
 

 

Supplementary Information 1 

Model description 2 

Facing the outbreak of the epidemic, each subpopulation can generate resources for fighting 3 

against the disease at each time step. In reality, infected individuals consume various medical 4 

resources, but susceptible individuals are responsible for resource production. So we reasonably 5 

assume that the amount of resources produced by one subpopulation are positively correlated to its 6 

current proportion of susceptible individuals. Accordingly, we define the resources production ri(t) of 7 

subpopulation i at time t as follows: 8 

( ) [1 (t)]iir t    ,                                                 (S1) 9 

where (t)i  is the ratio of infected individuals in subpopulation i at time t, and θ (≥1) is the coefficient 10 

denoted as resource production strength. Higher θ means a faster speed on resource production.  11 

With the emergence of infected individuals in neighboring subpopulations of subpopulation i, 12 

subpopulation i would release resources to suppress the disease. Usually, not all resources could be 13 

donated because of the need for self-protection. Besides, we consider the amount of resources that 14 

one of its neighboring subpopulation j can receive at time t is proportional to its number of infected 15 

individuals among all neighbors. Accordingly, the resource donation (t)i j   that subpopulation i 16 

releases to j at time t can be denoted as follows: 17 
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  is the total number of infected individuals in the neighboring subpopulation set V(i) 19 

of subpopulation i, Ij(t) is the number of infected individuals belonging to neighbor j, and qi(t) is 20 

donation will of subpopulation i at time t. 21 

When an epidemic breaks out, one subpopulation i can perceive this threat intuitively by 22 

acquiring the information from neighbors. So, to quantify the response strength of a subpopulation to 23 

the information of disease, a parameter α∈[0,1] denoting awareness is introduced, and a higher α 24 

means less resources will be donated. Usually, the more infected individuals around a subpopulation, 25 

the more resources are supposed to be donated to them. Hence, we assume that the donation will of 26 

subpopulation i increases with the ratio of infected individuals around it. Based on the above 27 

description, we define donation will qi(t) of subpopulation i at time t as follows: 28 
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where q0 is basic donation factor, mi(t) is the ratio of infected individuals in all neighboring 30 

subpopulations of i at time t, and coefficient β (≥0) represents the donation sensitivity. The third 31 



 

 

submultiple on the right side of Eq. (S3) is a sigmoid function which represents donation sensitivity 32 

to the infection. A smaller β means the subpopulation is more sensitive to degree of infection around 33 

the neighboring subpopulations. The smaller β indicates that donation will gets a higher initial value 34 

and increases steadily with mi(t) with a less slope., and particularly the sigmoid function keeps a fixed 35 

value of 0.5 if β=0 (see Fig. S1). Besides, the constant 0.5 in the sigmoid function restricts its value 36 

in the range [0, 1]. The function obtains 0.5 when mi(t)=0.5, and when mi(t)<0.5, the function is less 37 

than 0.5, and vice versa. That is, how many resources will be donated depends on the value of mi(t). 38 

Naturally, mi(t) is expressed as follows:  39 
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where 
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  is the total number of individuals traversing neighboring subpopulation set V(i) of 41 

subpopulation i, and 
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  has been mentioned above. 42 

 43 

When infected individuals emerge around subpopulation i, it intends to donate resources to 44 

neighbors to suppress diseases, and protects itself from infection as well. However, donating 45 

resources may lead to an increasing risk of infection due to the lack of sufficient resources for self-46 

protection. Hence, we consider a penalty coefficient c (≥1) for modified infection rate, λi(t), of 47 

subpopulation i after donating resources at time t, and λi(t) is expressed as 48 

( ) ( ) [1 ( )]i i it q t c q t     ,                                      (S5) 49 

where λ is the basic infection rate, and qi(t) is donation will at time t as mentioned above. From Eq. 50 

(S5), the infection rate recovers a constant λ if c=1, i.e., there is no impact when donating resources 51 

to others. On the contrary, if c>1, there is a relatively higher infection rate when donating resources. 52 

The above definition means that the infection rate usually varies from subpopulation to subpopulation 53 

with time. 54 

In general, a subpopulation can generate resources by itself or receive from others. So, the 55 

resources that a subpopulation i holds at time t are expressed as follows 56 
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where the first term denotes its remaining resources after donating resources and the second denotes 58 

the resources received from others. Generally, a subpopulation has a higher recovery rate if it holds 59 

more resources. So, the recovery rate of subpopulation i at time t, μi(t), can be defined as 60 
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where μ is the basic recovery rate, and ε∈[0,1] is resource utilization rate. From Eq. (S7), we can see 62 

that recovery rate of subpopulation i keeps the basic recovery rate μ if ε=0 or without resources; 63 

otherwise, the recovery rate increases with the growth of holding resources ωi(t), and the recovery 64 

rate μi(t)→1 when ωi(t) is sufficiently large. Similarly, the recovery rate generally varies from 65 

subpopulation to subpopulation with time.  66 
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Supplementary Table 1. Involved parameters in the MIR metapopulation network model 68 

Parameter Definition Default value 

λ Basic infection rate - 

μ Basic recovery rate 0.2 

p Migration probability 0.2 

c Penalty coefficient for infection rate after donation 2.0 

ε Resource utilization rate 0.6 

q0 Basic donation factor 0.8 

θ Resource production strength - 

α Resource donation awareness - 

𝛽 Resource donation sensitivity - 

Unless extra specifications, the default values of other parameters are set as μ=0.2, q0=0.8, ε=0.6, 69 

c=2.0, and p=0.2. 70 

 71 

 72 

Microscopic Markov chain method and threshold analysis 73 

Based on the above mode description, we construct a metapopulation network model composed 74 

a total of N subpopulations. Each subpopulation i has a number of ni individuals, ∀i=1, 2, …, N. At 75 

the migration stage, an individual leaves its resident subpopulation i with probability p, and migrates 76 

to one of its neighboring subpopulations j in terms of the transition matrix R, whose entries are 77 

1

ij

ij N

ijj

W
R

W






, where Wij denotes the weight between subpopulation i and j. Then, once individuals have 78 

moved, they interact in a well-mixed way in each subpopulation i and change their epidemic status in 79 

terms of current infection rate λi(t) and recovery rate μi(t) at time t based on SIS model. Finally, they 80 

return to their resident subpopulation and next time step starts. 81 

There are N variables ( )i t  denoting the ratio of infected individuals associated with 82 

subpopulation i at time t. The time evolution of ( )i t  can be written as follows 83 
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where the first term on the right side is the fraction of infected individuals who do not recover. The 85 

infected individuals are those who remain in subpopulation i and those who migrate to neighboring 86 

subpopulations and then return back to subpopulation i. The second term on the right side accounts 87 

for the ratio of susceptible individuals associated with subpopulation i that are infected at time t. In 88 

this second term, ( )i t  denotes the probability that a susceptible individual associated with 89 

subpopulation i becomes infected at time t, and reads 90 
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where the first term on the right side is the probability that susceptible individuals, who do not move, 92 

get infected in the resident subpopulation i at time t, and the second term denotes the probability that 93 

individuals get infected when migrating to any neighboring subpopulation. And Pi(t) is denoted as 94 
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where j in   denotes the population flux moving from subpopulation j to subpopulation i, and reads 96 

 1 ji jij ij in p Rn p n    ,                                           (S11) 97 

with δij=1 if i=j and otherwise δij=0. 98 

 99 

To analyze the steady state of the dynamics when t→∞, namely ( 1) ( )i i it t     , we can 100 

simplify Eq.(S7) as: 101 
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where 
i  is the steady density of infected individuals associated to subpopulation i.  103 
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When close to the critical point, let’s denote
* 1i i   for any subpopulation i. We estimate 105 
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We denote left side of Eq. (S12) as follows:    107 
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On the right side of Eq. (S12), we have 110 
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Accordingly, we derive epidemic threshold λc as follows:  117 
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where 
maxΛ ( )M  is the maximum eigenvalue of the matrix M. Unfortunately, the detailed 119 

expression for the maximum eigenvalue of the matrix M is impossible. Nevertheless, we can get the 120 

epidemic threshold by numerical iteration. 121 
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Sigmoid function 124 

 125 

(a) β=0                                  (b) β=1 126 

 127 

(c) β=5                                  (d) β=10 128 

Fig. S1 Sigmoid function 
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 corresponding to various values of parameter β. The 129 

function become constant 0.5 when β=0. The lower β presents a more steady growth with a higher 130 

initial function value. 131 
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Effects of the parameter α 133 

The time evolution of the epidemic under HOD and HED 134 

 135 

Fig. S2 The time evolution of six average values of all subpopulations for various values of α by 136 

MC simulation under HOD when λ=0.01 (the legend in (b)). (a)-(f) are average values corresponding 137 

to donation will <q>, holding resources <ω>, infection ratio of individuals in neighboring 138 

subpopulations <m>, infection rate <λ>, recover rate <μ>, and effective infection rate <λ>/<μ>, 139 

respectively. 140 

The average infection ratio of individuals in neighboring subpopulations increases promptly as 141 

shown in (c), and the lower α is, the faster it increases. When infected individuals emerge in 142 

subpopulations, they will release/receive resources to/from neighbors. As we can see from (a), the 143 

average donation will increases with time when α is not equal to 1, and a lower α induces a higher 144 

donation will. However, a higher donation will of one subpopulation induces a higher infection rate 145 

as shown in (d). At the same time, because the increasing of infected individuals induces a lower 146 

ability of resource production, the average resources of each subpopulation become fewer and fewer 147 

as shown in (b). Meanwhile, the recovery rate of one subpopulation is positive correlated to its current 148 

resources, so we can see a same trend shown in (e). In order to clearly present the relationship between 149 

average infection rate and average recovery rate, the time evolution of average effective infection rate 150 

is shown in (f), and we can see the growth whatever the value of α is. 151 
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 154 

Fig. S3 The time evolution of six average values of all subpopulations for various values of α 155 

by MC simulation under HED when λ=0.01 (the legend in (b)). (a)-(f) are average values 156 

corresponding to donation will <q>, holding resources <ω>, infection ratio of individuals in 157 

neighboring subpopulations <m>, infection rate <λ>, recover rate <μ>, and effective infection rate 158 

<λ>/<μ>, respectively. 159 

The figures appear a similar trend with previous HOD, but the epidemic reaches a steady state 160 

in a shorter time. 161 

 162 
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Prevalence ρ for five subpopulation groups under HED 164 

 165 

Fig. S4 The time evolution of the prevalence ρ for five subpopulation groups under various values of 166 

α when λ=0.0015. (a)-(f) correspond to parameter α=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively (The 167 

legend represents subpopulation groups shown in (a)). 168 

As the population distribution is heterogeneous under HED, for further interpreting the role of 169 

awareness α when close to threshold, we group subpopulations according to its population, and set λ 170 

at 0.0015. Apparently, α=1.0 denotes there is no resource donation. From (a)-(d), the epidemic can’t 171 

spread in all the subpopulation groups under α=0.0, 0.2, 0.4, and 0.6, respectively; whereas the 172 

epidemic breaks out, particular subpopulations with more population, when awareness α=0.8 and 1.0 173 

as shown in (e) and (f), respectively. 174 

 175 
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Effects of the parameter β 178 

The time evolution of epidemic under HOD and HED 179 

 180 

Fig. S5 The time evolution of six average values of all subpopulations for various values of β by 181 

MC simulation under HOD when λ=0.004 (the legend in (b)). (a)-(f) are average values 182 

corresponding to donation will <q>, holding resources <ω>, infection ratio of individuals in 183 

neighboring subpopulations <m>, infection rate <λ>, recover rate <μ>, and effective infection rate 184 

<λ>/<μ>, respectively. 185 
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 189 

Fig. S6 The time evolution of six average values of all subpopulations for various values of β by 190 

MC simulation under HOD when λ=0.01 (the legend in (b)). (a)-(f) are average values corresponding 191 

to donation will <q>, holding resources <ω>, infection ratio of individuals in neighboring 192 

subpopulations <m>, infection rate <λ>, recover rate <μ>, and effective infection rate <λ>/<μ>, 193 

respectively. 194 

With time evolution, more infected individuals emerge as shown in Fig. S6 (c). Once infected 195 

individuals emerge, subpopulations would increase their donation will to donate resources to others 196 

as shown in (a), and a lower β indicates a higher initial donate will. Besides, average infection rate 197 

has a similar trend as shown in (d). At the same time, average resources of each subpopulation become 198 

less and less as shown in (b) because of the increasing of infected individuals. Hence, average recover 199 

rate of the system become lower and lower as shown in (e). We can see the growth of average effective 200 

infection rate in (f), and the higher the β is, the higher final average effective infection rate is. 201 
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 207 

Fig. S7 The time evolution of six average values of all subpopulations for various values of β 208 

by MC simulation under HED when λ=0.01 (the legend in (b)). (a)-(f) are average values 209 

corresponding to donation will <q>, holding resources <ω>, infection ratio of individuals in 210 

neighboring subpopulations <m>, infection rate <λ>, recover rate <μ>, and effective infection rate 211 

<λ>/<μ>, respectively. 212 

The figures appear a similar trend as previous situation. 213 
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Prevalence ρ for five subpopulation groups under HED 216 

 217 

Fig. S8 The time evolution of the prevalence ρ f for five subpopulation groups under various 218 

values of β when λ=0.0015. (a)-(f) correspond to parameter β=0.0, 3.0, 5.0, 10, 20, and 30, 219 

respectively (The legend represents subpopulation groups shown in (a)). 220 

Because the population distribution is heterogeneous under HED, for further interpreting the role 221 

of the donation sensitivity β when closed to threshold, we group subpopulations according to its 222 

population, and set λ at 0.0015. The donation will keeps a constant when β=0.0. From (a)-(c), the 223 

curves just presents a slight fluctuation initially and finally approach to 0 with time evolution, which 224 

suggests that epidemic cannot spread. From (d)-(f), the epidemic easily diffuses especially in 225 

subpopulations with more population, and the curves firstly go up then present steady with the time 226 

evolution. 227 

 228 

 229 
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Effects of the parameter θ 232 

 233 

Fig. S9 The time evolution of six average values of all subpopulations for various values of θ by 234 

MC simulation under HOD when λ=0.01 (the legend in (c)). (a)-(f) are average values corresponding 235 

to donation will <q>, holding resources <ω>, infection ratio of individuals in neighboring 236 

subpopulations <m>, infection rate <λ>, recover rate <μ>, and effective infection rate <λ>/<μ>, 237 

respectively. 238 

In order to explore the time evolution of the epidemic under various values of parameter θ when 239 

basic infection rate λ is close to thresholds, we set λ=0.004. As we can see from (b) and (e), higher θ 240 

can effectively increase the average holding resources and average recover rate. From (c) and (f), 241 

there is a lower average effective infection rate with a higher θ, suppressing the spread of the epidemic 242 

validly. 243 
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 245 

Fig. S10 The time evolution of the prevalence ρ for five subpopulation groups under various 246 

values of θ when λ=0.01. (a)-(f) correspond to parameter θ=1.0, 3.0, 5.0, 10, 20, and 30, respectively 247 

(The legend represents subpopulation groups shown in (a)). 248 

As the population distribution is heterogeneous under HED, for further interpreting the role of 249 

the productive strength θ, we group subpopulations according to its population, and set λ at 0.01. 250 

From (a)-(d), we can obviously find that high θ can effectively reduce final prevalence. However, 251 

when θ=20 or larger as shown in (e) and (f), there is few changes on reducing final prevalence because 252 

of not obviously increase of the recovery rate. These results suggest it is conducive to control 253 

epidemic when we strengthen the speed of resource production such as extending working hours 254 

properly. 255 
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