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Text 1: Factors related to N2O production besides water pH and sediment TOC

In the PRB, the overlying water dissolved oxygen (DO) is 5.95+1.58 mg/L in the PRB,
which provides a relatively oxic environment for denitrification in the surface sediment.
Overlying DO does not show a significant difference between the carbonate- and the silicate-
dominated regions (6.52+1.36 mg/L vs. 6.16+1.73 mg/L, p>0.05, Fig. S6), eliminating DO been
the key factor influencing N>O production.

In addition, global riverine NOs  concentration is similar in carbonate- and silicate-
dominated regions even though a little bit higher median NOs™ in silicate-dominated rivers than

their counterparts (21.2 1 mol/L vs. 16.7 1 mol/L, Fig. S7) is observed. This indicates that the

nitrogen (N) inputs are comparably uniform for the regions with silicate-dominated and
carbonate-dominated bedrocks worldwide. Moreover, riverine NH4" is far lower than NOs, with
a mean NO3:NHy" ratio of 53.2 and a median ratio of 25.0 (calculated based on the GloRiCH
database '), confirming the key role of denitrification rather than nitrification in riverine N>O

emission 2,
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Text 2: N removal and N;O production in the PRB with different geological backgrounds
and yield budgets

With the measured potential denitrification rate (Rpnt), N2O production rate (Rn20), and
area of the river ° in the PRB, we estimates a potential N removal yield of 170-222 Gg N/yr and
a N2O production yield of 5-7 Gg N/yr in total (Extended Data Fig. 2). The N removal in the
PRB accounted for 4%-6% of China’s total N removal yield (3.8+1 Tg N/yr) in river system,
even though the area of which only accounts for 2%-3%. This is consistent with our previous
finding that the Rpnr in the PRB is the highest across China (more than double the national
average value), owing to the high pollution . Applying the average N fertilizer application rate
in the PRB (35.42 kg N/ha/yr averaged during 1997 to 2008) 7 and the Intergovernmental Panel
on Climate Change (IPCC) emission factor (30%) %, 36%-47% of the leached N is removed
through the complete denitrification process (NO3™ — N3) in riverbed sediments, but 1.1%-1.5%
of which is transformed as NoO (NOs;™ = N2O). Since the emission factor in IPCC is generally
deemed to be too high for estimating N leaching °, the actual N removal and N>O production
percentages may be underestimated. In summary, the riverbed geology plays a critical role in

controlling the basin-scale N budget and N>O production.

In addition, N removal per unit area is the lower in the silicate-dominant region (53 Ton
N/km?/yr) compared to that in the carbonate-dominant region (68 Ton N/km?/yr), while the N>O
production is over double in the silicate-dominant region (4.0 Ton N/km?/yr) than its counterpart
(1.6 Ton N/km?/yr) (Extended Data Fig. 2). In addition, rivers in the silicate-dominant region
account for 18.7% of the total fertilizer application, but the N removal only accounts for 12%

regarding the entire PRB. In contrast, it represents 28.6% of the total N>O production in the PRB,



59  attributed to the combined effects of reduced residence time, sediment total organic carbon

60  (TOC), and river water pH induced from distinct bedrock properties.

61
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Fig. S1. Study area (PRB) and sampling sites. a, Rock type distribution across sub-basins. b,

Study area geologic background and sampling sites. NBP=Nan-bei Pan River Basin, YJ=Yujiang

River Basin, HL=Hongliu River Basin, XJ=Xijiang River Basin, BJ=Beijiang River Basin,

DJ=Dongjiang River Basin, PRD=Pearl River Delta.
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rate (Rpnt), nitrous oxide

production rate (Rn:20), and variables. p<0.001 represents extremely significant, p<0.01

represents highly significant, p<0.05 represents significant, otherwise there is no statistical

significance. Vien=the uptake rate N through denitrification, Vwuen=the uptake rate N through

N2O production, TOC=total organic carbon, K=sediment hydraulic conductivity, Dsp=median

grain size, TDN=total dissolved nitrogen in overlying water, NOs=nitrate in overlying water,

NH4"=ammonium in overlying water, SiO3*=silicate in overlying water, DO=dissolved oxygen

in overlying water), ORP=oxidation-reduction potential of overlying water. The numbers

represent the Spearman correlation coefficient.
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Fig. S3. Basin-scale overlying water NOs™ and Rpnr distribution and relationship with basin
cropland proportion. a, correlation of overlying water NO3™ and Rpnt. b, overlying water NO3
zonation across regions with different geologic backgrounds. ¢, landcover types across regions
with different geologic backgrounds. d, overlying water NOs  variation across basins and
correlation with basin cropland proportion. e, Rpnt variation with basins and correlation with
basin cropland proportion. The square dots in a, d, and e represent the mean values, and the error
bar represents the standard deviations. The linear lines and shadows represent the linear

regression and the 95% confidence bands. For the box plots in b, d, and e, the black points, black
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line inside the box, and whiskers outside the boxes represent the mean value, median value, and
1.5 interquartile range (IQR), respectively. Two-sided Kruskal-Wallis Test is applied in the
comparison in b, where p<0.01 represents highly significant, p<0.05 represents significant,

otherwise there is no statistical significance.
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Fig. S4. Comparison of ammonia-oxidizing genes’ abundance and ammonium (NH4")
across rivers with different geologic backgrounds. a, the variation of the total abundance of
amoA, amoB, amoC. b, the variation of NHs". Two-sided Kruskal-Wallis Test is applied in the
comparison, where p<0.01 represents highly significant, p<0.05 represents significant, otherwise
there is no statistical significance. The black points, black line inside the box, and lines outside
the boxes represent the mean value, median value, and 1.5 IQR, respectively. The numbers

beside the black point and median line represent the mean and median values, respectively.
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sub-basins. ¢, d, Sediment water extractable DOM BIX (c) and HIX (d) across regions with
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105  different geologic backgrounds. Two-sided Kruskal-Wallis Test is applied in the comparison

(I3

106  between groups, and represents a significant difference (p<0.05), and “**” represents a
107 highly significant difference (p<0.01), otherwise there is no statistical significance. The black

108  points, black line inside the box, and lines outside the boxes represent the mean value, median

109  value, and 1.5 IQR, respectively.
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otherwise there is no statistical significance.
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whiskers represent the mean value, median value, 1.5 IQR, and the outliers, respectively. Two-

sided Kruskal-Wallis Test is applied in the comparison between groups, and

(A2 L)

represents a

significant difference (»p<0.05), and “**” represents a highly significant difference (p<0.01),

otherwise there is no statistical significance.
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