Supplementary Information

1 Supplementary Figures

(A) Internal Topology: Citadel and Camp Dimensions (B) External Topology: All-out War and Citadel-wize Plunder
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Figure 1: Topological Design Principles of the '"Camp-Citadel' Model. (A) Internal Topol-
ogy: Citadel and Camp Dimensions. This panel illustrates how attractor dimension is determined
by a camp’s internal topology. A "Camp" (e.g., "Green Camp", N=3) is composed of multiple (N)
independent "Citadels" (e.g., Citadels 4, 5, 6). A "Citadel" is a "sharing-cohesive unit," with its
internal micro-nodes strongly connected by green ''Sharing links''. Critically, there are no shar-
ing links between citadels, making them "topologically independent.” The attractor dimension is
determined by NV — 1 (here, 2D). (B) External Topology: All-out War and Citadel-wise Plun-
der. This panel illustrates how multistability is achieved. The "all-out war" topology is established
via red "Plunder links'', connecting all citadels that belong to different camps (e.g., Blue N=1,
Orange N=2, Green N=3). The magnified "Microscopic Definition" box details the "citadel-wise
plunder" rule: the plunder relationship is defined at the micro-node level, where a link from at least
one node in Citadel 2 to at least one node in Citadel 5 (and vice-versa) constitutes the macro-level
plunder link.



2 Supplementary Note: Mathematical Basis for Abstracting a

Citadel as a Macro-Node

2.1 Argument

In our model, a "Citadel" is defined as a strongly connected graph of "sharing" links (see Figure
S1A). We mathematically demonstrate here that for such a subsystem, when its internal dynam-
ics (sharing) are much faster than its external dynamics (plundering), the resources X; of all its
constituent "micro-nodes" will necessarily converge to a fixed ratio.

This property is the mathematical foundation that allows us to abstract a Citadel (composed of
many micro-nodes) into a single "macro-node" whose state is described solely by its total resource

Cliitadel» as described in Methods 4.4.

2.2 Definition of the Dynamical Matrix (A)

Consider an isolated Citadel of /N micro-nodes with only "sharing" dynamics. From the main text’s

dynamical equations, the rate of change for node £ is:

dXy

— =D (SXi — SuXp)

itk
where S;; > 0 is the sharing rate from node j to node . We note that this sharing matrix .S does
not need to be symmetric (i.e., Si; # S is allowed).
This linear system can be written in matrix form as % = AX, where X = [Xq,..., X N]T 18

the resource vector. The elements of the dynamical matrix A are defined as:
o Off-diagonal (k # i): Ag; = Sk

* Diagonal (k = k): Ay, = — ), Lk Sir (Note: the sum is over the index i, representing the

total *outgoing* sharing rate from node k).



2.3 Proof: Eigenvalue Stability (Re(\) < 0)

We first prove that all eigenvalues A of A have non-positive real parts. We use the Gershgorin

Circle Theorem (applied to columns).

1. Theorem: All eigenvalues of A are located in the union of N disks Dy, in the complex plane,

where k is the column index.
2. Disk Definition: The k-th disk Dy, is defined by:

* Center C}: The diagonal element Agy.

Cr=Am=—>_ Su
ik

* Radius Rj: The sum of the absolute values of the off-diagonal elements in column &.

Ry =) |Aul
itk
3. Radius Calculation: By our definition of A, A;;, = S;;, (for i # k). Since all sharing rates

S;r > 0, we have:

Ry =) Su

ik
4. Compare Center and Radius: We find that for any disk Dy, the center ' is exactly the

negative of the radius ?y:

Ch==Y Si=—Ry
ik

5. Conclusion: The k-th Gershgorin disk Dj, is centered at — R, (a non-positive real number)
and has radius Rj. Any point z on this disk satisfies |z — (—Rj,)| < Rj. The rightmost point
of this disk on the real axis is z = Cy + Ry = (— Rx) + Ry = 0. This means every disk Dy, is

fully contained in the left half of the complex plane (including the imaginary axis). Since all
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2.5

eigenvalues A must lie in the union of these disks, all eigenvalues must satisfy Re(\) < 0.

This proves the sharing subsystem is stable and does not spontaneously diverge.

Proof: Simplicity of the Zero Eigenvalue

. From the calculation in step 3.4, we showed that for every column &, Ay, = — >, 2k S;, and

Ry = ZZ Lk S;r. This means the sum of all elements in column £ is zero:

éAik:Akk+ZAik: (—ZS@-k) + <25ik> _0

i#k i#k i#k

. A matrix where every column sums to zero is equivalent to 1A = 07, where 17 =

1,1,...,1].

. This proves that 17 is a left eigenvector of A with a corresponding eigenvalue of A = 0.

Thus, A\; = 0 must be an eigenvalue.

By the Perron-Frobenius theorem (as applied to graph Laplacians), for a strongly connected
directed graph (our definition of a Citadel), the zero eigenvalue of its Laplacian (which A

represents) is simple (i.e., non-degenerate, with a multiplicity of 1).

. Combining this with the stability proof, we conclude that the system has exactly one eigen-

value \; = 0, and all other N — 1 eigenvalues \; (z > 2) have strictly negative real parts

Proof: Convergence to a Fixed Ratio

dX

. The general solution to the linear system ¢ = AX is a linear combination of its right

dt

eigenvectors v;:

N
X(t) = cieMivy + g cieitv;
i=2
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. Substituting A\; = 0 and letting v; = v, (the steady-state eigenvector, which is strictly

positive by Perron-Frobenius):

N
X(t) = e1vgs + Z c;etity;
=2

. Ast — o0, all terms in the summation decay to zero, since Re();) < 0 for all ¢ > 2.

Therefore, the system’s final steady state X s must converge to:
Xss = lim X(t) = 1V
t—o00
This proves the final state is proportional to the single, unique steady-state eigenvector v.

Solving for the Proportionality Coefficient (c)

. We use the system’s conservation law to find ¢;. The total resource Cip = Y, X = 17X

is conserved, because (as shown in 4.2) 4(17X) = (174)X = 07X = 0.

We start with the initial condition: X (0) = ¢;vgs + ZZ]\LQ CiVi.

. We left-multiply by the left eigenvector for A\; = 0, which is u? = 17:

N N
lTX(()) =17 (clvss + Z civz-> = Cl(lTVSS) + Z Ci(lTVZ')
i=2

1=2

By the biorthogonality of left and right eigenvectors, ul v, = 17v; = 0 for all i > 2. The

summation term vanishes.

. We are left with: Cior = ¢1(17vy).

Solving for ¢;:
C’total C’total

N 1TVSS N Zj (%




where > ;v is the sum of the elements of the steady-state eigenvector (a fixed positive

scalar).

2.7 Conclusion

Substituting c; back into the steady-state equation X5 = ¢V, We get:

C'total
Vs
> 5 Vi

Xss =

This mathematically proves that regardless of the initial resource distribution X(0), as long as the
total resource is Cly, the system will always converge to the exact same steady state X;. In this
state, the resource of each micro-node k, X}, is proportional to vy, and the ratio between any two
nodes % = Z—J is a fixed constant.

This demonstrates that all micro-nodes are dynamically "locked" together as a "sharing-cohesive

unit," fully justifying our abstraction of the entire Citadel as a single macro-node.



