

Supplementary Information

Model description

Facing the outbreak of the epidemic, each subpopulation can generate resources for fighting against the disease at each time step. In reality, infected individuals consume various medical resources, but susceptible individuals are responsible for resource production. So we reasonably assume that the amount of resources produced by one subpopulation are positively correlated to its current proportion of susceptible individuals. Accordingly, we define the resources production $r_i(t)$ of subpopulation i at time t as follows:

$$r_i(t) = \theta[1 - \rho_i(t)], \quad (S1)$$

where $\rho_i(t)$ is the ratio of infected individuals in subpopulation i at time t , and $\theta (\geq 1)$ is the coefficient denoted as resource production strength. Higher θ means a faster speed on resource production.

With the emergence of infected individuals in neighboring subpopulations of subpopulation i , subpopulation i would release resources to suppress the disease. Usually, not all resources could be donated because of the need for self-protection. Besides, we consider the amount of resources that one of its neighboring subpopulation j can receive at time t is proportional to its number of infected individuals among all neighbors. Accordingly, the resource donation $\omega_{i \rightarrow j}(t)$ that subpopulation i releases to j at time t can be denoted as follows:

$$\omega_{i \rightarrow j}(t) = r_i(t) \bullet q_i(t) \bullet \frac{I_j(t)}{\sum_{k \in V(i)} I_k(t)}, \quad (S2)$$

where $\sum_{k \in V(i)} I_k(t)$ is the total number of infected individuals in the neighboring subpopulation set $V(i)$ of subpopulation i , $I_j(t)$ is the number of infected individuals belonging to neighbor j , and $q_i(t)$ is donation will of subpopulation i at time t .

When an epidemic breaks out, one subpopulation i can perceive this threat intuitively by acquiring the information from neighbors. So, to quantify the response strength of a subpopulation to the information of disease, a parameter $\alpha \in [0,1]$ denoting awareness is introduced, and a higher α means less resources will be donated. Usually, the more infected individuals around a subpopulation, the more resources are supposed to be donated to them. Hence, we assume that the donation will of subpopulation i increases with the ratio of infected individuals around it. Based on the above description, we define donation will $q_i(t)$ of subpopulation i at time t as follows:

$$q_i(t) = q_0 \bullet (1 - \alpha) \bullet \frac{1}{1 + e^{-\beta(m_i(t) - 0.5)}}, \quad (S3)$$

where q_0 is basic donation factor, $m_i(t)$ is the ratio of infected individuals in all neighboring subpopulations of i at time t , and coefficient $\beta (\geq 0)$ represents the donation sensitivity. The third

32 submultiple on the right side of Eq. (S3) is a sigmoid function which represents donation sensitivity
 33 to the infection. A smaller β means the subpopulation is more sensitive to degree of infection around
 34 the neighboring subpopulations. The smaller β indicates that donation will gets a higher initial value
 35 and increases steadily with $m_i(t)$ with a less slope., and particularly the sigmoid function keeps a fixed
 36 value of 0.5 if $\beta=0$ (see Fig. S1). Besides, the constant 0.5 in the sigmoid function restricts its value
 37 in the range $[0, 1]$. The function obtains 0.5 when $m_i(t)=0.5$, and when $m_i(t)<0.5$, the function is less
 38 than 0.5, and vice versa. That is, how many resources will be donated depends on the value of $m_i(t)$.
 39 Naturally, $m_i(t)$ is expressed as follows:

$$40 \quad m_i(t) = \frac{\sum_{k \in V(i)} I_k(t)}{\sum_{k \in V(i)} N_k}, \quad (S4)$$

41 where $\sum_{k \in V(i)} N_k$ is the total number of individuals traversing neighboring subpopulation set $V(i)$ of
 42 subpopulation i , and $\sum_{k \in V(i)} I_k(t)$ has been mentioned above.

43
 44 When infected individuals emerge around subpopulation i , it intends to donate resources to
 45 neighbors to suppress diseases, and protects itself from infection as well. However, donating
 46 resources may lead to an increasing risk of infection due to the lack of sufficient resources for self-
 47 protection. Hence, we consider a penalty coefficient c (≥ 1) for modified infection rate, $\lambda_i(t)$, of
 48 subpopulation i after donating resources at time t , and $\lambda_i(t)$ is expressed as

$$49 \quad \lambda_i(t) = q_i(t)c\lambda + [1 - q_i(t)]\lambda, \quad (S5)$$

50 where λ is the basic infection rate, and $q_i(t)$ is donation will at time t as mentioned above. From Eq.
 51 (S5), the infection rate recovers a constant λ if $c=1$, i.e., there is no impact when donating resources
 52 to others. On the contrary, if $c>1$, there is a relatively higher infection rate when donating resources.
 53 The above definition means that the infection rate usually varies from subpopulation to subpopulation
 54 with time.

55 In general, a subpopulation can generate resources by itself or receive from others. So, the
 56 resources that a subpopulation i holds at time t are expressed as follows

$$57 \quad \omega_i(t) = r_i(t) \bullet [1 - q_i(t)] + \sum_{j \in V(i)} \omega_{j \rightarrow i}(t), \quad (S6)$$

58 where the first term denotes its remaining resources after donating resources and the second denotes
 59 the resources received from others. Generally, a subpopulation has a higher recovery rate if it holds
 60 more resources. So, the recovery rate of subpopulation i at time t , $\mu_i(t)$, can be defined as

$$61 \quad \mu_i(t) = 1 - (1 - \mu)^{1 + \varepsilon \omega_i(t)}, \quad (S7)$$

62 where μ is the basic recovery rate, and $\varepsilon \in [0, 1]$ is resource utilization rate. From Eq. (S7), we can see
 63 that recovery rate of subpopulation i keeps the basic recovery rate μ if $\varepsilon=0$ or without resources;
 64 otherwise, the recovery rate increases with the growth of holding resources $\omega_i(t)$, and the recovery
 65 rate $\mu_i(t) \rightarrow 1$ when $\omega_i(t)$ is sufficiently large. Similarly, the recovery rate generally varies from
 66 subpopulation to subpopulation with time.

Supplementary Table 1. Involved parameters in the MIR metapopulation network model

Parameter	Definition	Default value
λ	Basic infection rate	-
μ	Basic recovery rate	0.2
p	Migration probability	0.2
c	Penalty coefficient for infection rate after donation	2.0
ε	Resource utilization rate	0.6
q_0	Basic donation factor	0.8
θ	Resource production strength	-
α	Resource donation awareness	-
β	Resource donation sensitivity	-

69 Unless extra specifications, the default values of other parameters are set as $\mu=0.2$, $q_0=0.8$, $\varepsilon=0.6$,
70 $c=2.0$, and $p=0.2$.

71

72

73 **Microscopic Markov chain method and threshold analysis**

74 Based on the above mode description, we construct a metapopulation network model composed
75 a total of N subpopulations. Each subpopulation i has a number of n_i individuals, $\forall i=1, 2, \dots, N$. At
76 the migration stage, an individual leaves its resident subpopulation i with probability p , and migrates
77 to one of its neighboring subpopulations j in terms of the transition matrix \mathbf{R} , whose entries are
78 $R_{ij} = \frac{W_{ij}}{\sum_{j=1}^N W_{ij}}$, where W_{ij} denotes the weight between subpopulation i and j . Then, once individuals have

79 moved, they interact in a well-mixed way in each subpopulation i and change their epidemic status in
80 terms of current infection rate $\lambda_i(t)$ and recovery rate $\mu_i(t)$ at time t based on SIS model. Finally, they
81 return to their resident subpopulation and next time step starts.

82 There are N variables $\rho_i(t)$ denoting the ratio of infected individuals associated with
83 subpopulation i at time t . The time evolution of $\rho_i(t)$ can be written as follows

$$84 \quad \rho_i(t+1) = \rho_i(t) \left[(1-p)(1-\mu_i(t)) + p \sum_{j=1}^N R_{ij} (1-\mu_j(t)) \right] + (1-\rho_i(t)) \Gamma_i(t), \quad (S8)$$

85 where the first term on the right side is the fraction of infected individuals who do not recover. The
86 infected individuals are those who remain in subpopulation i and those who migrate to neighboring
87 subpopulations and then return back to subpopulation i . The second term on the right side accounts
88 for the ratio of susceptible individuals associated with subpopulation i that are infected at time t . In
89 this second term, $\Gamma_i(t)$ denotes the probability that a susceptible individual associated with
90 subpopulation i becomes infected at time t , and reads

91
$$\Gamma_i(t) = (1-p)P_i(t) + p \sum_{j=1}^N R_{ij} P_j(t), \quad (S9)$$

92 where the first term on the right side is the probability that susceptible individuals, who do not move,
 93 get infected in the resident subpopulation i at time t , and the second term denotes the probability that
 94 individuals get infected when migrating to any neighboring subpopulation. And $P_i(t)$ is denoted as

95
$$P_i(t) = 1 - \prod_{j=1}^N (1 - \lambda_j(t) \rho_j(t))^{n_{j \rightarrow i}}, \quad (S10)$$

96 where $n_{j \rightarrow i}$ denotes the population flux moving from subpopulation j to subpopulation i , and reads

97
$$n_{j \rightarrow i} = \delta_{ij} (1-p) n_i + p R_{ji} n_j, \quad (S11)$$

98 with $\delta_{ij}=1$ if $i=j$ and otherwise $\delta_{ij}=0$.

99

100 To analyze the steady state of the dynamics when $t \rightarrow \infty$, namely $\rho_i(t+1) = \rho_i(t) = \rho_i$, we can
 101 simplify Eq.(S7) as:

102
$$[1 - (1-p)(1-\mu_i) - p \sum_j^N R_{ij}(1-\mu_j)]\rho_i = (1-\rho_i)\Gamma_i, \quad (S12)$$

103 where ρ_i is the steady density of infected individuals associated to subpopulation i .

104

105 When close to the critical point, let's denote $\rho_i = \varepsilon_i^* \ll 1$ for any subpopulation i . We estimate

106
$$\mu_i = \mu(1 + \varepsilon \omega_i) \text{ neglecting second order terms from Eq. (S6), and } \omega_i \approx \theta [1 + \frac{k_i q_0 (1-\alpha)}{1 + e^{0.5\beta}}].$$

107 We denote left side of Eq. (S12) as follows:

108
$$[1 - (1-p)(1-\mu_i) - p \sum_j^N R_{ij}(1-\mu_j)]\varepsilon_i^* = T \varepsilon_i^*, \quad (S13)$$

109 where $T = 1 - (1-p)(1-\mu_0)[1 + \varepsilon \theta (1 + \frac{k_0 q_0 (1-\alpha)}{1 + e^{0.5\beta}})] - p \sum_j^N R_{ij}(1-\mu_0)[1 + \varepsilon \theta (1 + \frac{k_0 q_0 (1-\alpha)}{1 + e^{0.5\beta}})].$

110 On the right side of Eq. (S12), we have

111
$$P_i(t) \approx \sum_{j=1}^N \lambda_j \rho_j n_{j \rightarrow i},$$

112
$$n_{j \rightarrow i} = \delta_{ij} (1-p) n_i + p R_{ji} n_j,$$

113
$$\Gamma_i \approx (1-p) \sum_{j=1}^N \lambda_j \rho_j n_{j \rightarrow i} + p \sum_{j=1}^N R_{ij} \sum_{l=1}^N \lambda_l \rho_l n_{l \rightarrow j}, \text{ so}$$

114
$$\Gamma_i = \lambda \sum_{j=1}^N \left\{ (1-p)^2 \delta_{ij} n_j + p(1-p) R_{ji} n_j + p(1-p) \theta \left[\frac{q_0(1-\alpha)}{1+e^{0.5\beta}} (c-1) + 1 \right] R_{ij} n_j + p^2 \theta \left[\frac{q_0(1-\alpha)}{1+e^{0.5\beta}} (c-1) + 1 \right] (\mathbf{R} \bullet \mathbf{R}^T)_{ij} n_j \right\} \varepsilon_j^* .$$

115 We denote $\mathbf{M}_{ij} = (1-p)^2 \delta_{ij} n_j + p(1-p) R_{ji} n_j + p(1-p) \theta \left[\frac{q_0(1-\alpha)}{1+e^{0.5\beta}} (c-1) + 1 \right] R_{ij} n_j + p^2 \theta \left[\frac{q_0(1-\alpha)}{1+e^{0.5\beta}} (c-1) + 1 \right] (\mathbf{R} \bullet \mathbf{R}^T)_{ij} n_j$

116

117 Accordingly, we derive epidemic threshold λ_c as follows:

118
$$\lambda_c = \frac{T}{\Lambda_{\max}(\mathbf{M})}, \quad (S14)$$

119 where $\Lambda_{\max}(\mathbf{M})$ is the maximum eigenvalue of the matrix \mathbf{M} . Unfortunately, the detailed
120 expression for the maximum eigenvalue of the matrix \mathbf{M} is impossible. Nevertheless, we can get the
121 epidemic threshold by numerical iteration.

122

123

Sigmoid function

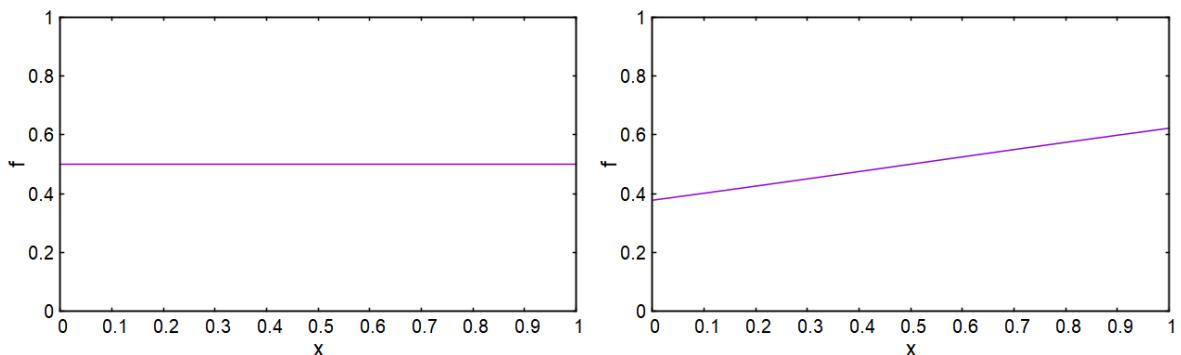
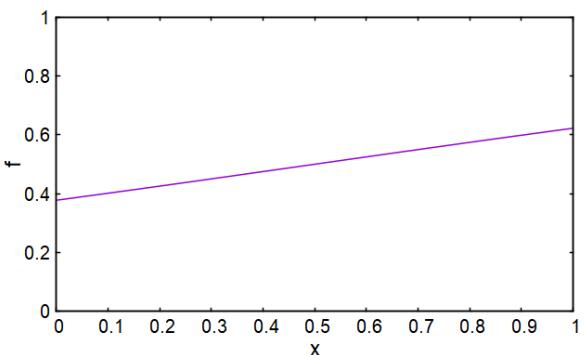
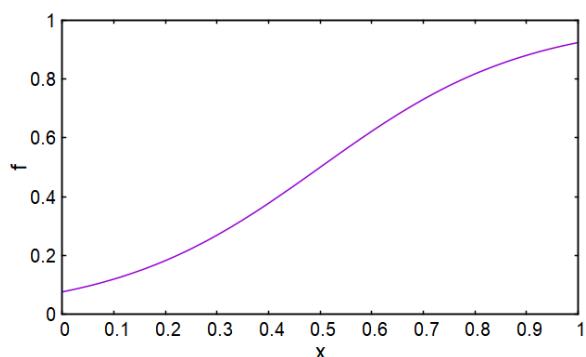
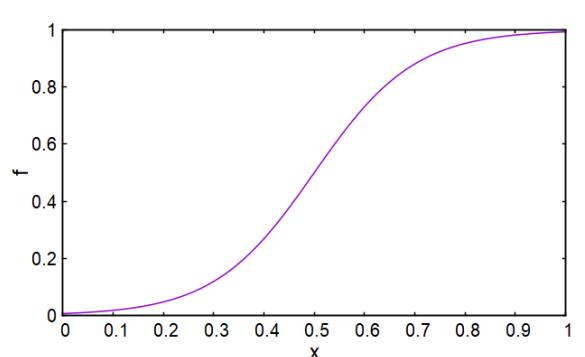
(a) $\beta=0$ (b) $\beta=1$ (c) $\beta=5$ (d) $\beta=10$

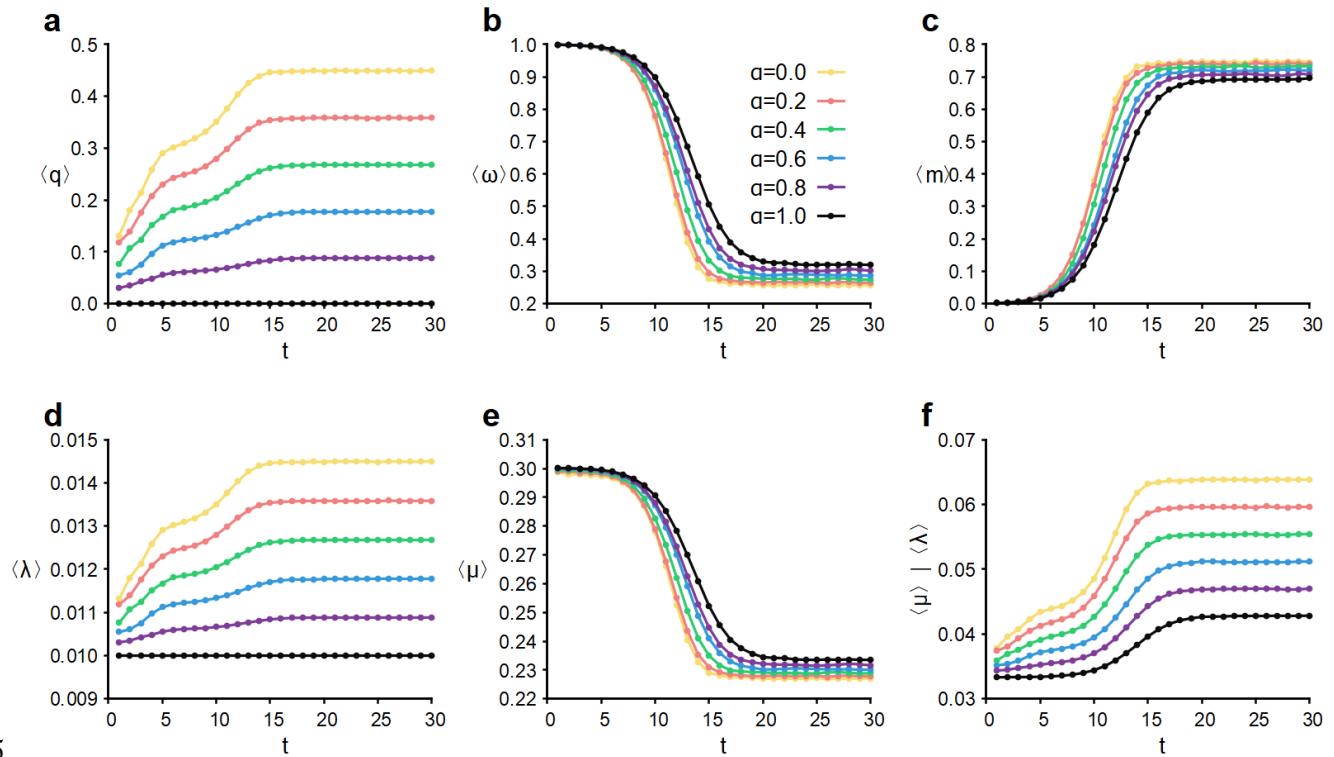
Fig. S1 Sigmoid function $f(x) = \frac{1}{1 + e^{-\beta(x-0.5)}}$ corresponding to various values of parameter β . The function become constant 0.5 when $\beta=0$. The lower β presents a more steady growth with a higher initial function value.

133

Effects of the parameter α

134

The time evolution of the epidemic under HOD and HED

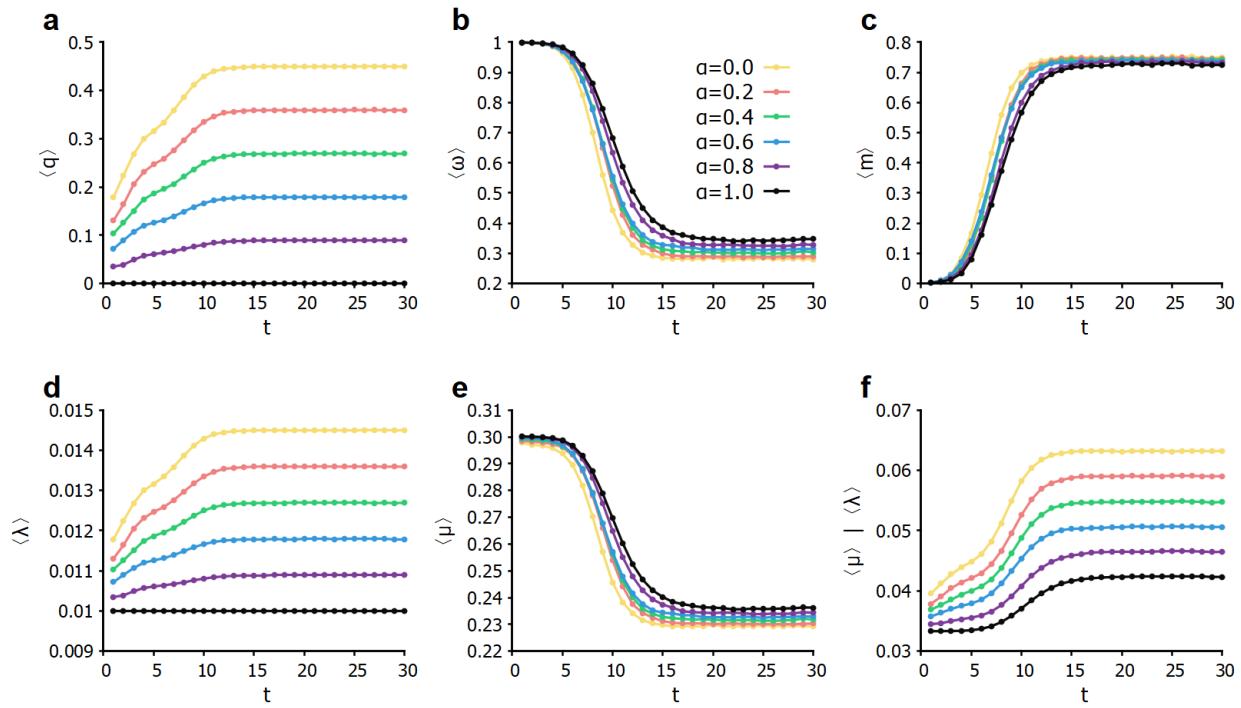


135

136 **Fig. S2** The time evolution of six average values of all subpopulations for various values of α by
137 MC simulation under HOD when $\lambda=0.01$ (the legend in (b)). (a)-(f) are average values corresponding
138 to donation will $\langle q \rangle$, holding resources $\langle \omega \rangle$, infection ratio of individuals in neighboring
139 subpopulations $\langle m \rangle$, infection rate $\langle \lambda \rangle$, recover rate $\langle \mu \rangle$, and effective infection rate $\langle \lambda \rangle / \langle \mu \rangle$,
140 respectively.

141 The average infection ratio of individuals in neighboring subpopulations increases promptly as
142 shown in (c), and the lower α is, the faster it increases. When infected individuals emerge in
143 subpopulations, they will release/receive resources to/from neighbors. As we can see from (a), the
144 average donation will increases with time when α is not equal to 1, and a lower α induces a higher
145 donation will. However, a higher donation will of one subpopulation induces a higher infection rate
146 as shown in (d). At the same time, because the increasing of infected individuals induces a lower
147 ability of resource production, the average resources of each subpopulation become fewer and fewer
148 as shown in (b). Meanwhile, the recovery rate of one subpopulation is positive correlated to its current
149 resources, so we can see a same trend shown in (e). In order to clearly present the relationship between
150 average infection rate and average recovery rate, the time evolution of average effective infection rate
151 is shown in (f), and we can see the growth whatever the value of α is.

152

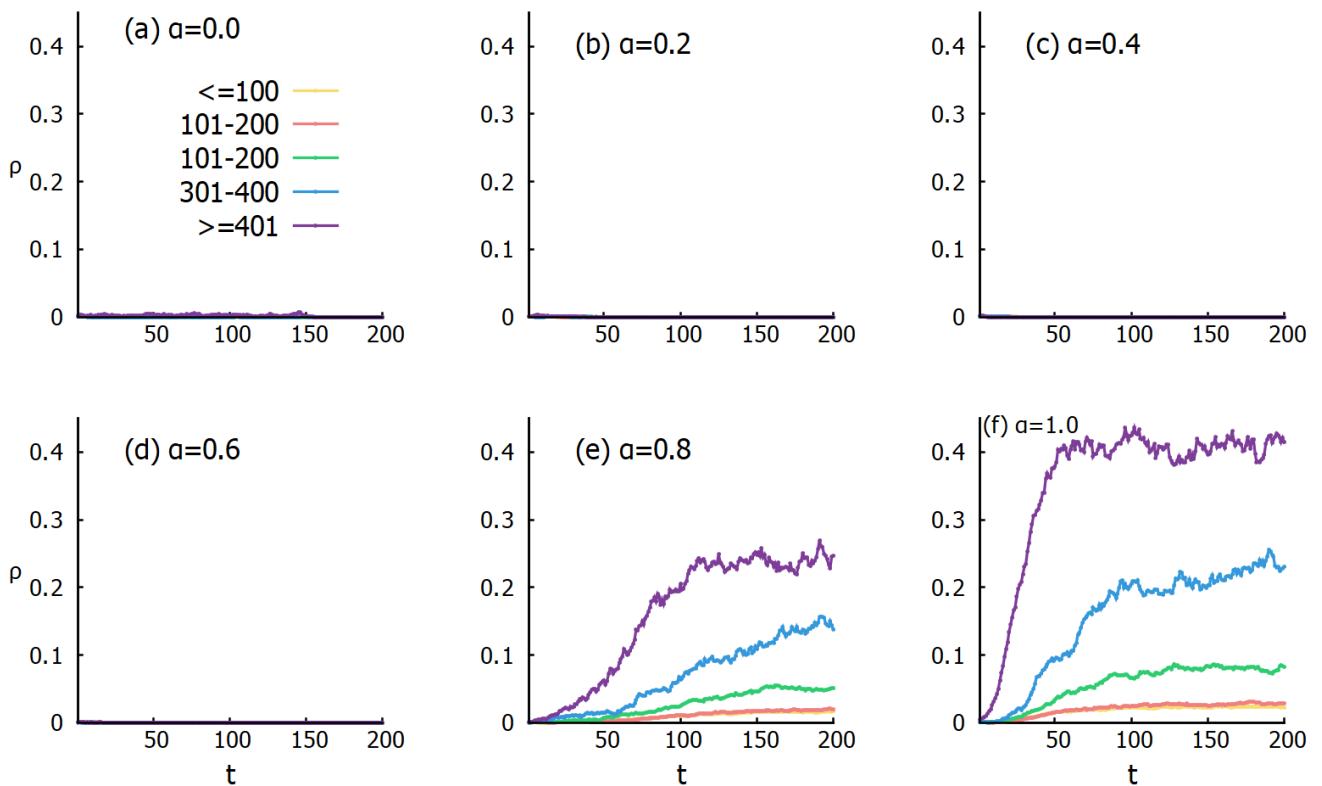


155 **Fig. S3** The time evolution of six average values of all subpopulations for various values of α
156 by MC simulation under HED when $\lambda=0.01$ (the legend in (b)). (a)-(f) are average values
157 corresponding to donation will $\langle q \rangle$, holding resources $\langle \omega \rangle$, infection ratio of individuals in
158 neighboring subpopulations $\langle m \rangle$, infection rate $\langle \lambda \rangle$, recover rate $\langle \mu \rangle$, and effective infection rate
159 $\langle \lambda \rangle / \langle \mu \rangle$, respectively.

160 The figures appear a similar trend with previous HOD, but the epidemic reaches a steady state
161 in a shorter time.

164

Prevalence ρ for five subpopulation groups under HED



165

166 **Fig. S4** The time evolution of the prevalence ρ for five subpopulation groups under various values of
 167 α when $\lambda=0.0015$. (a)-(f) correspond to parameter $\alpha=0.0, 0.2, 0.4, 0.6, 0.8$, and 1.0 , respectively (The
 168 legend represents subpopulation groups shown in (a)).

169 As the population distribution is heterogeneous under HED, for further interpreting the role of
 170 awareness α when close to threshold, we group subpopulations according to its population, and set λ
 171 at 0.0015 . Apparently, $\alpha=1.0$ denotes there is no resource donation. From (a)-(d), the epidemic can't
 172 spread in all the subpopulation groups under $\alpha=0.0, 0.2, 0.4$, and 0.6 , respectively; whereas the
 173 epidemic breaks out, particular subpopulations with more population, when awareness $\alpha=0.8$ and 1.0
 174 as shown in (e) and (f), respectively.

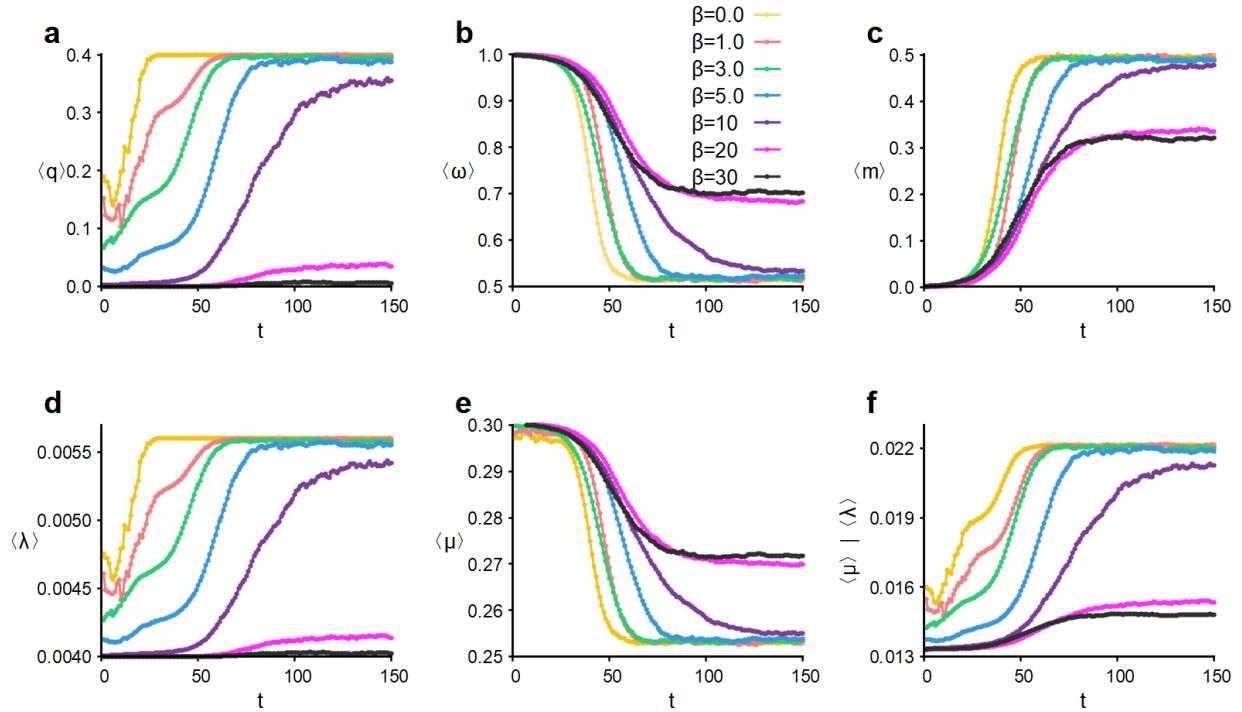
175

176

177

Effects of the parameter β

178
179 The time evolution of epidemic under HOD and HED



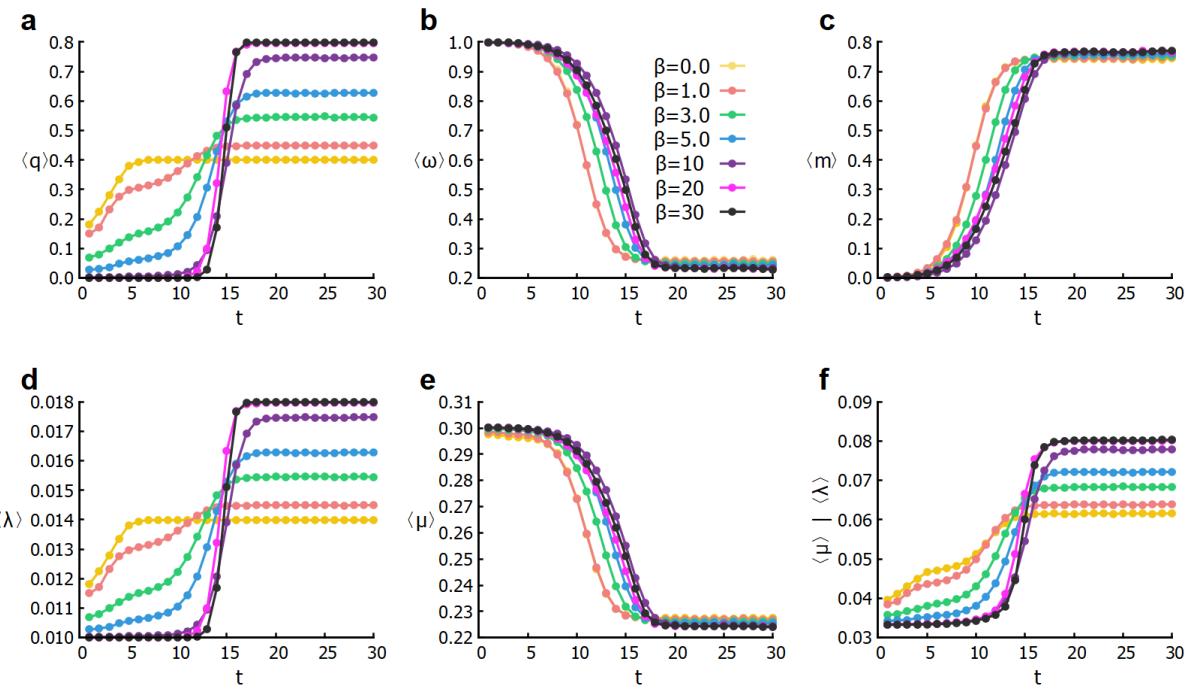
180

181 **Fig. S5** The time evolution of six average values of all subpopulations for various values of β by
182 MC simulation under **HOD** when $\lambda=0.004$ (the legend in (b)). (a)-(f) are average values
183 corresponding to donation will $\langle q \rangle$, holding resources $\langle \omega \rangle$, infection ratio of individuals in
184 neighboring subpopulations $\langle m \rangle$, infection rate $\langle \lambda \rangle$, recover rate $\langle \mu \rangle$, and effective infection rate
185 $\langle \lambda \rangle / \langle \mu \rangle$, respectively.

186

187

188



189

190 **Fig. S6** The time evolution of six average values of all subpopulations for various values of β by
 191 MC simulation under HOD when $\lambda=0.01$ (the legend in (b)). (a)-(f) are average values corresponding
 192 to donation will $\langle q \rangle$, holding resources $\langle \omega \rangle$, infection ratio of individuals in neighboring
 193 subpopulations $\langle m \rangle$, infection rate $\langle \lambda \rangle$, recover rate $\langle \mu \rangle$, and effective infection rate $\langle \lambda \rangle / \langle \mu \rangle$,
 194 respectively.

195 With time evolution, more infected individuals emerge as shown in Fig. S6 (c). Once infected
 196 individuals emerge, subpopulations would increase their donation will to donate resources to others
 197 as shown in (a), and a lower β indicates a higher initial donate will. Besides, average infection rate
 198 has a similar trend as shown in (d). At the same time, average resources of each subpopulation become
 199 less and less as shown in (b) because of the increasing of infected individuals. Hence, average recover
 200 rate of the system become lower and lower as shown in (e). We can see the growth of average effective
 201 infection rate in (f), and the higher the β is, the higher final average effective infection rate is.

202

203

204

205

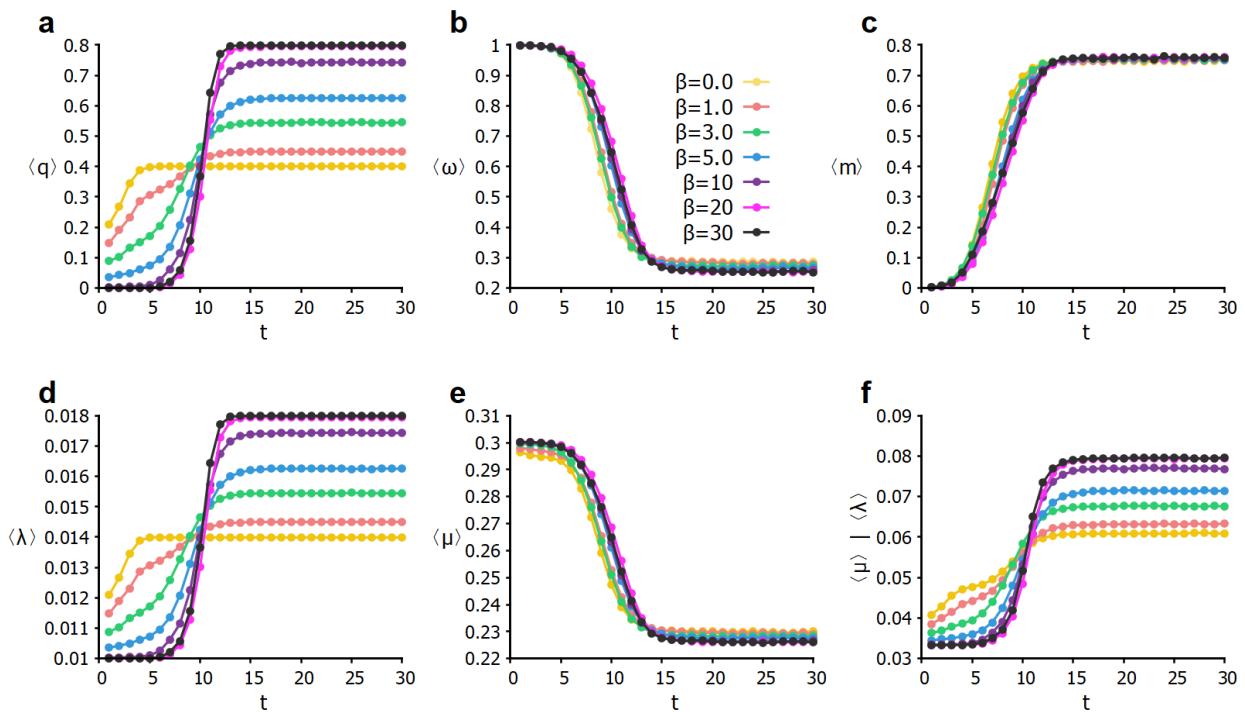
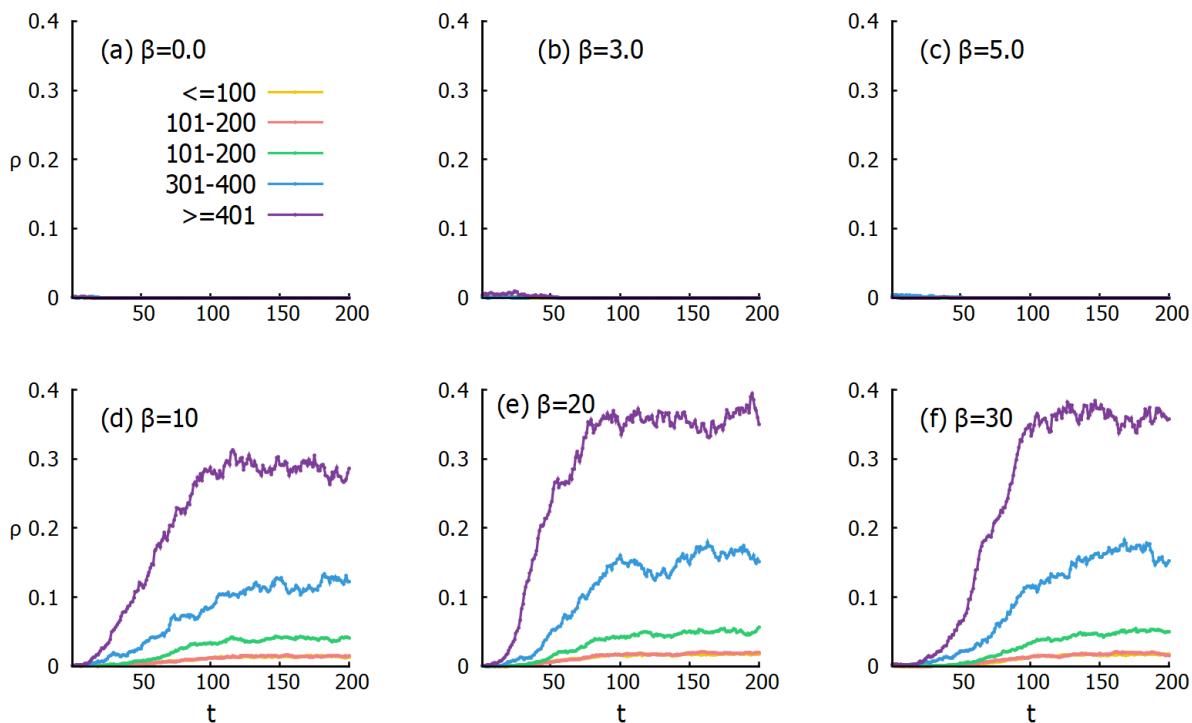


Fig. S7 The time evolution of six average values of all subpopulations for various values of β by MC simulation under HED when $\lambda=0.01$ (the legend in (b)). (a)-(f) are average values corresponding to donation will $\langle q \rangle$, holding resources $\langle \omega \rangle$, infection ratio of individuals in neighboring subpopulations $\langle m \rangle$, infection rate $\langle \lambda \rangle$, recover rate $\langle \mu \rangle$, and effective infection rate $\langle \lambda \rangle / \langle \mu \rangle$, respectively.

The figures appear a similar trend as previous situation.

216

Prevalence ρ for five subpopulation groups under HED



217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

Fig. S8 The time evolution of the prevalence ρ for five subpopulation groups under various values of β when $\lambda=0.0015$. (a)-(f) correspond to parameter $\beta=0.0, 3.0, 5.0, 10, 20$, and 30 , respectively (The legend represents subpopulation groups shown in (a)).

Because the population distribution is heterogeneous under HED, for further interpreting the role of the donation sensitivity β when closed to threshold, we group subpopulations according to its population, and set λ at 0.0015. The donation will keeps a constant when $\beta=0.0$. From (a)-(c), the curves just presents a slight fluctuation initially and finally approach to 0 with time evolution, which suggests that epidemic cannot spread. From (d)-(f), the epidemic easily diffuses especially in subpopulations with more population, and the curves firstly go up then present steady with the time evolution.

Effects of the parameter θ

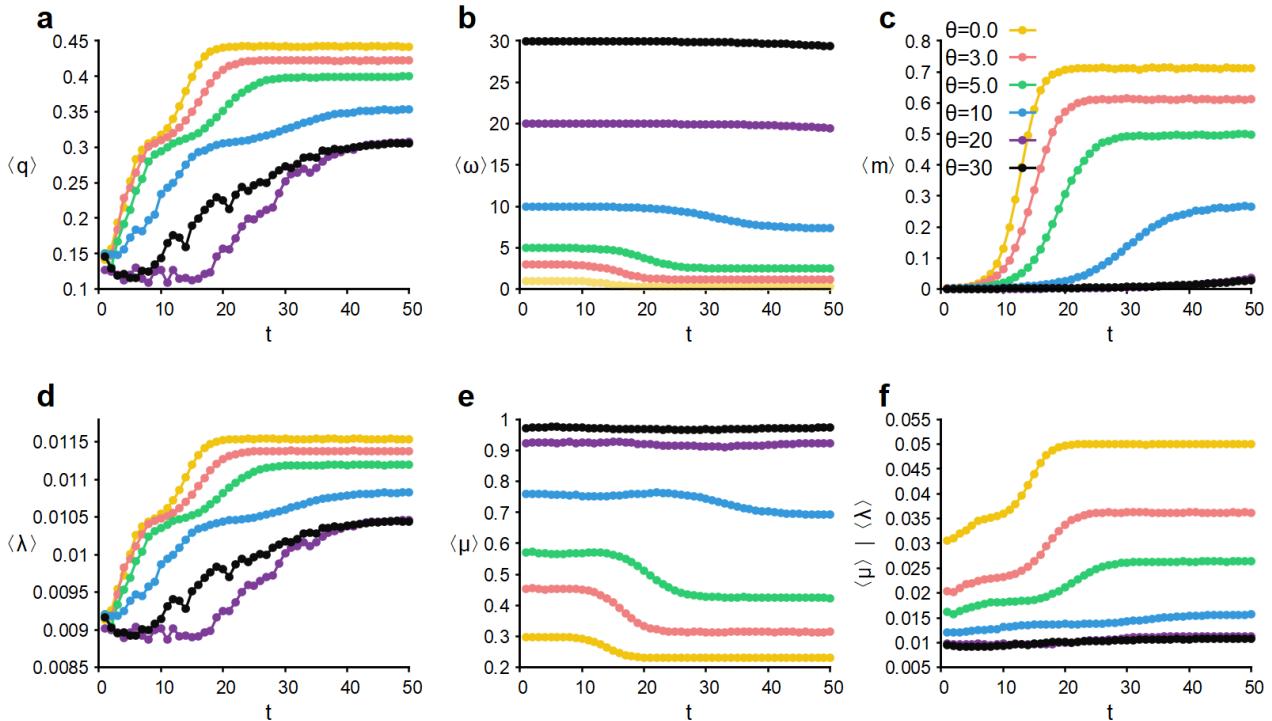
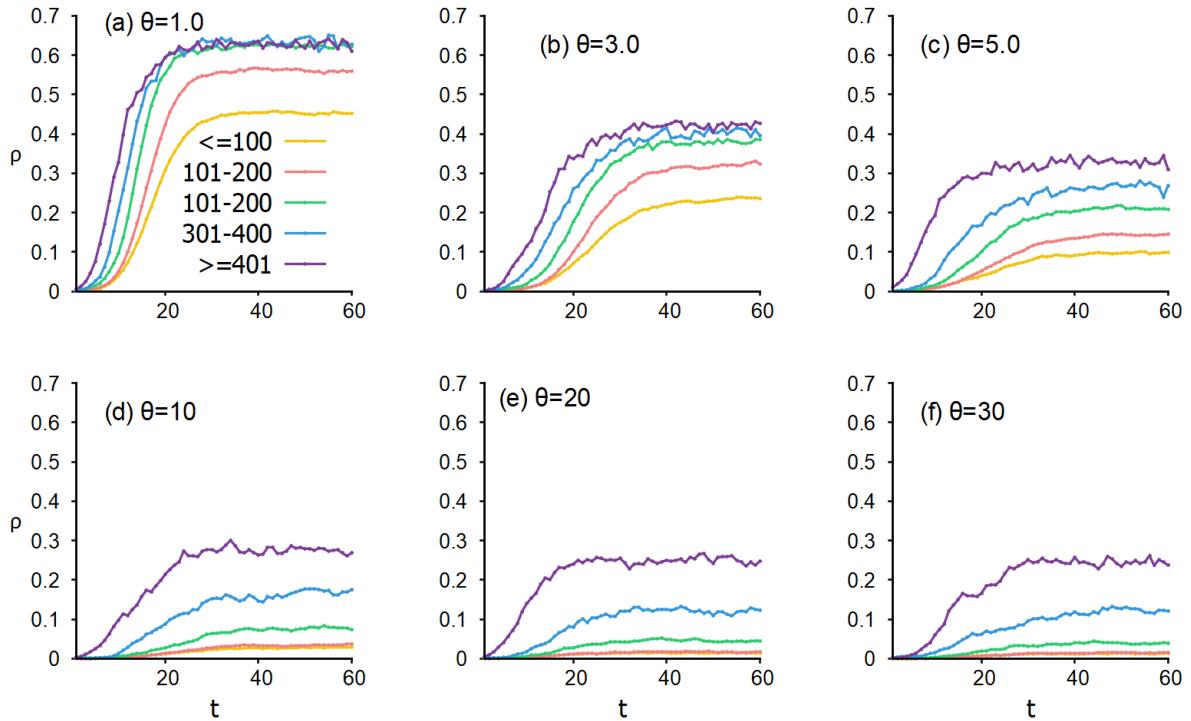


Fig. S9 The time evolution of six average values of all subpopulations for various values of θ by MC simulation under HOD when $\lambda=0.01$ (the legend in (c)). (a)-(f) are average values corresponding to donation will $\langle q \rangle$, holding resources $\langle \omega \rangle$, infection ratio of individuals in neighboring subpopulations $\langle m \rangle$, infection rate $\langle \lambda \rangle$, recover rate $\langle \mu \rangle$, and effective infection rate $\langle \lambda \rangle / \langle \mu \rangle$, respectively.

In order to explore the time evolution of the epidemic under various values of parameter θ when basic infection rate λ is close to thresholds, we set $\lambda=0.004$. As we can see from (b) and (e), higher θ can effectively increase the average holding resources and average recover rate. From (c) and (f), there is a lower average effective infection rate with a higher θ , suppressing the spread of the epidemic validly.



245

246 **Fig. S10** The time evolution of the prevalence ρ for five subpopulation groups under various
 247 values of θ when $\lambda=0.01$. (a)-(f) correspond to parameter $\theta=1.0, 3.0, 5.0, 10, 20$, and 30 , respectively
 248 (The legend represents subpopulation groups shown in (a)).

249

250 As the population distribution is heterogeneous under HED, for further interpreting the role of
 251 the productive strength θ , we group subpopulations according to its population, and set λ at 0.01.
 252 From (a)-(d), we can obviously find that high θ can effectively reduce final prevalence. However,
 253 when $\theta=20$ or larger as shown in (e) and (f), there is few changes on reducing final prevalence because
 254 of not obviously increase of the recovery rate. These results suggest it is conducive to control
 255 epidemic when we strengthen the speed of resource production such as extending working hours
 256 properly.

256

Supplementary References

1. Chen, X. L., Liu, Q. H., Wang, R. J., Li, Q. & Wang, W. Self-Awareness-Based Resource Allocation Strategy for Containment of Epidemic Spreading. *Complexity* 2020(2020).
2. Gómez-Gardeñes, J., Soriano-Paños, D. & Arenas, A. Critical regimes driven by recurrent mobility patterns of reaction–diffusion processes in networks. *Nat. Phys.* **14**, 391-395 (2018).
3. Davis, J. T., Perra, N., Zhang, Q., Moreno, Y. & Vespignani, A. Phase transitions in information spreading on structured populations. *Nat. Phys.* **16**, 590-596(2020).
4. Colizza, V., Pastor-Satorras, R. & Vespignani, A. Reaction–diffusion processes and metapopulation models in heterogeneous networks. *Nat. Phys.* **3**, 276-282 (2007).
5. Wang, B., Gou, M., Guo, Y., Tanaka, G. & Han, Y. Network structure-based interventions on spatial spread of epidemics in metapopulation networks. *Phys. Rev. E* **102** (2020).
6. Worby, C. J. & Chang, H. H. Face mask use in the general population and optimal resource allocation during the COVID-19 pandemic. *Nat. Commun.* **11** (2020).