

Supplementary Information for

Geological modulation of N_2O emissions in rivers globally

Hongkai **Qi**^{1,2,3}, Yi **Liu**^{1,2 *}, Haoran **Wang**¹, Yu **Pang**³, Junyu **Li**³, Xiao **Ma**⁴, Longjun **Wu**^{2,3},
Ding **He**^{2,3}, Jianping **Gan**^{2,3}

¹ Earth, Ocean and Atmospheric Sciences (EOAS) Thrust, Function Hub, The Hong Kong

University of Science and Technology (Guangzhou), Guangzhou, China

10 ² Center for Ocean Research in Hong Kong and Macau (CORE), Hong Kong, China

11 ³ Department of Ocean Science, The Hong Kong University of Science and Technology, Hong
12 Kong, China

13 ⁴School of Marine Sciences, Sun Yat-sen University, Zhuhai, China

14

15 *Corresponding author.

16

17

18 Contents of this file

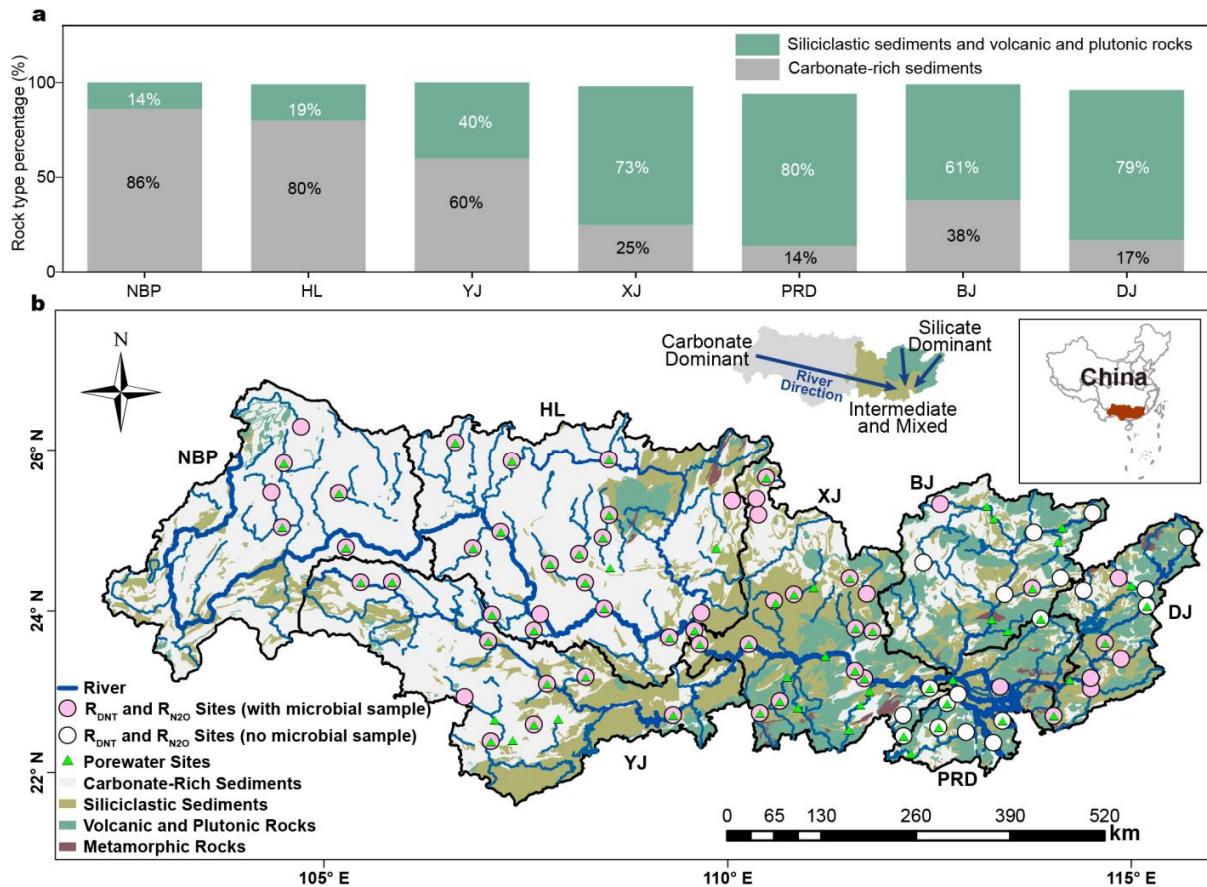
- Supplementary Text 1 to 2
- Fig. S1 to S9

22 **Text 1: Factors related to N₂O production besides water pH and sediment TOC**

23 In the PRB, the overlying water dissolved oxygen (DO) is 5.95 ± 1.58 mg/L in the PRB,
24 which provides a relatively oxic environment for denitrification in the surface sediment.
25 Overlying DO does not show a significant difference between the carbonate- and the silicate-
26 dominated regions (6.52 ± 1.36 mg/L vs. 6.16 ± 1.73 mg/L, $p > 0.05$, [Fig. S6](#)), eliminating DO been
27 the key factor influencing N₂O production.

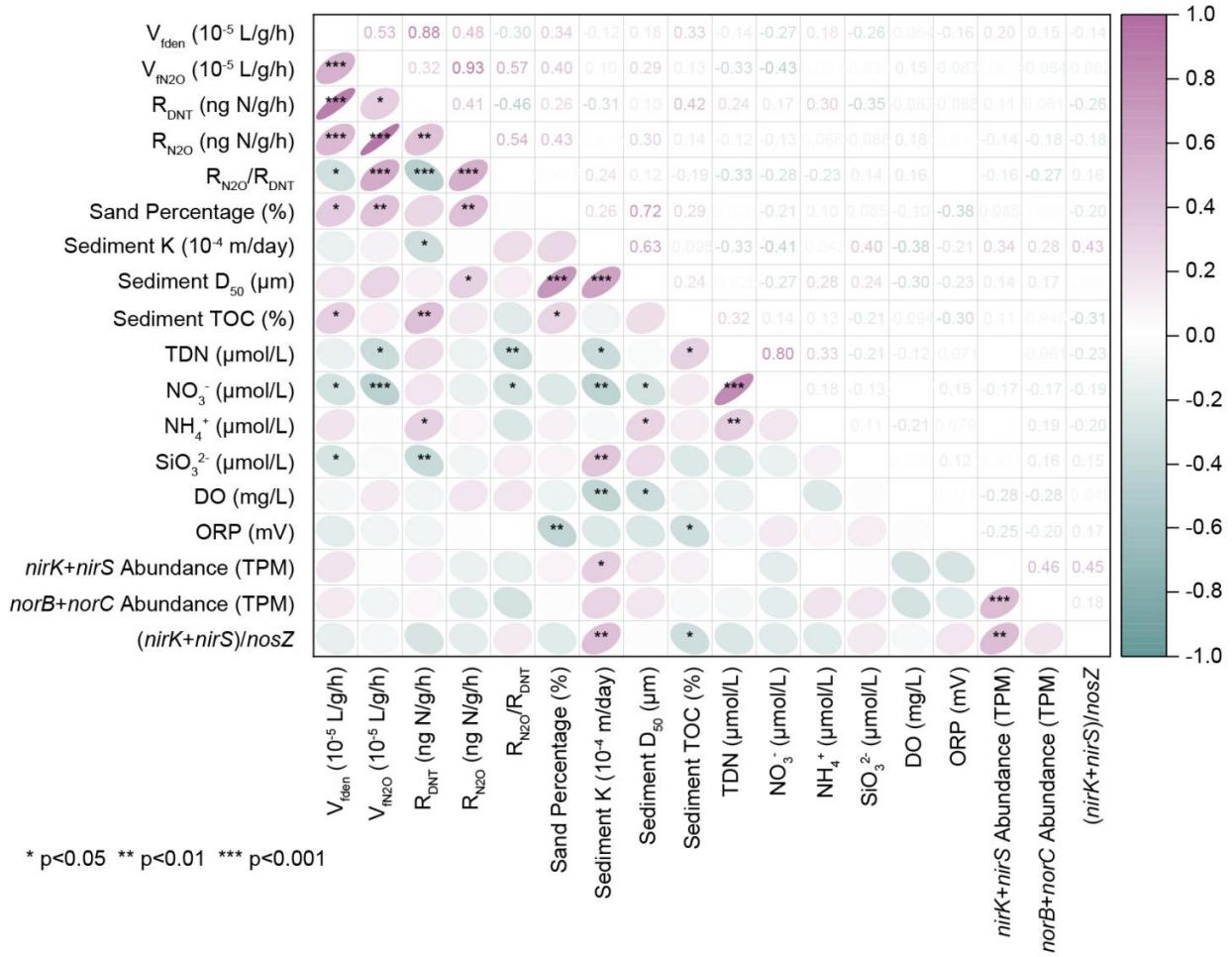
28 In addition, global riverine NO₃⁻ concentration is similar in carbonate- and silicate-
29 dominated regions even though a little bit higher median NO₃⁻ in silicate-dominated rivers than
30 their counterparts ($21.2 \mu\text{mol/L}$ vs. $16.7 \mu\text{mol/L}$, [Fig. S7](#)) is observed. This indicates that the
31 nitrogen (N) inputs are comparably uniform for the regions with silicate-dominated and
32 carbonate-dominated bedrocks worldwide. Moreover, riverine NH₄⁺ is far lower than NO₃⁻, with
33 a mean NO₃⁻:NH₄⁺ ratio of 53.2 and a median ratio of 25.0 (calculated based on the GloRiCH
34 database ¹), confirming the key role of denitrification rather than nitrification in riverine N₂O
35 emission ²⁻⁴.

36

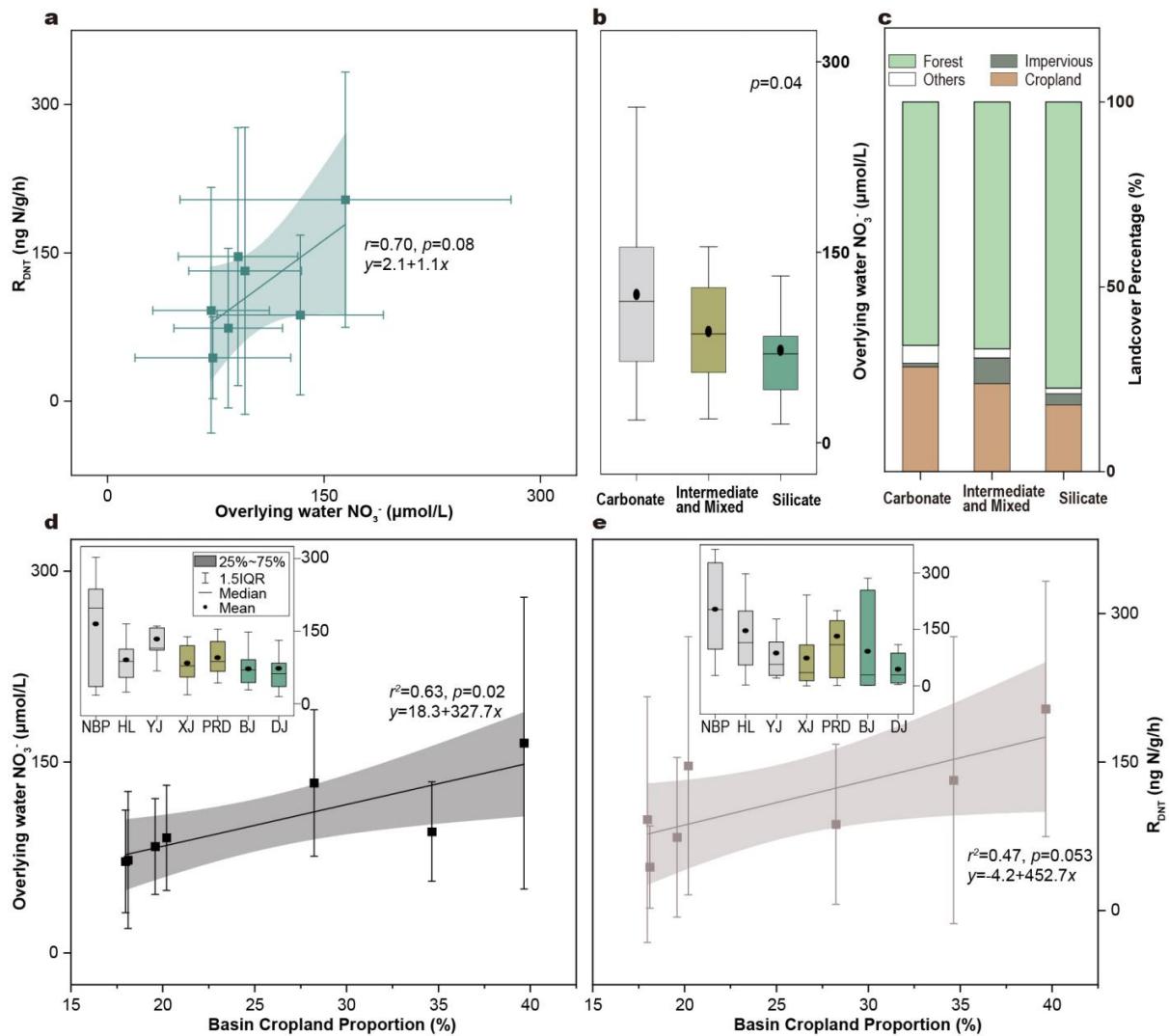

37 **Text 2: N removal and N₂O production in the PRB with different geological backgrounds**
38 **and yield budgets**

39 With the measured potential denitrification rate (R_{DNT}), N₂O production rate (R_{N2O}), and
40 area of the river⁵ in the PRB, we estimates a potential N removal yield of 170-222 Gg N/yr and
41 a N₂O production yield of 5-7 Gg N/yr in total ([Extended Data Fig. 2](#)). The N removal in the
42 PRB accounted for 4%-6% of China's total N removal yield (3.8±1 Tg N/yr) in river system,
43 even though the area of which only accounts for 2%-3%. This is consistent with our previous
44 finding that the R_{DNT} in the PRB is the highest across China (more than double the national
45 average value), owing to the high pollution⁶. Applying the average N fertilizer application rate
46 in the PRB (35.42 kg N/ha/yr averaged during 1997 to 2008)⁷ and the Intergovernmental Panel
47 on Climate Change (IPCC) emission factor (30%)⁸, 36%-47% of the leached N is removed
48 through the complete denitrification process (NO₃⁻ → N₂) in riverbed sediments, but 1.1%-1.5%
49 of which is transformed as N₂O (NO₃⁻ → N₂O). Since the emission factor in IPCC is generally
50 deemed to be too high for estimating N leaching⁹, the actual N removal and N₂O production
51 percentages may be underestimated. In summary, the riverbed geology plays a critical role in
52 controlling the basin-scale N budget and N₂O production.

53 In addition, N removal per unit area is the lower in the silicate-dominant region (53 Ton
54 N/km²/yr) compared to that in the carbonate-dominant region (68 Ton N/km²/yr), while the N₂O
55 production is over double in the silicate-dominant region (4.0 Ton N/km²/yr) than its counterpart
56 (1.6 Ton N/km²/yr) ([Extended Data Fig. 2](#)). In addition, rivers in the silicate-dominant region
57 account for 18.7% of the total fertilizer application, but the N removal only accounts for 12%
58 regarding the entire PRB. In contrast, it represents 28.6% of the total N₂O production in the PRB,

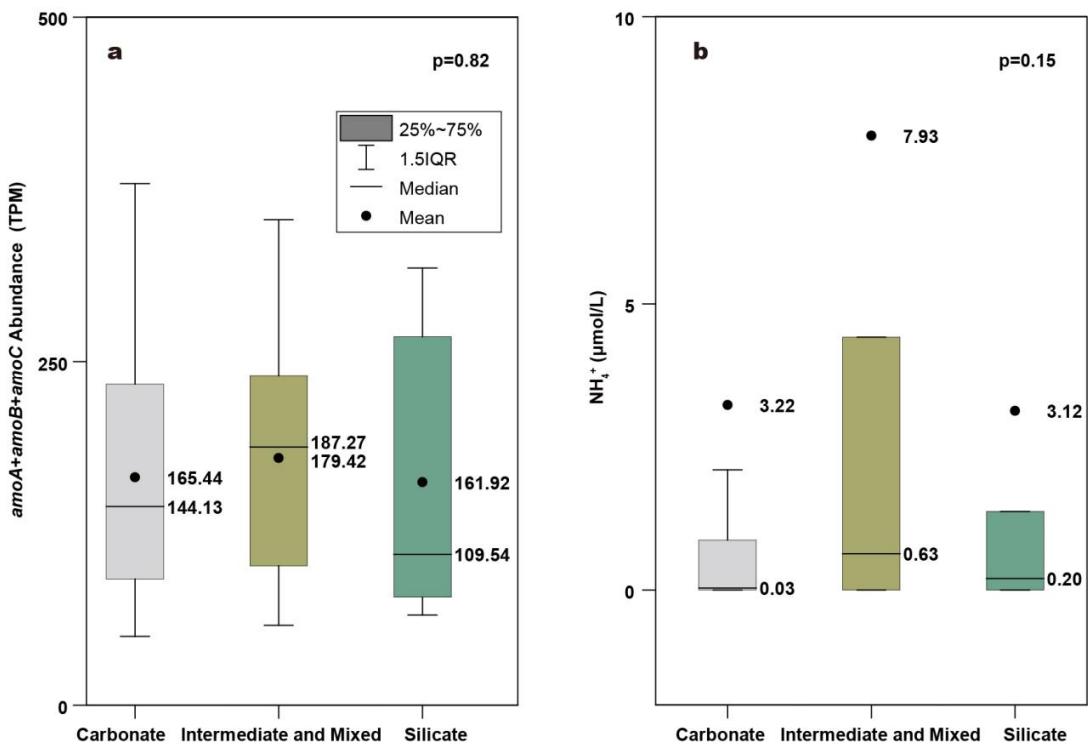

59 attributed to the combined effects of reduced residence time, sediment total organic carbon
60 (TOC), and river water pH induced from distinct bedrock properties.

61


62 **Fig. S1. Study area (PRB) and sampling sites. a**, Rock type distribution across sub-basins. **b**,

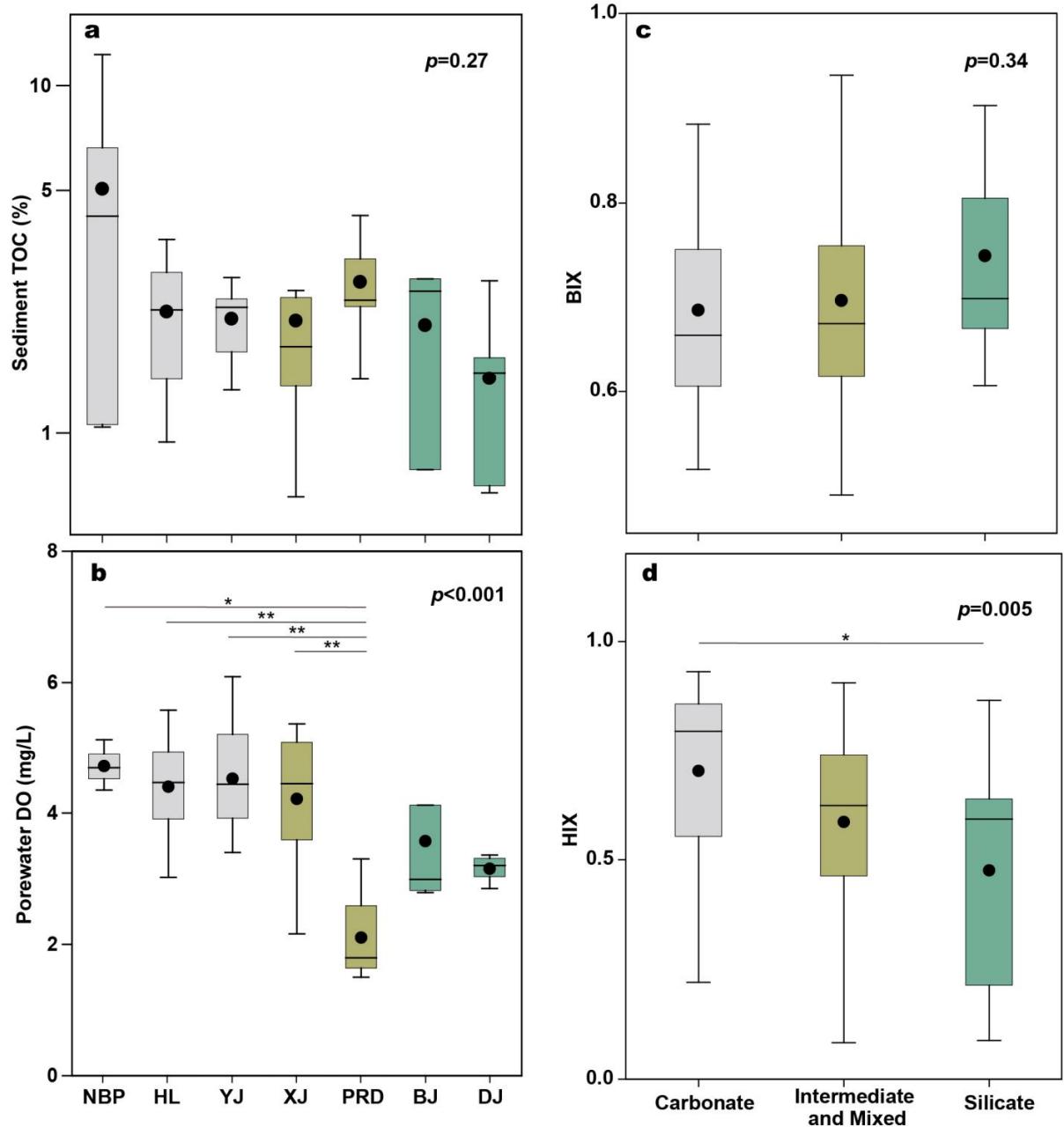
63
64 Study area geologic background and sampling sites. NBP=Nan-bei Pan River Basin, YJ=Yujiang
65 River Basin, HL=Hongliu River Basin, XJ=Xijiang River Basin, BJ=Beijiang River Basin,
66 DJ=Dongjiang River Basin, PRD=Pearl River Delta.

67


68 **Fig. S2. Spearman correlation between potential denitrification rate (R_{DNT}), nitrous oxide**
 69 **production rate (R_{N2O}), and variables.** $p<0.001$ represents extremely significant, $p<0.01$
 70 represents highly significant, $p<0.05$ represents significant, otherwise there is no statistical
 71 significance. V_{fden} =the uptake rate N through denitrification, V_{fden} =the uptake rate N through
 72 N₂O production, TOC=total organic carbon, K=sediment hydraulic conductivity, D₅₀=median
 73 grain size, TDN=total dissolved nitrogen in overlying water, NO₃⁻=nitrate in overlying water,
 74 NH₄⁺=ammonium in overlying water, SiO₃²⁻=silicate in overlying water, DO=dissolved oxygen
 75 in overlying water), ORP=oxidation-reduction potential of overlying water. The numbers
 76 represent the Spearman correlation coefficient.

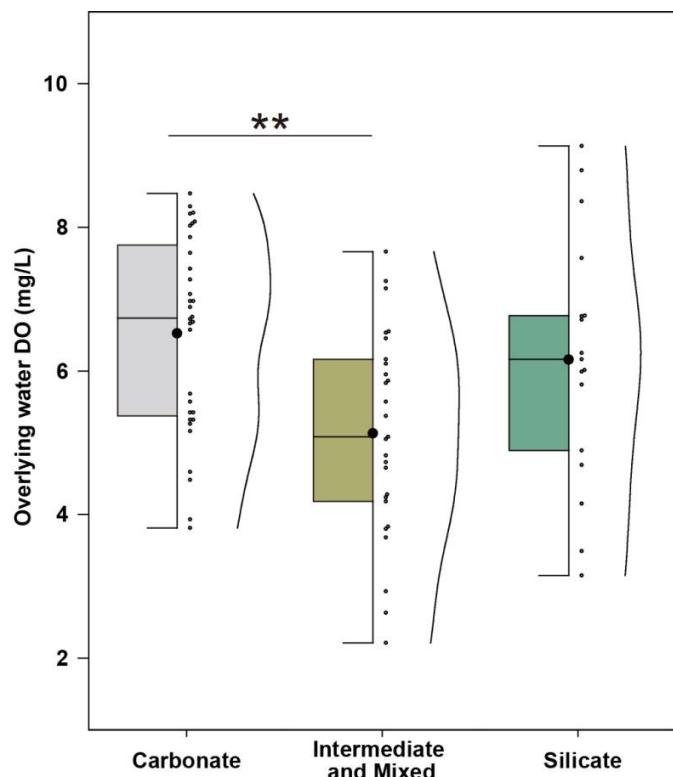
77

78 **Fig. S3. Basin-scale overlying water NO_3^- and R_{DNT} distribution and relationship with basin**
79 **cropland proportion.** **a**, correlation of overlying water NO_3^- and R_{DNT} . **b**, overlying water NO_3^-
80 zonation across regions with different geologic backgrounds. **c**, landcover types across regions
81 with different geological backgrounds. **d**, overlying water NO_3^- variation across basins and
82 correlation with basin cropland proportion. **e**, R_{DNT} variation with basins and correlation with
83 basin cropland proportion. The square dots in **a**, **d**, and **e** represent the mean values, and the error
84 bar represents the standard deviations. The linear lines and shadows represent the linear
85 regression and the 95% confidence bands. For the box plots in **b**, **d**, and **e**, the black points, black


86 line inside the box, and whiskers outside the boxes represent the mean value, median value, and
87 1.5 interquartile range (IQR), respectively. Two-sided Kruskal-Wallis Test is applied in the
88 comparison in **b**, where $p<0.01$ represents highly significant, $p<0.05$ represents significant,
89 otherwise there is no statistical significance.

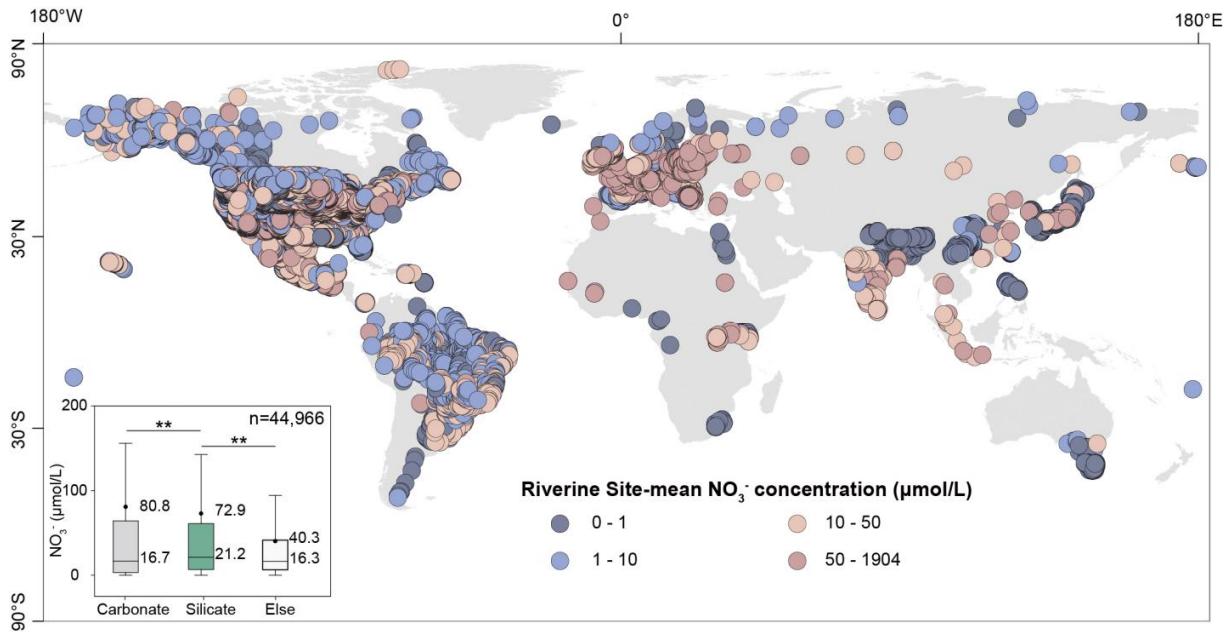
90

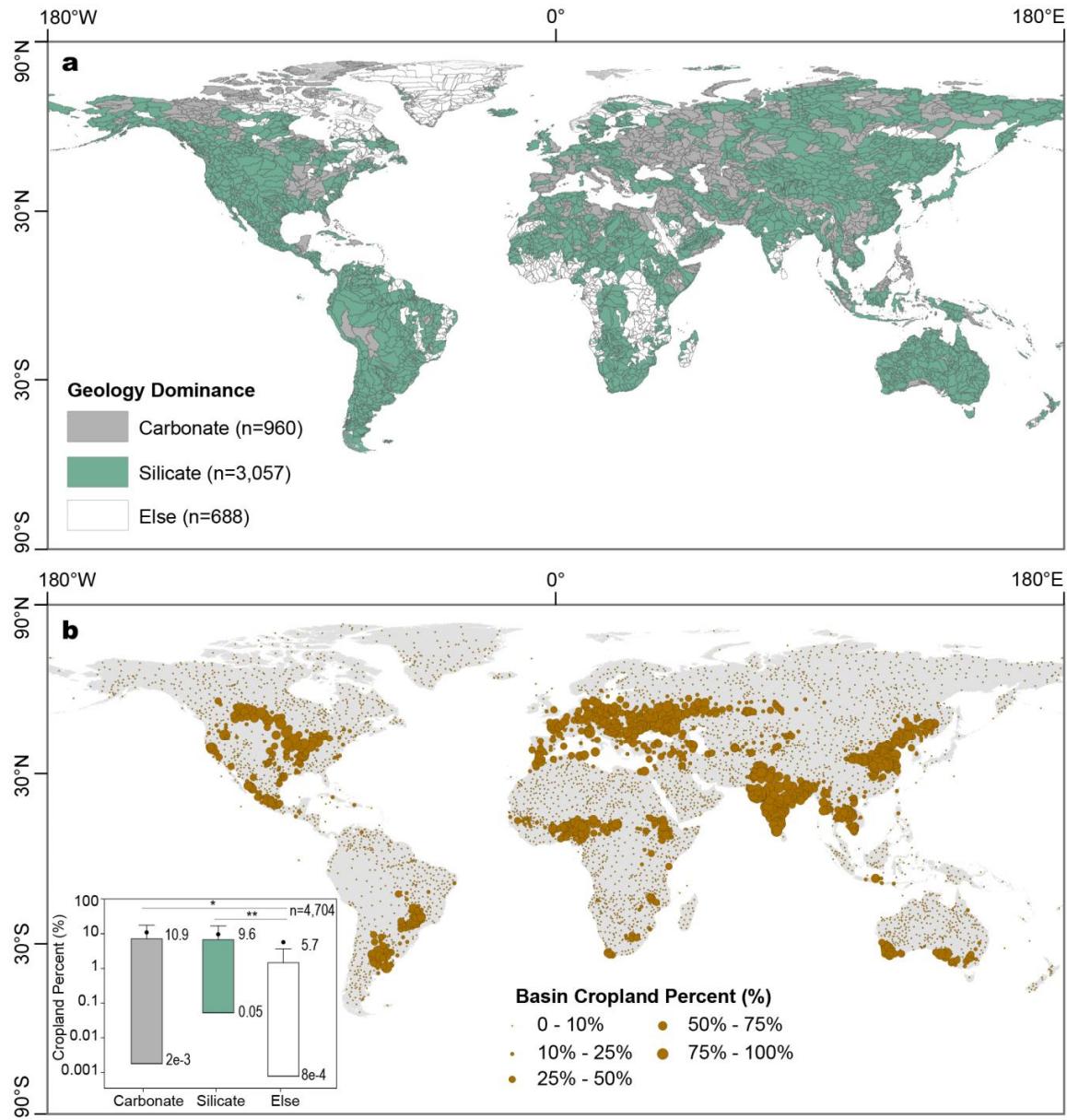
91 **Fig. S4. Comparison of ammonia-oxidizing genes' abundance and ammonium (NH_4^+)**
92 **across rivers with different geologic backgrounds. a,** the variation of the total abundance of
93 $amoA$, $amoB$, $amoC$. **b,** the variation of NH_4^+ . Two-sided Kruskal-Wallis Test is applied in the
94 comparison, where $p<0.01$ represents highly significant, $p<0.05$ represents significant, otherwise
95 there is no statistical significance. The black points, black line inside the box, and lines outside
96 the boxes represent the mean value, median value, and 1.5 IQR, respectively. The numbers
97 beside the black point and median line represent the mean and median values, respectively.


98

101 **Fig. S5. Variations of Sediment TOC, porewater DO, sediment water-extractable dissolved**
 102 **organic matter (DOM) biological index (BIX), and sediment water-extractable DOM**
 103 **humification index (HIX) in the PRB. a, b, Sediment TOC (a) and porewater DO (b) across**
 104 **sub-basins. c, d, Sediment water extractable DOM BIX (c) and HIX (d) across regions with**

105 different geologic backgrounds. Two-sided Kruskal-Wallis Test is applied in the comparison
106 between groups, and “*” represents a significant difference ($p<0.05$), and “**” represents a
107 highly significant difference ($p<0.01$), otherwise there is no statistical significance. The black
108 points, black line inside the box, and lines outside the boxes represent the mean value, median
109 value, and 1.5 IQR, respectively.

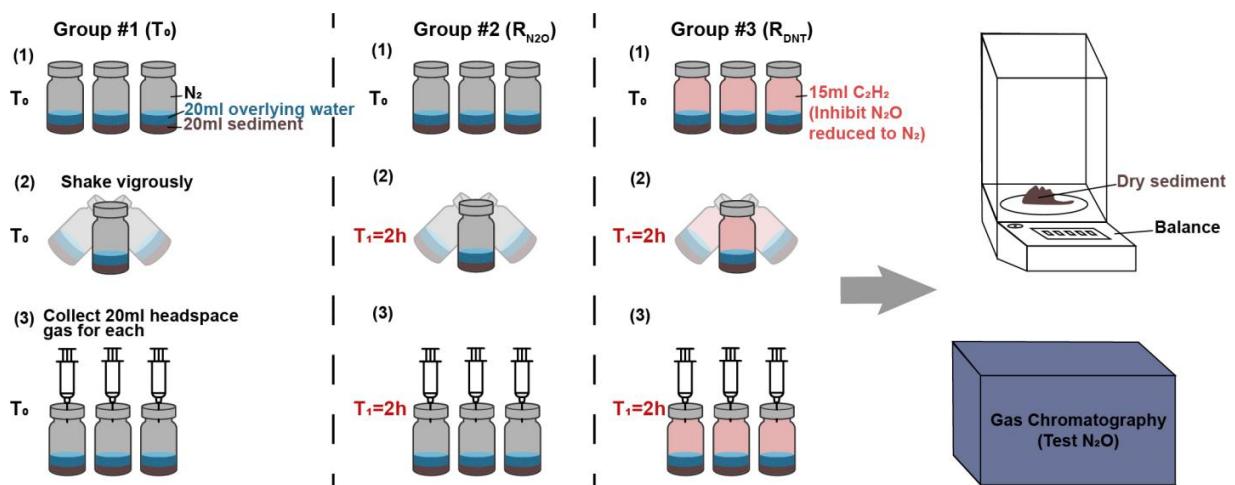

110


111

112 **Fig. S6. Overlying water DO across different regions.** Two-sided Kruskal-Wallis Test is
 113 applied in the comparison between groups, and “*” represents a significant difference ($p<0.05$),
 114 and “**” represents a highly significant difference ($p<0.01$), otherwise there is no statistical
 115 significance. The black points, black line inside the box, and lines outside the boxes represent the
 116 mean value, median value, and 1.5 IQR, respectively. The dots and the curves beside the boxes
 117 represent the data and the data distribution.

118

120 **Fig. S7. Global Riverine NO_3^- distribution and comparison across different geology.** The
 121 values are the mean site values calculated from the GRQA database ¹⁰. For the box plot, the
 122 black points, the black line inside the boxes, whiskers outside the boxes, and the dots outside of
 123 the whiskers represent the mean value, median value, 1.5 IQR, and the outliers respectively.
 124 Two-sided Kruskal-Wallis Test is applied in the comparison between groups, and “*” represents
 125 significant difference ($p<0.05$), and “**” represents highly significant difference ($p<0.01$),
 126 otherwise there is no statistical significance.



127

128 **Fig. S8. Global calculation of geology dominance and cropland percentage across basins. a,**
129 Global geology dominance across the basins calculated based on HydroBASINS (level 05)¹¹ and
130 the GLiM database¹². **b**, Global basin-scale cropland percentage (based on the global MCD12Q1
131 landcover database¹³) and zonation according to different geologic backgrounds. The black
132 points, the black line inside the boxes, whiskers outside the boxes, and the dots outside of the

133 whiskers represent the mean value, median value, 1.5 IQR, and the outliers, respectively. Two-
134 sided Kruskal-Wallis Test is applied in the comparison between groups, and “*” represents a
135 significant difference ($p<0.05$), and “**” represents a highly significant difference ($p<0.01$),
136 otherwise there is no statistical significance.

137

138
139

Fig. S9. Schematic diagram of incubation experiment settings to obtain the R_{DNT} and R_{N2O} .

140

141 **References**

142 1 Hartmann, J., Lauerwald, R. & Moosdorf, N. in *Supplement to: Hartmann, J et al. (2014):*
143 *A Brief Overview of the GLObal RIver Chemistry Database, GLORICH. Procedia Earth*
144 *and Planetary Science*, 10, 23-27, <https://doi.org/10.1016/j.proeps.2014.08.005>
145 (PANGAEA, 2019).

146 2 Yao, Y., Tian, H., Shi, H., Pan, S., Xu, R., Pan, N. & Canadell, J. G. Increased global
147 nitrous oxide emissions from streams and rivers in the Anthropocene. *Nature Climate*
148 *Change* **10**, 138-142, doi:10.1038/s41558-019-0665-8 (2020).

149 3 Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R. O., Mulholland, P.
150 J., Peterson, B. J., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Dodds, W. K., Grimm,
151 N. B., Johnson, S. L., McDowell, W. H., Poole, G. C., Valett, H. M., Arango, C. P.,
152 Bernot, M. J., Burgin, A. J., Crenshaw, C. L., Helton, A. M., Johnson, L. T., O'Brien, J.
153 M., Potter, J. D., Sheibley, R. W., Sobota, D. J. & Thomas, S. M. Nitrous oxide emission
154 from denitrification in stream and river networks. *Proceedings of the National Academy*
155 *of Sciences* **108**, 214-219, doi:10.1073/pnas.1011464108 (2011).

156 4 Marzadri, A., Dee, M. M., Tonina, D., Bellin, A. & Tank, J. L. Role of surface and
157 subsurface processes in scaling N₂O emissions along riverine networks. *Proceedings of*
158 *the National Academy of Sciences* **114**, 4330-4335, doi:10.1073/pnas.1617454114 (2017).

159 5 Gu, C., Liu, Y., Qi, H. & Lu, M. Influences of carbonate weathering and hyporheic
160 exchange on carbon fluxes in Pearl River Basin, China. *Water Research* **261**, 122014,
161 doi:<https://doi.org/10.1016/j.watres.2024.122014> (2024).

162 6 Qi, H. & Liu, Y. Nitrogen removal through denitrification in China's aquatic system.
163 *Science of The Total Environment* **891**, 164317,
164 doi:<https://doi.org/10.1016/j.scitotenv.2023.164317> (2023).

165 7 Yu, Z., Liu, J. & Kattel, G. Historical nitrogen fertilizer use in China from 1952 to 2018.
166 *Earth Syst. Sci. Data* **14**, 5179-5194, doi:10.5194/essd-14-5179-2022 (2022).

167 8 IPCC. Guidelines for national greenhouse gas inventories. *Prepared by the National
168 Greenhouse Gas Inventories Programme. Eggleston HS, Buendia L, Miwa K, Ngara T,
169 Tanabe K, editors. Published: IGES, Japan* (2006).

170 9 Wang, Y., Ying, H., Yin, Y., Zheng, H. & Cui, Z. Estimating soil nitrate leaching of
171 nitrogen fertilizer from global meta-analysis. *Science of The Total Environment* **657**, 96-
172 102, doi:<https://doi.org/10.1016/j.scitotenv.2018.12.029> (2019).

173 10 Virro, H., Amatulli, G., Kmoch, A., Shen, L. & Uuemaa, E. GRQA: Global River Water
174 Quality Archive. *Earth Syst. Sci. Data* **13**, 5483-5507, doi:10.5194/essd-13-5483-2021
175 (2021).

176 11 Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and
177 new approaches to study the world's large river systems. *Hydrological Processes* **27**,
178 2171-2186, doi:<https://doi.org/10.1002/hyp.9740> (2013).

179 12 Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: A
180 representation of rock properties at the Earth surface. *Geochemistry, Geophysics,
181 Geosystems* **13**, doi:<https://doi.org/10.1029/2012GC004370> (2012).

182 13 Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type
183 Yearly L3 Global 500m SIN Grid V006. *NASA Land Processes Distributed Active
184 Archive Center. Date Accessed: 2025-09-22* (2019).

185