Unsupervised Approaches to Placental Protein Clustering: Which Best Captures Signals Linked to Childhood Metabolic Health?
Supplemental Material

Supplemental Table 1. Models of offspring fat mass percent based on three different data reduction methods.
	Method,
All dimensions [d]
	Adjusted R2
	AIC
	Akaike weight
	RMSE
	RMSE P-value 
WGCNA/PCA vs. Cons. Cluster

	Neonatal fat mass %
	
	
	
	
	

	Consensus clustering, d=4
	0.11
	589.50
	97.8%
	3.53
	ref

	WGCNA, d=5
	0.04
	597.51
	1.9%
	3.63
	<2.2e-16

	PCA, d=9
	0.05
	600.45
	0.4%
	3.54
	0.18

	Early childhood fat mass %
	
	
	
	
	

	Consensus clustering, d=4
	0.16
	438.18
	87.5%
	5.65
	ref

	WGCNA, d=5
	0.11
	442.21
	11.6%
	5.74
	2.17e-06

	PCA, d=9
	0.09
	447.37
	0.8%
	5.62
	0.50

	Top 3 dimensions
	
	
	
	
	

	Neonatal fat mass %
	
	
	
	
	

	Consensus clustering, d=3
	0.05
	594.82
	15.2%
	3.65
	ref

	WGCNA, d=3
	0.05
	595.99
	8.5%
	3.67
	0.01

	PCA, d=3
	0.08
	591.59
	76.3%
	3.60
	1.089e-08

	Early childhood fat mass %
	
	
	
	
	

	Consensus clustering, d=3
	0.17
	436.7
	84.3%
	5.67
	ref

	WGCNA, d=3
	0.10
	442.1
	5.7%
	5.91
	<2.2e-16

	PCA, d=3
	0.11
	441.0
	9.8%
	5.85
	<2.2e-16



Models include as independent variables the data reduction summary scores, offspring sex, age at fat mass assessment. Notes: Data represent complete case models. 
Abbreviations: Akaike Information Criterion (AIC); root mean square error (RMSE)


Supplemental Table 2. Linear Models of All Clusters and Fat Mass Percentage
	
	Neonatal fat mass %
(n=107)
	P-value
	Neonatal fat mass %
(n=66)
	P-value
	Child fat mass %
(n=67)
	P-value

	Joint Models
	
	
	
	
	
	

	mTOR/AMPK
	-0.55 (-1.65, 0.55)
	0.32
	-1.33 (-2.51, -0.15)
	0.03*
	-2.26 (-4.30, -0.23)
	0.03*

	IGF/Mitochondrial Biogenesis
	-1.22 (-2.13, -0.31)
	0.01*
	-1.85 (-2.94, -0.76)
	<0.001*
	0.65 (-1.18, 2.48)
	0.48

	Placental Insulin Coordination
	-0.83 (-2.68, 1.02)
	0.38
	-1.91 (-4.24, 0.42)
	0.11~
	1.49 (-2.57, 5.54)
	0.47

	Inflammation/Stress
	0.36 (-1.11, 1.82)
	0.63
	0.55 (-1.47, 2.57)
	0.59
	0.64 (-2.96, 4.24)
	0.72

	Individual
Models
	
	
	
	
	
	

	mTOR/AMPK
	-0.50 (-1.59, 0.59)
	0.37
	-1.09 (-2.34, 0.15)
	0.08~
	-2.44 (-4.38, -0.50)
	0.01*

	IGF/Mitochondrial Biogenesis
	-1.20 (-2.09, -0.32)
	0.01*
	-1.76 (-2.81, -0.71)
	<0.001*
	0.53 (-1.23, 2.29)
	0.55

	Placental Insulin Coordination
	-0.26 (-2.08, 1.56)
	0.78
	-0.46 (-2.92, 2.00)
	0.71
	2.19 (-1.76, 6.14)
	0.27

	Inflammation/Stress
	0.72 (-0.76, 2.20)
	0.33
	1.46 (-0.67, 3.58)
	0.18
	-0.05 (-3.59, 3.49)
	0.98


Complete case models.
Joint multivariable models include all clusters, child’s age at fat mass assessment, and child sex. Models of neonatal fat mass % are shown for all neonates with fat mass data (n=107) and those with neonatal and childhood fat mass data (n=66). 

Supplemental Table 3. Association of Placental Signaling Clusters with Childhood Metabolic Health Indicators, Adjusted for Concurrent Child Lifestyle. 
	
	
	Model 3 CC
(Concurrent child lifestyle)
	
	
	Model 3 MICE
(Concurrent child lifestyle)
	

	Outcome
	N
	BETA CI
	P
	N
	BETA CI
	P

	mTOR/AMPK
	
	
	
	
	
	

	Glucose, mmol/l
	23
	1.03 (-1.64, 3.70)
	0.57
	72
	0.30 (-2.05, 2.65)
	0.85

	Insulin, pmol/l 
	30
	-0.24 (-2.48, 2.00)
	0.87
	72
	-0.20 (-1.28, 0.88)
	0.79

	HOMA-IR
	20
	-0.12 (-0.92, 0.68)
	0.68
	72
	-0.06 (-0.40, 0.28)
	0.79

	Adiponectin, ug/ml 
	31
	-1.30 (-4.21, 1.61)
	0.51
	72
	-2.17 (-4.55, 0.20)
	0.19

	Leptin, μg/l
	31
	-0.85 (-2.09, 0.38)
	0.32
	72
	-0.19 (-0.99, 0.60)
	0.73

	Cholesterol, mmol/l
	28
	10.89 (2.61, 19.17)
	0.06~
	72
	1.04 (-5.33, 7.42)
	0.81

	Triglycerides, mmol/l 
	28
	6.85 (-7.95, 21.64)
	0.50
	72
	-2.19 (-11.35, 6.97)
	0.73

	HDL, mmol/l
	28
	1.04 (-4.13, 6.22)
	0.77
	72
	0.99 (-3.11, 5.09)
	0.73

	LDL, mmol/l
	22
	1.56 (-8.17, 11.29)
	0.81
	72
	-3.90 (-9.57, 1.78)
	0.32

	%Fat mass
	43
	-2.29 (-4.49, -0.09)
	0.14
	72
	-2.45 (-3.90, -1.01)
	0.01*

	BMI percentile
	44
	0.21 (-8.03, 8.45)
	0.97
	72
	-2.39 (-7.83, 3.05)
	0.53

	IGF/Mitochondrial Biogenesis
	
	
	
	
	
	

	Glucose, mmol/l
	23
	-0.45 (-2.55, 1.65)
	0.75
	72
	0.72 (-1.57, 3.00)
	0.65

	Insulin, pmol/l 
	30
	0.42 (-1.71, 2.55)
	0.77
	72
	0.56 (-0.38, 1.50)
	0.39

	HOMA-IR
	20
	-0.11 (-0.85, 0.63)
	0.83
	72
	-0.05 (-0.36, 0.25)
	0.81

	Adiponectin, ug/ml 
	31
	-0.59 (-3.05, 1.88)
	0.73
	72
	0.69 (-1.96, 3.35)
	0.71

	Leptin, μg/l
	31
	0.53 (-0.86, 1.93)
	0.57
	72
	0.31 (-0.75, 1.38)
	0.67

	Cholesterol, mmol/l
	28
	3.16 (-2.87, 9.19)
	0.44
	72
	0.80 (-4.42, 6.01)
	0.83

	Triglycerides, mmol/l 
	28
	17.89 (9.44, 26.34)
	<0.001*
	72
	8.47 (1.57, 15.37)
	0.08~

	HDL, mmol/l
	28
	0.96 (-2.56, 4.48)
	0.69
	72
	0.93 (-2.88, 4.75)
	0.72

	LDL, mmol/l
	22
	5.14 (-2.02, 12.29)
	0.29
	72
	-1.44 (-6.95, 4.07)
	0.71

	%Fat mass
	43
	0.93 (-1.00, 2.86)
	0.48
	72
	0.51 (-0.80, 1.82)
	0.57

	BMI percentile
	44
	2.25 (-4.64, 9.14)
	0.63
	72
	2.50 (-2.20, 7.20)
	0.44

	Placental Insulin Coordination
	
	
	
	
	
	

	Glucose, mmol/l
	23
	-3.08 (-8.93, 2.77)
	0.44
	72
	-3.02 (-6.95, 0.90)
	0.27

	Insulin, pmol/l 
	30
	-5.71 (-10.99, -0.44)
	0.12~
	72
	-2.17 (-4.36, 0.02)
	0.15

	HOMA-IR
	20
	-1.79 (-3.68, 0.09)
	0.17
	72
	-0.19 (-1.45, 1.07)
	0.83

	Adiponectin, ug/ml 
	31
	1.51 (-5.09, 8.11)
	0.74
	72
	1.93 (-3.22, 7.09)
	0.59

	Leptin, μg/l
	31
	0.97 (-1.97, 3.90)
	0.63
	72
	-0.42 (-2.26, 1.42)
	0.74

	Cholesterol, mmol/l
	28
	-9.20 (-25.98, 7.59)
	0.42
	72
	7.41 (-5.01, 19.84)
	0.39

	Triglycerides, mmol/l 
	28
	13.09 (-14.99, 41.17)
	0.49
	72
	8.21 (-14.98, 31.41)
	0.61

	HDL, mmol/l
	28
	-0.61 (-10.45, 9.23)
	0.93
	72
	-0.13 (-8.94, 8.68)
	0.98

	LDL, mmol/l
	22
	-21.41 (-40.81, -2.01)
	0.12~
	72
	2.50 (-13.37, 18.36)
	0.82

	%Fat mass
	43
	3.65 (-1.08, 8.38)
	0.26
	72
	2.15 (-0.78, 5.07)
	0.29

	BMI percentile
	44
	20.79 (4.04, 37.54)
	0.08~
	72
	10.41 (-0.24, 21.06)
	0.16

	Inflammation/Stress
	
	
	
	
	
	

	Glucose, mmol/l
	23
	3.08 (-0.53, 6.69)
	0.22
	72
	-0.16 (-4.47, 4.15)
	0.96

	Insulin, pmol/l 
	30
	2.14 (-1.49, 5.77)
	0.39
	72
	1.19 (-0.61, 2.99)
	0.34

	HOMA-IR
	20
	0.47 (-0.64, 1.58)
	0.47
	72
	0.30 (-0.32, 0.91)
	0.49

	Adiponectin, ug/ml 
	31
	2.43 (-2.36, 7.23)
	0.46
	72
	1.01 (-4.52, 6.54)
	0.79

	Leptin, μg/l
	31
	-0.96 (-3.09, 1.18)
	0.51
	72
	-0.71 (-2.36, 0.94)
	0.54

	Cholesterol, mmol/l
	28
	-7.67 (-19.37, 4.04)
	0.34
	72
	-7.33 (-15.92, 1.26)
	0.22

	Triglycerides, mmol/l 
	28
	-0.53 (-20.45, 19.40)
	0.97
	72
	-4.18 (-16.77, 8.42)
	0.63

	HDL, mmol/l
	28
	1.85 (-5.03, 8.74)
	0.69
	72
	-0.27 (-5.27, 4.73)
	0.94

	LDL, mmol/l
	22
	-17.00 (-28.66, -5.35)
	0.04*
	72
	-11.08 (-23.40, 1.24)
	0.20

	%Fat mass
	43
	-2.53 (-6.28, 1.22)
	0.33
	72
	0.00 (-2.60, 2.60)
	1.00

	BMI percentile
	44
	5.36 (-7.81, 18.54)
	0.55
	72
	-0.45 (-9.53, 8.63)
	0.94


Notes: Missing data were imputed using multiple imputation by chained equations (MICE), generating five imputed datasets. The imputation model included maternal and child predictors, with predictive mean matching for continuous variables and logistic regression for categorical variables. Estimates represent pooled regression coefficients across imputations, with standard errors calculated using Rubin’s rules. Confidence intervals and p-values were derived using a normal approximation (z-test), rather than the default t-distribution approah.
Abbreviations: AMPK, AMP-activated protein kinase; mTOR, Mechanistic Target of Rapamycin, IGF, Insulin Like Growth Factor; HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TGs, Triglycerides; BMI, body mass index; 

*P-value <0.05 (85% confidence); ~ P-value<0.15 (85% confidence)
Model 3:(concurrent child lifestyle): Child diet quality (total Healthy Eating Index score), physical activity (minutes of moderate-to-vigorous activity)



A. 
Supplemental Methods
R scripts are available at https://github.com/Ecfrancis13/unsupervised-data-reduction
Supplemental Methods Section 1: Placenta data preprocessing
Placental protein expression level was normalized to total placental protein. Ratios of phospho-to-total protein were based on phosphorylation at specific serine (ser) residues, which reflect activation of a signaling pathway (e.g., higher values reflect greater activation). We also included total normalized protein expression levels of each specific protein. This was done because assessing total protein levels jointly from different signaling pathways may provide insight into co-expression patterns even in the absence of activation status. We used multiple imputation with chained equations (MICE) to impute placental protein data for the small number of samples (n=3) missing between 10-25% of the protein data.  Imputations were performed using classification and regression trees (CART) to account for potential nonlinear relationships and interactions among the proteins. We randomly generated five imputed datasets and extracted the first imputed dataset for subsequent analyses. For PCA, data were log-transformed and z-score standardized to account for skewness and differences in scale because PCA is more sensitive to outliers.(1) We used z-score standardized data (no log-transformation) for consensus clustering and WGCNA as both methods utilize correlation or rank-based data (e.g., Spearman correlation) that are more robust to skewed distributions.
Supplemental Methods Section 2: Data Reduction Methods 
We applied three unsupervised analytic approaches to reduce dimensionality and summarize placental protein expression data for downstream modeling: consensus clustering, WGCNA, and PCA.
Consensus clustering was performed using ConsensusClusterPlus(2) to group proteins based on similarity of expression profiles. We used hierarchical clustering with Spearman distance, 1,000 subsampling iterations, and 80% sample resampling. The optimal number of clusters was determined by evaluating cluster stability via inspection of the cumulative distribution function and delta-area plot. We selected four consensus clusters which demonstrated stability and k>4 did not show any substantial increases in stability. These four consensus clusters were used in subsequent analysis and the average of the protein expression was used as a cluster centroid score to summarize each cluster. 
For WGCNA, protein expression data were used to construct a signed Spearman correlation network. A soft-thresholding power of seven was chosen based on scale-free topology criteria using the WGCNA package.(3) Modules of highly correlated proteins were identified using dynamic tree cutting with a minimum module size of three and a merge cut height of 0.25. This yielded five modules (including a module for proteins that did not strongly co-cluster with others). Each module was summarized by its module eigen (first principal component), representing the dominant expression pattern among proteins in the module.
PCA was performed and the number of components to retain was determined using the psych package for parallel analysis, which compares observed eigenvalues to those expected under random noise.(4, 5) We retained nine PCs, corresponding to those whose eigenvalues exceeded those from simulated null distributions. This also corresponded to the number of PCs with an eigenvalue >1.0, which is commonly used cut-off for selecting PCs.(4) Each PC was summarized using a PC summary score which represents a weighted linear combination of all input protein values, capturing the major axis of variation defined by that component.
Supplemental Methods Section 3: Evaluation of data reduction methods 
The above data reduction approaches were evaluated using two sets of multivariable linear regression models, each assessing the relationship between latent variables generated by a given data reduction method and offspring fat mass percentage at two timepoints: the neonatal period and early childhood. In these models, the data reduction scores (i.e., consensus cluster centroid scores, WGCNA module eigengenes, or principal component scores) were included as independent variables, and offspring fat mass percentage served as the dependent variable. All models were adjusted for child sex and age at the time of body composition assessment.
We selected neonatal fat mass percentage as the primary outcome for comparing the utility of the three data reduction approaches in capturing meaningful variation in the placental protein data, given its relevance as a marker of in utero metabolic programming. Fat mass, as opposed to body size or birthweight, is a consequence of the in utero environment and is correlated with metabolic biomarkers of interest during early life. Placental signaling plays a direct role in fetal fat accretion, and neonatal adiposity reflects cumulative prenatal influences.(6) 
A priori it was decided that we would only examine associations with later outcomes using the summary scores from the data reduction method that performed best in association with neonatal fat mass percentage. However, we also evaluated the data reduction approaches with early childhood (4.8 years ± 0.6) fat mass percentage to assess the robustness of model performance at a later timepoint. Performance on this secondary outcome helped ensure that the selected data reduction approach remained relevant beyond the neonatal period. Importantly, all subsequent analyses—examining associations between placental signaling clusters and a broader set of early childhood cardiometabolic outcomes—were conducted independently of the model selection step. This strategy helped minimize analytic overfitting by using an outcome (neonatal fat mass) that is somewhat distinct from those tested in the main analyses (early childhood fat mass and metabolic biomarkers).
For each model, we evaluated the following performance metrics: Akaike Information Criterion (AIC) to assess model fit and parsimony, adjusted R² to measure variance explained, and Root Mean Square Error (RMSE) to quantify predictive accuracy. We examined these metrics across both outcomes and prioritized the data reduction method that consistently balanced fit (lowest AIC), explanatory power (highest R²), and prediction error (lowest RMSE). To compare model performance, we generated bootstrap distributions of RMSE using 1,000 replicates per model by resampling with replacement from the observed and predicted values. We then performed paired t-tests to assess whether RMSE distributions significantly differed between models. We also calculated Akaike weights, which represent the relative likelihood that a given model is the best based on AIC differences, and is used when comparing non-nested models.(7) These weights can be interpreted as the probability that each model is the best-fitting model given the data.
Supplemental Methods 4: Model 1 adjusted for offspring sex and age at follow-up. Model 2 adjusted for Model 1 and observed gestational weight gain and pre-pregnancy BMI as confounders of placenta-child outcome association that is not explained by the placental signaling pathways measured in our study (e.g., uteroplacental blood flow). Model 3 adjusted for Model 1 and child diet quality (total Healthy Eating Index score) and physical activity (minutes of moderate-to-vigorous activity) measured at follow-up to account for differences in children’s lifestyle (e.g., precision covariates). These multivariable models were used in two approaches for modeling the association of placental signaling with offspring cardiometabolic health outcomes. First, we fit complete case (CC) models, where only children with complete data on outcomes and covariates were included. Second, we used MICE to generate five imputed datasets for missing outcome data and covariates including maternal and child predictors. We used predictive mean matching for continuous variables and logistic regression for categorical variables. We pooled regression coefficients across imputations and calculated standard errors based on Rubin’s rule.(8) Confidence intervals and p-values were derived using a normal approximation z-test. 
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