha              | •                     |

| TRT | Humus | NPK | Location          |
|-----|-------|-----|-------------------|
| 1-  | 0     | 200 | Line              |
| 2-  | 0     | 200 | Broadcast seeding |
| 3-  | 50    | 200 | Line              |
| 4-  | 50    | 200 | Broadcast seeding |
| 5-  | 50    | 150 | Line              |
| 6-  | 50    | 150 | Broadcast seeding |

| 7-  | 20 | 200 | Line              |
|-----|----|-----|-------------------|
| 8-  | 20 | 200 | Broadcast seeding |
| 9-  | 20 | 150 | Line              |
| 10- | 20 | 150 | Broadcast seeding |

### Average yields (kg/ ha ) grouped by:

- 1- Humus and NPK fertilizer dosage
- 2- Localization method

| Dose (kg/ ha ) (1) | Line | Broadcast seeding | Average |
|--------------------|------|-------------------|---------|
| 0 + 200            | 3392 | 3417              | 3405    |
| 20 + 150           | 3508 | 3425              | 3467    |
| 50 + 150           | 3958 | 4242              | 4100    |
| 20 + 200           | 4083 | 3767              | 3925    |
| 50 + 200           | 3833 | 3633              | 3733    |
| Average            | 3755 | 3697              |         |

### (1): Humus + Fertilizer

Grouping yields by location method, the overall average for in-line applications showed a 1.6% increase compared to the average for broadcast treatments applied to the cover crop.

The doses of 50 + 150 and 20 + 200, of Humus + NPK fertilizer, recorded the highest average yield, considering all the dose combinations evaluated.

### Yields (kg/ ha ) depending on the response to doses of Humus + NPK fertilizer

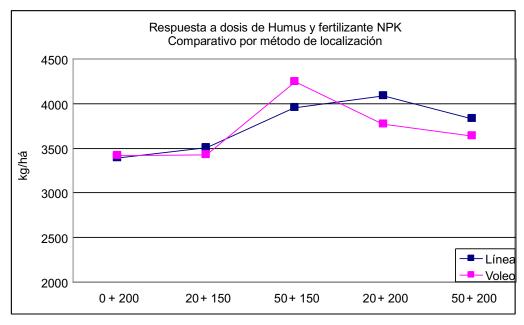



Chart 3 - Response to doses of humus + NPK fertilizer. Comparison of different localization methods.

## Yields grouped by dose of Humus and NPK fertilizer

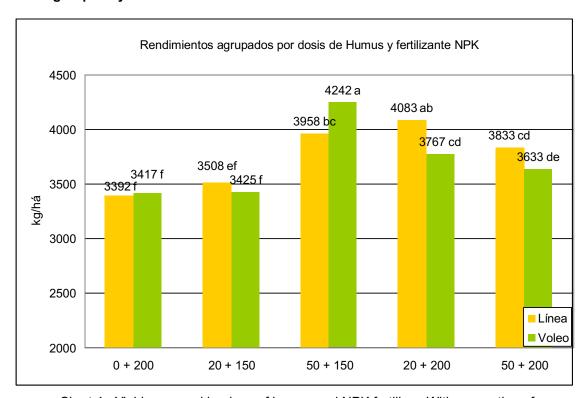



Chart 4 - Yields grouped by dose of humus and NPK fertilizer. With separation of averages.

Means with a common letter are not significantly different (p > 0.05)

- □ With the Humus 50 + NPK 150 dose, broadcast application significantly outperformed the on-row application. On the other hand, with the Humus 20 + NPK 200 dose, the result was the opposite, with the on-row application significantly more effective.
- ☐ In the remaining dose combinations, including commercial controls, no statistically significant differences were found by location method.

## Yields grouped by location method

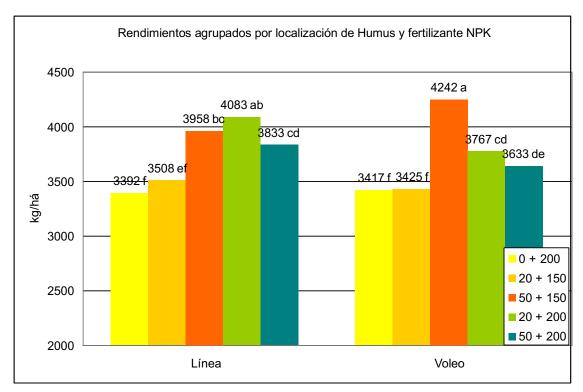



Chart 5 - Yields grouped by location method. With mean separation.

Means with a common letter are not significantly different (p > 0.05)

- □ For both online and broadcast location, all treatments with Humus + NPK fertilizer, except those with the lowest dose (20 + 150), significantly outperformed the commercial controls (only NPK fertilizer).
- □ With the application in the line, the treatment with Humus 20 + NPK 200 stood out, positioning itself in a first step of performance, but did not differ statistically from the treatment of 50 + 150.
- □ Broadcast application of the Humus 50 + NPK 150 treatment resulted in the highest yield, significantly surpassing the rest.
- In general terms, six combinations of Humus and NPK fertilizer achieved significant productive response over commercial controls (only NPK fertilizer), three of them were applied in line and the other three broadcast.
- □ The responses were variable, but in the line the most notable treatment was adding Humus to the NPK fertilizer and in the case of broadcast application the addition of Humus replacing the NPK fertilizer dose 1:1 caused a significant increase in yield.

Photo of the same dose but located on line 15: in the foreground the commercial Control. They were located at the last performance step, NPK 200 applied by broadcasting and in the background the Control with

being significantly surpassed by most treatments applied with Humus + NPK fertilizer.





Photo 16: in the foreground treatment 4 (Humus 50 + NPK 200 applied by broadcasting), in the background the Treatment 3 (same dose but located on the line). They did not differ statistically from each other, but significantly outperformed commercial controls (NPK fertilizer only).

#### **FINAL COMMENTS**

The essay is based on a little-known topic for soybean cultivation in our country: the use of the fertilizer additive Humus from the Paraguayan company Tiróleo .

Starting with the NPK fertilizer dosage recommended by a technical expert based on soil analysis, two doses of humus were tested, both in addition to and in place of the fertilizer, and compared with a commercial control (fertilizer alone). Furthermore, all treatments were applied in duplicate, incorporated into the row or broadcast as a cover crop, to compare the effectiveness of both localization methods.

The trial was installed in a commercial field of the DM 60i62 IPRO variety, which reached a population of 280,000 plants/ ha and was located in the third section of the Treinta y Tres department, on Planosol soils. Dystrics Ochrics with a silty loam texture belonging to the Rincón de Ramírez unit.

#### **CONCLUSIONS**

#### Performance

With a general average of the test of 3726 kg/ ha , statistically significant differences were found at 5%, due to the treatments.

Treatment 6 (Humus 50 + NPK 150 applied broadcast) was at the top of the yields, not differing statistically from treatment 7 (Humus 20 + NPK 200 applied in the line), but significantly surpassing the rest (see graph No. 1).

These higher performance treatments achieved significant productive response between 20 and 25% over commercial controls (NPK fertilizer only) (see graph No. 2).

Grouping yields by location method, the overall average for application in the row showed a 1.6% increase compared to the average for broadcast topdressing treatments. Furthermore, the 50 + 150 and 20 + 200 doses of humus + NPK fertilizer recorded the highest average yields among all dose combinations evaluated.

Observing the different productive responses grouping treatments by additive and fertilizer dose allows us to compare the effectiveness achieved based on the location method. The most eloquent results were recorded with the Humus 50 + NPK 150 dose, where the broadcast application treatment significantly exceeded the in-row location treatment. With the Humus 20 + NPK 200 dose, the result was the opposite, with the in-row location being significantly more prominent. On the other hand, with the remaining dose combinations, including the commercial controls, no statistically significant differences were found based on the location method (see graph 4).

Grouping the results by the location method (see graph No. 5) allows us to highlight the main conclusions drawn from this test:

- I) For both in-line and broadcast application, all treatments with Humus + NPK fertilizer, except those with the lowest dose (20 + 150), significantly outperformed the commercial controls (only NPK fertilizer).
- II) With the application in the line, the treatment with Humus 20 + NPK 200 stood out, positioning itself in a first step of performance, but did not differ statistically from the treatment of 50 + 150. Applying broadcast in coverage, the treatment with Humus 50 + NPK 150 was placed at the top of the yields, significantly surpassing the rest.

In summary, six combinations of humus and NPK fertilizer achieved significant yield responses compared to commercial controls (NPK fertilizer alone). Three of these were applied in rows and the other three were broadcast. Responses varied, but in rows, the most notable treatment was adding humus to the NPK fertilizer. In the case of broadcast application, the addition of humus, replacing the NPK fertilizer dose 1:1, led to a significant increase in yield.

The results with the Humus fertilizer additive are promising and generate good prospects for commercial adoption. However, the technological changes it entails in terms of adjusting the base fertilizer dosage and the location method require further research and validation to generate solidly supported technical recommendations.

# ASINAGRO AGRONOMIC ADVICE AND RESEARCH

# TEST WITH ADDITIVE FOR FERTILIZERS HUMUS - SOYBEANS

Third section – Thirty-Three - Uruguay

2024-2025 HARVEST

#### INTRODUCTION

The trial is based on a little-known topic for soybean cultivation in our country: the use of the fertilizer additive MO Humus from the Paraguayan company Tiróleo. The bioactivation of fertilizers, with additives such as MO Humus, aims to optimize their assimilation in order to reduce consumption, maximizing nutrient utilization, and minimizing losses that affect the environment and the producers' finances.

Agricultural activities today face challenges in finding ways to ensure the preservation of natural resources for future generations, minimize environmental impacts, help mitigate climate change, and produce food of proven safety and quality.

In this context, there are various strategies and visions regarding the paths to be taken. In our case, we see a priority in advancing paths that promote gradual changes in inputs, management, and processes, reducing the environmental footprint and maintaining or improving the productivity and quality of the rice produced.

The incorporation of bioinputs, such as the MO Humus additive from Tyróleo, is a key tool for generating valid alternatives to a traditional, sustainable, and highly productive management system.

In response to this challenge, for the second consecutive year, an accurate basal fertilization trial using the MO Humus additive from the company Tiróleo was installed in the third section of the Treinta y Tres department, on a farm where the rice-soybean rotation is carried out.

Starting with the NPK fertilizer dosage recommended by a technical expert based on soil analysis, two doses of OM humus were tested, both in addition to and in place of the fertilizer, and compared with a commercial control (fertilizer alone). Furthermore, all treatments were applied in duplicate, incorporated into the row or broadcast as a cover crop, to compare the effectiveness of both localization methods.

This report presents data on the test setup, materials and methods, results, statistical analysis of performance, and final comments. Illustrative photographs are also included.

## **GOALS**

- > To evaluate the effectiveness of the fertilizer additive MO Humus in soybean cultivation.
- Contrast between online application and random coverage.
- Adjust the application of MO Humus in relation to replacement or addition with NPK fertilizer.
- Quantify its impact on crop yield.

## **MATERIALS AND METHODS**

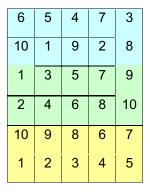
Product evaluated: fertilizer additive MO Humus

Bioactivating additive with the same physical characteristics as a granulated fertilizer, making it suitable for mixing prior to application.

It is obtained from plant materials, subjected to the microaerophilic batch fermentation process under physicochemical and biological conditions that promote and enrich the natural microbiome of plant extracts.

Nutrient release depends on the existing microbiology in the soil, but the use of the MO Humus additive increases this dynamic because the product's natural microbiome favors the processes that make nutrients available to plants.

Treatments: (Dose kg/ha)


| TRT | Humus | NPK (1) | Location         | Relationship<br>Humus: NPK |
|-----|-------|---------|------------------|----------------------------|
| 1-  | 0     | 200     | Line             | Control                    |
| 2-  | 0     | 200     | Broadcast seeind | Control                    |
| 3-  | 50    | 200     | Line             | Additive                   |
| 4-  | 50    | 200     | Broadcast seeind | Additive                   |
| 5-  | 50    | 150     | Line             | Replacement (2)            |
| 6-  | 50    | 150     | Broadcast seeind | Replacement (2)            |
| 7-  | 20    | 200     | Line             | Additive                   |
| 8-  | 20    | 200     | Broadcast seeind | Additive                   |
| 9-  | 20    | 150     | Line             | Replacement (3)            |
| 10- | 20    | 150     | Broadcast seeind | Replacement (3)            |

- (1) NPK base fertilizer: 0 20/20 30
- (2) Complete 1:1 replacement with 25% reduction in NPK dosage
- (3) Partial replacement 0.4:1 with 25% reduction in NPK dosage

# Design

Random blocks with three repetitions Plots of 20 m<sup>2</sup> (4 m wide by 5 m long).

## **Distribution of treatments:**



## **Test facility**

| Locality | Producer        | Planting date | Cultivate         |
|----------|-----------------|---------------|-------------------|
| Vergara  | Hernán Zorrilla | November 13   | DM Garra IPRO STS |

Representative location of the traditional rice-growing basin of Laguna Merín, the area included in the third section of the department of Treinta y Tres corresponds to the "Rincón de Ramírez" unit of the Soil Recognition Chart of Uruguay, scale 1:1,000,000, and the soil where the test was installed is an Ochric Dystric Planosol with a silty loam texture.

## Soil analysis -

Predecessor: rice stubble

Management: Spring glyphosate – pre-tillage (disk and leveling)

| ~LL (LIOO)            | F 2  |  |
|-----------------------|------|--|
| pH (H2O)              | 5.3  |  |
| MO (%)                | 1.9  |  |
| P – citric acid (ppm) | 8    |  |
| K (meq/100 gr soil)   | 0.19 |  |
|                       |      |  |

## **Recommended Dose**

The recommendation for phosphorus and potassium fertilization for soybeans is determined based on soil chemical analysis and the production system that alternates soybeans with rice in a 1:1 rotation.

- $P_2O_5 = 40 \text{ units / ha}$
- K<sub>2</sub>O = 60 units / ha

For the commercial Control NPK (0 - 20/20 - 30) it is adjusted to 200 kg/ha (treatment 1).

## **Description of the environment**

The trial was installed in a soybean crop, planted on a Dystric Ochric Planosol with a silty loam texture belonging to the Rincón de Ramírez unit.

The planting date for the farm is mid-November, with the Don Mario genetic variety, Garra IPRO STS, a long-cycle VI crop with an indeterminate growth habit. Its main characteristics include its excellent adaptation to medium-to-low productivity environments and rice plain soils.

# **Crop management:**

Sowing:

Date: 13-11-24

Sowing conditions: Good sowing preparation

Soil with low humidity

Planting type: row – seeder: John Deere planter

Variety: DM Garra IPRO STS / Sowing density: 17 seeds/m linear

Basal fertilization:

Date: 20-11-24 with the germinated culture

Dosage: according to treatments



Photo 1 – Sowing the test.

Climatic characterization of the harvest determining the yield potential

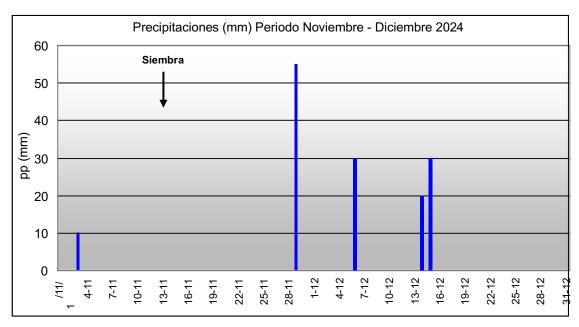
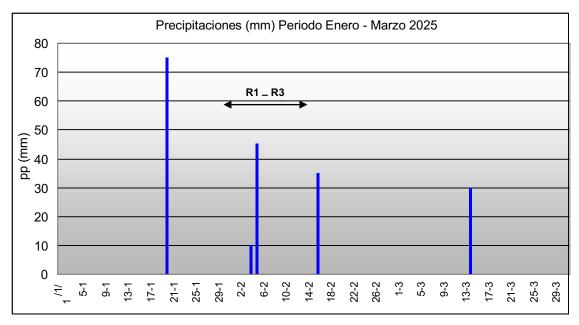




Chart I – Daily rainfall (mm) – Period November – December 2024 Source: Producer's own data.

Planting was carried out immediately after a low rainfall event, but due to the quality of the rainfall, determined by a good seeder, excellent plant recovery was achieved, achieving a population of 320,000 plants/ha.



Graph II – Daily rainfall (mm) – Period January – March 2025 Source: Producer's own data.

Prior to and during the critical stage for yield generation, between R1 and R3, significant rainfall occurred that favored the generation of very good yield potential, finally materialized by timely rainfall during grain filling.

## **EVALUATIONS**

Plant development - 37 days after emergence -



Photo 2: Treatment 7 (Humus 20 + NPK 200 located in the row) in the foreground, and Treatment 8 (same dose but applied broadcast) in the background. They showed similar plant development in the initial evaluation.



Photo 3: on the left, treatment 6 (Humus 50 + NPK 150 applied by broadcasting) and on the right, treatment 7 (20 + 200). The treatment mentioned in the previous section was observed to have greater plant development. First term, 37 days after the emergency.

Photo 4: in the foreground treatment 10 (Humus 20 + NPK 150) and in the background treatment 6 (50 + 150) both applied broadcast. They showed similar plant development 37 days later. of the emergency.





Photo 5: in the foreground treatment 10 (Humus 20 + NPK 150) and in the background the commercial control (NPK 200) both applied by broadcasting. The first mentioned showed a greater development of plants than the Control, at the time of the first evaluation.

Plant development - 85 days after emergence -



Photo 6: on the left, treatment 5 (Humus 50 + NPK 150 located on the line) and on the right treatment 4 (50 + 200 applied by broadcasting) showed similar plant development, 85 days after the emergency.



Photo 7: Treatment 3 (Humus 50 + NPK 200) in the foreground, and the commercial control (NPK 200) in the background, both located in a row. The former showed greater plant development at the time of the second evaluation.

Photo 8: Treatment 4 (Humus 50 + NPK 200 applied broadcast on the cover) in the foreground, and Treatment 3 (50 + NPK 200 applied on the row) in the background. The latter showed greater plant development 85 days after emergence.





Photo 9: on the left, treatment 6 (Humus 50 + NPK 150 applied by broadcasting in coverage) On the right, treatment 7 (20 + 200 located on the line). The first one presented a noticeable greater development of plants at the time of the second evaluation.

PERFORMANCES
Kg/ha corrected to 12% humidity



| Treatments | Yo   | II   | III  | Average |
|------------|------|------|------|---------|
| 1-         | 3450 | 3675 | 3750 | 3625    |
| 2-         | 3775 | 3525 | 3400 | 3567    |
| 3-         | 4225 | 4350 | 4125 | 4233    |
| 4-         | 3800 | 4000 | 3950 | 3917    |
| 5-         | 3575 | 3675 | 3925 | 3725    |
| 6-         | 3900 | 3825 | 4050 | 3925    |
| 7-         | 3700 | 3525 | 3450 | 3558    |
| 8-         | 4025 | 3775 | 3700 | 3833    |
| 9-         | 3875 | 3725 | 3950 | 3850    |
| 10-        | 3850 | 4125 | 4000 | 3992    |

□ Overall average of the test: 3823 kg/ha

| TRT | Humus | NPK | Location         |
|-----|-------|-----|------------------|
| 1-  | 0     | 200 | Line             |
| 2-  | 0     | 200 | Broadcast seeind |
| 3-  | 50    | 200 | Line             |
| 4-  | 50    | 200 | Broadcast seeind |
| 5-  | 50    | 150 | Line             |
| 6-  | 50    | 150 | Broadcast seeind |
| 7-  | 20    | 200 | Line             |
| 8-  | 20    | 200 | Broadcast seeind |
| 9-  | 20    | 150 | Line             |
| 10- | 20    | 150 | Broadcast seeind |

STATISTICAL ANALYSIS

Test: Tukey; Alpha = 0.05

| FV         | gl | SC      | СМ     | F      |
|------------|----|---------|--------|--------|
| Blocks     | 2  | 875     | 438    |        |
| Treatments | 9  | 1204188 | 133799 | 5.82 * |
| Mistake    | 18 | 414125  | 23007  |        |
| Total      | 29 | 1619188 |        |        |

CV: 3.97%

With an overall trial average of 3823 kg/ha, statistically significant differences were found at 5%, due to the treatments.

| Treatments | Average Yield (kg/ha) |    |
|------------|-----------------------|----|
| 3-         | 4233                  | to |
| 10-        | 3992                  | b  |
| 6-         | 3925                  | b  |
| 4-         | 3917                  | b  |
| 9-         | 3850                  | bc |
| 8-         | 3833                  | bc |
| 5-         | 3725                  | CD |
| 1-         | 3625                  | d  |
| 2-         | 3567                  | d  |
| 7-         | 3558                  | d  |

DMS = 184 kg/ha

Means with a common letter are not significantly different (p > 0.05)

| TRT | Humus | NPK | Location         |
|-----|-------|-----|------------------|
| 1-  | 0     | 200 | Line             |
| 2-  | 0     | 200 | Broadcast seeind |
| 3-  | 50    | 200 | Line             |
| 4-  | 50    | 200 | Broadcast seeind |
| 5-  | 50    | 150 | Line             |
| 6-  | 50    | 150 | Broadcast seeind |
| 7-  | 20    | 200 | Line             |
| 8-  | 20    | 200 | Broadcast seeind |
| 9-  | 20    | 150 | Line             |
| 10- | 20    | 150 | Broadcast seeind |

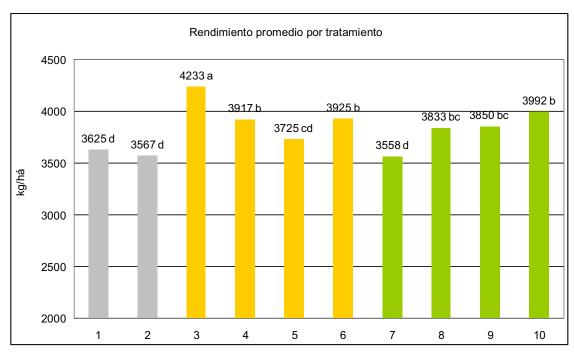
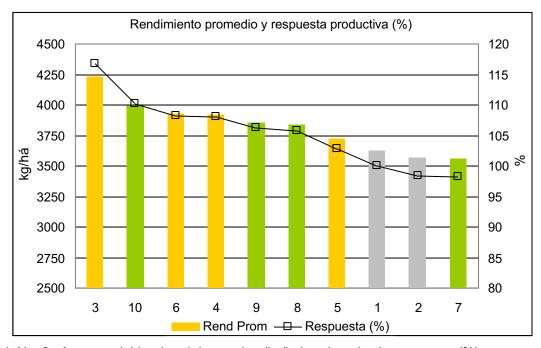



Chart No. 1 - Average yield (kg/ha) per treatment. With separation of averages.

Means with a common letter are not significantly different (p > 0.05)



Treatment 3 (Humus 50 + NPK 200 located in the line) was positioned at the top of the yields, significantly surpassing the rest.


In a second step, a group of treatments with different combinations of MO Humus plus NPK fertilizer and both localization methods were positioned, which significantly outperformed the commercial controls.

| TRT | Humus | NPK | Location         |
|-----|-------|-----|------------------|
| 1-  | 0     | 200 | Line             |
| 2-  | 0     | 200 | Broadcast seeind |
| 3-  | 50    | 200 | Line             |
| 4-  | 50    | 200 | Broadcast seeind |
| 5-  | 50    | 150 | Line             |
| 6-  | 50    | 150 | Broadcast seeind |
| 7-  | 20    | 200 | Line             |
| 8-  | 20    | 200 | Broadcast seeind |
| 9-  | 20    | 150 | Line             |
| 10- | 20    | 150 | Broadcast seeind |

# Ordered decreasing average yield and productive response

| Treatments | Average Yield<br>(kg/ha) | Productive response (%) (1) |
|------------|--------------------------|-----------------------------|
| 3-         | 4233                     | 117                         |
| 10-        | 3992                     | 110                         |
| 6-         | 3925                     | 108                         |
| 4-         | 3917                     | 108                         |
| 9-         | 3850                     | 106                         |
| 8-         | 3833                     | 106                         |
| 5-         | 3725                     | 103                         |
| 1-         | 3625                     | 100                         |
| 2-         | 3567                     | 98                          |
| 7-         | 3558                     | 98                          |

(1) Productive response on the commercial Control (treatment 1)\_ Base = 100%



Graph No. 2 - Average yield ordered decreasing (kg/ha) and productive response (%)

| C  | ontrols without Humus | Humus 20 kg/ha Humus |
|----|-----------------------|----------------------|
| 50 | 0 kg/ha               |                      |

| TRT | Humus | NPK | Location         |
|-----|-------|-----|------------------|
| 1-  | 0     | 200 | Line             |
| 2-  | 0     | 200 | Broadcast seeind |
| 3-  | 50    | 200 | Line             |
| 4-  | 50    | 200 | Broadcast seeind |
| 5-  | 50    | 150 | Line             |

| 6-  | 50 | 150 | Broadcast seeind |
|-----|----|-----|------------------|
| 7-  | 20 | 200 | Line             |
| 8-  | 20 | 200 | Broadcast seeind |
| 9-  | 20 | 150 | Line             |
| 10- | 20 | 150 | Broadcast seeind |

# Average yields (kg/ha) grouped by:

- 1- Dosage of MO Humus and NPK fertilizer
- 2- Localization method

| Dose (kg/ha) (1) | Line | Broadcast seeind | Average |
|------------------|------|------------------|---------|
| 0 + 200          | 3625 | 3567             | 3596    |
| 20 + 150         | 3850 | 3992             | 3921    |
| 50 + 150         | 3725 | 3925             | 3825    |
| 20 + 200         | 3558 | 3833             | 3696    |
| 50 + 200         | 4233 | 3917             | 4075    |
| Average          | 3798 | 3847             |         |

# (1): MO Humus + Fertilizer

Grouping yields by location method, the overall average for broadcast coverage showed a 1.3% increase compared to the average for treatments applied in the line.

The dose of 50 + 200 MO Humus + NPK fertilizer recorded the highest average yield, considering all the dose combinations evaluated.

# Yields (kg/ha) depending on the response to doses of MO Humus + NPK fertilizer

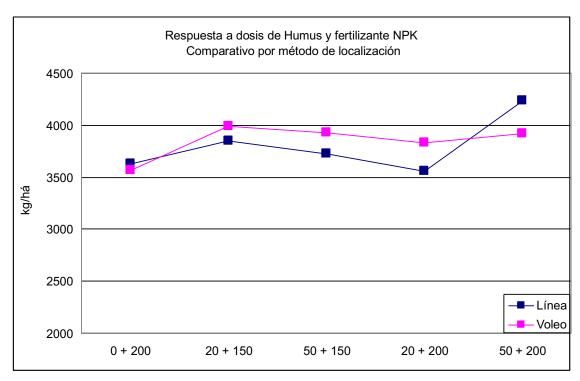



Chart 3 - Response to doses of OM humus + NPK fertilizer. Comparison of different localization methods.

# Yields grouped by dose of MO Humus and NPK fertilizer

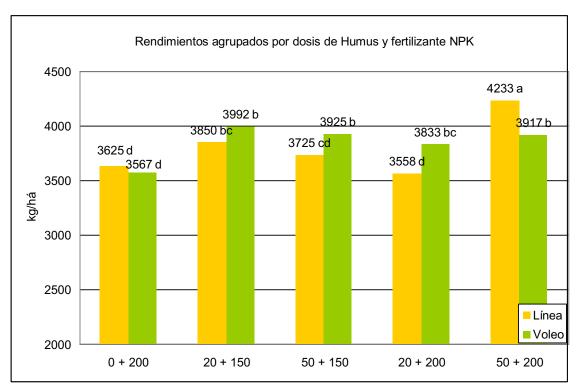



Chart 4 - Yields grouped by dose of humus and NPK fertilizer. With separation of averages.

Means with a common letter are not significantly different (p > 0.05)

- □ With the 50 + 150 and 20 + 200 doses of OM humus + NPK, the broadcast topdressing treatments significantly outperformed the line-based treatments. On the other hand, the 50 + 200 dose resulted in the opposite, with the line-based treatment significantly outperforming the other treatments.
- In the commercial Control and in the combination of MO Humus + NPK of 20 + 150, no statistically significant differences were found by the location method.

## Yields grouped by location method

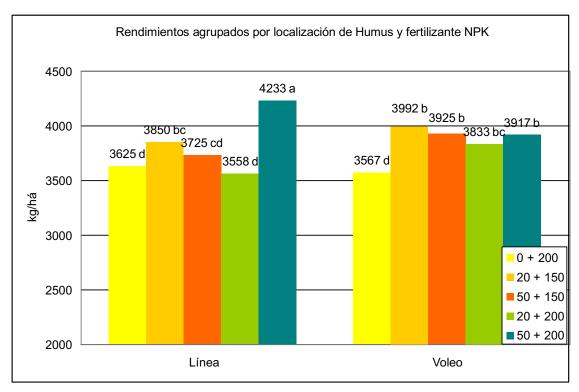



Chart 5 - Yields grouped by location method. With mean separation.

Means with a common letter are not significantly different (p > 0.05)

- When applied broadcast as a cover crop, all treatments with MO Humus + NPK fertilizer significantly outperformed the commercial control (NPK fertilizer only) and did not differ statistically from each other.
- □ With the application of the line, the treatment with OM Humus 50 + NPK 200 stood out, positioning itself at the top of the yields, significantly surpassing the others. In second place was the 20 + 150 treatment, which statistically outperformed the commercial control, while the remaining combinations were no different.
- In general terms, six combinations of MO Humus and NPK fertilizer achieved significant productive response over commercial controls (only NPK fertilizer), two of them were applied in line and the other four were broadcast in coverage.

Photo 10: In the foreground, the commercial control NPK 200 applied in-line, and in the background, treatment 10 (Humus 20 + NPK 150 broadcast on the surface). The latter significantly outperformed the control, achieving a 10% increase in yield over it.





Photo 11: On the left, treatment 3 (Humus 50 + NPK 200 applied in-line), and on the right, treatment 4 (same dosage but broadcast on the surface). The former significantly outperformed the latter in the final yield obtained.

Photo 12: In the foreground, treatment 4 (Humus 50 + NPK 200) and in the background, treatment 6 (50 + 150), both broadcast on the surface. They did not differ statistically from each other in the final yield obtained.





Photo 13: On the left, treatment 6 (Humus 50 + NPK 150 broadcast on the surface), and on the right, treatment 7 (20 + 200 applied in-line). The former significantly outperformed the latter.



Photo 14: In the foreground, treatment 7 (Humus 20 + NPK 200 applied in the row), and in the background, the commercial control (NPK broadcast as top-dressing). They did not differ statistically from each other in the final yield obtained.

#### **FINAL COMMENTS**

The essay is based on a little-known topic for soybean cultivation in our country: the use of the fertilizer additive MO Humus from the Paraguayan company Tiróleo.

Starting with the NPK fertilizer dosage recommended by a technical expert based on soil analysis, two doses of OM humus were tested, both in addition to and in place of the fertilizer, and compared with a commercial control (fertilizer alone). Furthermore, all treatments were applied in duplicate, incorporated into the row or broadcast as a cover crop, to compare the effectiveness of both localization methods.

The trial was installed in a commercial field of the DM Garra IPRO STS variety, which reached a population of 320,000 plants/ha and was located in the Third Section of the Treinta y Tres department, on Ochric Distric Planosols soils with a silty loam texture, belonging to the Rincón de Ramírez unit.

#### CONCLUSIONS

#### **Performance**

With an overall trial average of 3823 kg/ha, statistically significant differences were found at 5%, due to the treatments.

Treatment 3 (Humus 50 + NPK 200 located in the line) was positioned at the top of the yields, significantly surpassing the rest (see graph No. 1).

This superior performance treatment achieved a productive response of 17% over the commercial control (only NPK fertilizer located in the line) (see graph No. 2).

In a second performance tier, a group of treatments with different combinations of OM Humus plus NPK fertilizer and with both localization methods were positioned, which significantly outperformed the commercial controls.

Grouping yields by location method, the overall average for broadcast topdressing showed a 1.3% increase compared to the average for all treatments applied in the line. Furthermore, the 50 + 200 OM humus + NPK fertilizer dose recorded the highest average yield among all dose combinations tested.

Observing the different productive responses by grouping treatments by additive and fertilizer dose allows us to compare the effectiveness achieved based on the application method. The most eloquent results were recorded with the OM Humus + NPK doses of 50 + 150 and 20 + 200, where the broadcast topdressing treatments significantly outperformed the row-based spotting treatments. On the other hand, the opposite result was found with the 50 + 200 dose.

In the commercial Control and in the combination of MO Humus + NPK of 20 + 150, no statistically significant differences were found by the location method (see graph No. 4).

Grouping the results by the location method (see graph No. 5) allows us to highlight other relevant conclusions drawn from this essay.

When applied broadcast as a cover crop, all treatments with MO Humus + NPK fertilizer significantly outperformed the commercial control (NPK fertilizer only) and did not differ statistically from each other.

With the application of the line, the treatment with OM Humus 50 + NPK 200 stood out, positioning itself at the top of the yields, significantly surpassing the others. In second place was the 20 + 150 treatment, which statistically outperformed the commercial control, while the remaining combinations were no different.

In general terms, six combinations of MO Humus and NPK fertilizer achieved significant productive response over commercial controls (only NPK fertilizer), two of them were applied in line and the other four were broadcast in coverage. The responses were variable, but in three cases the highest production was achieved by adding MO Humus to the NPK fertilizer and in the remaining three by replacing part of the dose of NPK fertilizer with the bioactivator.

The results with the fertilizer additive MO Humus are encouraging, as significant yield responses were found with its use in soybean crops. However, the most effective combination to maximize this response could not be determined, as several options were highlighted. However, the variable location method is providing certainty that both in-line application and broadcast coverage would not generate differences in the expected response.

# ASINAGRO AGRONOMIC ADVICE AND RESEARCH

# TEST WITH ADDITIVE FOR FERTILIZERS HUMUS - RICE

Seventh section – Thirty-Three - Uruguay

2024-2025 HARVEST

#### INTRODUCTION

The trial is based on a little-known topic for rice cultivation in our country: the use of the fertilizer additive MO Humus from the Paraguayan company Tiróleo . The bioactivation of fertilizers, with additives such as MO Humus, aims to optimize their assimilation in order to reduce consumption, maximizing nutrient utilization, and minimizing losses that affect the environment and the producers' economies.

Agricultural activities today face challenges in finding ways to ensure the preservation of natural resources for future generations, minimize environmental impacts, help mitigate climate change, and produce food of proven safety and quality.

In this context, there are various strategies and visions regarding the paths to be taken. In our case, we see a priority in advancing paths that promote gradual changes in inputs, management, and processes, reducing the environmental footprint and maintaining or improving the productivity and quality of the rice produced.

The incorporation of bioinputs , such as the MO Humus additive from Tyróleo , is a key tool for generating valid alternatives to a traditional sustainable and highly productive management system.

Responding to this challenge, an exact basal fertilization trial was installed in the seventh section of the department of Treinta y Tres for the second consecutive year, using the MO Humus additive from the company Tiróleo, on a farm with a long history of cultivation.

Starting with the NPK fertilizer dosage recommended by a technical expert based on soil analysis, two doses of OM humus were tested, both in addition to and in place of the fertilizer, and compared with a commercial control (fertilizer alone). Furthermore, all treatments were applied in duplicate, incorporated into the row or broadcast as a cover crop, to compare the effectiveness of both localization methods.

This report presents data on the test setup, materials and methods, results, statistical analysis of performance, and final comments. Illustrative photographs are also included.

### **GOALS**

- > To evaluate the effectiveness of the fertilizer additive MO Humus in rice cultivation.
- Contrast between online application and random coverage.
- Adjust the application of MO Humus in relation to replacement or addition with NPK fertilizer.
- Quantify its impact on crop yield.

#### **MATERIALS AND METHODS**

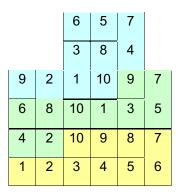
Product evaluated: MO Humus fertilizer additive

Bioactivating additive with the same physical characteristics as a granulated fertilizer, making it suitable for mixing prior to application.

It is obtained from plant materials, subjected to the batch fermentation process. microaerophilic under physicochemical and biological conditions that promote and enrich the natural microbiome of plant extracts.

Nutrient release depends on the existing microbiology in the soil, but the use of the MO Humus additive increases this dynamic because the product's natural microbiome favors the processes that make nutrients available to plants.

Treatments: (Dose kg/ha)


| TRT | Humus | NPK (1) | Location         | Relationship<br>Humus: NPK |
|-----|-------|---------|------------------|----------------------------|
| 1-  | 0     | 150     | Line             | Control                    |
| 2-  | 0     | 150     | Broadcast seeind | Control                    |
| 3-  | 50    | 150     | Line             | Additive                   |
| 4-  | 50    | 150     | Broadcast seeind | Additive                   |
| 5-  | 50    | 100     | Line             | Replacement (2)            |
| 6-  | 50    | 100     | Broadcast seeind | Replacement (2)            |
| 7-  | 20    | 150     | Line             | Additive                   |
| 8-  | 20    | 150     | Broadcast seeind | Additive                   |
| 9-  | 20    | 100     | Line             | Replacement (3)            |
| 10- | 20    | 100     | Broadcast seeind | Replacement (3)            |

- (1) NPK base fertilizer: 0 20/20 30
- (2) Complete 1:1 replacement with a 33% reduction in NPK dosage
- (3) Partial replacement 0.4:1 with 33% reduction in NPK dosage

## Design

Random blocks with three repetitions Plots of 20 m<sup>2</sup> (4 m wide by 5 m long).

## **Distribution of treatments:**



## **Test facility**

| Locality        | Producer        | Planting date | Cultivate |
|-----------------|-----------------|---------------|-----------|
| Seventh section | Gustavo Ferrari | October 20    | CL 19231  |

Representative location of the traditional rice-growing basin of Laguna Merín. The area comprised in the seventh section of the department of Treinta y Tres corresponds to the La Charqueada unit

of the Soil Recognition Chart of Uruguay, scale 1:1,000,000, and the dominant soil where the trial was carried out is a Planosol. Subeutric Ocher with a silty loam texture.

## Soil analysis -

Predecessor: legume meadow

Management: Spring glyphosate - pre-tillage (disk and leveling)

| »H (H2O)               | ΕΛ   |
|------------------------|------|
| pH (H2O)               | 5.4  |
| P – citric acid (ppm)  | 7    |
| P – Bray I (ppm)       | 3    |
| Zn – DTPA (ppm)        | 0.8  |
| Ca ( meq /100 gr soil) | 6.4  |
| Mg ( meq /100 gr soil) | 3.1  |
| K ( meq /100 gr soil)  | 0.25 |
| Na ( meq /100 gr soil) | 0.4  |
| Mg/K ratio             | 12.4 |

#### **Recommended Dose**

The recommendation for fertilizing rice with phosphorus and potassium is determined by the information contained in INIA Technical Sheet No. 46, based on chemical analysis of the soil.

For phosphorus adjustment, soil analysis data was used (range between 5 - 7 ppm), in a medium soil (30 - 50% clay) and two fertilization strategies were considered: 1) taking the "sufficiency" criterion, which consists of adding nutrients up to a critical level, above which the probability of finding a yield response is low and 2) the replacement criterion, which involves replacing part of the quantities that the grain extracts from the system above the sufficiency level, with the aim that the nutrient content in the soil remains around the critical level.

For the potassium adjustment, the soil analysis data was considered (> 0.20 meq /100 gr soil) with ammonium acetate extraction, with a Mg / K ratio (< 15) and taking both fertilization strategies.

According to the tables, the fertilization recommendation would be:

By criterion of "sufficiency".

- P<sub>2</sub>O<sub>5</sub> = 14 units / ha
- $K_2O = 0$  units / ha

By "replacement" criterion.

- P<sub>2</sub>O<sub>5</sub> = 45 units / ha
- K<sub>2</sub>O = 20 units / ha

The commercial control NPK (0 - 20/20 - 30) was adjusted to 150 kg/ ha (treatment 1), correcting the nutrients considering the replacement, since it is the management most adopted by the producer who owns the establishment.

## **Description of the environment**

The trial was installed in a rice crop, planted on a Planosol Subeutric Ochric with a silty loam texture, belonging to the La Charqueada unit.

The sowing date of the farm corresponds to the end of October with the INIA CL 19231 cultivar with high yield potential, intermediate-short cycle and resistant to *Pyricularia oryzae*. This is a promising material with good potential for area expansion due to its outstanding attributes, such as productivity, cycle, grain quality, and the possibility of use in fields with weed problems, due to its tolerance to imidazolinones .

## **Crop management:**

Sowing:

Date: 20-10-24

Sowing conditions: Good sowing preparation

Soil with good humidity

Type of sowing: line - seeder: Stara - Model: Guapa Supra pneumatic Cultivar: CL 19231 /

Planting density: 130 kg/ ha

Basal fertilization:

Date: 10/29/2024; crop emerged Dosage: according to treatments





Photos 1 and 2 – State of the test at the time of installation, marking the lines for the manual fertilization in the furrow.

## Climatic characterization of the harvest determining the yield potential

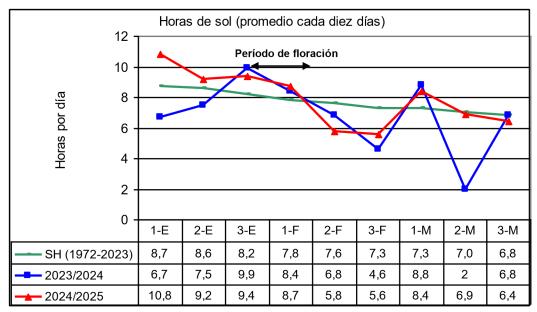
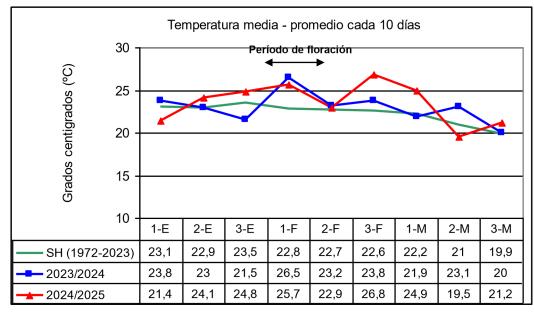




Chart I - Average sunshine hours per decade

Source: Agroclimatology Bulletin – Inia Treinta y Tres Laguna Pass Station



Graph II – Average temperature per decade

Source: Agroclimatology Bulletin - Inia Treinta y Tres Laguna Pass Station

This harvest showed a luminosity  $2.8 \,\%$  higher than the historical series and  $1.5 \,\%$  above the previous one, in the critical period defined by Stansel , J (1975), which covers the 21 days before and 21 days after flowering, where the hours of sunshine have the greatest impact on yields. On the other hand, the average temperature was higher than the historical series practically throughout the entire reproductive stage, which is the most sensitive time to determine grain sterility due to the incidence of low

temperatures. This factor is identified as one of the main causes that explain the instability of yields in the eastern part of our country.

For the October planting season farms, climatic factors had higher records than the historical series and the previous harvest, mainly in incident radiation, so exceptionally high yields could be expected, in response to the technological management used by the producer.

**PERFORMANCES**Kg/ ha corrected to 13% humidity



| Treatments | Yo    | П     | III   | Average |
|------------|-------|-------|-------|---------|
| 1-         | 11821 | 11690 | 12215 | 11908   |
| 2-         | 11952 | 12302 | 12872 | 12375   |
| 3-         | 12697 | 12828 | 12259 | 12594   |
| 4-         | 12609 | 12259 | 11777 | 12215   |
| 5-         | 13791 | 13572 | 13003 | 13455   |
| 6-         | 13703 | 13003 | 13922 | 13543   |
| 7-         | 13835 | 13309 | 13528 | 13558   |
| 8-         | 13703 | 13134 | 13485 | 13441   |
| 9-         | 11646 | 13178 | 12390 | 12405   |
| 10-        | 13003 | 12346 | 12697 | 12682   |

Overall average of the test: 12818 kg/ ha (256 dry bags/ ha )

| TRT | Humus | NPK | Location         |
|-----|-------|-----|------------------|
| 1-  | 0     | 150 | Line             |
| 2-  | 0     | 150 | Broadcast seeind |
| 3-  | 50    | 150 | Line             |
| 4-  | 50    | 150 | Broadcast seeind |
| 5-  | 50    | 100 | Line             |
| 6-  | 50    | 100 | Broadcast seeind |

| 7-  | 20 | 150 | Line             |
|-----|----|-----|------------------|
| 8-  | 20 | 150 | Broadcast seeind |
| 9-  | 20 | 100 | Line             |
| 10- | 20 | 100 | Broadcast seeind |

## STATISTICAL ANALYSIS

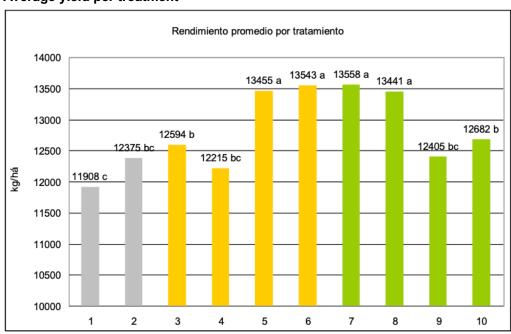
Test: Tukey, Alpha = 0.05

| FV         | gl | SC       | CM      | F      |
|------------|----|----------|---------|--------|
| Blocks     | 2  | 64915    | 32458   |        |
| Treatments | 9  | 10478484 | 1164276 | 5.94 * |
| Mistake    | 18 | 3528416  | 196023  |        |
| Total      | 29 | 14071816 |         |        |

CV: 3.45%

With a general average of the test of 12818 kg/ ha , statistically significant differences were found at 5%, due to the treatments.

| Treatments | Average Yield (kg/ ha ) |    |  |
|------------|-------------------------|----|--|
| 7-         | 13558                   | to |  |
| 6-         | 13543                   | to |  |
| 5-         | 13455                   | to |  |
| 8-         | 13441                   | to |  |
| 10-        | 12682                   | b  |  |
| 3-         | 12594                   | b  |  |
| 9-         | 12405                   | bc |  |
| 2-         | 12375                   | bc |  |
| 4-         | 12215                   | bc |  |
| 1-         | 11908                   | С  |  |


DMS = 537 kg/ ha

Means with a common letter are not significantly different (p > 0.05)

| TRT | Humus | NPK | Location         |
|-----|-------|-----|------------------|
| 1-  | 0     | 150 | Line             |
| 2-  | 0     | 150 | Broadcast seeind |
| 3-  | 50    | 150 | Line             |
| 4-  | 50    | 150 | Broadcast seeind |
| 5-  | 50    | 100 | Line             |
| 6-  | 50    | 100 | Broadcast seeind |

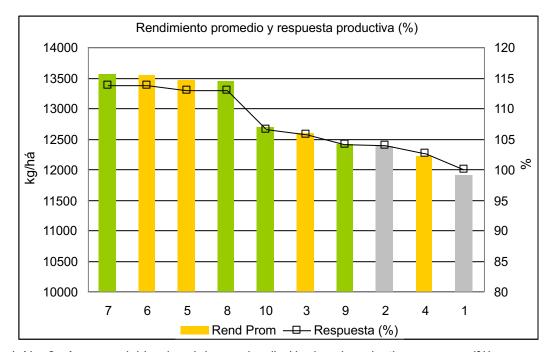
| 7-  | 20 | 150 | Line             |
|-----|----|-----|------------------|
| 8-  | 20 | 150 | Broadcast seeind |
| 9-  | 20 | 100 | Line             |
| 10- | 20 | 100 | Broadcast seeind |

# Average yield per treatment



Gráfica N° 1 - Rendimiento promedio (kg/há) por tratamiento. Con separación de medias.

Means with a common letter are not significantly different (p > 0.05)




| TRT | Humus | NPK | Location         |
|-----|-------|-----|------------------|
| 1-  | 0     | 150 | Line             |
| 2-  | 0     | 150 | Broadcast seeind |
| 3-  | 50    | 150 | Line             |
| 4-  | 50    | 150 | Broadcast seeind |
| 5-  | 50    | 100 | Line             |
| 6-  | 50    | 100 | Broadcast seeind |
| 7-  | 20    | 150 | Line             |
| 8-  | 20    | 150 | Broadcast seeind |
| 9-  | 20    | 100 | Line             |
| 10- | 20    | 100 | Broadcast seeind |

# Ordered decreasing average yield and productive response

| Treatments | Rend Average ( kg/ | Rend Prom        | Productive response ( |
|------------|--------------------|------------------|-----------------------|
|            | ha)                | ( bls / ha ) (1) | %) (2)                |
| 7-         | 13558              | 271              | 114                   |
| 6-         | 13543              | 271              | 114                   |
| 5-         | 13455              | 269              | 113                   |
| 8-         | 13441              | 269              | 113                   |
| 10-        | 12682              | 254              | 106                   |
| 3-         | 12594              | 252              | 106                   |
| 9-         | 12405              | 248              | 104                   |
| 2-         | 12375              | 248              | 104                   |
| 4-         | 12215              | 244              | 103                   |
| 1-         | 11908              | 238              | 100                   |

- (1) Average yield: in dry bags of 50 kg/ ha
- (2) Productive response on the commercial control (treatment 1) Base = 100%



Graph No. 2 - Average yield ordered decreasing (kg/ ha ) and productive response (%)



| TRT | Humus | NPK | Location         |
|-----|-------|-----|------------------|
| 1-  | 0     | 150 | Line             |
| 2-  | 0     | 150 | Broadcast seeind |
| 3-  | 50    | 150 | Line             |
| 4-  | 50    | 150 | Broadcast seeind |
| 5-  | 50    | 100 | Line             |
| 6-  | 50    | 100 | Broadcast seeind |
| 7-  | 20    | 150 | Line             |

| 8-  | 20 | 150 | Broadcast seeind |
|-----|----|-----|------------------|
| 9-  | 20 | 100 | Line             |
| 10- | 20 | 100 | Broadcast        |
|     |    |     | seeind           |

## Average yields (kg/ ha ) grouped by:

### 1- Dose of MO Humus and NPK fertilizer 2- Location method

| Dose (kg/ ha ) (1) | Line  | Broadcast seeind | Average |
|--------------------|-------|------------------|---------|
| 0 + 150            | 11908 | 12375            | 12142   |
| 20 + 100           | 12405 | 12682            | 12543   |
| 50 + 100           | 13455 | 13543            | 13499   |
| 20 + 150           | 13558 | 13441            | 13499   |
| 50 + 150           | 12594 | 12215            | 12405   |
| Average            | 12784 | 12851            |         |

### (1): Humus + Fertilizer

Grouping the yields according to the location method, no differences were found between the two in the overall average.

The doses of 50 + 100 and 20 + 150, of Humus + NPK fertilizer, recorded the highest average yield, considering all the dose combinations evaluated.

Yields (kg/ha) depending on the response to doses of Humus + NPK fertilizer

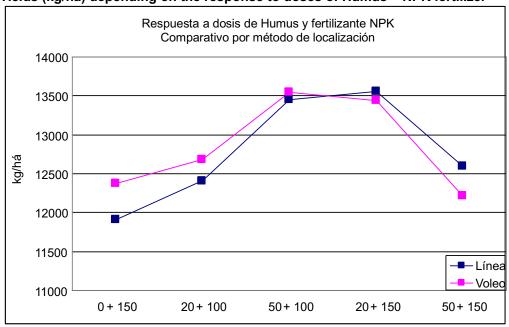



Chart 3 - Response to doses of humus + NPK fertilizer. Comparison of different localization methods.

## Yields grouped by dose of MO Humus and NPK fertilizer

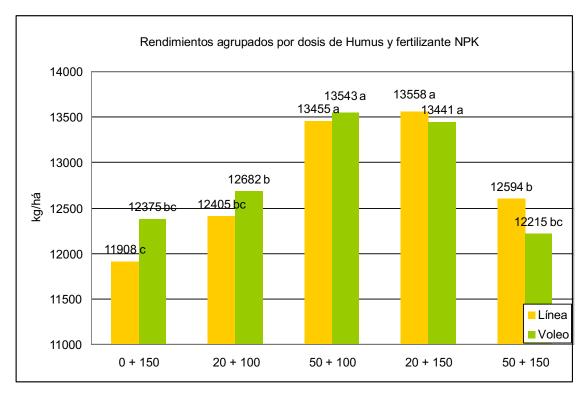



Chart 4 - Yields grouped by dose of humus and NPK fertilizer. With separation of averages.

Means with a common letter are not significantly different (p > 0.05)

- □ In none of the dose combinations of MO Humus and NPK fertilizer were statistically significant differences found by the location method.
- □ With the highest dose of MO Humus and NPK, a trend of higher performance was observed for the treatment applied in the line compared to broadcasting, on the contrary, with the lowest dose of both and with fertilization only with NPK, the trend was favorable to broadcast application in coverage.

### Yields grouped by location method

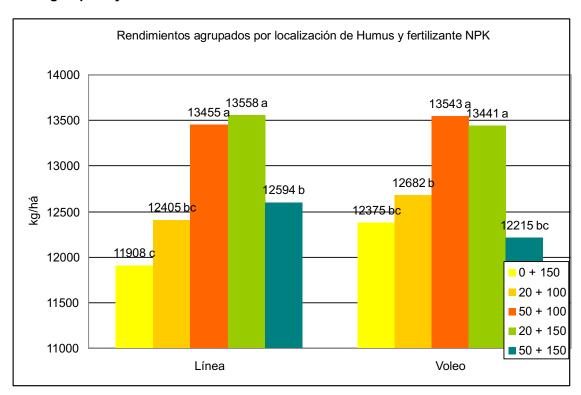



Chart 5 - Yields grouped by location method. With mean separation.

Means with a common letter are not significantly different (p > 0.05)

- By applying MO Humus and NPK fertilizer in the line, all treatments with the bioactivator significantly outperformed the commercial control (only NPK fertilizer), with the exception of the combination with the lowest dose of both, from which it did not differ statistically.
- □ With this application method, the combinations of 50 + 100 and 20 + 150 of MO Humus and NPK fertilizer respectively stood out, which were positioned in a first step of performance.
- □ When applying OM humus and NPK fertilizer broadcast as a top dressing, only the 50 + 100 and 20 + 150 combinations significantly outperformed the commercial control (NPK fertilizer only). The remaining combinations did not differ statistically from the control.
- In general terms, two of the combinations of MO Humus and NPK fertilizer achieved significant productive response over the best commercial control (only NPK fertilizer broadcast), with no differences due to the location method.
- The responses were variable, in one case the addition of MO Humus replacing 1:1 the dose of NPK fertilizer caused a significant increase in yield and in the other the response was achieved by adding the lowest dose of the bioactivator to the dose of the NPK control.
- In summary, the addition of MO Humus achieved the best performance at a higher dose as a substitute for NPK and at a lower dose as a fertilizer additive.

Photo 3: The commercial controls can be seen, with NPK 150 applied in the row on the left and broadcast on the right. They did not differ statistically from each other, but the broadcast treatment tended to show a higher yield than the one applied in the row.

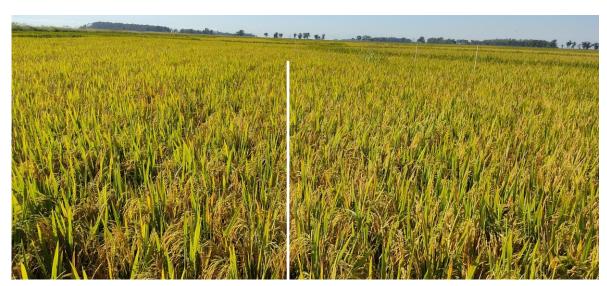





Photo 4: Treatments with Humus 50 + NPK 150, applied in the row on the left and broadcast on the right. They did not differ statistically from each other, but the treatment applied in the row tended to show a higher yield than the one broadcast.

Photo 5: Treatments with Humus 50 + NPK 100, applied in the row on the left and broadcast on the right. They did not differ statistically from each other but ranked among the highest-yielding treatments in the trial.





6 Photo 6: Treatments with Humus 20 + NPK 150, broadcast on the left and applied in the row on the right. They did not differ statistically from each other but ranked among the highest-yielding treatments in the trial.

Photo 7: Treatments with Humus 20 + NPK 100, broadcast on the left and applied in the row on the right. They did not differ statistically from each other, but the broadcast treatment tended to show a higher yield than the one applied in the row.





Photo 8: On the left, the control NPK 150 applied in the row, and on the right, treatment 9 (Humus 20 + NPK 100 applied in the row). They did not differ statistically from each other, but the Humus + NPK treatment showed a 4% higher yield compared to the control.

#### FINAL COMMENTS

The essay is based on a little-known topic for rice cultivation in our country: the use of the fertilizer additive MO Humus from the Paraguayan company Tiróleo .

Starting with the NPK fertilizer dosage recommended by a technical expert based on soil analysis, two doses of OM humus were tested, both in addition to and in place of the fertilizer, and compared with a commercial control (fertilizer alone). Furthermore, all treatments were applied in duplicate, incorporated into the row or broadcast as a cover crop, to compare the effectiveness of both localization methods.

The trial was installed in a commercial field of the INIA CL 19231 variety, a new material with high expansion potential, in the third section of the Treinta y Tres department, on Planosol soils. Subeutrics Ochrics with a silty loam texture, belonging to the La Charqueada unit.

### **CONCLUSIONS**

#### **Performance**

With a general average of the test of 12818 kg/ ha , statistically significant differences were found at 5%, due to the treatments.

Treatments with the combinations of MO Humus + NPK of 50 + 100 and 20 + 150, regardless of the location method, were positioned at the top of the yields, significantly surpassing the rest and not differing statistically from each other (see graph No. 1).

These four higher-performing treatments achieved significant productive response between 13 and 14% over the commercial control (only NPK 150 fertilizer online) (see graph No. 2).

When grouping yields by location method, no differences were found between the two methods. On the other hand, the 50 + 100 and 20 + 150 doses of OM humus + NPK fertilizer recorded the highest average yields, considering all the dose combinations evaluated.

Observing the different productive responses by grouping treatments by the dose of the additive and the fertilizer allows us to compare the effectiveness achieved based on the location method and from here arises one of the most important conclusions of the test: in none of the combinations of doses of MO Humus and NPK fertilizer were statistically significant differences found by the location method (see graph No. 4).

The most eloquent trends were observed with the highest dose of MO Humus and NPK where the treatment applied in the line stood out over the broadcast treatment and on the contrary with the lowest dose of both and with fertilization only with NPK the trend was favorable to the broadcast application in coverage.

Grouping the results by the location method (see graph No. 5) allows us to highlight the main conclusions drawn from this test:

- I) By applying MO Humus and NPK fertilizer in the line, all treatments with the bioactivator significantly outperformed the commercial control (only NPK fertilizer), with the exception of the combination with the lowest dose of both, from which it did not differ statistically.
- II) When applying OM humus and NPK fertilizer broadcast on the mulch, only the 50 + 100 and 20 + 150 combinations significantly outperformed the commercial control (NPK fertilizer only). The remaining combinations did not differ statistically from the control.

In summary:

- □ Two of the combinations of MO Humus and NPK fertilizer achieved significant productive response over the best commercial control (only NPK fertilizer broadcast), with no differences due to the location method.
- □ The type of response was variable, in one case the addition of MO Humus replacing 1:1 the dose of NPK fertilizer caused a significant increase in yield and in the other the response was achieved by adding the lowest dose of the bioactivator to the dose of the NPK control.
- ☐ The addition of MO Humus achieved the best performance at a higher dose, being a substitute for NPK, and at a lower dose, being a fertilizer additive.

# **SUPPLEMENTAL MATERIAL #5**

# SM5

| SIVIS                     |            |            |            |            |            |
|---------------------------|------------|------------|------------|------------|------------|
| pathway                   | 13         | 14         | 4          | 5          | 6          |
| PWY-3781                  | 147816.26  | 89228.887  | 108146.193 | 131609.691 | 84475.2878 |
| PWY-5101                  | 81267.1096 | 49228.8628 | 54131.3733 | 64681.0301 | 30363.7755 |
| ILEUSYN-PWY               | 78744.8733 | 47703.5285 | 50824.9266 | 65032.3199 | 29417.4454 |
| VALSYN-PWY                | 78744.8733 | 47703.5285 | 50824.9266 | 65032.3199 | 29417.4454 |
| PWY-7663                  | 80545.1055 | 47236.5197 | 48041.3129 | 63568.5044 | 20376.5504 |
| PWY-5973                  | 79161.7998 | 47184.1586 | 48265.7793 | 60638.6945 | 21750.0688 |
| PWY-7111                  | 77713.474  | 45378.7018 | 50781.0802 | 64388.5686 | 34111.6097 |
| BRANCHED-CHAIN-AA-SYN-PWY | 70329.9256 | 42273.712  | 49055.7334 | 52906.1907 | 26600.9043 |
| FASYN-ELONG-PWY           | 69130.3606 | 38948.4063 | 42017.7684 | 61456.1084 | 20376.5504 |
| NONOXIPENT-PWY            | 64031.4887 | 38619.0731 | 45412.1757 | 50839.587  | 26035.9345 |
| TCA                       | 62402.7803 | 37308.0334 | 45007.8115 | 49463.1298 | 25869.25   |
| PWY-5103                  | 62150.4849 | 37272.1936 | 43938.5988 | 46086.5236 | 23470.0835 |
| PWY-3001                  | 60639.1054 | 36801.1805 | 41588.5579 | 48663.1579 | 23689.5484 |
| PWYG-321                  | 58291.7522 | 36764.1589 | 28125.0032 | 61817.6323 | 3815.11717 |
| PWY-5667                  | 61700.1486 | 36743.7145 | 45255.6138 | 37918.6807 | 22087.7291 |
| PWY0-1319                 | 61700.1486 | 36743.7145 | 45255.6138 | 37918.6807 | 22087.7291 |
| PWY-6969                  | 61135.7783 | 35970.6834 | 45226.2258 | 49370.4442 | 27451.8284 |
| PWY-7208                  | 59080.1621 | 35547.7248 | 40943.1719 | 42519.1602 | 23539.6705 |
| PWY-7664                  | 55822.2526 | 35300.5149 | 26875.379  | 57857.1358 | 3655.98895 |
| PWY-7229                  | 59354.1967 | 34950.9998 | 43894.0937 | 38896.5205 | 22326.9253 |
| THRESYN-PWY               | 57197.5741 | 34720.9303 | 38450.2788 | 47901.8931 | 23183.7144 |
| PWY-5989                  | 54173.5414 | 34204.6756 | 25596.6535 | 59850.6573 | 3277.24065 |
| PWY-6282                  | 53505.0885 | 34182.8796 | 25145.442  | 58586.6201 | 3228.85802 |
| PWY-7219                  | 58185.9767 | 34007.8186 | 44742.5487 | 36093.0074 | 20865.7927 |
| REDCITCYC                 | 53687.3552 | 33852.0178 | 20849.1062 | 51826.6297 | 25972.4566 |
| PWY-7220                  | 56056.5626 | 33675.13   | 40326.9027 | 40035.4593 | 23332.5105 |
| PWY-7222                  | 56056.5626 | 33675.13   | 40326.9027 | 40035.4593 | 23332.5105 |
| PWY-6126                  | 57066.2715 | 33625.1229 | 42496.9968 | 37601.3482 | 21651.5809 |
| DTDPRHAMSYN-PWY           | 53639.8653 | 33289.8468 | 34997.8588 | 35731.0057 | 15678.7307 |
| PWY-2942                  | 56213.2933 | 33189.6777 | 37897.9202 | 42578.3698 | 23518.4457 |
| PWY0-862                  | 51927.1322 | 32979.731  | 24574.0826 | 53835.2005 | 3178.57891 |
| PWY-5686                  | 55887.3754 | 32943.1778 | 41628.9328 | 37126.4408 | 20023.8752 |
| PWY0-162                  | 55788.1091 | 32903.3422 | 41999.9239 | 37221.6908 | 20430.9198 |
| PHOSLIPSYN-PWY            | 57437.9429 | 32616.1855 | 44037.3037 | 37974.5471 | 22177.7984 |
| PWY-5659                  | 54300.9275 | 32058.7196 | 41532.0438 | 39283.3505 | 25708.2883 |
| PWY-7228                  | 53438.7408 | 31918.789  | 39408.0765 | 39788.2783 | 23778.6958 |
| ANAGLYCOLYSIS-PWY         | 53421.707  | 31777.2948 | 39816.313  | 39845.2285 | 24298.3268 |
| PWY-5097                  | 53611.5313 | 31691.8775 | 35535.1056 | 41138.2148 | 23399.1545 |
| PWY-6121                  | 53522.0629 | 31567.5744 | 38297.5601 | 36491.8066 | 20944.8787 |
| PWY-841                   | 53224.7472 | 31430.0833 | 39075.9971 | 36495.9416 | 21048.747  |
| PWY-6122                  | 53678.2112 | 31369.4705 | 38669.1178 | 37639.7815 | 20768.0723 |
| PWY-6277                  | 53678.2112 | 31369.4705 | 38669.1178 | 37639.7815 | 20768.0723 |
| PWY-6125                  | 52295.6109 | 31149.1554 | 38828.9358 | 38312.8602 | 22809.1107 |
| CALVIN-PWY                | 51515.1763 | 31149.1334 | 37678.4114 | 36065.4266 | 21601.7545 |
| PWY4FS-8                  | 54999.6352 | 30979.6141 | 41769.0455 | 36615.9805 | 21183.4988 |
|                           |            |            |            |            |            |
| PWY4FS-7                  | 54999.6352 | 30979.6141 | 41769.0455 | 36615.9805 | 21183.4988 |
| FAO-PWY                   | 50727.3713 | 30944.8062 | 29142.4229 | 41756.5804 | 27066.488  |
| FASYN-INITIAL-PWY         | 47139.6633 | 30696.394  | 22353.9554 | 47432.1568 | 2810.65195 |
| PWY-7094                  | 51671.5575 | 30667.9966 | 30881.053  | 40233.9949 | 25153.2629 |
| PENTOSE-P-PWY             | 49062.1551 | 30164.9458 | 33209.636  | 45568.3038 | 22638.4176 |

| TRPSYN-PWY           | 51056.1981 | 30139.485  | 38670.5596 | 34943.6247 | 20800.9486 |
|----------------------|------------|------------|------------|------------|------------|
| COMPLETE-ARO-PWY     | 51777.9114 | 29790.0252 | 40092.2616 | 34432.9546 | 19899.9861 |
| PWY-7221             | 49826.7114 | 29542.2482 | 37814.4215 | 37777.9003 | 22483.6322 |
| P108-PWY             | 51147.1568 | 29362.8771 | 37877.0862 | 39061.6351 | 16569.784  |
| PWY-5188             | 48879.9152 | 28851.9644 | 36141.1236 | 35563.5515 | 20946.6084 |
| PWY-7211             | 47904.3287 | 28800.8908 | 28791.8246 | 33762.2792 | 17098.9151 |
| SER-GLYSYN-PWY       | 53749.4364 | 28687.6477 | 33713.5105 | 34379.2631 | 24462.8373 |
| COA-PWY              | 49229.3471 | 28649.6626 | 37242.6563 | 32671.322  | 19945.1915 |
| GLYCOLYSIS           | 46992.6641 | 28483.7459 | 36599.1268 | 39843.0415 | 22431.0368 |
| PWY-6163             | 48151.6708 | 28293.806  | 36982.323  | 32511.3735 | 17664.4568 |
| POLYISOPRENSYN-PWY   | 47942.9074 | 28145.3911 | 36608.5264 | 32911.0889 | 20879.1221 |
| TRNA-CHARGING-PWY    | 47123.536  | 28012.5748 | 32556.6925 | 30842.5693 | 17943.794  |
| RIBOSYN2-PWY         | 47833.0413 | 28011.5448 | 34984.171  | 31923.5241 | 17700.0754 |
| GLUCONEO-PWY         | 45264.0428 | 27986.2765 | 31400.1721 | 39212.4447 | 19624.5286 |
| ARO-PWY              | 48697.7984 | 27979.2413 | 37749.1203 | 33222.8011 | 18503.5855 |
| PWY0-1586            | 38623.3439 | 27826.3466 | 22588.4321 | 69906.1471 | 43341.2296 |
| SULFATE-CYS-PWY      | 47055.8768 | 27765.9446 | 24812.9222 | 29775.1867 | 17943.6195 |
| PWY-5189             | 46165.8597 | 27747.7946 | 33974.2036 | 36081.6684 | 20643.1664 |
| PWY-6897             | 44049.6033 | 27666.9639 | 30935.9023 | 34165.0389 | 15586.9742 |
| PWY-6387             | 46148.1715 | 27590.6044 | 36480.7577 | 34824.3754 | 19962.977  |
| PEPTIDOGLYCANSYN-PWY | 46266.0207 | 27571.502  | 36333.5013 | 34142.9417 | 19419.1956 |
| HISTSYN-PWY          | 45052.0806 | 27544.4962 | 33321.826  | 32960.9448 | 18956.4663 |
| PWY-6123             | 46808.9064 | 27396.0322 | 34689.8044 | 31118.9184 | 17377.4628 |
| PWY-5345             | 45774.07   | 27349.4285 | 25225.4745 | 25535.6604 | 15558.3652 |
| PWY-7197             | 46031.1972 | 27348.2795 | 36156.8713 | 32132.7487 | 19401.9313 |
| HEMESYN2-PWY         | 43227.7862 | 27231.3453 | 31701.673  | 34161.9552 | 19042.4782 |
| 1CMET2-PWY           | 43695.0172 | 26920.2779 | 26636.4688 | 27813.1521 | 12291.8006 |
| P105-PWY             | 46070.9305 | 26648.7958 | 33834.6015 | 38733.5314 | 20356.7479 |
| PWY-7184             | 45138.0513 | 26611.8705 | 29949.2088 | 31220.0862 | 15226.4439 |
| PWY-6385             | 43824.549  | 26490.2883 | 32712.703  | 34140.8888 | 20220.6192 |
| PWY-7539             | 42247.2666 | 26351.1222 | 28805.5286 | 30812.4251 | 18498.319  |
| PWY-6386             | 43320.2634 | 26347.2146 | 32479.176  | 35177.9544 | 20129.9079 |
| PANTO-PWY            | 44228.2964 | 26324.8492 | 31984.7014 | 33349.6347 | 20497.8911 |
| PWY-6147             | 41693.5245 | 25973.0447 | 28626.9636 | 29847.5185 | 17297.0547 |
| GLUTORN-PWY          | 45431.8671 | 25838.4698 | 33804.772  | 29694.8257 | 19356.9577 |
| PWY-7323             | 46151.7201 | 25677.6208 | 34555.907  | 35785.5332 | 6976.0269  |
| SO4ASSIM-PWY         | 42151.6142 | 25656.0678 | 19569.4824 | 39879.6458 | 19544.7892 |
| PWY-5484             | 41167.9401 | 25536.1903 | 32615.0349 | 37786.9644 | 20494.2852 |
| PANTOSYN-PWY         | 41596.657  | 25511.8162 | 29960.5788 | 32580.4979 | 19685.8252 |
| PWY-7234             | 42122.011  | 25379.0815 | 27072.636  | 25249.5692 | 16390.2816 |
| DAPLYSINESYN-PWY     | 43380.7804 | 25255.1835 | 28752.3975 | 32456.9092 | 18721.3804 |
| PWY0-1261            | 39243.3706 | 25247.2535 | 23697.7105 | 37989.6944 | 24753.9964 |
| FOLSYN-PWY           | 40556.721  | 25083.5187 | 26748.7184 | 27709.8413 | 14852.3766 |
| PWY-5918             | 39469.8782 | 24885.5653 | 26581.9454 | 33138.1838 | 18271.3066 |
| PWY-5913             | 39615.868  | 24875.8735 | 25702.5344 | 34980.3092 | 18992.064  |
| ARGSYN-PWY           | 41533.1536 | 24819.7273 | 32506.3471 | 27355.8487 | 19308.5621 |
| PWY-6700             | 44267.9797 | 24818.9798 | 29410.789  | 19237.5604 | 11977.4852 |
| PWY-7400             | 41478.9347 | 24813.0844 | 32444.5494 | 27400.3145 | 19207.8372 |
| PWY-5695             | 49713.6328 | 24615.1115 | 29601.7805 | 51030.6722 | 21258.1708 |
| PWY-5154             | 40852.0919 | 24570.9423 | 27554.8592 | 23792.4461 | 11392.6595 |
| PWY-5121             | 41046.1175 | 24306.5669 | 25622.2132 | 35398.9818 | 21098.6162 |
| PYRIDNUCSYN-PWY      | 42753.8819 | 24272.2644 | 31440.5198 | 29935.6108 | 15079.2658 |
| I INIDINOCSTN-F WT   | +2/33.0019 | 444/4.2044 | 21440.3130 | 29933.0108 | 13073.2038 |

| P23-PWY                     | 46631.4271 | 24217.162  | 39245.5127 | 34243.3584 | 20427.1068 |
|-----------------------------|------------|------------|------------|------------|------------|
| PWY0-166                    | 41070.5825 | 23972.673  | 29163.8958 | 29547.8465 | 14844.436  |
| NONMEVIPP-PWY               | 39953.7104 | 23808.3259 | 23815.0767 | 32803.6999 | 19169.2704 |
| PWY-7560                    | 39953.7104 | 23808.3259 | 23815.0767 | 32803.6999 | 19169.2704 |
| GLYCOLYSIS-E-D              | 39912.2773 | 23528.5575 | 25600.5364 | 35742.1615 | 17864.2828 |
| THISYN-PWY                  | 35931.3993 | 23499.7996 | 17537.9655 | 31370.4371 | 7098.33839 |
| OANTIGEN-PWY                | 41767.9013 | 23335.2535 | 33479.6037 | 25779.0257 | 17258.8187 |
| ARGSYNBSUB-PWY              | 43399.5791 | 23301.4304 | 34640.9771 | 28438.6107 | 21139.9415 |
| HSERMETANA-PWY              | 40647.4875 | 23242.2917 | 25123.4606 | 30527.0089 | 11455.8025 |
| PWY-6612                    | 36902.817  | 23106.4538 | 23556.4129 | 25826.7508 | 12894.4485 |
| NAGLIPASYN-PWY              | 39512.2887 | 22961.282  | 24374.6137 | 14644.8091 | 1078.85914 |
| COLANSYN-PWY                | 40659.1182 | 22622.2432 | 24309.2242 | 30811.6784 | 4902.8059  |
| GLYCOLYSIS-TCA-GLYOX-BYPASS | 34001.3316 | 22458.0667 | 25843.5336 | 33819.8602 | 17199.6093 |
| PWY-6608                    | 38120.9148 | 21939.7858 | 24183.3039 | 47922.1345 | 8342.7227  |
| PWY-6467                    | 38578.33   | 21887.35   | 24649.34   | 13716      | 968.75     |
| P4-PWY                      | 37684.8506 | 21820.825  | 25013.8372 | 32497.8376 | 16477.809  |
| PWY0-781                    | 36954.6745 | 21704.1166 | 24615.1092 | 23864.7242 | 16136.9636 |
| PWY-1269                    | 38249.1759 | 21629.9082 | 24872.8656 | 13722.4969 | 1044.35135 |
| ANAEROFRUCAT-PWY            | 38157.9027 | 21468.3524 | 28671.309  | 32492.0926 | 18124.7518 |
| UDPNAGSYN-PWY               | 39831.0448 | 21403.1555 | 38656.9964 | 24338.8306 | 20592.2351 |
| SALVADEHYPOX-PWY            | 39214.7114 | 21288.3632 | 23990.311  | 49615.7504 | 9710.73924 |
| HEME-BIOSYNTHESIS-II        | 31315.5996 | 21015.7663 | 19248.4886 | 30317.2221 | 15691.4494 |
| PWY-7254                    | 22868.7813 | 20987.8242 | 3606.92741 | 29538.6366 | 13925.2119 |
| PWY-5971                    | 38284.3215 | 20965.9562 | 17025.9696 | 4457.85584 | 4582.76098 |
| PWY-7200                    | 35333.1417 | 20940.9526 | 21827.7495 | 30386.1207 | 16772.5421 |
| GLYCOGENSYNTH-PWY           | 34509.0162 | 20915.753  | 26483.0392 | 25784.1919 | 17191.6454 |
| PWY-7392                    | 32367.321  | 20854.5994 | 20198.2657 | 32312.6626 | 19784.1193 |
| PWY-5347                    | 35172.7259 | 20116.7706 | 22608.774  | 38199.4056 | 16061.2833 |
| PWY-7196                    | 36661.106  | 20115.4713 | 25843.5885 | 23327.4541 | 18369.9679 |
| PWY-6609                    | 32144.0708 | 20073.819  | 22186.3555 | 39794.1717 | 23551.5153 |
| P42-PWY                     | 37643.1251 | 19654.7255 | 37012.3585 | 26502.9477 | 22878.0262 |
| PWY-6703                    | 36712.8752 | 19507.3223 | 29094.7874 | 9172.91741 | 9707.69728 |
| HISDEG-PWY                  | 30045.4975 | 18931.0339 | 14589.5789 | 30700.023  | 11860.4409 |
| FERMENTATION-PWY            | 26748.6485 | 18862.7261 | 15052.1874 | 12747.8447 | 15855.275  |
| MET-SAM-PWY                 | 32903.2428 | 18840.7116 | 21134.5649 | 34441.4083 | 15941.5481 |
| TCA-GLYOX-BYPASS            | 26637.3241 | 18536.6711 | 19973.7379 | 29378.6148 | 15026.4317 |
| BIOTIN-BIOSYNTHESIS-PWY     | 28219.9574 | 18048.3387 | 20384.889  | 14935.2618 | 4117.24515 |
| LEU-DEG2-PWY                | 30292.2083 | 17785.8265 | 10749.0673 | 16531.025  | 1965.05429 |
| PWY-6519                    | 27457.586  | 17713.4384 | 21001.9448 | 13338.7004 | 3498.81487 |
| PWY-5855                    | 28266.3914 | 17423.4984 | 21039.6008 | 13714.721  | 3414.13738 |
| PWY-5856                    | 28266.3914 | 17423.4984 | 21039.6008 | 13714.721  | 3414.13738 |
| PWY-5857                    | 28266.3914 | 17423.4984 | 21039.6008 | 13714.721  | 3414.13738 |
| PWY-6708                    | 28266.3914 | 17423.4984 | 21039.6008 | 13714.721  | 3414.13738 |
| PWY-7199                    | 28872.4671 | 17230.889  | 15273.1621 | 28877.4427 | 15066.6751 |
| PWY-6353                    | 32269.8792 | 17195.6061 | 19838.7166 | 45800.6523 | 11733.4012 |
| UBISYN-PWY                  | 27731.4303 | 17050.2936 | 20778.5244 | 12642.0778 | 2638.46268 |
| GLYCOCAT-PWY                | 30990.3459 | 16935.0288 | 23251.8467 | 11368.5263 | 11620.4574 |
|                             |            |            |            |            |            |
| PWY-6628                    | 27548.923  | 16321.1762 | 16841.018  | 4375.57073 | 4422.91767 |
| PWY-6630                    | 27321.6722 | 16210.8175 | 16832.215  | 4375.25017 | 4421.7925  |
| PWY-6737                    | 29432.5465 | 16105.6102 | 16439.8022 | 11782.7839 | 11368.4054 |
| PWY-6317<br>PWY-7242        | 26284.0885 | 15881.9874 | 14919.9834 | 36820.8591 | 20305.9775 |
| PW 1-1/1/1                  | 23238.7638 | 15863.5691 | 5867.06892 | 31459.0506 | 7738.15653 |

| PWY-5104                      | 33866.9696 | 15744.3236 | 33116.9782 | 22940.895  | 19873.0448 |
|-------------------------------|------------|------------|------------|------------|------------|
| PYRIDNUCSAL-PWY               | 26542.0619 | 15213.6212 | 21766.059  | 22092.4164 | 11493.6946 |
| PWY-4984                      | 22220.2658 | 14509.3589 | 12441.576  | 26371.5781 | 13585.402  |
| PWY-6892                      | 19132.4355 | 14043.5253 | 6482.85108 | 22063.7776 | 2230.27462 |
| PWY-5920                      | 23079.3834 | 14036.3279 | 17720.4377 | 23930.5174 | 3812.57175 |
| PWY-5505                      | 22026.1155 | 13874.4973 | 12871.4769 | 12716.7222 | 7679.16923 |
| GALACTUROCAT-PWY              | 18720.6758 | 13850.379  | 3788.82978 | 29549.0504 | 7008.68366 |
| GLYOXYLATE-BYPASS             | 23572.7336 | 13226.7231 | 16797.3586 | 24895.413  | 15870.5059 |
| HOMOSER-METSYN-PWY            | 23019.1736 | 12545.1318 | 14854.1642 | 31477.5531 | 13113.0608 |
| PWY0-1241                     | 23289.4652 | 12353.1103 | 13588.0864 | 12593.2773 | 208.558178 |
| PWY0-1415                     | 20222.5395 | 12312.0775 | 15660.1106 | 21717.5686 | 2999.98037 |
| PWY-7431                      | 19926.187  | 12311.0912 | 3820.59762 | 33502.5881 | 4309.20084 |
| PWY-6507                      | 15688.2087 | 12284.4369 | 1785.44317 | 19485.8455 | 7251.73482 |
| P164-PWY                      | 25894.458  | 12242.6683 | 16317.5971 | 0          | 136.203346 |
| PWY0-1061                     | 14995.429  | 11870.8261 | 6641.15584 | 12556.6789 | 14515.5104 |
| ARG+POLYAMINE-SYN             | 18402.533  | 11324.8987 | 13083.1124 | 19143.2901 | 14912.8809 |
| PWY-6263                      | 18413.5657 | 11240.7344 | 15103.3886 | 23600.9563 | 5385.96723 |
| PWY-5838                      | 19037.6795 | 11099.4419 | 10614.4436 | 7934.09098 | 2923.15557 |
| PWY-6901                      | 18018.686  | 10935.0542 | 12331.6622 | 15569.8082 | 10692.4922 |
| PWY-7328                      | 16676.6072 | 10923.9032 | 3696.16549 | 2788.86608 | 1304.25092 |
| PWY0-1479                     | 18450.9601 | 10781.0904 | 10976.1367 | 2709.06786 | 534.598449 |
| DENOVOPURINE2-PWY             | 21070.1572 | 10624.3982 | 10920.5142 | 12287.9874 | 16179.1217 |
| PWY-181                       | 18045.6276 | 10583.1236 | 12128.2299 | 3417.27886 | 3198.14123 |
| PWY-5897                      | 17943.5688 | 10484.2174 | 9820.2592  | 7674.94052 | 2981.18436 |
| PWY-5898                      | 17943.5688 | 10484.2174 | 9820.2592  | 7674.94052 | 2981.18436 |
| PWY-5899                      | 17943.5688 | 10484.2174 | 9820.2592  | 7674.94052 | 2981.18436 |
| PWY-6478                      | 17632.6217 | 10318.8761 | 10944.7902 | 12866.4162 | 15.6689135 |
| COBALSYN-PWY                  | 15741.8965 | 10108.2276 | 9851.52776 | 25529.4424 | 18905.8565 |
| PWY-6151                      | 17862.9654 | 10078.2455 | 4914.09202 | 10033.6305 | 9300.98719 |
| PWY-5840                      | 16868.6128 | 10026.8475 | 10310.3905 | 7993.88412 | 3224.96424 |
| PRPP-PWY                      | 19367.2933 | 9827.61393 | 10260.3927 | 11558.001  | 15750.0742 |
| PWY-6269                      | 13797.2431 | 9407.84265 | 8725.3817  | 21330.3691 | 10004.5568 |
| PWY-5509                      | 13709.3925 | 9347.0757  | 8649.76791 | 21323.7937 | 10062.348  |
| PWY-7371                      | 14975.9462 | 9266.05805 | 8214.5135  | 24813.6055 | 13290.1424 |
| PWY-7187                      | 17024.9563 | 8661.13275 | 9051.02911 | 10313.7552 | 10783.807  |
| ASPASN-PWY                    | 8274.86068 | 8511.09541 | 3629.03956 | 4141.80712 | 5925.80625 |
| PWY-5861                      | 14544.3662 | 8491.9274  | 7803.86234 | 5781.7628  | 2064.57553 |
| ALL-CHORISMATE-PWY            | 14280.5297 | 8420.87013 | 5268.68402 | 2877.47235 | 1767.19456 |
| P124-PWY                      | 16934.3097 | 8307.39209 | 7296.42022 | 36190.5519 | 14455.4913 |
| PWY-5022                      | 15457.8672 | 8304.6313  | 14236.9212 | 20993.335  | 19969.8155 |
| PWY-6545                      | 15191.1889 | 8303.59205 | 22657.3345 | 25508.3572 | 17027.6599 |
| NADSYN-PWY                    | 10571.6829 | 8028.30488 | 2881.43721 | 617.717761 | 1799.82155 |
| PWY-7374                      | 9041.32396 | 7661.21849 | 3188.42705 | 24310.7271 | 12476.852  |
| POLYAMSYN-PWY                 | 11912.6169 | 7622.47492 | 8225.39402 | 14816.4691 | 12917.1593 |
| POLYAMINSYN3-PWY              | 11929.6198 | 7594.84542 | 5962.28168 | 6221.5676  | 1450.49927 |
| GALACT-GLUCUROCAT-PWY         | 12109.8554 | 7402.5651  | 1279.28701 | 18338.1174 | 1829.32802 |
| PROTOCATECHUATE-ORTHO-CLEAVAG | 12245.3037 | 7348.41665 | 6178.26105 | 14984.7864 | 4295.87353 |
| PWY0-1296                     | 13779.1046 | 7174.31781 | 7776.78802 | 12884.7185 | 16453.8444 |
| PWY-5845                      | 13288.3128 | 7003.17326 | 3333.1788  | 1543.61799 | 1090.95633 |
| PWY-5850                      | 13288.3128 | 7003.17326 | 3333.1788  | 1543.61799 | 1090.95633 |
| PWY-5896                      | 13288.3128 | 7003.17326 | 3333.1788  | 1543.61799 | 1090.95633 |
| PWY-1861                      | 2515.68486 | 6932.68031 | 3605.54311 | 6167.72236 | 13403.9256 |
|                               |            |            |            |            |            |

| PWY-5100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |            |            |            |            |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|------------|------------|------------|------------|
| TYRFUMCAT-PWY         10630.4208         6629.72718         4675.35869         1206.92072         1275.4966           PWY-7332         11251.0488         6626.23195         3321.51476         7315.79315         4248.304           PWY-5028         9791.91727         6526.59911         2813.58262         1130.27927         1539.642           PWV-1297         12647.1245         6425.94652         8226.68878         15932.5893         18744.4           PWW100XSYN-PWY         8265.92226         6399.89756         938.32976         397.697298         363.830           PFGPPMET-PWY         9985.9586         6360.80269         4955.66506         1650.05038         363.1830           PWY-5837         10003.2238         6015.42347         4679.47896         5724.36018         1539.998           PWY-5651         7280.24486         5719.33398         1864.06319         389.132745         1181.945           SUCSYN-PWY         4773.13478         5379.99943         996.23525         0 730.111         2219.40           RUMP-PWY         1890.05419         5375.50646         1366.0334         19168.116         301.0891           P161-PWY         1890.54565         532.5957         7949.00431         13111.1416         2219.40           RUMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PWY490-3             | 10603.9965 | 6762.81783 | 568.251268 | 10777.5081 | 1029.50437 |
| PWY-7332         11251.0488         6626.23196         3321.51476         7315.79315         4248.304           PWY-9583         11012.3717         6613.90566         5220.81129         6427.33323         1746.201           PWY-9028         9791.91727         656.59912         813.8262         1130.27927         136.612           PWYO-1297         12647.1245         6425.94652         8226.68878         15932.5893         1874.44           PWRDOXYN-PWY         8265.92226         6399.89756         9378.32976         397.697288         36.3884           GIUCUROCAT-PWY         1283.6751         6397.1027         1833.337         1573.21002         285.7321002         285.7321002         285.7321002         285.7321002         285.7321002         285.7321002         285.7321002         285.7321002         285.7321002         285.7321002         285.7321002         285.7321002         285.7321002         286.7321002         286.7321002         286.7321002         286.7321002         286.7321002         286.732102         286.732102         286.732102         286.732102         286.732102         286.732102         286.732102         286.732102         286.732102         286.732102         286.732102         286.732102         286.732102         286.732102         286.732102         286.732102 <t< td=""><td>PWY-5100</td><td>16917.6705</td><td>6631.94477</td><td>10960.4819</td><td>14675.2789</td><td>14386.2878</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PWY-5100             | 16917.6705 | 6631.94477 | 10960.4819 | 14675.2789 | 14386.2878 |
| PWY-5863         11012.3717         6613.90566         522.08.1129         6427.33323         1746.201           PWY-5028         9791.917         6526.59911         2813.58262         130.27927         1536.642           PWY-1297         12647.1245         645.94562         286.68878         1393.25993         1873.642           PWYDELOXYN-PWY         8265.92226         6399.89756         9378.32976         397.697298         363.9884           GIUCUROCAT-PWY         12183.6751         6397.1027         1883.3375         15732.1902         2835.540           PWY-5837         10003.2238         6015.42347         4679.47896         5724.36018         1539.079           PWY-58561         7280.24364         5717.37607         7618.67372         12304.8874         13986.431           PWY-5651         7280.24364         5719.33388         186.66319         389.12745         1181.956.33           PWY-5860         7373.13478         5379.99943         962.23525         0         73.01121           RUMP-PWY         1890.2619         529.46961         2709.9931         4692.24979         1063.839           PWY-5860         9723.3545         5081.15603         2289.13798         1046.41579         742.8551           PWY-5862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TYRFUMCAT-PWY        | 10630.4208 | 6629.72718 | 4675.35869 | 1206.92072 | 1275.49653 |
| PWY-5028         9791.91727         6526.59911         2813.58262         1130.27927         1539.642           PWYO-1297         12647.1245         6425.94652         8226.68878         15932.5893         18744.4           PWRIDOXSN-PWY         8265.9226         6399.89756         3978.32976         397.697288         630.3884           GLUCUROCAT-PWY         12183.6751         6397.1027         1883.3375         15732.1902         2835.540           PWF-S837         1003.2238         6015.42347         4679.47896         5724.36018         1539.079           PWY-5651         7280.24364         5717.37605         7618.67372         12304.8874         13986.43           PWY-5651         7280.24364         5719.3339         1864.06139         389.132745         1181.945           SUCSYN-PWY         4773.13478         5379.9943         962.22352         0         73.01121           NAD-BIOSYNTHESIS-II         8555.50013         5377.55064         1336.10834         19168.116         301.0891           PIG1-PWY         8863.15436         5328.9597         7949.0431         13111.1416         221.9747           RUMP-PWY         1890.20619         5259.46961         2799.99391         1046.21579         742.8551           PWY-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PWY-7332             | 11251.0488 | 6626.23196 | 3321.51476 | 7315.79315 | 4248.30461 |
| PWYO-1297         12647.1245         6425.94652         8226.68878         15932.5893         1874.44           PYRIDOXYN-PWY         8265.92226         6399.8975         9378.32976         397.697298         363.9884           GLUCUROCAT-PWY         12183.6751         6397.1027         1883.3375         15732.1902         2285.540           PPWF-5837         10003.2238         6306.80269         4959.66506         1650.05083         630.1830           PWY-52651         7280.24364         5717.37605         6718.67372         22304.8874         1396.43           PWY-55651         7280.24364         5719.33398         1864.06319         389.132745         1181.945           SUCSYN-PWY         4773.13478         5379.99943         996.223525         0         73.01121           P161-PWY         8863.15436         5328.95957         7949.00431         1311.1416         22197.40           RUMP-PWY         1890.20619         5259.45961         2709.9931         4669.24979         10638.39           PWY-5862         9723.3534         5081.15663         2289.13798         1046.41579         7428551           PWY-5862         9723.3534         5081.15663         2289.13798         1046.41579         7428.5511           PWY-5862 </td <td>PWY-5863</td> <td>11012.3717</td> <td>6613.90566</td> <td>5220.81129</td> <td>6427.33323</td> <td>1746.20113</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PWY-5863             | 11012.3717 | 6613.90566 | 5220.81129 | 6427.33323 | 1746.20113 |
| PYRIDOXSYN-PWY         8265.9226         6399.89756         9378.32976         397.697298         363.9884           GIUCUROCAT-PWY         12183.6751         6397.1027         1883.3375         15732.1902         2835.540           PWY-5837         1003.2238         6015.42347         4679.47896         5724.36018         1539.079           PWY-5817         11496.8005         5777.37605         7618.67372         12304.8874         13986.431           PWY-5651         7280.24364         5719.33398         1864.06319         389.132745         1818.935           PWY-5651         7280.24364         5719.33398         1864.06319         389.132745         1818.945           PWY-5651         7280.24364         5719.33398         1864.06319         389.132745         1818.1935           SUCSYN-PWY         4773.13478         5379.59943         996.223525         0         73.01121           NAD-BIOSYNTHESIS-II         8555.50013         3377.55064         1336.10834         19168.116         301.0891           P161-PWY         1880.2019         5259.46961         2709.99391         4692.24979         10638.39           PWY-5860         9723.3534         5081.15663         2289.13798         1046.41579         742.8551 <td< td=""><td>PWY-5028</td><td>9791.91727</td><td>6526.59911</td><td>2813.58262</td><td>1130.27927</td><td>1539.64266</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PWY-5028             | 9791.91727 | 6526.59911 | 2813.58262 | 1130.27927 | 1539.64266 |
| GLUCUROCAT-PWY         12183.6751         6397.1027         1883.3375         15732.1902         2835.540           PPGPPMET-PWY         9985.95368         6360.80269         4959.65506         1650.05033         630.1383           PWY-5837         1003.2238         6015.42347         4679.47896         5724.36018         139.079           PWY-01298         11496.8005         5777.37605         7618.67372         12304.8874         13986.431           PWY-5651         7280.24364         5719.3338         1864.06319         3891.32745         1181.945           SUCSYN-PWY         4773.13478         5379.99943         962.23525         0         73.01121           NAD-BIOSYNTHESIS-II         8555.50013         5377.55064         1336.10834         19168.116         301.0891           P161-PWY         8863.15436         5289.95957         7949.00431         1311.1416         2219.740           RUMP-PWY         1890.20619         5259.46961         2709.9931         4692.24979         10638.39           PWY-5862         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-5862         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PWY0-1297            | 12647.1245 | 6425.94652 | 8226.68878 | 15932.5893 | 18744.447  |
| PPGPPMET-PWY         9985.95368         6360.80269         4959.66506         1650.05083         630.1830           PWY-S837         10003.2238         6015.42347         4679.47896         5724.36018         1539.0797           PWY-5651         7280.24364         5719.33398         1864.06319         389.132745         1181.945           SUCSYN-PWY         4773.13478         5379.99943         996.223525         0         73.01121.           NAD-BIOSYNTHESIS-II         8555.50013         5377.55064         1336.10834         19168.116         301.08911           P161-PWY         8863.15436         5328.9597         7949.00431         13111.1416         22197.40           RUMP-PWY         1890.20619         5259.46961         2709.99391         4692.24979         10638.39           PWY-5860         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           P122-PWY         8914.76931         5021.13894         587.83319         11061.326         6232.469           PWY-58747         6227.04895         4937.66519         3209.03914         2195.2527         390.9033           PWY-5147         6227.04895         4937.66519         3209.03914         2195.2527         390.9033           PWY-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PYRIDOXSYN-PWY       | 8265.92226 | 6399.89756 | 9378.32976 | 397.697298 | 363.988487 |
| PWY-5837         10003.2238         6015.42347         4679.47896         5724.36018         1539.079           PWY-01298         11496.8005         5777.37605         7618.67372         12304.8874         13986.431           PWY-5651         7280.24364         5719.33398         1864.06319         389.132745         1181.945           SUCSYN-PWY         4773.13478         5379.99943         996.223525         0         73.01121           NAD-BIOSYNTHESIS-II         8555.50013         5377.55064         1336.10834         19168.116         201.0881           P161-PWY         1890.20619         5259.49691         2709.99919         4692.24979         10638.39           PWY-5860         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-5862         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-5862 </td <td>GLUCUROCAT-PWY</td> <td>12183.6751</td> <td>6397.1027</td> <td>1883.3375</td> <td>15732.1902</td> <td>2835.54023</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GLUCUROCAT-PWY       | 12183.6751 | 6397.1027  | 1883.3375  | 15732.1902 | 2835.54023 |
| PWY-01298         11496.8005         5777.37605         7618.67372         12304.8874         13986.43           PWY-5651         7280.24364         5719.33398         1864.06319         389.132745         1181.945           SUCSYN-PWY         4773.13478         5379.99943         996.223525         0         73.01212           NAD-BIOSYNTHESIS-II         8555.50013         5377.55064         1336.10834         19168.116         301.0891           PIG1-PWY         8863.15436         5328.99597         7949.00431         1311.1416         22197.40           RUMP-PWY         1890.20619         5259.46961         2709.99391         4692.24979         10638.39           PWY-5860         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-5862         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-5862 <td>PPGPPMET-PWY</td> <td>9985.95368</td> <td>6360.80269</td> <td>4959.66506</td> <td>1650.05083</td> <td>630.183095</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PPGPPMET-PWY         | 9985.95368 | 6360.80269 | 4959.66506 | 1650.05083 | 630.183095 |
| PWY-5651         7280.24364         5719.33398         1864.06319         389.132745         1181.945           SUCSYN-PWY         4773.13478         5379.99943         996.223525         0         73.01121           NAD-BIOSYNTHESIS-II         8555.50013         5377.55064         1336.10834         19168.116         301.0891           P161-PWY         8863.15436         5328.95957         7949.00431         1311.1416         22197.400           RUMP-PWY         1890.20619         5259.46961         2709.99391         4692.24979         10638.39           PWY-5860         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-5862         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-5862         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-5845         8012.39633         4964.45565         6124.52955         864.476028         798.6725           PWY-5747         6277.04895         4937.66519         3209.0391         2195.2527         390.933           PWY-612         4522.07477         4482.81981         179.10028         2394.5057         6024.876           PWY-5384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PWY-5837             | 10003.2238 | 6015.42347 | 4679.47896 | 5724.36018 | 1539.07951 |
| SUCSYN-PWY         4773.13478         5379.99943         996.223525         0         73.01121.           NAD-BIOSYNTHESIS-II         8555.50013         5377.55064         1336.10834         19168.116         301.08914           P161-PWY         8863.15436         5328.95957         7949.00431         13111.1416         22197.40           RUMP-PWY         1890.20619         5259.46961         2709.99391         4692.24979         10638.39           PWY-S860         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-S862         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-S865         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-S862         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-5845         8012.39633         4964.45565         6124.52955         864.476028         798.67252           PWY-5747         6277.04895         4937.66519         3209.03914         2195.5227         390.9033           PWY-5747         4693.40733         4775.64472         2000.64299         2571.7336         729.7592           GULCOSE1PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PWY0-1298            | 11496.8005 | 5777.37605 | 7618.67372 | 12304.8874 | 13986.4365 |
| NAD-BIOSYNTHESIS-II         8555.50013         5377.55064         1336.10834         19168.116         301.0891           P161-PWY         8863.15436         5328.95957         7949.00431         13111.1416         22197.40           RUMP-PWY         1890.20619         5259.46961         2709.99391         4692.24979         10638.39           PWY-5860         9723.3534         5081.15663         2289.13798         1046.41579         742.85511           PWY-5862         9723.3534         5081.15663         2289.13798         1046.41579         742.85511           PWY-6845         8012.39633         4964.45565         6124.52955         864.476023         786.7525           PWY-6845         8012.39633         4964.45565         6124.52955         864.476023         796.7527           PWY-6845         8012.39631         4937.66519         3209.03914         2195.2527         390.9033           PWY-624         5729.96141         4776.64472         2000.64299         2571.7336         472.6326           GUCOSE1PMETAB-PWY         4693.40733         4775.463         544.773221         428.82348         599.1790           PWY-621         4522.07477         4482.81981         179.10264         394.0534         797.054189         1562.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PWY-5651             | 7280.24364 | 5719.33398 | 1864.06319 | 389.132745 | 1181.94566 |
| P161-PWY         8863.15436         5328.95957         7949.00431         13111.1416         22197.40           RUMP-PWY         1890.20619         5259.46961         2709.99391         4692.24979         10638.39           PWY-5860         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-5862         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-6845         8012.39633         4964.45565         6124.52955         864.476028         798.6725           PWY-5747         6277.04895         4937.66519         3209.03914         2195.2527         390.9333           PWY-621         4522.07477         4482.81981         1179.10028         2394.50457         6024.876           PWY-5384         4522.07477         4482.81981         1179.10028         2394.50457         6024.876           PWY-6749         6533.07072         4420.25243         2436.1123         16378.9616         179.2983           PWY-7376         7701.79687         4297.65017         4005.01959         9704.84902         2906.970           PWY-5419         6344.32048         4046.917         1537.83719         1866.9172         551.0462           PWY-5419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SUCSYN-PWY           | 4773.13478 | 5379.99943 | 996.223525 | 0          | 73.0112127 |
| RUMP-PWY         1890.20619         5259.46961         2709.99391         4692.24979         10638.39           PWY-5860         9723.3534         5081.15663         2289.13798         1046.41579         742.85511           PWY-5862         9723.3534         5081.15663         2289.13798         1046.41579         742.85511           PWY-5862         9723.3534         5081.15663         2289.13798         1046.41579         742.85511           PWY-547         8914.76931         5021.13894         5887.83319         11061.326         6232.469           PWY-5747         6277.04895         4937.66519         3209.03914         2195.2527         390.9033           PWY-624         5729.96141         4776.64472         2000.64299         2571.7336         472.6326           GUCOSE1PMETAB-PWY         4693.40733         4775.463         544.773221         428.282248         599.1790           PWY-5384         4522.07477         4482.81981         1179.10028         2394.50457         6024.876           PWY-5384         4522.07477         4482.81981         1599.98487         797.054189         1562.077           RHAMCAT-PWY         8292.34983         4453.04224         3048.90955         19162.0249         7728.323           PWY-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NAD-BIOSYNTHESIS-II  | 8555.50013 | 5377.55064 | 1336.10834 | 19168.116  | 301.089104 |
| PWY-5860         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           PWY-5862         9723.3534         5081.15663         2289.13798         1046.41579         742.8551           P122-PWY         8914.76931         5021.13894         5887.83319         11061.326         6232.469.           PWY-5747         6277.04895         4937.66519         3209.03914         2195.2527         390.9033           PWY-42         5729.96141         4776.64472         2000.64299         2571.7336         472.6326           GIUCOSE1PMETAB-PWY         4693.40733         4775.463         544.773221         428.822348         599.1790           PWY-621         4522.07477         4482.81981         1539.98487         797.054189         1562.077           RHAMCAT-PWY         8292.34983         4453.04224         3048.90955         19162.0249         722.8323           PWY-6749         6533.07072         4420.25243         2436.1123         16378.9616         179.2983           PWY-533         8291.3177         4121.86079         3985.15199         1646.9172         551.0462           PWY-5419         6344.32048         4046.917         1537.83719         1856.58576         810.2           RNTBACSYN-PWY </td <td>P161-PWY</td> <td>8863.15436</td> <td>5328.95957</td> <td>7949.00431</td> <td>13111.1416</td> <td>22197.4068</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P161-PWY             | 8863.15436 | 5328.95957 | 7949.00431 | 13111.1416 | 22197.4068 |
| PWY-5862 9723.3534 5081.15663 2289.13798 1046.41579 742.85511 P122-PWY 8914.76931 5021.13894 5887.83319 11061.326 6232.469. PWY0-845 8012.39633 4964.45565 6124.52955 864.476028 798.6725. PWY-5747 6277.04895 4937.66519 3209.03914 2195.2527 390.9033. PWY0-42 5729.96141 4776.64472 2000.64299 2571.7336 472.6326. GLUCOSE1PMETAB-PWY 4693.40733 4775.463 544.773221 428.822348 599.1790. PWY-621 4522.07477 4482.81981 1179.10028 2394.50457 6024.876. PWY-5384 4522.07477 4482.81981 539.98487 797.054189 1562.077. PWY-6349 6533.07072 4420.25243 2436.1123 16378.9616 179.2983. PWY-6749 6533.07072 4420.25243 2436.1123 16378.9616 179.2983. PWY-7376 7701.79687 4297.65017 4005.01959 9704.84902 2906.970. PWY0-1533 8291.3177 4121.86079 3985.15199 1646.9172 551.0462. PWY-5419 6344.32048 4046.917 1537.83719 1856.58576 810.22. PWY-7237 5121.08 3822.2 5193.66 22388.89 23677. PWY-7237 5121.08 3822.2 5193.66 22388.89 23677. PWY-5304 3804.96 3816.65 2880.61 27965.05 15571. PWY-5676 8161.43739 3481.95728 4162.86901 1497.411949 2819.36. PWY-5180 5741.52417 3317.84482 2896.89723 5526.64468 8396.832. PWY-5180 5741.52417 3317.84482 2896.89723 5526.64468 8396.832. PWY-5182 5741.52417 3317.84482 2896.89723 5526.64468 8396.832. PWY-5065 4763.1100 500.85 310.64795 3767.27772 0 155.0812. PWY-5069 2876.36701 3 | RUMP-PWY             | 1890.20619 | 5259.46961 | 2709.99391 | 4692.24979 | 10638.3941 |
| P122-PWY 8914.76931 5021.13894 5887.83319 11061.326 6232.469. PWYO-845 8012.39633 4964.45565 6124.52955 864.476028 798.6725. PWY-5747 6277.04895 4937.66519 3209.03914 2195.2527 390.9034. PWYO-42 5729.96141 4776.64472 2000.64299 2571.7336 472.6326. GIUCOSE1PMETAB-PWY 4693.40733 4775.463 544.773221 428.822348 599.1790. PWY-621 4522.07477 4482.81981 1179.10028 2394.50457 6024.876. PWY-5384 4522.07477 4482.81981 539.98487 797.054189 1562.077. RHAMCAT-PWY 8292.34983 4453.04224 3048.90955 19162.0249 7728.323. PWY-6749 6533.07072 4420.25243 2436.1123 16378.9616 179.2983. PWY-7376 7701.79687 4297.65017 4005.01959 9704.84902 2906.970. PWY-6313 8291.3177 4121.86079 3985.15199 1646.9172 551.0462. PWY-5419 6344.32048 4046.917 1537.83719 1856.58576 810.2. RAGORNPROST-PWY 6134.89143 3940.23919 4367.18977 3408.3444 1576.037. PWY-7377 5121.08 3822.2 5193.66 22388.89 23677. PWY-5304 3804.96 3816.65 2880.61 27965.05 15571. PWY-5676 8161.43739 3481.95728 4162.86901 1497.41949 2819.36. PWY-5576 8161.43739 3481.95728 4162.86901 1497.41949 2819.36. PVY-5180 5741.52417 3317.84482 2896.89723 5526.64468 8396.832. PWY-5180 5741.52417 3317.84482 2896.89723 5526.64468 8396.832. PWY-5182 5741.52417 3317.84482 2896.89723 5526.64468 8396. | PWY-5860             | 9723.3534  | 5081.15663 | 2289.13798 | 1046.41579 | 742.855162 |
| PWY0-845         8012.39633         4964.45565         6124.52955         864.476028         798.6725           PWY-5747         6277.04895         4937.66519         3209.03914         2195.2527         390.9033           PWY0-42         5729.96141         4776.64472         2000.64299         2571.7336         472.6326           GLUCOSE1PMETAB-PWY         4693.40733         4775.463         544.773221         428.22348         999.1790           PWY-5384         4522.07477         4482.81981         1379.10028         2394.50457         602.48.76           PWY-5384         4522.07477         4482.81981         539.98487         797.054189         1562.076           RHAMCAT-PWY         8292.34983         4453.04224         3048.90955         19162.0249         7728.323           PWY-6749         6533.07072         4420.25243         2436.1123         16378.9616         179.2983           PWY-5376         7701.79687         4297.65017         4005.01959         9704.84902         2906.970           PWY-5419         6344.32048         4046.917         1537.83719         1856.58576         810.2           PWY-5419         6344.32048         4046.917         1537.83719         1856.58576         810.2           PWY-55419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PWY-5862             | 9723.3534  | 5081.15663 | 2289.13798 | 1046.41579 | 742.855162 |
| PWY-5747         6277.04895         4937.66519         3209.03914         2195.2527         390.9033           PWYO-42         5729.96141         4776.64472         2000.64299         2571.7336         472.6326           GLUCOSE1PMETAB-PWY         4693.40733         4775.463         544.773221         428.822348         599.1790           PWY-621         4522.07477         4482.81981         1179.10028         2394.50457         6024.876           PWY-5384         4522.07477         4482.81981         539.98487         797.054189         1562.0773           RHAMCAT-PWY         8292.34983         4453.04224         3048.90955         19162.0249         7728.323           PWY-6749         6533.07072         4420.25243         2436.1123         16378.9616         179.2983           PWY-7376         7701.79687         4297.65017         4005.01959         9704.84902         2906.970           PWY-5419         6344.32048         4046.917         1537.83719         1856.58576         810.21           ARGORNPROST-PWY         7613.98134         3940.23919         4367.18977         3408.3444         1576.037           PWY-5304         3804.96         3816.65         2880.61         27965.05         15571.           PWY-5676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P122-PWY             | 8914.76931 | 5021.13894 | 5887.83319 | 11061.326  | 6232.46921 |
| PWY0-42         5729.96141         4776.64472         2000.64299         2571.7336         472.63266           GLUCOSE1PMETAB-PWY         4693.40733         4775.463         544.773221         428.822348         599.1790           PWY-621         4522.07477         4482.81981         1179.10028         2394.50457         6024.876           PWY-5384         4522.07477         4482.81981         539.98487         797.054189         1562.077           RHAMCAT-PWY         8292.34983         4453.04224         3048.90955         19162.0249         7728.323           PWY-6749         6533.07072         4420.25243         2436.1123         16378.9616         179.2983*           PWY-7376         7701.79687         4297.65017         4005.01959         9704.84902         2906.970           PWY-5419         6344.32048         4046.917         1537.83719         1856.58576         810.2           ARGORNPROST-PWY         7613.98134         3940.23919         4367.1897         3408.3444         1576.037*           ENTBACSYN-PWY         6034.49974         3913.63687         4909.2665         4637.2103         4801.742*           PWY-5304         3804.96         3816.65         2880.61         27965.05         15571.           PWY-5676 </td <td>PWY0-845</td> <td>8012.39633</td> <td>4964.45565</td> <td>6124.52955</td> <td>864.476028</td> <td>798.672589</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PWY0-845             | 8012.39633 | 4964.45565 | 6124.52955 | 864.476028 | 798.672589 |
| GLUCOSE1PMETAB-PWY         4693.40733         4775.463         544.773221         428.822348         599.17900           PWY-621         4522.07477         4482.81981         1179.10028         2394.50457         6024.876           PWY-5384         4522.07477         4482.81981         539.98487         797.054189         1562.077           RHAMCAT-PWY         8292.34983         4453.04224         3048.90955         19162.0249         7728.3231           PWY-6749         6533.07072         4420.25243         2436.1123         16378.9616         179.2983           PWY-7376         7701.79687         4297.65017         4005.01959         9704.84902         2906.970           PWY-5419         6344.32048         4046.917         1537.83719         1856.58576         810.20           ARGORNPROST-PWY         7613.98134         3940.23919         4367.18977         3408.3444         1576.037           ENTBACSYN-PWY         6034.49974         3913.63687         4909.2665         4637.2103         4801.742           PWY-5304         3804.96         3816.65         2880.61         27965.05         15571.4           PWY-5676         8161.43739         3481.95728         4162.86901         1497.41949         2819.36           PWY-5679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PWY-5747             | 6277.04895 | 4937.66519 | 3209.03914 | 2195.2527  | 390.903346 |
| PWY-621         4522.07477         4482.81981         1179.10028         2394.50457         6024.876           PWY-5384         4522.07477         4482.81981         539.98487         797.054189         1562.077           RHAMCAT-PWY         8292.34983         4453.04224         3048.90955         19162.0249         7728.323           PWY-6749         6533.07072         4420.25243         2436.1123         16378.9616         179.2983           PWY-7376         7701.79687         4297.65017         4005.01959         9704.84902         2906.970           PWY-5419         6344.32048         4046.917         1537.83719         1856.58576         810.2           ARGORNPROST-PWY         7613.98134         3940.23919         4367.18977         3408.3444         1576.037           ENTBACSYN-PWY         6034.49974         3913.63687         4909.2665         4637.2103         4801.742           PWY-7237         5121.08         382.2         5193.66         22388.89         23677.           PWY-5304         3804.96         3816.65         2880.61         27965.05         15571.           PWY-5676         8161.43739         3481.95728         4162.86901         1497.41949         2819.36           PWY-5180         5741.5241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PWY0-42              | 5729.96141 | 4776.64472 | 2000.64299 | 2571.7336  | 472.632693 |
| PWY-5384         4522.07477         4482.81981         539.98487         797.054189         1562.077           RHAMCAT-PWY         8292.34983         4453.04224         3048.90955         19162.0249         7728.323           PWY-6749         6533.07072         4420.25243         2436.1123         16378.9616         179.2983           PWY-7376         7701.79687         4297.65017         4005.01959         9704.84902         2906.970           PWY-5419         6344.32048         4046.917         1537.83719         1856.58576         810.2           ARGORNPROST-PWY         6034.49974         3913.63687         4909.2665         4637.2103         4801.745           PWY-7237         5121.08         3822.2         5193.66         22388.89         23677.           PWY-5304         3804.96         3816.65         2880.61         27965.05         15571.           PWY-5676         8161.43739         3481.95728         4162.86901         1497.41949         2819.36           PWY-7007         5080.29622         3326.74618         1855.75214         6973.56605         1221.885           PWY-5180         5741.52417         3317.84482         2896.89723         5526.64468         8396.832           PWY-5182         5741.52417<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GLUCOSE1PMETAB-PWY   | 4693.40733 | 4775.463   | 544.773221 | 428.822348 | 599.179098 |
| RHAMCAT-PWY 8292.34983 4453.04224 3048.90955 19162.0249 7728.3231 PWY-6749 6533.07072 4420.25243 2436.1123 16378.9616 179.29831 PWY-7376 7701.79687 4297.65017 4005.01959 9704.84902 2906.970. PWY0-1533 8291.3177 4121.86079 3985.15199 1646.9172 551.04620 PWY-5419 6344.32048 4046.917 1537.83719 1856.58576 810.20 ARGORNPROST-PWY 7613.98134 3940.23919 4367.18977 3408.3444 1576.0373 ENTBACSYN-PWY 6034.49974 3913.63687 4909.2665 4637.2103 4801.7423 PWY-7237 5121.08 3822.2 5193.66 22388.89 236777. PWY-5304 3804.96 3816.65 2880.61 27965.05 15571.0 PWY-5676 8161.43739 3481.95728 4162.86901 1497.41949 2819.36. P125-PWY 2678.21048 3352.96137 437.638613 3242.33527 3401.3214 PWY-7007 5080.29622 3326.74618 1855.75214 6973.56605 1221.8853 PWY-5180 5741.52417 3317.84482 2896.89723 5526.64468 8396.8323 PWY-5182 5741.52417 3317.84482 2896.89723 5526.64468 8396.8323 DENITRIFICATION-PWY 4740.80932 3309.97459 1033.72291 438.875882 558.0105. PWY-5655 4763.11207 3284.99721 1275.31713 442.798094 868.7009. PWY-5741 6641.92666 3192.89577 2285.636 0 63.88258. PWY-1622 4650.71673 3191.64795 3767.27772 0 155.08120 PWY-5420 5027.36701 3152.89783 1823.57743 2623.47455 1332.494 PWY-6396 2877.34859 3061.95405 779.380657 1754.1375 342.26655 PWY-6647 3748.44472 2993.06814 769.892612 267.45872 470.2307 PWY-6647 3748.44472 2993.06814 769.892612 267.45872 470.2307 PWY-6647 3748.44472 2993.06814 769.892612 267.45872 470.2307                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PWY-621              | 4522.07477 | 4482.81981 | 1179.10028 | 2394.50457 | 6024.87673 |
| PWY-6749         6533.07072         4420.25243         2436.1123         16378.9616         179.2983           PWY-7376         7701.79687         4297.65017         4005.01959         9704.84902         2906.970           PWY0-1533         8291.3177         4121.86079         3985.15199         1646.9172         551.0462           PWY-5419         6344.32048         4046.917         1537.83719         1856.58576         810.20           ARGORNPROST-PWY         7613.98134         3940.23919         4367.18977         3408.3444         1576.037           ENTBACSYN-PWY         6034.49974         3913.63687         4909.2665         4637.2103         4801.742           PWY-7237         5121.08         3822.2         5193.66         2388.89         23677.           PWY-5304         3804.96         3816.65         2880.61         27965.05         15571.4           PWY-5676         8161.43739         3481.95728         4162.86901         1497.41949         2819.36           P125-PWY         2678.21048         3352.96137         437.638613         3242.33527         3401.321           PWY-5180         5741.52417         3317.84482         2896.89723         5526.64468         8396.832           PWY-5182         5741.5241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PWY-5384             | 4522.07477 | 4482.81981 | 539.98487  | 797.054189 | 1562.07753 |
| PWY-7376         7701.79687         4297.65017         4005.01959         9704.84902         2906.970           PWY0-1533         8291.3177         4121.86079         3985.15199         1646.9172         551.0462           PWY-5419         6344.32048         4046.917         1537.83719         1856.58576         810.2           ARGORNPROST-PWY         7613.98134         3940.23919         4367.18977         3408.3444         1576.037           ENTBACSYN-PWY         6034.49974         3913.63687         4909.2665         4637.2103         4801.742           PWY-7237         5121.08         3822.2         5193.66         22388.89         23677.           PWY-5304         3804.96         3816.65         2880.61         27965.05         15571.4           PWY-5676         8161.43739         3481.95728         4162.86901         1497.41949         2819.36           PL25-PWY         2678.21048         3352.96137         437.638613         3242.33527         3401.3214           PWY-7007         5080.29622         3326.74618         1855.75214         6973.56605         1221.8856           PWY-5180         5741.52417         3317.84482         2896.89723         5526.64468         8396.832           PWY-5182         5741.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RHAMCAT-PWY          | 8292.34983 | 4453.04224 | 3048.90955 | 19162.0249 | 7728.32365 |
| PWY0-1533         8291.3177         4121.86079         3985.15199         1646.9172         551.04620           PWY-5419         6344.32048         4046.917         1537.83719         1856.58576         810.20           ARGORNPROST-PWY         7613.98134         3940.23919         4367.18977         3408.3444         1576.0379           ENTBACSYN-PWY         6034.49974         3913.63687         4909.2665         4637.2103         4801.7429           PWY-7237         5121.08         3822.2         5193.66         22388.89         23677.7           PWY-5304         3804.96         3816.65         2880.61         27965.05         15571.4           PWY-5676         8161.43739         3481.95728         4162.86901         1497.41949         2819.36           PL25-PWY         2678.21048         3352.96137         437.638613         3242.33527         3401.3214           PWY-7007         5080.29622         3326.74618         1855.75214         6973.56605         1221.8853           PWY-5180         5741.52417         3317.84482         2896.89723         5526.64468         8396.8323           PWY-5182         5741.52417         3317.84482         2896.89723         5526.64468         8396.8323           PWY-5182 <th< td=""><td>PWY-6749</td><td>6533.07072</td><td>4420.25243</td><td>2436.1123</td><td>16378.9616</td><td>179.298397</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PWY-6749             | 6533.07072 | 4420.25243 | 2436.1123  | 16378.9616 | 179.298397 |
| PWY-5419         6344.32048         4046.917         1537.83719         1856.58576         810.20           ARGORNPROST-PWY         7613.98134         3940.23919         4367.18977         3408.3444         1576.0379           ENTBACSYN-PWY         6034.49974         3913.63687         4909.2665         4637.2103         4801.7429           PWY-7237         5121.08         3822.2         5193.66         22388.89         23677.           PWY-5304         3804.96         3816.65         2880.61         27965.05         15571.1           PWY-5676         8161.43739         3481.95728         4162.86901         1497.41949         2819.36           P125-PWY         2678.21048         3352.96137         437.638613         3242.33527         3401.321           PWY-7007         5080.29622         3326.74618         1855.75214         6973.56605         1221.8856           PWY-5180         5741.52417         3317.84482         2896.89723         5526.64468         8396.832           PWY-5182         5741.52417         3317.84482         2896.89723         5526.64468         8396.832           DENITRIFICATION-PWY         470.80932         3309.97459         1033.72291         438.875882         558.0105           PWY-5655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PWY-7376             | 7701.79687 | 4297.65017 | 4005.01959 | 9704.84902 | 2906.97016 |
| ARGORNPROST-PWY 7613.98134 3940.23919 4367.18977 3408.3444 1576.0377 ENTBACSYN-PWY 6034.49974 3913.63687 4909.2665 4637.2103 4801.7422 PWY-7237 5121.08 3822.2 5193.66 22388.89 23677. PWY-5304 3804.96 3816.65 2880.61 27965.05 15571.4 PWY-5676 8161.43739 3481.95728 4162.86901 1497.41949 2819.362 P125-PWY 2678.21048 3352.96137 437.638613 3242.33527 3401.3214 PWY-7007 5080.29622 3326.74618 1855.75214 6973.56605 1221.8855 PWY-5180 5741.52417 3317.84482 2896.89723 5526.64468 8396.8322 PWY-5182 5741.52417 3317.84482 2896.89723 5526.64468 8396.8322 DENITRIFICATION-PWY 4740.80932 3309.97459 1033.72291 438.875882 558.01054 PWY-5655 4763.11207 3284.99721 1275.31713 442.798094 868.70092 PWY-5741 6641.92666 3192.89577 2285.636 0 63.882582 PWY-5420 5027.36701 3152.89783 1823.57743 2623.47455 1332.4944 PWY-6326 2877.34859 3061.95405 779.380657 1754.1375 342.26656 PWY-5647 3748.44472 2993.06814 769.892612 267.45872 470.23077 PWY-6383 3938.61591 2870.96362 3659.40903 22969.503 10170.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PWY0-1533            | 8291.3177  | 4121.86079 | 3985.15199 | 1646.9172  | 551.046209 |
| ENTBACSYN-PWY 6034.49974 3913.63687 4909.2665 4637.2103 4801.742;  PWY-7237 5121.08 3822.2 5193.66 22388.89 23677.  PWY-5304 3804.96 3816.65 2880.61 27965.05 15571.  PWY-5676 8161.43739 3481.95728 4162.86901 1497.41949 2819.36;  P125-PWY 2678.21048 3352.96137 437.638613 3242.33527 3401.3214  PWY-7007 5080.29622 3326.74618 1855.75214 6973.56605 1221.885;  PWY-5180 5741.52417 3317.84482 2896.89723 5526.64468 8396.832;  PWY-5182 5741.52417 3317.84482 2896.89723 5526.64468 8396.832;  DENITRIFICATION-PWY 4740.80932 3309.97459 1033.72291 438.875882 558.01054  PWY-5655 4763.11207 3284.99721 1275.31713 442.798094 868.7009;  PWY-7315 5727.20022 3240.21942 339.511575 0 179.10394  PWY-5741 6641.92666 3192.89577 2285.636 0 63.88258;  PWY-1622 4650.71673 3191.64795 3767.27772 0 155.08124  PWY-5420 5027.36701 3152.89783 1823.57743 2623.47455 1332.4944;  PWY-5420 5027.36701 3152.89783 1823.57743 2623.47455 1332.4944;  PWY-6396 2877.34859 3061.95405 779.380657 1754.1375 342.26656;  PWY-5647 3748.44472 2993.06814 769.892612 267.45872 470.2307;  PWY-6383 3938.61591 2870.96362 3659.40903 22969.503 10170.1145.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PWY-5419             | 6344.32048 | 4046.917   | 1537.83719 | 1856.58576 | 810.204    |
| PWY-7237         5121.08         3822.2         5193.66         22388.89         23677.7           PWY-5304         3804.96         3816.65         2880.61         27965.05         15571.1           PWY-5676         8161.43739         3481.95728         4162.86901         1497.41949         2819.36           P125-PWY         2678.21048         3352.96137         437.638613         3242.33527         3401.3214           PWY-7007         5080.29622         3326.74618         1855.75214         6973.56605         1221.8852           PWY-5180         5741.52417         3317.84482         2896.89723         5526.64468         8396.8322           PWY-5182         5741.52417         3317.84482         2896.89723         5526.64468         8396.8322           DENITRIFICATION-PWY         4740.80932         3309.97459         1033.72291         438.875882         558.01054           PWY-5655         4763.11207         3284.99721         1275.31713         442.798094         868.70093           PWY-7315         5727.20022         3240.21942         339.511575         0         179.10394           PWY-5741         6641.92666         3192.89577         2285.636         0         63.88258           PWY-5420         5027.36701 </td <td>ARGORNPROST-PWY</td> <td>7613.98134</td> <td>3940.23919</td> <td>4367.18977</td> <td>3408.3444</td> <td>1576.03758</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ARGORNPROST-PWY      | 7613.98134 | 3940.23919 | 4367.18977 | 3408.3444  | 1576.03758 |
| PWY-5304         3804.96         3816.65         2880.61         27965.05         15571.0           PWY-5676         8161.43739         3481.95728         4162.86901         1497.41949         2819.36           P125-PWY         2678.21048         3352.96137         437.638613         3242.33527         3401.3214           PWY-7007         5080.29622         3326.74618         1855.75214         6973.56605         1221.885           PWY-5180         5741.52417         3317.84482         2896.89723         5526.64468         8396.832           PWY-5182         5741.52417         3317.84482         2896.89723         5526.64468         8396.832           DENITRIFICATION-PWY         4740.80932         3309.97459         1033.72291         438.875882         558.0105           PWY-5655         4763.11207         3284.99721         1275.31713         442.798094         868.7009           PWY-7315         5727.20022         3240.21942         339.511575         0         179.1039           PWY-5741         6641.92666         3192.89577         2285.636         0         63.88258           PWY-1622         4650.71673         3191.64795         3767.27772         0         155.0812           PWY-5420         5027.36701 <td>ENTBACSYN-PWY</td> <td>6034.49974</td> <td>3913.63687</td> <td>4909.2665</td> <td>4637.2103</td> <td>4801.74257</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ENTBACSYN-PWY        | 6034.49974 | 3913.63687 | 4909.2665  | 4637.2103  | 4801.74257 |
| PWY-5676       8161.43739       3481.95728       4162.86901       1497.41949       2819.36         P125-PWY       2678.21048       3352.96137       437.638613       3242.33527       3401.3214         PWY-7007       5080.29622       3326.74618       1855.75214       6973.56605       1221.8853         PWY-5180       5741.52417       3317.84482       2896.89723       5526.64468       8396.8323         PWY-5182       5741.52417       3317.84482       2896.89723       5526.64468       8396.8323         DENITRIFICATION-PWY       4740.80932       3309.97459       1033.72291       438.875882       558.01054         PWY-5655       4763.11207       3284.99721       1275.31713       442.798094       868.70093         PWY-7315       5727.20022       3240.21942       339.511575       0       179.10396         PWY-5741       6641.92666       3192.89577       2285.636       0       63.88258         PWY-1622       4650.71673       3191.64795       3767.27772       0       155.08126         PWY-5420       5027.36701       3152.89783       1823.57743       2623.47455       1332.4944         PWY-6396       2877.34859       3061.95405       779.380657       1754.1375       342.26653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PWY-7237             | 5121.08    | 3822.2     | 5193.66    | 22388.89   | 23677.78   |
| P125-PWY       2678.21048       3352.96137       437.638613       3242.33527       3401.321.4         PWY-7007       5080.29622       3326.74618       1855.75214       6973.56605       1221.8858         PWY-5180       5741.52417       3317.84482       2896.89723       5526.64468       8396.832         PWY-5182       5741.52417       3317.84482       2896.89723       5526.64468       8396.832         DENITRIFICATION-PWY       4740.80932       3309.97459       1033.72291       438.875882       558.0105.4         PWY-5655       4763.11207       3284.99721       1275.31713       442.798094       868.7009.4         PWY-7315       5727.20022       3240.21942       339.511575       0       179.1039.4         PWY-5741       6641.92666       3192.89577       2285.636       0       63.88258.4         PWY-1622       4650.71673       3191.64795       3767.27772       0       155.0812.6         PWY-5420       5027.36701       3152.89783       1823.57743       2623.47455       1332.494.6         PWY-6396       2877.34859       3061.95405       779.380657       1754.1375       342.2665.6         PWY-5647       3748.44472       2993.06814       769.892612       267.45872       470.2307.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PWY-5304             | 3804.96    | 3816.65    | 2880.61    | 27965.05   | 15571.61   |
| PWY-7007       5080.29622       3326.74618       1855.75214       6973.56605       1221.8853         PWY-5180       5741.52417       3317.84482       2896.89723       5526.64468       8396.8323         PWY-5182       5741.52417       3317.84482       2896.89723       5526.64468       8396.8323         DENITRIFICATION-PWY       4740.80932       3309.97459       1033.72291       438.875882       558.01054         PWY-5655       4763.11207       3284.99721       1275.31713       442.798094       868.70093         PWY-7315       5727.20022       3240.21942       339.511575       0       179.10394         PWY-5741       6641.92666       3192.89577       2285.636       0       63.882583         PWY-1622       4650.71673       3191.64795       3767.27772       0       155.08124         PWY-5420       5027.36701       3152.89783       1823.57743       2623.47455       1332.4944         PWY0-321       4816.88558       3137.65913       1719.97799       806.730162       276.25993         PWY-6396       2877.34859       3061.95405       779.380657       1754.1375       342.26652         PWY-5647       3748.44472       2993.06814       769.892612       267.45872       470.2307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PWY-5676             | 8161.43739 | 3481.95728 | 4162.86901 | 1497.41949 | 2819.3639  |
| PWY-5180       5741.52417       3317.84482       2896.89723       5526.64468       8396.8323         PWY-5182       5741.52417       3317.84482       2896.89723       5526.64468       8396.8323         DENITRIFICATION-PWY       4740.80932       3309.97459       1033.72291       438.875882       558.01054         PWY-5655       4763.11207       3284.99721       1275.31713       442.798094       868.70093         PWY-5741       6641.92666       3192.89577       2285.636       0       63.882583         PWY-1622       4650.71673       3191.64795       3767.27772       0       155.08120         PWY-5420       5027.36701       3152.89783       1823.57743       2623.47455       1332.4943         PWY0-321       4816.88558       3137.65913       1719.97799       806.730162       276.25993         PWY-6396       2877.34859       3061.95405       779.380657       1754.1375       342.26653         PWY-5647       3748.44472       2993.06814       769.892612       267.45872       470.23073         PWY-6383       3938.61591       2870.96362       3659.40903       22969.503       10170.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P125-PWY             | 2678.21048 | 3352.96137 | 437.638613 | 3242.33527 | 3401.32149 |
| PWY-5182       5741.52417       3317.84482       2896.89723       5526.64468       8396.8323         DENITRIFICATION-PWY       4740.80932       3309.97459       1033.72291       438.875882       558.01054         PWY-5655       4763.11207       3284.99721       1275.31713       442.798094       868.70093         PWY-7315       5727.20022       3240.21942       339.511575       0       179.10394         PWY-5741       6641.92666       3192.89577       2285.636       0       63.882583         PWY-1622       4650.71673       3191.64795       3767.27772       0       155.08124         PWY-5420       5027.36701       3152.89783       1823.57743       2623.47455       1332.4944         PWY0-321       4816.88558       3137.65913       1719.97799       806.730162       276.25993         PWY-6396       2877.34859       3061.95405       779.380657       1754.1375       342.26653         PWY-5647       3748.44472       2993.06814       769.892612       267.45872       470.23077         PWY-6383       3938.61591       2870.96362       3659.40903       22969.503       10170.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PWY-7007             | 5080.29622 | 3326.74618 | 1855.75214 | 6973.56605 | 1221.88589 |
| DENITRIFICATION-PWY       4740.80932       3309.97459       1033.72291       438.875882       558.01054         PWY-5655       4763.11207       3284.99721       1275.31713       442.798094       868.7009         PWY-7315       5727.20022       3240.21942       339.511575       0       179.1039         PWY-5741       6641.92666       3192.89577       2285.636       0       63.88258         PWY-1622       4650.71673       3191.64795       3767.27772       0       155.08120         PWY-5420       5027.36701       3152.89783       1823.57743       2623.47455       1332.494         PWY0-321       4816.88558       3137.65913       1719.97799       806.730162       276.25995         PWY-6396       2877.34859       3061.95405       779.380657       1754.1375       342.26655         PWY-5647       3748.44472       2993.06814       769.892612       267.45872       470.2307         PWY-6383       3938.61591       2870.96362       3659.40903       22969.503       10170.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PWY-5180             | 5741.52417 | 3317.84482 | 2896.89723 | 5526.64468 | 8396.83234 |
| PWY-5655       4763.11207       3284.99721       1275.31713       442.798094       868.70092         PWY-7315       5727.20022       3240.21942       339.511575       0       179.10396         PWY-5741       6641.92666       3192.89577       2285.636       0       63.882582         PWY-1622       4650.71673       3191.64795       3767.27772       0       155.08126         PWY-5420       5027.36701       3152.89783       1823.57743       2623.47455       1332.4942         PWY0-321       4816.88558       3137.65913       1719.97799       806.730162       276.25992         PWY-6396       2877.34859       3061.95405       779.380657       1754.1375       342.26653         PWY-5647       3748.44472       2993.06814       769.892612       267.45872       470.23077         PWY-6383       3938.61591       2870.96362       3659.40903       22969.503       10170.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PWY-5182             | 5741.52417 | 3317.84482 | 2896.89723 | 5526.64468 | 8396.83234 |
| PWY-5655       4763.11207       3284.99721       1275.31713       442.798094       868.70092         PWY-7315       5727.20022       3240.21942       339.511575       0       179.10396         PWY-5741       6641.92666       3192.89577       2285.636       0       63.882582         PWY-1622       4650.71673       3191.64795       3767.27772       0       155.08126         PWY-5420       5027.36701       3152.89783       1823.57743       2623.47455       1332.4942         PWY0-321       4816.88558       3137.65913       1719.97799       806.730162       276.25992         PWY-6396       2877.34859       3061.95405       779.380657       1754.1375       342.26653         PWY-5647       3748.44472       2993.06814       769.892612       267.45872       470.23077         PWY-6383       3938.61591       2870.96362       3659.40903       22969.503       10170.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DENITRIFICATION-PWY  | 4740.80932 | 3309.97459 | 1033.72291 | 438.875882 | 558.010544 |
| PWY-7315       5727.20022       3240.21942       339.511575       0       179.10396         PWY-5741       6641.92666       3192.89577       2285.636       0       63.88258         PWY-1622       4650.71673       3191.64795       3767.27772       0       155.08126         PWY-5420       5027.36701       3152.89783       1823.57743       2623.47455       1332.4948         PWY0-321       4816.88558       3137.65913       1719.97799       806.730162       276.25998         PWY-6396       2877.34859       3061.95405       779.380657       1754.1375       342.26658         PWY-5647       3748.44472       2993.06814       769.892612       267.45872       470.23077         PWY-6383       3938.61591       2870.96362       3659.40903       22969.503       10170.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PWY-5655             | 4763.11207 |            |            |            | 868.700921 |
| PWY-5741       6641.92666       3192.89577       2285.636       0       63.88258         PWY-1622       4650.71673       3191.64795       3767.27772       0       155.08120         PWY-5420       5027.36701       3152.89783       1823.57743       2623.47455       1332.494         PWY0-321       4816.88558       3137.65913       1719.97799       806.730162       276.2599         PWY-6396       2877.34859       3061.95405       779.380657       1754.1375       342.2665         PWY-5647       3748.44472       2993.06814       769.892612       267.45872       470.2307         PWY-6383       3938.61591       2870.96362       3659.40903       22969.503       10170.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PWY-7315             | 5727.20022 |            |            | 0          | 179.103964 |
| PWY-1622       4650.71673       3191.64795       3767.27772       0       155.08120         PWY-5420       5027.36701       3152.89783       1823.57743       2623.47455       1332.4945         PWY0-321       4816.88558       3137.65913       1719.97799       806.730162       276.25995         PWY-6396       2877.34859       3061.95405       779.380657       1754.1375       342.26655         PWY-5647       3748.44472       2993.06814       769.892612       267.45872       470.2307         PWY-6383       3938.61591       2870.96362       3659.40903       22969.503       10170.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PWY-5741             |            |            |            | 0          | 63.8825822 |
| PWY-5420       5027.36701       3152.89783       1823.57743       2623.47455       1332.494         PWY0-321       4816.88558       3137.65913       1719.97799       806.730162       276.25993         PWY-6396       2877.34859       3061.95405       779.380657       1754.1375       342.26653         PWY-5647       3748.44472       2993.06814       769.892612       267.45872       470.2307         PWY-6383       3938.61591       2870.96362       3659.40903       22969.503       10170.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PWY-1622             |            |            |            | 0          | 155.081205 |
| PWY0-321       4816.88558       3137.65913       1719.97799       806.730162       276.25992         PWY-6396       2877.34859       3061.95405       779.380657       1754.1375       342.26658         PWY-5647       3748.44472       2993.06814       769.892612       267.45872       470.2307         PWY-6383       3938.61591       2870.96362       3659.40903       22969.503       10170.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |            |            |            | 2623.47455 | 1332.49415 |
| PWY-6396       2877.34859       3061.95405       779.380657       1754.1375       342.26657         PWY-5647       3748.44472       2993.06814       769.892612       267.45872       470.2307         PWY-6383       3938.61591       2870.96362       3659.40903       22969.503       10170.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |            |            |            |            | 276.259929 |
| PWY-5647       3748.44472       2993.06814       769.892612       267.45872       470.2307         PWY-6383       3938.61591       2870.96362       3659.40903       22969.503       10170.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |            |            |            |            | 342.266589 |
| PWY-6383 3938.61591 2870.96362 3659.40903 22969.503 10170.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |            |            |            |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 3748.44472 | 2993.06814 | 769.892612 | 207.43072  | 7/0.230/// |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PWY-5647             |            |            |            |            | 10170.1109 |
| PWY-5654 3620.99376 2801.06377 803.826004 356.213731 454.81904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PWY-5647<br>PWY-6383 | 3938.61591 | 2870.96362 | 3659.40903 | 22969.503  |            |

| PWY-6588                    | 4548.53532 | 2774.37925 | 484.820102 | 1465.76005 | 4451.66347 |
|-----------------------------|------------|------------|------------|------------|------------|
| PWY-6876                    | 4548.53532 | 2774.37925 | 484.820102 | 1465.76005 | 593.348195 |
| PWY-5910                    | 2878.316   | 2737.75684 | 1134.084   | 33.0339514 | 419.349797 |
| P441-PWY                    | 3413.75966 | 2679.18918 | 2281.76253 | 1627.82161 | 2490.96103 |
| PWY-6071                    | 4294.65021 | 2608.80754 | 1367.54801 | 871.621322 | 307.109862 |
| CODH-PWY                    | 4924.31418 | 2533.78424 | 8302.38988 | 107.394488 | 1006.59966 |
| P281-PWY                    | 3599.2084  | 2484.7429  | 1505.14493 | 1890.24345 | 464.326036 |
| HEXITOLDEGSUPER-PWY         | 3465.84671 | 2473.32032 | 6754.54359 | 9516.10074 | 8675.74562 |
| PWY-7456                    | 4824.21713 | 2403.60649 | 400.847338 | 190.958661 | 376.278956 |
| PWY-3801                    | 67.3941727 | 2398.62378 | 267.733923 | 0          | 0          |
| P562-PWY                    | 3921.83435 | 2388.61615 | 3273.51135 | 8988.79626 | 12637.6113 |
| PWY-6895                    | 3535.59742 | 2356.35361 | 2958.4341  | 18167.8502 | 13500.7353 |
| PWY-7255                    | 4003.97032 | 2332.67062 | 2337.88076 | 8184.1234  | 7126.08167 |
| PWY-7347                    | 1818.88393 | 2248.23816 | 421.822305 | 0          | 22.3552373 |
| KDO-NAGLIPASYN-PWY          | 418.37392  | 2225.02089 | 1107.27529 | 0          | 0          |
| TEICHOICACID-PWY            | 2729.38521 | 2186.63874 | 1275.26902 | 5339.71699 | 1195.30192 |
| PWY-5941                    | 5119.04876 | 2147.56916 | 738.704596 | 0          | 0          |
| PWY-5181                    | 3379.53764 | 2118.9447  | 1478.02765 | 770.315347 | 317.635533 |
| PWY-5705                    | 3202.3612  | 2026.80185 | 792.223055 | 15189.5516 | 376.882992 |
| PWY-922                     | 2053.90233 | 1977.40955 | 801.783586 | 23.1287153 | 294.757641 |
| P101-PWY                    | 3091.02719 | 1959.6576  | 494.022015 | 18307.602  | 13087.1462 |
| P381-PWY                    | 3000.18493 | 1937.98787 | 333.438543 | 814.806756 | 1322.24619 |
| PWY-7616                    | 2549.76767 | 1933.08434 | 1107.52661 | 7145.80389 | 8740.83044 |
| PWY-6505                    | 3132.90505 | 1900.35555 | 1085.22083 | 442.798094 | 654.294449 |
| P221-PWY                    | 5093.74942 | 1875.56855 | 261.3447   | 3406.31917 | 258.320608 |
| ORNDEG-PWY                  | 3047.13195 | 1825.98503 | 0          | 0          | 0          |
| PWY-6562                    | 2224.71335 | 1811.68342 | 746.991081 | 62.9452946 | 940.007483 |
| PWY-5392                    | 3209.69361 | 1804.95504 | 229.702195 | 3337.12839 | 0          |
| PWY-7090                    | 3558.66475 | 1790.41388 | 898.554454 | 0          | 195.062687 |
| PWY1G-0                     | 3012.33299 | 1767.79841 | 3659.0342  | 14761.6867 | 7674.40294 |
| CATECHOL-ORTHO-CLEAVAGE-PWY | 2106.94439 | 1747.74189 | 1917.11083 | 1723.48058 | 275.624389 |
| PWY-6182                    | 2270.83174 | 1721.14215 | 1783.55782 | 1804.35827 | 252.449543 |
| PWY-7377                    | 2719.81399 | 1719.66674 | 1641.64636 | 6.99643956 | 494.928889 |
| PWY-5417                    | 2079.52552 | 1627.1786  | 1760.93791 | 1625.6773  | 217.773909 |
| PWY-5431                    | 2079.52552 | 1627.1786  | 1760.93791 | 1625.6773  | 217.773909 |
| PWY-5507                    | 2210.70913 | 1449.23968 | 336.261683 | 0          | 600.199124 |
| PWY-6185                    | 2052.69071 | 1439.39076 | 991.240614 | 462.802463 | 162.780493 |
| PWY-6728                    | 2290.18243 | 1392.90541 | 1260.91001 | 189.149413 | 137.769348 |
| PWY-5430                    | 1985.95174 | 1388.31996 | 660.489433 | 744.505107 | 131.667901 |
| CRNFORCAT-PWY               | 1283.665   | 1385.98405 | 155.09829  | 0          | 0          |
| KETOGLUCONMET-PWY           | 1500.47852 | 1333.00192 | 357.043741 | 691.131078 | 68.4571788 |
| PWY-6590                    | 3526.16481 | 1323.17962 | 2097.33107 | 661.656135 | 1884.58601 |
| PWY-5178                    | 1635.40059 | 1288.75687 | 593.235069 | 2356.89072 | 130.723965 |
| GLCMANNANAUT-PWY            | 1321.86807 | 1283.0824  | 951.064173 | 521.514536 | 818.385627 |
| PWY-6339                    | 2497.86435 | 1253.85784 | 0          | 0          | 010.363027 |
| PWY0-1277                   | 2230.9773  | 1194.96867 | 1082.84691 | 3644.37075 | 136.118905 |
| PWY-6167                    | 1738.87661 | 1150.17222 | 1348.66518 | 0          | 71.3133181 |
| P461-PWY                    | 940.84038  | 1106.85753 | 1835.73629 | 5105.98173 | 9786.99749 |
|                             |            |            |            |            |            |
| PWY-5183                    | 1518.24764 | 1090.4103  | 225.624941 | 321.391748 | 76.3938969 |
| GLUCARDEG-PWY               | 2384.34678 | 1081.86059 | 1671.49859 | 204.267734 | 135.872765 |
| PWY-6174                    | 1502.83032 | 1075.10723 | 258.283757 | T10 200046 | 73.2004177 |
| CENTFERM-PWY                | 2865.48121 | 1073.99501 | 1704.28404 | 518.396846 | 1504.59227 |

| AST-PWY                        | 1973.80379 | 1044.6727  | 250.253811 | 68.8888889 | 76.7046417 |
|--------------------------------|------------|------------|------------|------------|------------|
| GALACTARDEG-PWY                | 2275.374   | 983.924738 | 1254.21007 | 173.920261 | 88.2645457 |
| GLUCARGALACTSUPER-PWY          | 2275.374   | 983.924738 | 1254.21007 | 173.920261 | 88.2645457 |
| PWY-6210                       | 1664.23468 | 979.903549 | 586.089818 | 202.49265  | 258.216294 |
| PWY-2941                       | 874.54512  | 950.913586 | 1064.45866 | 10445.1021 | 14848.0885 |
| PWY-1882                       | 1360.628   | 932.104932 | 0          | 0          | 0          |
| PWY-7003                       | 1004.80583 | 911.257956 | 523.177013 | 2572.95441 | 6827.79901 |
| METHYLGALLATE-DEGRADATION-PWY  | 2267.50828 | 904.782234 | 473.695542 | 1351.72268 | 1246.53458 |
| PWY-5531                       | 984.983819 | 903.660127 | 276.977485 | 0          | 0          |
| PWY-7159                       | 984.983819 | 903.660127 | 276.977485 | 0          | 0          |
| P163-PWY                       | 2105.89164 | 896.374589 | 2814.31531 | 11160.7703 | 2621.79289 |
| P184-PWY                       | 2122.97114 | 873.12001  | 223.431283 | 527.082106 | 434.429486 |
| PWY-6944                       | 1394.46467 | 866.226424 | 76.2287701 | 17.854013  | 0          |
| PWY-3661                       | 750.409598 | 831.685768 | 42.4604792 | 2647.62325 | 0          |
| PWY-7098                       | 1480.07821 | 831.03552  | 207.138966 | 346.268597 | 380.239153 |
| PWY-6338                       | 1353.48512 | 757.034428 | 186.230794 | 323.050788 | 351.828587 |
| PWY-7097                       | 1353.48512 | 757.034428 | 186.230794 | 323.050788 | 351.828587 |
| 3-HYDROXYPHENYLACETATE-DEGRAD/ | 1761.59419 | 755.380205 | 357.059428 | 1032.27775 | 352.756199 |
| FUCCAT-PWY                     | 1008.42148 | 749.911913 | 703.270183 | 1360.33082 | 3857.73237 |
| PWY-6957                       | 1227.18648 | 742.023149 | 0          | 0          | 0          |
| PWY-5529                       | 247.919732 | 740.251112 | 0          | 0          | 0          |
| GALLATE-DEGRADATION-I-PWY      | 1858.45731 | 736.976176 | 381.954027 | 1090.7137  | 1006.52687 |
| PWY-7295                       | 2468.2413  | 731.121771 | 1851.74629 | 0          | 0          |
| METHANOGENESIS-PWY             | 1062.24259 | 698.02085  | 1445.3296  | 0          | 110.580106 |
| PWY-6654                       | 1042.15516 | 697.846617 | 989.306334 | 0          | 54.9015837 |
| GALLATE-DEGRADATION-II-PWY     | 995.574421 | 668.239524 | 381.954027 | 1090.7137  | 1006.52687 |
| PWY-7391                       | 1021.23862 | 586.99881  | 260.241819 | 16.3810775 | 174.307443 |
| PWY-5656                       | 851.394416 | 585.539955 | 607.538648 | 0          | 0          |
| P261-PWY                       | 1031.09392 | 517.246406 | 829.723009 | 17.9928251 | 884.497348 |
| PWY-6891                       | 753.408403 | 504.958177 | 641.337836 | 6205.44283 | 8746.20725 |
| DHGLUCONATE-PYR-CAT-PWY        | 348.217132 | 494.40446  | 75.5923788 | 101.889178 | 81.8843675 |
| PWY-6641                       | 1057.08295 | 488.200557 | 214.574542 | 7.45067179 | 0          |
| PWY-5198                       | 923.114594 | 469.4506   | 971.640889 | 0          | 41.8660947 |
| CHLOROPHYLL-SYN                | 139.381971 | 467.552905 | 0          | 0          | 0          |
| HCAMHPDEG-PWY                  | 915.055684 | 446.363788 | 407.097618 | 1712.74407 | 34.3999683 |
| PWY-6690                       | 915.055684 | 446.363788 | 407.097618 | 1712.74407 | 34.3999683 |
| PWY-2221                       | 1501.42978 | 439.207326 | 0          | 0          | 0          |
| ARGDEG-PWY                     | 1.39832796 | 405.589605 | 0          | 0          | 0          |
| ORNARGDEG-PWY                  | 1.39832796 | 405.589605 | 0          | 0          | 0          |
| PWY-6349                       | 628.056685 | 397.341748 | 632.480724 | 0          | 54.2706887 |
| PWY-6572                       | 507.141489 | 393.696257 | 51.9922631 | 0          | 34.5706133 |
| PWY-722                        | 610.071574 | 384.31737  | 84.42161   | 481.999095 | 98.0769504 |
| PWY-7210                       | 54.9523643 | 377.619182 | 3112.71008 | 0          | 136.856296 |
| P621-PWY                       | 874.060342 | 375.177683 | 0          | 0          | 0          |
| PWY-6350                       | 596.592907 | 363.211515 | 613.017375 | 0          | 45.4263616 |
| PWY-1501                       | 760.055445 | 345.705723 | 0          | 0          | 0          |
| METHGLYUT-PWY                  | 0.7489722  | 344.168271 | 0          | 0          | 0          |
| PWY-7373                       | 361.340653 | 334.681283 | 0          | 0          | 379.686414 |
| PWY-6992                       | 376.39664  | 326.746135 | 819.570193 | 941.243338 | 0          |
| PWY-6731                       | 87.4082604 | 306.141555 | 306.758288 | 54.5019813 | 219.06118  |
| PWY-6471                       | 3172.34925 | 284.067096 | 0          | 14140.4298 | 0          |
|                                | 275.45003  | 276.152619 | 626.862069 | 5759.38268 | 8850.3199  |
| PWY-7527                       | Z/J.TJUUJ  |            |            |            |            |

| PWY-7644             | 268.912559           | 271.824513       | 41.9825073 | 0          | 0          |
|----------------------|----------------------|------------------|------------|------------|------------|
| LIPASYN-PWY          | 223.139644           | 270.496933       | 59.8874909 | 0          | 0          |
| PWY-7198             | 38.4770303           | 265.267838       | 2207.43141 | 0          | 95.8358661 |
| PWY-6470             | 1748.15673           | 236.86358        | 0          | 11032.9909 | 0          |
| PWY-6107             | 663.698272           | 208.830515       | 0          | 164.774105 | 0          |
| VALDEG-PWY           | 632.627186           | 202.851464       | 0          | 0          | 0          |
| PWY-5677             | 802.764845           | 197.242553       | 0          | 0          | 0          |
| PWY-4361             | 166.321085           | 167.502744       | 383.260209 | 3900.23823 | 7165.0923  |
| METH-ACETATE-PWY     | 579.212183           | 164.216155       | 917.222523 | 2.66649057 | 593.710675 |
| PWY-3941             | 472.533324           | 160.737266       | 0          | 0          | 0          |
| ECASYN-PWY           | 1.71408255           | 152.251129       | 0          | 0          | 0          |
| PWY-7013             | 65.9740155           | 133.802801       | 0          | 1172.54396 | 0          |
| PWY0-1338            | 191.883728           | 126.049063       | 45.1289983 | 56.4179104 | 42.7536232 |
| GOLPDLCAT-PWY        | 93.6452047           | 113.893969       | 100.190387 | 1086.04154 | 606.815415 |
| PWY-5532             | 8.9837595            | 113.490329       | 236.965367 | 0          | 0          |
| PWY-7385             | 0                    | 105.000993       | 0          | 0          | 0          |
| PWY-7046             | 220.930254           | 101.67188        | 87.8385487 | 0          | 0          |
| PWY-6919             | 201.315077           | 96.1076052       | 0          | 16.8510638 | 528.553761 |
| THREOCAT-PWY         | 1.94552289           | 90.9856684       | 0          | 0          | 0          |
| PWY-7286             | 5.9828608            | 74.4902835       | 212.366622 | 0          | 17.6291093 |
| PWY-6397             | 240.598463           | 67.3888825       | 0          | 1194.30218 | 0          |
| PWY-7398             | 173.294521           | 61.8456078       | 120.690411 | 24.3968949 | 0          |
| PWY-7528             | 0                    | 52.8703889       | 0          | 0          | 0          |
| P241-PWY             | 78.7774887           | 48.4522725       | 1059.21615 | 0          | 135.674815 |
| AEROBACTINSYN-PWY    | 79.1189791           | 39.0933062       | 0          | 0          | 0          |
| PWY-6915             | 27.9454851           | 36.6340321       | 0          | 10         | 467.126412 |
| PWY-6165             | 23.7245335           | 36.351724        | 305.834053 | 0          | 0          |
| PWY-5005             | 53.3510147           | 35.9635496       | 0          | 2301.76336 | 0          |
| PWY-5499             | 0                    | 33.5             | 0          | 0          | 0          |
| PWY-7084             | 0                    | 32.3064554       | 0          | 0          | 0          |
| PWY-1422             | 29.5820184           | 29.5608759       | 0          | 0          | 0          |
| PWY-7413             | 23.3820184           | 27.9893136       | 0          | 13.9974587 | 125.560286 |
| PWY-5088             | 352.213792           | 23.814845        | 0          | 15.9974367 | 0          |
|                      |                      |                  | 0          |            | 0          |
| PWY-5679<br>PWY-6148 | 114.29<br>14.3581189 | 23<br>22.9150967 | 346.097258 | 0          | 24.8391803 |
| PWY-3081             |                      | 22.3046885       | 302.056169 | 0          |            |
|                      | 0                    | 20.1463415       |            |            | 63         |
| PWY-7415<br>PWY-5634 | 00 1033483           |                  | 0          | 7.8358209  | 63         |
|                      | 96.1923483           | 19.6645588       |            | 0          | 0          |
| P341-PWY             | 172.166641           | 11.6474063       | 646.833294 | 0          | 0          |
| PWY-6830             | 9.69809557           | 7.5480866        | 0          | 0          | 0          |
| PWY-6404             | 795.775109           | 0                | 0          | 385.662498 | 77 0007335 |
| FUC-RHAMCAT-PWY      | 293.20643            | 0                | 293.092646 | 0          | 77.8887335 |
| PWY0-41              | 161.449061           | 0                | 0          | 547.644398 | 0          |
| PWY-6948             | 158.361915           | 0                | 0          | 0          | 0          |
| PWY-622              | 106.98556            | 0                | 101.082487 | 0          | 0          |
| GLYCOL-GLYOXDEG-PWY  | 86.3892206           | 0                | 47.9059479 | 0          | 19.8346739 |
| PWY-1361             | 48.7793178           | 0                | 320.250157 | 246.308669 | 0          |
| PWY5F9-12            | 46.9561495           | 0                | 0          | 0          | 0          |
| PWY-7316             | 45.9826051           | 0                | 0          | 15.9966808 | 0          |
| LACTOSECAT-PWY       | 39.5552005           | 0                | 0          | 0          | 0          |
| LPSSYN-PWY           | 4.46616398           | 0                | 0          | 0          | 0          |
| PWY-6629             | 3.59976338           | 0                | 0          | 0          | 0          |
|                      |                      |                  |            |            |            |

| 0.74866277 | 0 | 0                                                                                                    | 0                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                           |
|------------|---|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.59801359 | 0 | 0                                                                                                    | 0                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                           |
| 0          | 0 | 2281.10918                                                                                           | 5526.64468                                                                                                                                                                | 0                                                                                                                                                                                                                                                                           |
| 0          | 0 | 2281.10918                                                                                           | 5526.64468                                                                                                                                                                | 0                                                                                                                                                                                                                                                                           |
| 0          | 0 | 107.541264                                                                                           | 0                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                           |
| 0          | 0 | 0                                                                                                    | 248.216128                                                                                                                                                                | 0                                                                                                                                                                                                                                                                           |
| 0          | 0 | 0                                                                                                    | 169.534035                                                                                                                                                                | 0                                                                                                                                                                                                                                                                           |
| 0          | 0 | 0                                                                                                    | 15.6500561                                                                                                                                                                | 0                                                                                                                                                                                                                                                                           |
|            |   | 0.59801359     0       0     0       0     0       0     0       0     0       0     0       0     0 | 0.59801359     0     0       0     0     2281.10918       0     0     2281.10918       0     0     107.541264       0     0     0       0     0     0       0     0     0 | 0.59801359       0       0       0         0       0       2281.10918       5526.64468         0       0       2281.10918       5526.64468         0       0       107.541264       0         0       0       0       248.216128         0       0       0       169.534035 |

# **SUPPLEMENTAL MATERIAL #6**

SM6

| hacoMoan  | log2FoldChan | lfcSE       | stat        | nyalua      | nadi        | Direction | Dathway              |
|-----------|--------------|-------------|-------------|-------------|-------------|-----------|----------------------|
|           |              |             |             |             | padj        | Direction |                      |
| 18329.262 |              | 0.169718827 |             | 3.09125E-16 |             |           | PWY-6545             |
| 33805.771 |              | 0.042043465 | -6.05840995 | 1.37474E-09 | 7.93419E-08 |           | GLYCOLYSIS           |
| 42269.55  |              | 0.033344155 | -5.95036341 |             | 1.35112E-07 |           | PWY-6969             |
| 44.469812 |              | 4.408653788 | -5.09034145 | 3.57419E-07 | 1.3127E-05  |           | PWY-6486             |
| 30641.907 | -0.30488892  | 0.060170403 | -5.06709128 | 4.03941E-07 | 1.35993E-05 | humus     | PWY-5484             |
| 30.483339 | -21.9338038  | 4.40922412  | -4.97452686 | 6.54072E-07 | 2.03265E-05 | humus     | PWY-5519             |
| 21.251448 | -21.2846844  | 4.410011217 | -4.82644678 | 1.38991E-06 | 3.90753E-05 | humus     | PWY-6141             |
| 26884.286 | -0.29037173  | 0.069515485 | -4.17707975 | 2.95276E-05 | 0.000551701 | humus     | ANAEROFRUCAT-PWY     |
| 1439.9056 | -13.943519   | 3.349388439 | -4.16300445 | 3.14087E-05 | 0.000551701 | humus     | PWY-5266             |
| 1439.9056 | -13.943519   | 3.349388439 | -4.16300445 | 3.14087E-05 | 0.000551701 | humus     | PWY-5273             |
| 31873.123 | -0.21914387  | 0.054834402 | -3.99646695 | 6.42949E-05 | 0.001039005 | humus     | P105-PWY             |
| 6848.7303 | -2.00846156  | 0.518262224 | -3.8753771  | 0.00010646  | 0.001485999 | humus     | HEXITOLDEGSUPER-PWY  |
| 3177.0789 | -5.18385784  | 1.332245204 | -3.89106887 | 9.98036E-05 | 0.001485999 | humus     | PWY-4361             |
| 30477.427 | -0.20040647  | 0.051719126 | -3.87490053 | 0.000106668 | 0.001485999 | humus     | PWY-6386             |
| 4147.036  | -4.840422    | 1.257101893 | -3.85046115 | 0.000117896 | 0.001587661 | humus     | PWY-7527             |
| 31766.09  | -0.16311948  | 0.049417141 | -3.30086835 | 0.000963861 | 0.010816662 | humus     | PWY-5189             |
| 14260.973 | -2.53155502  | 0.785654929 | -3.2222253  | 0.001272003 | 0.011978825 | humus     | PWY-7237             |
| 6643.1125 |              | 0.729678837 |             | 0.001229779 |             |           | PWY1G-0              |
| 7257.874  |              | 1.208876976 | -3.20444112 | 0.00135325  |             |           | PWY-2941             |
| 4305.9771 | -3.74039945  | 1.2292207   |             | 0.002343078 |             |           | PWY-6891             |
| 3874.8041 |              | 0.767279947 |             | 0.002703869 |             |           | P163-PWY             |
| 16860.174 |              | 0.412610561 |             | 0.002703803 |             |           | PWY-5022             |
|           |              |             |             |             |             |           |                      |
| 110566.91 |              | 0.118434394 |             | 0.003473989 |             |           | PWY-3781             |
| 9216.1672 | -2.52379895  | 0.87608108  |             | 0.003966894 |             |           | PWY-6895             |
| 4837.789  |              | 1.068571971 |             | 0.004159407 |             |           | P461-PWY             |
| 9286.8142 | -2.28238953  |             |             | 0.004476915 |             |           | PWY-6383             |
| 42173.793 | -0.12805199  | 0.045315134 | -2.82581062 | 0.004716114 | 0.034642    | humus     | TCA                  |
| 30462.599 | -0.17988288  | 0.065061065 | -2.76483145 | 0.005695221 | 0.041086955 | humus     | PWY-6385             |
| 781.24239 | 13.19766174  | 1.511899142 | 8.72919454  | 2.56493E-18 | 1.03623E-15 |           | ORNDEG-PWY           |
| 588.4357  | 12.78880276  | 1.585766045 | 8.064747507 | 7.33874E-16 | 9.88283E-14 | root      | PWY-6339             |
| 373.88331 | 12.13444868  | 1.714219886 | 7.078700219 | 1.45513E-12 | 1.46968E-10 | root      | PWY-1882             |
| 316.0314  | 11.89194972  | 1.768513188 | 6.72426409  | 1.76482E-11 | 1.42598E-09 | root      | PWY-6957             |
| 286.21957 | 11.74911395  | 1.912216457 | 6.144238486 | 8.0348E-10  | 5.4101E-08  | root      | PWY-2221             |
| 192.22808 | 11.17476551  | 1.998989282 | 5.590207816 | 2.26798E-08 | 1.01807E-06 | root      | P621-PWY             |
| 171.41979 | 11.00946904  | 2.043766443 | 5.386852825 | 7.17021E-08 | 2.89676E-06 | root      | PWY-1501             |
| 145.01312 | 10.76822136  | 2.235047528 | 4.817893681 | 1.45082E-06 | 3.90753E-05 | root      | PWY-5677             |
| 190.2472  | 11.15954659  | 2.326690809 | 4.796316962 | 1.61609E-06 | 4.08064E-05 | root      | PWY-5529             |
| 6129.2748 | 2.020519721  | 0.430996128 | 4.68802291  | 2.75857E-06 | 6.19146E-05 | root      | PWY-7328             |
| 124.53058 | 10.54850891  | 2.246836603 | 4.694826894 | 2.66833E-06 | 6.19146E-05 | root      | VALDEG-PWY           |
| 2579.8371 | 1.482981885  | 0.326738433 | 4.53874333  | 5.65905E-06 | 0.000120329 | root      | PWY-5419             |
| 95.047919 | 10.15873643  | 2.367715707 | 4.29052204  | 1.78254E-05 | 0.000360072 | root      | PWY-3941             |
| 118.03377 | 10.47080059  | 2.55060783  | 4.10521777  |             | 0.000679956 |           | CHLOROPHYLL-SYN      |
|           | 2.680293295  |             |             |             | 0.001214732 |           | GLUCOSE1PMETAB-PWY   |
|           | 2.847939691  |             |             | 0.000149196 |             |           | PWY-7456             |
|           | 3.042205767  |             |             | 0.000353932 |             |           | AST-PWY              |
|           | 2.335426911  |             |             | 0.000376095 |             |           | PWY-5183             |
|           | 1.989694932  |             |             |             | 0.010816662 |           |                      |
|           | 1.989694932  |             |             |             |             |           | PWY-5860<br>PWY-5862 |
|           |              |             |             |             |             |           |                      |
|           | 2.086757515  |             |             | 0.001146058 |             |           | DENITRIFICATION-PWY  |
|           | 2.105011749  |             |             | 0.001177565 |             |           | PWY-5654             |
|           | 1.896425356  |             | 3.221554099 |             |             |           | PWY-5845             |
| 4491.1467 |              |             | 3.221554099 |             |             |           | PWY-5850             |
|           | 1.896425356  |             | 3.221554099 |             |             |           | PWY-5896             |
| 26353.477 |              | 0.083574897 |             |             | 0.01390929  |           | PWY-5345             |
| 50.212045 | 9.238364936  | 3.052594003 | 3.02639818  | 0.002474862 | 0.021273278 | root      | PWY-5088             |

# **SUPPLEMENTAL MATERIAL #7**

| SUPPLEME         | NIAL WAI ENIAL # | <del>† 7</del>                 |                                                                                        |                 |                                  |
|------------------|------------------|--------------------------------|----------------------------------------------------------------------------------------|-----------------|----------------------------------|
|                  |                  |                                |                                                                                        | samp_store_dur  | samp_store_loc                   |
| sample_name      | organism         | =                              | collection_date env_broad_scale                                                        | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 1_               | metagenome       | NONE                           | 24-Oct High productivity farm field soil                                               | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 1A               | metagenome       | NONE                           | 24-Oct Low productivity farm field soil                                                | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 1B               | metagenome       | NONE                           | 24-Oct Low productivity farm field soil                                                | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 1D               | metagenome       | NONE                           | 24-Oct Low productivity farm field soil                                                | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 1E               | metagenome       | NONE                           | 24-Oct Low productivity farm field soil                                                | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 1F               | metagenome       | NONE                           | 24-Oct Low productivity farm field soil                                                | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 2_               | metagenome       | NONE                           | 24-Oct High productivity farm field soil                                               | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 3_               | metagenome       | NONE                           | 24-Oct High productivity farm field soil                                               | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 3A               | metagenome       | microbiome fertilizer additive | 24-Oct High productivity farm field soil treated with fertilizer additive              | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 3B               | metagenome       | microbiome fertilizer additive | 24-Oct High productivity farm field soil treated with fertilizer additive              | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 3C               | metagenome       | microbiome fertilizer additive | 24-Oct High productivity farm field soil treated with fertilizer additive              | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 3D               | metagenome       | microbiome fertilizer additive | 24-Oct High productivity farm field soil treated with fertilizer additive              | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 4_               | metagenome       | NONE                           | 24-Oct High productivity farm field soil                                               | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 5A               | metagenome       | NONE                           | 24-Oct High productivity farm field soil                                               | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 5B               | metagenome       | microbiome fertilizer additive | 24-Oct High productivity farm field soil treated with fertilizer additive              | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| FO01GONT         | metagenome       | NONE                           | 22-Feb Remanent forest soil                                                            | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| FORESTaITAPUA2AB | metagenome       | NONE                           | 22-Feb Remanent forest soil                                                            | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| KAI01ITAPUAPRODU | metagenome       | NONE                           | 23-Sep High productivity farm field soil                                               | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| KAI02PINOSPRODUC | metagenome       | NONE                           | 23-Sep High productivity farm field soil                                               | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| KAI03CENTRPRODUC | metagenome       | NONE                           | 23-Sep High productivity farm field soil                                               | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| KAI04LICO-PRODUC | metagenome       | NONE                           | 23-Sep High productivity farm field soil                                               | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| Productiveaaa1SB | metagenome       | NONE                           | 23-Sep High productivity farm field soil                                               | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| SantaRosa-unprod | metagenome       | NONE                           | 24-Oct High productivity farm field soil                                               | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| TREATEDFIELDITA1 | metagenome       | microbiome fertilizer additive | 22-Feb High productivity farm field soil treated with fertilizer additive              | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| TREATEDFIELDITA2 | metagenome       | microbiome fertilizer additive | 22-Feb High productivity farm field soil treated with fertilizer additive              | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| UNTREATEDFIELDI1 | metagenome       | NONE                           | 22-Feb High productivity farm field soil                                               | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| UNTREATEDFIELDI2 | metagenome       | NONE                           | 22-Feb High productivity farm field soil                                               | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 4_humus          | metagenome       | NONE                           | 21-Feb Fertilizer additive obtained from solid-state fermentation box at surface level | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 5_humus          | metagenome       | NONE                           | 21-Feb Fertilizer additive obtained from solid-state fermentation box at mid level     | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 6_humus          | metagenome       | NONE                           | 21-Feb Fertilizer additive obtained from solid-state fermentation box at bottom level  | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 13_root          | metagenome       | NONE                           | 21-Feb Root microbiome from well grown succulent plant                                 | 3 Days at -80 C | FACEN-UNA, San Lorenzo, Paraguay |
| 14_root          | metagenome       | NONE                           | 21-Feb Root microbiome from well grown succulent plant                                 |                 |                                  |
|                  |                  |                                |                                                                                        |                 |                                  |

| sample_name      | env_local_scale                  | env_medium                     | geo_loc_name     | host             | lat_lon             |
|------------------|----------------------------------|--------------------------------|------------------|------------------|---------------------|
| 1_               | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.1278 S 55.0442 W |
| 1A               | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.1278 S 55.0442 W |
| 1B               | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.1278 S 55.0442 W |
| 1D               | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.1278 S 55.0442 W |
| 1E               | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.1278 S 55.0442 W |
| 1F               | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.1278 S 55.0442 W |
| 2_               | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.1278 S 55.0442 W |
| 3_               | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.1278 S 55.0442 W |
| 3A               | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.1278 S 55.0442 W |
| 3B               | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.1278 S 55.0442 W |
| 3C               | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.1278 S 55.0442 W |
| 3D               | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.1278 S 55.0442 W |
| 4_               | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.1278 S 55.0442 W |
| 5A               | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.1278 S 55.0442 W |
| 5B               | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.1278 S 55.0442 W |
| FO01GONT         | Forest soil                      | Soil                           | Paraguay: Itapua | Soil             | 26.3708 S 54.9581 W |
| FORESTaITAPUA2AB | Forest soil                      | Soil                           | Paraguay: Itapua | Soil             | 26.3708 S 54.9581 W |
| KAI01ITAPUAPRODU | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.2900 S 55.0264 W |
| KAI02PINOSPRODUC | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.2900 S 55.0264 W |
| KAI03CENTRPRODUC | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.2900 S 55.0264 W |
| KAI04LICO-PRODUC | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.2900 S 55.0264 W |
| Productiveaaa1SB | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.2269 S 55.1883 W |
| SantaRosa-unprod | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.7933 S 56.7869 W |
| TREATEDFIELDITA1 | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.3686 S 54.9800 W |
| TREATEDFIELDITA2 | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.3686 S 54.9800 W |
| UNTREATEDFIELDI1 | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.3670 S 54.9703 W |
| UNTREATEDFIELDI2 | Farm soil                        | Soil                           | Paraguay: Itapua | Soil             | 26.3670 S 54.9703 W |
| 4_humus          | Solid-state fermentation biomass | Solid-state fermentation bioma | Paraguay: Itapua | Fermentation box | 26.3733 S 54.9706 W |
| 5_humus          | Solid-state fermentation biomass | Solid-state fermentation bioma | Paraguay: Itapua | Fermentation box | 26.3733 S 54.9706 W |
| 6_humus          | Solid-state fermentation biomass | Solid-state fermentation bioma | Paraguay: Itapua | Fermentation box | 26.3733 S 54.9706 W |
| 13_root          | Exogenous root samples           | Soil                           | Paraguay: Itapua | Soil             | 26.3733 S 54.9706 W |
| 14_root          | Exogenous root samples           | Soil                           | Paraguay: Itapua | Soil             | 26.3733 S 54.9706 W |
|                  |                                  |                                |                  |                  |                     |

| sample_name      | sieving                                                                                                                             | soil_type | soil_type_meth |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| 1_               | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| 1A               | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| 1B               | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| 1D               | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| 1E               | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| 1F               | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| 2_               | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| 3_               | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| 3A               | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| 3B               | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| 3C               | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| 3D               | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| 4_               | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| 5A               | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| 5B               | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| FO01GONT         | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| FORESTAITAPUA2AB | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| KAI01ITAPUAPRODU | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| KAI02PINOSPRODUC | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| KAI03CENTRPRODUC | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| KAI04LICO-PRODUC | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| Productiveaaa1SB | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| SantaRosa-unprod | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| TREATEDFIELDITA1 | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| TREATEDFIELDITA2 | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| UNTREATEDFIELDI1 | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| UNTREATEDFIELDI2 | Pooled samples of around 50 g over an area within 20 m from each sampling point. Samples taken within 20 cm from the surface layer. | ultisol   | Literature     |
| 4_humus          | Surface fermentation box, 50 g                                                                                                      | NA        | NA             |
| 5_humus          | Mid level fermentation box, 50 g                                                                                                    | NA        | NA             |
| _<br>6_humus     | Bottom layer fermentation box, 50                                                                                                   | NA        | NA             |
| 13_root          | Samples taken from outside of the root                                                                                              | NA        | NA             |
| 14 root          | Samples taken from outside of the root                                                                                              | NA        | NA             |

| sample_name      | store_cond                                                                                                          |
|------------------|---------------------------------------------------------------------------------------------------------------------|
| 1_               | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 1A               | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 1B               | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 1D               | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 1E               | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 1F               | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 2_               | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 3_               | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 3A               | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 3B               | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 3C               | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 3D               | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 4_               | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 5A               | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 5B               | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| FO01GONT         | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| FORESTaITAPUA2AB | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| KAI01ITAPUAPRODU | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| KAI02PINOSPRODUC | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| KAI03CENTRPRODUC | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| KAI04LICO-PRODUC | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| Productiveaaa1SB | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| SantaRosa-unprod | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| TREATEDFIELDITA1 | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| TREATEDFIELDITA2 | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| UNTREATEDFIELDI1 | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| UNTREATEDFIELDI2 | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 4_humus          | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 5_humus          | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 6_humus          | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 13_root          | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 14_root          | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |
| 14_root          | Samples were processed transferred to the lab and processed within 3 days. Samples were stored at -80 C until then. |

| temp  | adjacent_environment             |
|-------|----------------------------------|
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | Bosque Atlantico del Alto Parana |
| -80 C | NA                               |
|       |                                  |

NA

-80 C