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Supplementary Information

Model description

Facing the outbreak of the epidemic, each subpopulation can generate resources for fighting
against the disease at each time step. In reality, infected individuals consume various medical
resources, but susceptible individuals are responsible for resource production. So we reasonably
assume that the amount of resources produced by one subpopulation are positively correlated to its
current proportion of susceptible individuals. Accordingly, we define the resources production ri(t) of
subpopulation i at time t as follows:

() = 01— pi(1)], (S1)
where 4 (ty isthe ratio of infected individuals in subpopulation i attime t, and 6 (>1) is the coefficient

denoted as resource production strength. Higher 6 means a faster speed on resource production.
With the emergence of infected individuals in neighboring subpopulations of subpopulation i,
subpopulation i would release resources to suppress the disease. Usually, not all resources could be
donated because of the need for self-protection. Besides, we consider the amount of resources that
one of its neighboring subpopulation j can receive at time t is proportional to its number of infected

individuals among all neighbors. Accordingly, the resource donation a)Hj(t) that subpopulation i
releases to j at time t can be denoted as follows:

1L,
o1, (0

keV (i)

A, () =r(t)eq(t)e (S2)

where 21, (1) is the total number of infected individuals in the neighboring subpopulation set V(i)
keV (i)

of subpopulation i, lj(t) is the number of infected individuals belonging to neighbor j, and qi(t) is
donation will of subpopulation i at time t.

When an epidemic breaks out, one subpopulation i can perceive this threat intuitively by
acquiring the information from neighbors. So, to quantify the response strength of a subpopulation to
the information of disease, a parameter o€ [0,1] denoting awareness is introduced, and a higher a
means less resources will be donated. Usually, the more infected individuals around a subpopulation,
the more resources are supposed to be donated to them. Hence, we assume that the donation will of
subpopulation i increases with the ratio of infected individuals around it. Based on the above
description, we define donation will gi(t) of subpopulation i at time t as follows:

1
qi (t) = qo d (1_ 0!) i 1+ e,ﬂ(mi (1)-05) (83)

where Qo is basic donation factor, mi(t) is the ratio of infected individuals in all neighboring
subpopulations of i at time t, and coefficient  (=0) represents the donation sensitivity. The third
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submultiple on the right side of Eq. (S3) is a sigmoid function which represents donation sensitivity
to the infection. A smaller f means the subpopulation is more sensitive to degree of infection around
the neighboring subpopulations. The smaller B indicates that donation will gets a higher initial value
and increases steadily with m;(t) with a less slope., and particularly the sigmoid function keeps a fixed
value of 0.5 if p=0 (see Fig. S1). Besides, the constant 0.5 in the sigmoid function restricts its value
in the range [0, 1]. The function obtains 0.5 when mj(t)=0.5, and when mi(t)<0.5, the function is less
than 0.5, and vice versa. That is, how many resources will be donated depends on the value of mi(t).
Naturally, mi(t) is expressed as follows:

21, (1)

m. (t) = <@ sS4
=5 (54

keV (i)

where XN, s the total number of individuals traversing neighboring subpopulation set V(i) of
keV (i)

subpopulation i, and =1, (t) has been mentioned above.
KeV (i)

When infected individuals emerge around subpopulation i, it intends to donate resources to
neighbors to suppress diseases, and protects itself from infection as well. However, donating
resources may lead to an increasing risk of infection due to the lack of sufficient resources for self-
protection. Hence, we consider a penalty coefficient ¢ (>1) for modified infection rate, Ai(t), of
subpopulation i after donating resources at time t, and Ai(t) is expressed as

A4 =qt)cA+[1-qg 1)1, (S9)

where A is the basic infection rate, and qi(t) is donation will at time t as mentioned above. From Eg.
(S5), the infection rate recovers a constant A if c=1, i.e., there is no impact when donating resources
to others. On the contrary, if c>1, there is a relatively higher infection rate when donating resources.
The above definition means that the infection rate usually varies from subpopulation to subpopulation
with time.

In general, a subpopulation can generate resources by itself or receive from others. So, the
resources that a subpopulation i holds at time t are expressed as follows
o, (t) =r,(t) o[1-q, ()]+ z IN t), (S6)

jev ()

where the first term denotes its remaining resources after donating resources and the second denotes
the resources received from others. Generally, a subpopulation has a higher recovery rate if it holds
more resources. So, the recovery rate of subpopulation i at time t, pi(t), can be defined as

2 (1) =1-(L-p) (S7)

where p is the basic recovery rate, and € € [0,1] is resource utilization rate. From Eq. (S7), we can see
that recovery rate of subpopulation i keeps the basic recovery rate p if €=0 or without resources;
otherwise, the recovery rate increases with the growth of holding resources wi(t), and the recovery
rate pi(t)—»1 when wi(t) is sufficiently large. Similarly, the recovery rate generally varies from
subpopulation to subpopulation with time.
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Supplementary Table 1. Involved parameters in the MIR metapopulation network model

Parameter Definition Default value
A Basic infection rate -
1 Basic recovery rate 0.2
P Migration probability 0.2
c Penalty coefficient for infection rate after donation 2.0
€ Resource utilization rate 0.6
Jo Basic donation factor 0.8
0 Resource production strength -
a Resource donation awareness -
B Resource donation sensitivity -

Unless extra specifications, the default values of other parameters are set as u=0.2, go=0.8, £=0.6,
¢=2.0, and p=0.2.

Microscopic Markov chain method and threshold analysis

Based on the above mode description, we construct a metapopulation network model composed
a total of N subpopulations. Each subpopulation i has a number of n; individuals, vi=1, 2, ..., N. At
the migration stage, an individual leaves its resident subpopulation i with probability p, and migrates
to one of its neighboring subpopulations j in terms of the transition matrix R, whose entries are
R W where Wi; denotes the weight between subpopulation i and j. Then, once individuals have

' ZLWH

moved, they interact in a well-mixed way in each subpopulation i and change their epidemic status in
terms of current infection rate Ai(t) and recovery rate pi(t) at time t based on SIS model. Finally, they

return to their resident subpopulation and next time step starts.

There are N variables ) denoting the ratio of infected individuals associated with

subpopulation i at time t. The time evolution of 5 (t) can be written as follows

p(t+D) = pi (1) {(1— P)A— 24 (®)+ PO Ry (A4, (t))} +(1=p O (1) (S8)

j=1

where the first term on the right side is the fraction of infected individuals who do not recover. The
infected individuals are those who remain in subpopulation i and those who migrate to neighboring
subpopulations and then return back to subpopulation i. The second term on the right side accounts
for the ratio of susceptible individuals associated with subpopulation i that are infected at time t. In

this second term, r (t) denotes the probability that a susceptible individual associated with

subpopulation i becomes infected at time t, and reads
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N(0)=0-PRO+PYRPAO, (59)

where the first term on the right side is the probability that susceptible individuals, who do not move,
get infected in the resident subpopulation i at time t, and the second term denotes the probability that
individuals get infected when migrating to any neighboring subpopulation. And Pi(t) is denoted as

R(t) =1—H(1—/1.(t)p,- ()™, (S10)

where N;,; denotes the population flux moving from subpopulation j to subpopulation i, and reads

Nii =9 (1-p)n + PR;N;, (S11)

]

with 9jj=1 if i=j and otherwise §;=0.

To analyze the steady state of the dynamics when t—ee, namely 5 (t+1) = p, (t) = p,, We can

simplify Eq.(S7) as:

[L- (- p)A- 1) - PR - 1))]p = A= p)T, (812)

where . is the steady density of infected individuals associated to subpopulation i.

When close to the critical point, let’s denote p; =8i* <<1for any subpopulation i. We estimate

. k.q,(1—
1, = u(l+ sw,) Neglecting second order terms from Eq. (S6), and z9[1+%].

We denote left side of Eq. (S12) as follows:
N

[1--p)d—p) - pZRij (1_,Uj e =Te;, (S13)
i

N

where T=1-(1- p)i- ol co(t+ Sy 2R, (-t e00+ 2.

On the right side of Eq. (S12), we have
N

R(t)~ Zﬂipjnjai :
j=1

N, :é‘ij (1_ p)ni + Py Rjinj1

N N N
Lo~ (=P 4pni+ PY R Y Apn,;» SO
j=1 1=1

j=1
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Fi=12{(1— p)*&;n; + p(L- P)R;n; + p(L— p)él

=1

YR, e S e R R, }

We denote ;1 pyesn, + pa- p)Ryn, + pa- AL gy rryn, + porE gy )RR,
+e +e
Accordingly, we derive epidemic threshold A as follows:
T

T 9

where A __ (M) Is the maximum eigenvalue of the matrix M. Unfortunately, the detailed

expression for the maximum eigenvalue of the matrix M is impossible. Nevertheless, we can get the
epidemic threshold by numerical iteration.



124 Sigmoid function
1 1
0.8 0.8
0.6 0.6
“_0.4 “_0_4 ,///
0.2 0.2
125 00 01 02 03 04 (;5 06 07 08 09 1 OD 01 02 03 04 (;5 06 07 08 09 1
126 (a) =0 (b) B=1
! 1
0.8 0.8
0.6 06
“_0-4 u_o.a
0.2 0.2
127 0 01 02 03 04 0x5 06 07 08 09 1 D0 01 02 03 04 0);5 06 07 08 09 1
128 (c) B=5 (d) B=10
129  Fig. S1 Sigmoid function f(x)= =) corresponding to various values of parameter B. The
130  function become constant 0.5 when =0. The lower B presents a more steady growth with a higher
131  initial function value.
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The time evolution of the epidemic under HOD and HED
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Fig. S2 The time evolution of six average values of all subpopulations for various values of a by
MC simulation under HOD when 2=0.01 (the legend in (b)). (a)-(f) are average values corresponding
to donation will <g>, holding resources <w>, infection ratio of individuals in neighboring
subpopulations <m>, infection rate <A>, recover rate <p>, and effective infection rate <A>/<p>,
respectively.

The average infection ratio of individuals in neighboring subpopulations increases promptly as
shown in (c¢), and the lower a is, the faster it increases. When infected individuals emerge in
subpopulations, they will release/receive resources to/from neighbors. As we can see from (a), the
average donation will increases with time when o is not equal to 1, and a lower o induces a higher
donation will. However, a higher donation will of one subpopulation induces a higher infection rate
as shown in (d). At the same time, because the increasing of infected individuals induces a lower
ability of resource production, the average resources of each subpopulation become fewer and fewer
as shown in (b). Meanwhile, the recovery rate of one subpopulation is positive correlated to its current
resources, so we can see a same trend shown in (e). In order to clearly present the relationship between
average infection rate and average recovery rate, the time evolution of average effective infection rate
is shown in (f), and we can see the growth whatever the value of o is.
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155 Fig. S3 The time evolution of six average values of all subpopulations for various values of a
156 by MC simulation under HED when 2=0.01 (the legend in (b)). (a)-(f) are average values
157  corresponding to donation will <g>, holding resources <>, infection ratio of individuals in
158  neighboring subpopulations <m>, infection rate <A>, recover rate <>, and effective infection rate
159  <hA>/<p>, respectively.
160 The figures appear a similar trend with previous HOD, but the epidemic reaches a steady state
161  inashorter time.
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Prevalence p for five subpopulation groups under HED
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Fig. S4 The time evolution of the prevalence p for five subpopulation groups under various values of
a when A=0.0015. (a)-(f) correspond to parameter 0=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively (The
legend represents subpopulation groups shown in (a)).

As the population distribution is heterogeneous under HED, for further interpreting the role of
awareness oo when close to threshold, we group subpopulations according to its population, and set A
at 0.0015. Apparently, a=1.0 denotes there is no resource donation. From (a)-(d), the epidemic can’t
spread in all the subpopulation groups under 0=0.0, 0.2, 0.4, and 0.6, respectively; whereas the
epidemic breaks out, particular subpopulations with more population, when awareness 0=0.8 and 1.0

as shown in (e) and (f), respectively.
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181 Fig. S5 The time evolution of six average values of all subpopulations for various values of B by
182  MC simulation under HOD when 2=0.004 (the legend in (b)). (a)-(f) are average values
183  corresponding to donation will <g>, holding resources <w>, infection ratio of individuals in
184  neighboring subpopulations <m>, infection rate <A>, recover rate <u>, and effective infection rate
185  <A>/<p>, respectively.
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Fig. S6 The time evolution of six average values of all subpopulations for various values of by
MC simulation under HOD when A=0.01 (the legend in (b)). (a)-(f) are average values corresponding
to donation will <g>, holding resources <m>, infection ratio of individuals in neighboring
subpopulations <m>, infection rate <A>, recover rate <p>, and effective infection rate <A>/<p>,

respectively.

With time evolution, more infected individuals emerge as shown in Fig. S6 (c). Once infected
individuals emerge, subpopulations would increase their donation will to donate resources to others
as shown in (a), and a lower B indicates a higher initial donate will. Besides, average infection rate
has a similar trend as shown in (d). At the same time, average resources of each subpopulation become
less and less as shown in (b) because of the increasing of infected individuals. Hence, average recover
rate of the system become lower and lower as shown in (e). We can see the growth of average effective
infection rate in (f), and the higher the f is, the higher final average effective infection rate is.
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Fig. S7 The time evolution of six average values of all subpopulations for various values of 8
by MC simulation under HED when A=0.01 (the legend in (b)). (a)-(f) are average values
corresponding to donation will <g>, holding resources <w>, infection ratio of individuals in
neighboring subpopulations <m>, infection rate <A>, recover rate <p>, and effective infection rate
<A>/<p>, respectively.

The figures appear a similar trend as previous situation.
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Fig. S8 The time evolution of the prevalence p f for five subpopulation groups under various
values of B when A=0.0015. (a)-(f) correspond to parameter p=0.0, 3.0, 5.0, 10, 20, and 30,
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respectively (The legend represents subpopulation groups shown in (a)).

evolution.

Because the population distribution is heterogeneous under HED, for further interpreting the role
of the donation sensitivity B when closed to threshold, we group subpopulations according to its
population, and set A at 0.0015. The donation will keeps a constant when $=0.0. From (a)-(c), the
curves just presents a slight fluctuation initially and finally approach to 0 with time evolution, which
suggests that epidemic cannot spread. From (d)-(f), the epidemic easily diffuses especially in
subpopulations with more population, and the curves firstly go up then present steady with the time
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Fig. S9 The time evolution of six average values of all subpopulations for various values of 6 by
MC simulation under HOD when A=0.01 (the legend in (c)). (a)-(f) are average values corresponding
to donation will <g>, holding resources <w>, infection ratio of individuals in neighboring
subpopulations <m>, infection rate <A>, recover rate <p>, and effective infection rate <A>/<u>,
respectively.

In order to explore the time evolution of the epidemic under various values of parameter 6 when
basic infection rate A is close to thresholds, we set A=0.004. As we can see from (b) and (e), higher 0
can effectively increase the average holding resources and average recover rate. From (c) and (f),
there is a lower average effective infection rate with a higher 8, suppressing the spread of the epidemic
validly.
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Fig. S10 The time evolution of the prevalence p for five subpopulation groups under various
values of 6 when 2=0.01. (a)-(f) correspond to parameter 6=1.0, 3.0, 5.0, 10, 20, and 30, respectively
(The legend represents subpopulation groups shown in (a)).

As the population distribution is heterogeneous under HED, for further interpreting the role of
the productive strength 0, we group subpopulations according to its population, and set A at 0.01.
From (a)-(d), we can obviously find that high 0 can effectively reduce final prevalence. However,
when 0=20 or larger as shown in (¢) and (f), there is few changes on reducing final prevalence because
of not obviously increase of the recovery rate. These results suggest it is conducive to control
epidemic when we strengthen the speed of resource production such as extending working hours

properly.
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