
Supplementary Information

1 Supplementary Figures

Figure 1: Topological Design Principles of the "Camp-Citadel" Model. (A) Internal Topol-
ogy: Citadel and Camp Dimensions. This panel illustrates how attractor dimension is determined
by a camp’s internal topology. A "Camp" (e.g., "Green Camp", N=3) is composed of multiple (N)
independent "Citadels" (e.g., Citadels 4, 5, 6). A "Citadel" is a "sharing-cohesive unit," with its
internal micro-nodes strongly connected by green "Sharing links". Critically, there are no shar-
ing links between citadels, making them "topologically independent." The attractor dimension is
determined by N − 1 (here, 2D). (B) External Topology: All-out War and Citadel-wise Plun-
der. This panel illustrates how multistability is achieved. The "all-out war" topology is established
via red "Plunder links", connecting all citadels that belong to different camps (e.g., Blue N=1,
Orange N=2, Green N=3). The magnified "Microscopic Definition" box details the "citadel-wise
plunder" rule: the plunder relationship is defined at the micro-node level, where a link from at least
one node in Citadel 2 to at least one node in Citadel 5 (and vice-versa) constitutes the macro-level
plunder link.
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2 Supplementary Note: Mathematical Basis for Abstracting a

Citadel as a Macro-Node

2.1 Argument

In our model, a "Citadel" is defined as a strongly connected graph of "sharing" links (see Figure

S1A). We mathematically demonstrate here that for such a subsystem, when its internal dynam-

ics (sharing) are much faster than its external dynamics (plundering), the resources Xi of all its

constituent "micro-nodes" will necessarily converge to a fixed ratio.

This property is the mathematical foundation that allows us to abstract a Citadel (composed of

many micro-nodes) into a single "macro-node" whose state is described solely by its total resource

Ccitadel, as described in Methods 4.4.

2.2 Definition of the Dynamical Matrix (A)

Consider an isolated Citadel of N micro-nodes with only "sharing" dynamics. From the main text’s

dynamical equations, the rate of change for node k is:

dXk

dt
=
∑
i̸=k

(SkiXi − SikXk)

where Sij ≥ 0 is the sharing rate from node j to node i. We note that this sharing matrix S does

not need to be symmetric (i.e., Ski ̸= Sik is allowed).

This linear system can be written in matrix form as dX
dt

= AX, where X = [X1, . . . , XN ]
T is

the resource vector. The elements of the dynamical matrix A are defined as:

• Off-diagonal (k ̸= i): Aki = Ski

• Diagonal (k = k): Akk = −
∑

i̸=k Sik (Note: the sum is over the index i, representing the

total *outgoing* sharing rate from node k).
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2.3 Proof: Eigenvalue Stability (Re(λ) ≤ 0)

We first prove that all eigenvalues λ of A have non-positive real parts. We use the Gershgorin

Circle Theorem (applied to columns).

1. Theorem: All eigenvalues of A are located in the union of N disks Dk in the complex plane,

where k is the column index.

2. Disk Definition: The k-th disk Dk is defined by:

• Center Ck: The diagonal element Akk.

Ck = Akk = −
∑
i̸=k

Sik

• Radius Rk: The sum of the absolute values of the off-diagonal elements in column k.

Rk =
∑
i̸=k

|Aik|

3. Radius Calculation: By our definition of A, Aik = Sik (for i ̸= k). Since all sharing rates

Sik ≥ 0, we have:

Rk =
∑
i̸=k

Sik

4. Compare Center and Radius: We find that for any disk Dk, the center Ck is exactly the

negative of the radius Rk:

Ck = −
∑
i̸=k

Sik = −Rk

5. Conclusion: The k-th Gershgorin disk Dk is centered at −Rk (a non-positive real number)

and has radius Rk. Any point z on this disk satisfies |z− (−Rk)| ≤ Rk. The rightmost point

of this disk on the real axis is z = Ck+Rk = (−Rk)+Rk = 0. This means every disk Dk is

fully contained in the left half of the complex plane (including the imaginary axis). Since all
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eigenvalues λ must lie in the union of these disks, all eigenvalues must satisfy Re(λ) ≤ 0.

This proves the sharing subsystem is stable and does not spontaneously diverge.

2.4 Proof: Simplicity of the Zero Eigenvalue

1. From the calculation in step 3.4, we showed that for every column k, Akk = −
∑

i̸=k Sik and

Rk =
∑

i̸=k Sik. This means the sum of all elements in column k is zero:

N∑
i=1

Aik = Akk +
∑
i̸=k

Aik =

(
−
∑
i̸=k

Sik

)
+

(∑
i̸=k

Sik

)
= 0

2. A matrix where every column sums to zero is equivalent to 1TA = 0T , where 1T =

[1, 1, . . . , 1].

3. This proves that 1T is a left eigenvector of A with a corresponding eigenvalue of λ = 0.

Thus, λ1 = 0 must be an eigenvalue.

4. By the Perron-Frobenius theorem (as applied to graph Laplacians), for a strongly connected

directed graph (our definition of a Citadel), the zero eigenvalue of its Laplacian (which A

represents) is simple (i.e., non-degenerate, with a multiplicity of 1).

5. Combining this with the stability proof, we conclude that the system has exactly one eigen-

value λ1 = 0, and all other N − 1 eigenvalues λi (i ≥ 2) have strictly negative real parts

(Re(λi) < 0).

2.5 Proof: Convergence to a Fixed Ratio

1. The general solution to the linear system dX
dt

= AX is a linear combination of its right

eigenvectors vi:

X(t) = c1e
λ1tv1 +

N∑
i=2

cie
λitvi
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2. Substituting λ1 = 0 and letting v1 = vss (the steady-state eigenvector, which is strictly

positive by Perron-Frobenius):

X(t) = c1vss +
N∑
i=2

cie
λitvi

3. As t → ∞, all terms in the summation decay to zero, since Re(λi) < 0 for all i ≥ 2.

4. Therefore, the system’s final steady state Xss must converge to:

Xss = lim
t→∞

X(t) = c1vss

This proves the final state is proportional to the single, unique steady-state eigenvector vss.

2.6 Solving for the Proportionality Coefficient (c1)

1. We use the system’s conservation law to find c1. The total resource Ctotal =
∑

k Xk = 1TX

is conserved, because (as shown in 4.2) d
dt
(1TX) = (1TA)X = 0TX = 0.

2. We start with the initial condition: X(0) = c1vss +
∑N

i=2 civi.

3. We left-multiply by the left eigenvector for λ1 = 0, which is uT
1 = 1T :

1TX(0) = 1T

(
c1vss +

N∑
i=2

civi

)
= c1(1

Tvss) +
N∑
i=2

ci(1
Tvi)

4. By the biorthogonality of left and right eigenvectors, uT
1 vi = 1Tvi = 0 for all i ≥ 2. The

summation term vanishes.

5. We are left with: Ctotal = c1(1
Tvss).

6. Solving for c1:

c1 =
Ctotal

1Tvss

=
Ctotal∑

j vj
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where
∑

j vj is the sum of the elements of the steady-state eigenvector (a fixed positive

scalar).

2.7 Conclusion

Substituting c1 back into the steady-state equation Xss = c1vss, we get:

Xss =

(
Ctotal∑

j vj

)
vss

This mathematically proves that regardless of the initial resource distribution X(0), as long as the

total resource is Ctotal, the system will always converge to the exact same steady state Xss. In this

state, the resource of each micro-node k, Xk, is proportional to vk, and the ratio between any two

nodes Xi

Xj
= vi

vj
is a fixed constant.

This demonstrates that all micro-nodes are dynamically "locked" together as a "sharing-cohesive

unit," fully justifying our abstraction of the entire Citadel as a single macro-node.
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