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Abstract

Vision-Language Models (VLMs) and Vision-Language-Action (VLA) models mark a pivotal
advancement in multimodal Al, integrating perception, language understanding, and physical
action for embodied intelligence in real-world applications. This survey delivers an in-depth
bibliometric analysis of 1,798 publications sourced from Scopus and OpenAlex, merging quanti-
tative computational techniques with qualitative examination to examine the field’s evolution,
key themes, and persistent challenges. Through keyword frequency assessment, co-occurrence
networks, temporal trend mapping, author collaboration visualization, and similarity-based clus-
tering of titles and keywords, we uncover exponential publication growth since 2022—spanning a
50-fold increase—with core themes in language models, visual languages, and action recognition
driving unified multimodal architectures. The analysis highlights ten keyword clusters centered
on multimodal integration, robotic learning, and foundation models, alongside ten title clusters
emphasizing applications from robotic navigation and video understanding to generalist agents
and web navigation. Drawn author collaboration maps highlight geographic dominance by U.S.
and Chinese institutions, which implies risks in technology governance and safety oversight.
The qualitative review of seven high-impact papers traces VLA progression from closed-source
fine-tuning to open-source transfer learning, rigorous grounding evaluations, cultural bias as-
sessments, and deployments in virtual agents, autonomous driving, and robotic manipulation.
Despite technical maturity, critical gaps persist in safety mechanisms, adversarial robustness,
and standardized evaluation, urging prioritized research for responsible deployment.

Keywords: Vision-Language Models, Vision-Language-Action, Multimodal Learning, Biblio-
metric Analysis, Embodied AI, Foundation Models, Large Language Models



1 Introduction

Visual Language Models (VLMs) mark a significant evolution in artificial intelligence, merging com-
puter vision and natural language processing to enable machines to process and generate information
across both modalities [1, 2]. Advancements in transformer-based architectures [3, 4], large-scale
pretraining, and contrastive learning techniques such as CLIP [2] have propelled VLMs to the fore-
front of multimodal AI research. Recent extensions into Vision-Language-Action (VLA) models
represent a further leap, integrating physical action capabilities that enable embodied agents—such
as robots—to interact with their environments based on visual and linguistic inputs [5, 6, 7].

The rapid proliferation of publications in this domain reflects both its technical promise and its
broad applicability, spanning robotic manipulation, autonomous navigation, assistive technologies,
and beyond [8, 9]. However, this explosive growth also introduces challenges: fragmented research
directions, inconsistent evaluation methodologies, and an urgent need for systematic synthesis. While
prior surveys have addressed subsets of this landscape—such as specific model architectures or
application domains—a comprehensive bibliometric analysis integrating quantitative mapping with
qualitative review remains absent from the literature.

This survey addresses this gap by conducting an extensive bibliometric study of 1,798 publi-
cations from Scopus and OpenAlex [10], employing computational techniques including keyword
frequency analysis, co-occurrence network construction, temporal trend visualization, and K-means
clustering [11] to reveal the field’s structural and thematic evolution. We complement this quanti-
tative foundation with a qualitative examination of seven influential papers, tracing the trajectory
from foundational VLM architectures to state-of-the-art VLA systems. Our dual-method approach
illuminates not only what has been achieved but also where critical gaps—particularly in safety,
robustness, and evaluation standardization—demand future attention.

The contributions of this work are threefold:

1. We provide the first large-scale computational analysis of VLM and VLA literature, identifying
dominant research clusters, geographic distributions, collaboration networks, and temporal
patterns through rigorous quantitative methods [10, 11].

2. We systematically review key high-impact publications across development, assessment, and
deployment dimensions, contextualizing technical advances within broader research trajectories
and highlighting paradigm shifts from prompt-engineering tuning to models of multimodal
capabilities based on foundational learning and transfer learning approaches [5, 6, 7].

3. We identify the persistent absence of dedicated safety and security research within VLM and
VLA domains, underscoring the need for further developments, such as safety evaluation frame-
works [12, 13].

The remainder of this paper is organized as follows: Section 2 details our bibliometric methodol-
ogy, including data collection, preprocessing, and analytical techniques such as thematic time-series
trend analysis, keyword clustering, and author collaboration mapping. Section 3 offers a qualita-
tive review of seminal VLA papers, examining stages of development, assessment, and deployment
of VLA and VLM systems. Section 4 provides detailed conslusions of the paper, while section 5
addresses limitations and future directions.

2 Computational Analysis of Literature: Bibliometrics

2.1 Methodology
2.1.1 Data Collection

To ensure comprehensive coverage of the VLM and VLA research landscape, we employed a dual-
database approach, querying both Scopus and OpenAlex [10]. This strategy mitigates the limitations
inherent to any single database, such as incomplete indexing or access restrictions, while maximizing
the breadth and representativeness of our dataset. The query was designed to capture publications ex-
plicitly addressing vision-language models, vision-language-action systems, and related multimodal
architectures.

The search query was structured as follows:



("vision-language" OR "vision-language-action" OR "multimodal vision-language")
AND ("model" OR "system" OR "architecture" OR "framework")

We applied no temporal restrictions to the initial search, allowing us to capture the full historical
arc of research in this domain. However, subsequent temporal analysis revealed that publication ac-
tivity accelerated dramatically beginning in 2020, consistent with breakthroughs in machine learning
(ML) and deep learning (DL) with introduction of transformer-based deep neural network (DNN)
architecture, which serves as a techological backbone for VLM and VLA systems [3].

2.1.2 Data Preprocessing and Cleaning

The raw dataset comprised 800 records from Scopus and 1,400 from OpenAlex, which was prepro-
cessed to ensure data quality and relevance by identifying and removing duplicate entries based on
Digital Object Identifiers (DOIs), titles, and author lists, a critical step given the partial overlap
between the two databases [10]. Author names, institutional affiliations, and keywords were nor-
malized to account for variations in spelling, formatting, and language—for instance, standardizing
terms like Vision-Language Model,” vision language model,” and “VLM” to a single form—while
records with missing values were excluded to maintain consistency and integrity [11]. After these
steps, the final dataset consisted of 1,798 unique publications.

2.1.3 Analytical Techniques

Our bibliometric analysis employed multiple computational methods to uncover structural and the-
matic patterns within the literature [11].

Firsrtly, we extracted author-provided keywords and performed frequency counting to identify the
most prevalent terms (Table 1). To capture semantic relationships, we constructed a co-occurrence
Table 2 that represent keywords joint appearance within individual papers. This approach enabled
us to identify tightly connected keyword instances, reflecting important research directions.

We aggregated publications by year and visualized in the 1 the growth trajectories to assess the
field’s expansion. Exponential growth fitting was applied to quantify the rate of increase, revealing
a 50-fold rise in annual publications between 2020 and 2024. This temporal lens also allowed us
to trace the emergence of specific themes—such as ”computer vision”, ”intelligent robotics”, and
”multimodal” approaches—across time.

To uncover latent thematic structures, we applied K-means with & = 10 for predefined number
of clusters to titles and keywords [11]. Each cluster was visualized (Figure 2, Figure 3) with distinct
color, while contextual proximity of individual nodes was expressed by the spacial layout of clusters.
Clusters were interpreted by examining their most representative terms and publications, revealing
ten distinct research themes.

We constructed a co-authorship map (Figure 4), where nodes represent authors and edges repre-
sent collaborative joint publications. This map allows to identify influential researchers and collab-
orative communities, which provides further geographical and institutional insights of the research
field development. This analysis illuminated the field’s social structure and highlighted key contrib-
utors driving innovation.

2.2 Results
2.2.1 Keyword Occurrence and Co-Occurrence

Table 1 presents the 15 most frequent keywords across the dataset. The top terms—"language
models” (244 occurrences), ”visual languages” (192 occurrences), and ”action recognition” (97 oc-
currences)—underscore the convergence of natural language processing, computer vision, and action
prediction as foundational pillars of VLA research [8]. Other prominent keywords include ”deep
learning” (67 occurrences), reflecting the architectural backbone of most modern VLMs [3, 4], and
”multimodal” (53 occurrences), highlighting the emphasis on generalization capabilities across the
modalities [14].



Table 1: Top Frequent Keywords

Keywords \ Occurrences
language model 244
visual languages 192

large language model 106
action recognition 97
computer vision 94
vision-language model 90
deep learning 67
semantics 65
multimodal 53

robot learning 47
computational linguistics 47
video understanding 47
intelligent robots 46
contrastive learning 45
adversarial machine learning 42

Truncated Table. Total rows = 100.

Presence of ”intelligent robots” and ”robot learning” terms suggests close relation of VLAs and
VLMs to robotics research area [6]. High presence of keywords related to the natural language
processing (NLP)—"language model”, ”large language model”, ”semantics”—confirms language as
a foundational modality for the VLM and VLA systems.

Table 2 visualizes the keyword co-occurrence pairs, revealing that language model and visual
languages are not isolated domains but mutually constitutive. Often interconnections between
perception-oriented terms (action recognition, computer vision) and linguistic concepts (compu-
tational linguistics, semantics) demonstrate that research increasingly emphasizes integrated per-
ception—language pipelines. The presence of multimodal pairs (”action recognition” and ”language
model”, "semantics” and ”visual languages”, "intelligent robots” and ”language model”) supports
transition from unimodal specialization toward architectures integrating understanding of various
data types [1, 2]. This provides quantitative evidence that the community converges around com-
mon multimodal-learning foundations, positioning VLAs as the evolutionary step from earlier vision-
language frameworks [5, 7].

Table 2: Top Co-Occurrences Keywords

Keyword Keyword
i j Co-Occurrences
visual languages language model 151
large language model language model 70
vision-language model language model 58
computer vision language model 52
semantics language model 50
multimodal language model 48
action recognition language model 46
computational linguistics language model 46
vision-language model visual languages 44
semantics visual languages 43
multimodal visual languages 37
action recognition visual languages 35
intelligent robots language model 33
computer vision visual languages 32
adversarial machine learning | visual languages 31
Truncated Table. Total rows = 2422.




2.2.2 Publication Trends and Growth Dynamics

Figure 1 illustrates the temporal evolution of VLM and VLA publications. The data reveal a modest
but steady output prior to 2020, followed by exponential growth beginning in 2022. Specifically,
annual publication counts increased from approximately 30 papers in 2020 to over 500 in 2024—a
50-fold increase within four years. This surge coincides with several key developments: the release of
large-scale vision-language datasets (e.g., Open X-Embodiment) [15], breakthroughs in transformer-
based architectures [3, 4], and the demonstration of VLA capabilities in robotic manipulation tasks [5,
6].

Temporal distribution of keywords from 2017-2026 appears in Figure 1. Total keyword fre-
quency exhibits exponential growth, increasing from baseline levels in 2017-2021 to exceeding 10°
occurrences by 2024-2025—representing over 50-fold increase within four years. The 2026 decline
reflects incomplete indexing.

Language model demonstrates the most dramatic growth trajectory, remaining near-zero until
2021 before exploding from single-digit occurrences to over 100 publications in 2024-2025—a greater
than 10X increase in just three years [3]. Visual languages mirrors this explosive pattern, with both
curves rising in parallel from 2023 onward, demonstrating synchronized integration of visual and
linguistic modalities across the VLA literature [5].

Computer vision and vision-language model exhibit similar mid-tier exponential trajectories,
remaining minimal before 2022 before surging 5-7x during 2023-2024, achieving peak counts of ap-
proximately 40-70 occurrences during 2024-2025. Semantics and large language models display con-
sistent acceleration starting in 2022, exhibiting 3-4x growth over two years and reaching 2024-2025
peaks near 6070 occurrences [4]. Multimodal exhibits comparable intensity, inflecting around 2023
with 5x growth, peaking near 50 occurrences by 2025.

Intelligent robots emerges later but explosively, first registering measurable activity in 2024
and immediately reaching 46 occurrences—indicating rapid adoption once foundational multimodal
capabilities matured [6] This coincides with action recognition’s parallel 2024 surge to approximately
40 occurrences, representing 6x growth from 2023.

All major trajectories share three phases: flat pre-2021 baseline, sharp 2022—-2023 inflection, and
unified 2024-2025 plateau. Synchronous upward movement across language models, visual languages,
multi-modality, computer vision, and action recognition indicates coordinated growth dynamics. The
simultaneous rise of intelligent robots and vision-language model after 2024 correlates with transition
from perceptual representation learning toward embodied implementations.
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Figure 1: Keywords Timeseries

2.2.3 K-means Clustering

The ten clusters of keywords that are listed in Table 3 and visualized in Figure 2 demonstrate
interconnected structure with minimal differentiation between linguistic, perceptual, and robotic



domains. Central terms (language model, vision-language model, contrastive learning) occupy com-
pact regions, while applied terms (robot learning, embodied intelligence) appear along periphery.
Top keywords map consistently between adjacent clusters: language model to vision-language model
(models architectures); deep learning to contrastive learning (learning mechanisms); robot learn-
ing to embodied intelligence (execution and control); foundation models to benchmarking (scaling
and evaluation). Each cluster retains variants of the conceptual triad—multimodality, learning ap-
proaches, high-salience terms—indicating the VLA landscape comprises highly overlapping spheres
unified by the goal of integrating perception, language, and action in generalizable systems [0, 8].

Table 3: Keyword Clusters Identified via K-means (k = 10)

‘ Cluster ‘ Representative Term ‘ Count ‘ Thematic Focus ‘
1 Language model 944 Multlmodall core: hngu%stlc, visual,
action integration
9 Vision-language model 90 Model architectures & multimodal
representation
3 Deep learning 67 Machine learning foundations
4 Robot learning 47 Embodied robotics applications
5 Contrastive learning 45 Self-supervised representation learning
6 Zero-shot & Foundation models 42 Scaling and transfer learning
7 Benchmarking 35 Evaluation methodologies
3 NLP systems 20 Languag.e—based .multlmodal
mtegration
9 Modeling languages 24 Formal system design
10 Embodied intelligence 924 Planning and control for physical
agents
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Figure 2: Keywords Clusters

K-means clustering of titles listed in Table 4 and visualized in Figure 3 identified similar ten dis-
tinct thematic clusters within the VLA literature, revealing field consolidation around foundational
architectures and specialized applications [3]. Cluster 2 with a thematic category of (Video Un-
derstanding and Prompting), centered on (Prompting Visual-Language Models for Efficient Video),
occupied the highest density region, indicating that prompting strategies the field’s methodological
core [16].

Strong spatial proximity between Cluster 3 (Pre-training and Foundation Models) and application-
oriented clusters demonstrates active knowledge transfer from foundational research to practical
implementations. Clusters 1 (Robotic Navigation and Embodiment) and 7 (Object Interaction
and Manipulation) form the primary application domain, encompassing socially-aware navigation,



quadruped control, and human-object interaction. Their spatial separation from video understand-
ing clusters suggests divergent technical requirements between continuous navigation and video
processing [5, 16].

Cluster 8 (Generalist VLA Models) occupies a bridging position between foundation models and
specialized applications, reflecting architectural trends toward unified systems capable of zero-shot
generalization across diverse embodiments [3, 6]. Peripheral positioning of Cluster 9 (Grounding and
Spatial Understanding) indicates emerging interest in multimodal redundancy mechanisms, while
Cluster 10 (Web Navigation and Knowledge Integration) remains spatially distant from physical
robotics clusters, suggesting distinct architectural paradigms.

Table 4: Title Clusters Identified via Keyword Similarity (k = 10)
| Cluster | Thematic Category ‘ Description ‘

Socially aware robot navigation and
embodied control
Prompting visual-language models for
efficient video analysis
Vision-language pre-training via
embodied learning
Next-generation intelligent assistants
with multimodal capabilities
Zero-shot temporal action localization
and understanding
Unified representation for
language-based planning
Human-object interaction and
manipulation tasks
Foundation models for generalist
vision-language-action systems
Visually-grounded planning and
spatial reasoning
Generalist web agents and
knowledge-based navigation

1 Robotic Navigation & Embodiment

2 Video Understanding & Prompting

3 Pre-training & Foundation Models

4 Multimodal Agents & Intelligence

5 Temporal Action Recognition

6 Language Planning & Reasoning

7 Object Interaction & Manipulation

8 Generalist VLA Models

9 Grounding & Spatial Understanding

10 Web Navigation & Knowledge
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2.2.4 Author Collaboration Networks

Author collaboration network (Figure 4) revealed a highly concentrated research landscape dom-
inated by tightly interconnected institutional networks. The most productive authors—such as
Joshua B. Tenenbaum and Oier Mees—anchor clusters centered around major research institu-
tions [17]. The central cluster, led by Sergey Levine, encompasses Berkeley-affiliated researchers
including Mees, Pertsch, Finn, and Abbeel, exhibiting the highest collaboration density [6]. A
parallel cluster, centered on Tenenbaum, unites MIT researchers such as Du, Kaelbling, and Xia,
characterized by strong intra-institutional cohesion. These U.S.-based clusters demonstrate intensive
internal collaboration but limited cross-institutional connectivity.

Chinese research groups form distinct and comparably dense sub-networks, notably around Wen
Junjie, who maintains close ties with collaborators including Zhu Yichen, Zhu Minjie, Li Jinming,
Xu Zhiyuan, and Shen Chaomin [7]. These networks show collaboration intensities on par with U.S.
academic clusters, suggesting parallel trajectories in research development. European contributions
remain more peripheral, while individual efforts indicate isolated research paths.

Overall, the network topology underscores a stark geographic concentration, with Visual-Language-
Action (VLA) research primarily consolidated within U.S. and Chinese institutions. FEuropean
and other international contributions remain fragmented and regionally isolated. This U.S.—China
duopoly in foundational VLA research raises concerns about technological control, governance, and
equitable access [12]. Given the potential applications of VLA systems in autonomous vehicles,
robotics, and physical-world interaction, such concentration of expertise risks narrowing safety re-
search perspectives, reinforcing proprietary dominance, and constraining the development of diverse
ethical and regulatory frameworks.
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Figure 4: Authors Collaborative Map

3 Qualitative Review of Key Publications

3.1 Methodology

To complement our quantitative bibliometric analysis, we conducted a qualitative review of high-
impact publications representing pivotal advances in VLA research. Selection criteria included cita-
tion count, publication venue prestige, methodological novelty, and thematic coverage across devel-
opment, assessment, and deployment dimensions [18]. This approach ensured a clear representation
of the field’s trajectory, from model architectures to real-world applications.



3.2 Development: Main Approaches
3.2.1 GPT-4V for Robotics: Multimodal Task Planning

The integration of GPT-4V into robotic task planning represents a significant step toward lever-
aging large-scale vision-language models for action planning [16]. This work demonstrates how a
pretrained VLM can be adapted—without fine-tuning—to generate high-level task plans from natu-
ral language instructions and visual observations. The system decomposes complex user commands
(e.g., "prepare a meal”) into sequences of executable sub-tasks (e.g., ”locate ingredients,” ”grasp
utensil”), leveraging GPT-4V’s world knowledge and reasoning capabilities.

Key contributions include a prompt-based architecture uniting perception, reasoning, and action
execution. However, the closed-source nature of GPT-4V limits reproducibility and raises concerns
about dependency on proprietary systems. Moreover, the system’s reliance on high-level task plan-
ning leaves low-level motor control and error recovery largely unaddressed [16].

3.2.2 OpenVLA: Open-Source Vision-Language-Action Model

In contrast to closed-source approaches, OpenVLA pioneered open-source VLA development, train-
ing a 7-billion-parameter model on the Open X-Embodiment dataset [6, 15]. By leveraging diverse
robotic demonstrations spanning 22 robot embodiments and over 1 million trajectories, OpenVLA
achieves impressive zero-shot generalization to novel objects, environments, and tasks [14].

The model architecture combines a vision transformer for image encoding with a language model
backbone (LLaMA-2) for joint vision-language reasoning, followed by an action decoder predict-
ing low-level control commands [6, 19, 20]. Crucially, OpenVLA’s open-source release—including
model weights, training code, and evaluation scripts—has democratized access to state-of-the-art
VLA capabilities, fostering community-driven innovation and enabling independent audits of model
behavior.

Despite its strengths, OpenVLA inherits limitations from its training data, including potential
biases toward specific robot morphologies and task distributions. Additionally, its computational
requirements (7B parameters) pose barriers for deployment on resource-constrained platforms [6].

3.3 Assessment: Performance Evaluation Methodologies
3.3.1 LEFT Framework: Concept Grounding Evaluation

The LEFT (Logic-Enhanced Foundation Model Testing) framework addresses a critical gap in VLA
evaluation: rigorous assessment of concept grounding—the ability to map linguistic concepts to
visual referents [17]. Traditional benchmarks often conflate superficial pattern matching with genuine
semantic understanding. LEFT mitigates this through logic-enhanced test generation, constructing
compositional queries that probe fine-grained grounding capabilities (spatial relationships, attribute
binding, numerical reasoning).

By systematically varying query complexity and introducing distractors, LEFT exposes failure
modes in state-of-the-art VLMSs, revealing brittleness in tasks requiring multi-step reasoning or dis-
ambiguation. The framework’s emphasis on compositional generalization and adversarial robustness
provides a blueprint for more rigorous VLA evaluation [17].

3.3.2 Cultural Bias Benchmarking

Recent work has highlighted cultural biases in vision-language models, demonstrating systematic
performance disparities across geographic regions, languages, and cultural contexts [21]. Benchmarks
such as Cultural VQA curate image-question pairs reflecting diverse cultural artifacts, traditions, and
norms, then evaluate VLM accuracy and fairness metrics.

Results reveal pronounced biases favoring Western-centric content, with models achieving 15-25%
lower accuracy on non-Western cultural references [21]. These findings underscore the urgency of
diversifying training data and developing fairness-aware evaluation protocols. Without such efforts,
VLA deployment risks perpetuating and amplifying existing inequities, particularly in global and
multicultural contexts.



3.4 Deployment: Real-World Implementation
3.4.1 See and Think: Embodied Agents in Virtual Environments

The ”See and Think” framework demonstrates VLA deployment in complex virtual environments,
where agents must navigate, reason, and interact based on visual observations and natural language
goals [22]. By coupling a VLM with a reinforcement learning policy, the system achieves human-level
performance on tasks such as object retrieval, multi-step navigation, and interaction with dynamic
environments.

Key innovations include a hierarchical policy architecture separating high-level planning (handled
by the VLM) from low-level control (handled by a learned motor policy), as well as a memory
module enabling long-horizon task execution [9, 22]. The virtual environment setting facilitates
rapid iteration and scalable evaluation.

3.4.2 Autonomous Driving with VLMs

VLMs have also been explored for autonomous driving, where they provide natural language inter-
faces for human-vehicle interaction and support interpretable decision-making [23]. For example,
systems integrate VLMs to generate textual explanations for driving maneuvers (”slowing down
because pedestrian is crossing”), enhancing transparency and trust.

However, safety-critical deployment introduces critical requirements for robustness, real-time
performance, and failure mitigation—areas where current VLMs exhibit significant shortcomings [24].
Adversarial inputs, such as occluded traffic signs or ambiguous visual scenes, can induce erroneous
predictions with potentially catastrophic consequences. Addressing these vulnerabilities demands
advances in adversarial training, uncertainty quantification, and fail-safe mechanisms.

3.4.3 Robotic Manipulation: From Lab to Real-World

Translating VLA capabilities from controlled laboratory settings to real-world robotic manipula-
tion introduces challenges including sensor noise, object variability, and unstructured environments.
Projects such as OpenVLA, RT-2, and RoboFlamingo and subsequent work have demonstrated suc-
cessful deployment in domestic settings, where robots perform tasks like table setting, object sorting,
and assistive manipulation [5, 6, 7].

Critical to these successes are domain adaptation techniques, closed-loop feedback mechanisms,
and failure recovery strategies. For instance, RoboFlamingo employs visual servoing to refine grasp
poses in real-time, compensating for perception errors [7]. Nonetheless, long-horizon tasks requiring
multi-step reasoning and dynamic action planning remain as active research directions, pointing
towards wide integration and adoption of VLA systems [5, 0].

4 Conclusion

This survey has provided a comprehensive bibliometric and qualitative analysis of VLM and VLA
systems, synthesizing insights from 1,798 publications through quantitative mapping—including key-
word frequency analysis, co-occurrence networks, temporal trends, and K-means clustering [11]—which
illuminated the field’s exponential growth, thematic structure, and geographic concentration, along-
side a qualitative review tracing the trajectory from pioneering VLM architectures to state-of-the-art
VLA systems, highlighting paradigm shifts toward open-source foundational models [6], rigorous eval-
uation frameworks [17], and real-world deployment [5, 7]. Key findings encompass a 50-fold increase
in annual publications since 2020, driven by breakthroughs in transformer architectures [3, 4] and
large-scale datasets [15]; convergence of vision, language, and action via multimodal transformer ar-
chitectures [2, 25] with action tokenization [5]; pronounced geographic concentration in U.S. and Chi-
nese institutions, raising concerns about technology governance and cultural bias [21]; the transition
from closed-source models with prompt-based architectures (GPT-4V) to multimodal alternatives
(OpenVLA, RT-2) reflecting growing emphasis on foundational learning and balanced unification of
of diverse modalities [(]; frameworks like LEFT and cultural bias benchmarks signaling maturation
of the field with increased attention to systematic evaluation, compositional generalization, and fair-
ness [17, 21]; and persistent gaps in adversarial robustness [24, 26], safety mechanisms, hallucination
mitigation [13], and standardized evaluation, which constrain real-world applicability, particularly
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in safety-critical domains, despite most successful VLA systems converging on transformer-based
architectures.

As VLA systems transition from research prototypes to deployed technologies, addressing these
gaps becomes imperative. The field stands at a critical juncture: continued technical maturation
must be accompanied by equally rigorous attention to safety, fairness, responsible deployment, and
international academic community involvement.

5 Limitations and Future Directions

5.1 Methodological Limitations

Our bibliometric analysis, while comprehensive, carries inherent limitations. First, reliance on Sco-
pus and OpenAlex may exclude relevant work published in non-indexed venues or available only as
preprints on platforms like arXiv [10]. Second, keyword-based clustering and co-occurrence analy-
sis depend on author-provided keywords, which may not fully capture semantic nuances or inter-
disciplinary connections. Third, our qualitative review, though systematic, represents a selective
snapshot; the rapid pace of publication means that emerging work may not yet be reflected.

Future bibliometric studies could incorporate citation network analysis, author trajectory track-
ing, and dynamic topic modeling to capture temporal evolution more granularly. Additionally, ex-
panding coverage to include preprint literature and workshop papers would provide a more complete
picture of the field’s development.

5.2 Future Research Directions

As VLA systems evolve from research prototypes to deployed technologies, addressing key technical
and ethical challenges is imperative, including enhancing adversarial robustness against visual and
linguistic perturbations through robust training paradigms, uncertainty quantification, and fail-safe
mechanisms [24, 26]; mitigating hallucinations via grounding mechanisms, external knowledge in-
tegration, and confidence calibration [13]; countering cultural biases by diversifying training data,
incorporating fairness constraints, and conducting bias audits [21]; establishing standardized bench-
marks and evaluation metrics for cross-study comparisons [17]; and reducing environmental and
computational costs through model compression, efficient architectures, and green AI practices [6].
High-priority future directions encompass developing robust and safe VLAs with architectural inno-
vations for safety guarantees [13, 24, 26]; creating culturally aware models with diverse data and
fairness-focused evaluations [21]; advancing efficient and scalable architectures via knowledge distil-
lation and hardware-aware designs; extending capabilities to long-horizon and hierarchical planning
for multi-step tasks [, (]; standardizing benchmarks covering robustness, fairness, and interpretabil-
ity [17, 21]; and fostering interdisciplinary collaborations among AT researchers, roboticists, ethicists,
and domain experts to align VLA development with societal values [21]. By pursuing these direc-
tions, the research community can advance VLA systems to unlock their potentials in robotics,
autonomous systems, and embodied intelligence further.
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