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I Theoretical deduction
a. Mathematical formulation
  To precisely determine topological phase transitions, we employ the plane wave expansion method 1-3 to calculate the band structures of 2D silicon-air photonic crystals (E-polarization), extract critical frequencies, and refine transition points via gradient descent.
The behavior of the transverse magnetic (TM) mode of light can be expressed as

		
Expand ε-1(r) and Ez(r) in the form of plane waves:

		
Substituting equation (2) into equation (1) yields the following eigenequation:

		
The dielectric function depends on the spatial distribution of pillars, as shown in Fig. 1c in the main text, and ε(r) is taken as the general form

		
the transformation factor of ε-1(r) for geometric regions can be expressed:

		
Where fn is the filling ratio; S0 is the area of unit cell. For the system composed of anisotropic pillars, the dielectric function is described as:

		
Here ε1 and ε2 are the dielectric constants for air and silicon, respectively. 

		
The rotation angle θ2 for Kramers degeneracy can be determined by

		
[bookmark: _Hlk193301288]where i is the iteration number. The parameter h affects the convergence and the accuracy of the algorithm. 
b. Elliptical pillars 
For elliptical pillars, Oi denotes the elliptic region where Mi,n are the second-order moments;

		
[bookmark: _Hlk193303370]where θ1, θ2 are the hexagonal arrangement angle and the rotation angle, respectively, ξn=(xn,yn)T is the coordinates of (xn,yn) as shown in the following table.

Table S1 Coordinates of (xn,yn) for elliptical pillars
	Number
	1
	2
	3
	4
	5

	Position
	 (x-R,y)
	(x-a+R,y)
	(x-a/2-R, y-√3R/2)
	(x-3a/2+R, y-√3a/2)
	 (x-R/2, y-√3R/2)

	Number
	6
	7
	8
	9
	10

	Position
	 (x-(a-R)/2, y-√3(a-R)/2)
	 (x-a-R/2, y-√3R/2)
	(x-3a/2-R/2, y-√3(a-R)/2)
	(x-a+R, y-√3(a-R)/2)
	(x-a+R/2, y-√3R/2) 



c. Rectangular pillars 
For rectangular pillars,

		
Where l and s are the length and width of a rectangular pillar, respectively.

Fig. S1 shows the TM-mode dispersions of the PhCs composed of elliptical (l=134 nm, s=44 nm) and rectangular pillars (l=238 nm, s=78 nm), respectively, for Kramers degeneracy with θ2=43.5˚. To check the effect of h on convergence and accuracy, we set different h values upon determining the topological transition angle using equation (8). Fig. S2 shows the results for h=0.5, 0.3, and 0.1. For the three cases, the calculation converges after 101, 114 and 141 iterations, respectively, and the deviation of the topological transition angle is merely 0.01˚, indicating the high efficiency and stability of calculations.
[image: ]
Figure S1 | TM-mode dispersions of PhCs composed of elliptical (l=134 nm, s=44 nm) and rectangular pillars (l=238 nm, s=78 nm), respectively, for Kramers degeneracy.
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[bookmark: _Hlk204786173]Figure S2 | Convergence of the calculations of the topological transition angles for h=0.5, h=0.3, and h=0.1.

[image: 图片1]
Figure S3 | Refractive index dependence of the transition angles in a general case (A+iB with 2.0≤A≤3.5 and -3≤B≤3.0).
d. Wilson loop 
For a topological system with a spin DOF, the Wilson loop can be adopted for classification of different topological properties. To calculate the Wilson loop, we discretize the first Brillouin zone (BZ) along the reciprocal lattice vectors at first. Then, the loop can be calculated at each discretized k point4, for isolated bands. Along the lattice vectors a1, it can be obtained using5

		
[bookmark: OLE_LINK1]Here, Ukα→Ukβ=||< Ukα| Ukβ>||, and < Ukα| Ukβ>=∫ε(r) Ukα*(r) Ukβ(r)d2r·uk(r) is calculated by Finite Difference (FD) solver. For the degenerated bands, the Wilson loop is calculated using

		

		
where the superscript n means the degenerated band index. For our system, the calculated results are symmetrical about zero, and the Wannier centers of the Wilson loops are localized at the edge of the unit cell (W= ±π), which verifies the topological nature. 
II Results 
a. Propagation of edge states along the interface composed of two different pillars
[image: ]
[bookmark: OLE_LINK24][bookmark: OLE_LINK18][bookmark: OLE_LINK19]Figure S4. Propagation of light excited by S+ /S− along the Ω-shaped interface composed of elliptical pillars (l=134 nm, s=44 nm, θ2=0°) and rectangular pillars (l=238 nm, s=78 nm, θ2=87°).
[bookmark: OLE_LINK25]b. Propagation of edge states along the interface composed of elliptical pillars with differing rotation angles, two different angle structures and different topological protection domain walls
[image: ]
Figure S5 | Propagation of light excited by S+ /S− along the Ω-shaped interface composed of elliptical pillars (l=134 nm, s=44 nm) with θ2=14°and 79°, respectively.
[image: ]
[bookmark: _Hlk176457991]Figure S6 | Propagation of light excited by S+ /S− along the vertical interface composed of elliptical pillars (l=134 nm, s=44 nm) with θ2=15° and 75°, respectively. .

c. Fragile topology
[image: ]
[bookmark: _Hlk204762264]Figure S7 | Calculated Wilson loop and Fragile topology. a, The Wilson loop spectra for PhCs composed of elliptical pillars (l=134 nm, s=44 nm) with θ2=0°. The Wilson loop spectrum for the isolated Band 1 is fixed at 0, and the Wilson loop spectrum for Band 2&3 winds in opposite directions from −π to π as a function of momentum. The winding is guaranteed by the C2 eigenvalues of the bands, and indicates the nontrivial topology. The Wilson loop spectrum for all the bands has no winding from -π to +π. b, The Wilson loop spectra for PhCs composed of elliptical pillars (l=134 nm, s=44 nm) with θ2=87°. The absence of winding from −π to π indicates the trivial topology. 
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