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Supplementary Note 1: Details of parameterizing14

moment tensor potentials15

Supplementary Fig. 1 shows an overview of the param-16

eterization scheme for moment tensor potentials, with ex-17

tended information shown in Supplementary Fig. 2. The18

concept of quality-level-based active learning was pro-19

posed and tested in a previous study [1] for the same ma-20

terial system, i.e., argyrodites. At the beginning, ab ini-21

tio molecular dynamics simulations are performed on the22

ideal bulk structure. Considering the high computational23

cost of ab initio molecular dynamics simulations, the sim-24

ulation temperature is set relatively high (up to the melt-25

ing point), and the simulation time is set relatively short26

(a few picoseconds). The high-temperature molecular27

dynamics simulations enable a quick exploration of the28

phase space for a fixed chemical configuration by thermal29

vibrations, and the resulting trajectories provide the basis30

for the moment tensor potential training. The initial op-31

timization of the moment tensor potential parameters is32

essential in calculating the extrapolation grade based on33

the D-optimality criterion [2]. Since the ab initio molecu-34

lar dynamics trajectories contain structurally similar con-35

figurations, only a small number of configurations from36

the ab initio molecular dynamics are chosen for the initial37

moment tensor potential training, and a pretaining step38

is introduced to include more configurations evaluated39

as extrapolation, i.e., with an extrapolation grade larger40

than one. Unlike standard active learning schemes, where41

a high level of moment tensor potential is directly used42

for active learning of complex structures, a low level of43

moment tensor potential is used for standard active learn-44

ing, and the targeted materials’ properties (for example,45

formation energy or diffusion coefficient) are evaluated at46

the end of active learning with the obtained low-level mo-47

ment tensor potentials. If the accuracy of the targeted48

materials’ properties are not satisfied, a higher level of49

untrained moment tensor potential is used, and the pre-50

taining, the standard active learning, and the evaluation51

processes are repeated. During the step-by-step training52
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of moment tensor potentials with an increasing level, the53

configurations selected by active learning and labeled by54

density-functional theory are accumulated in the train-55

ing set. The final moment tensor potential is obtained56

when the accuracy of the targeted material’s property is57

satisfied.58

In a previous paper [1] focusing on grain boundaries in59

Li6PS5Cl, only three small grain boundaries are consid-60

ered, and the full targeted grain boundary structure is61

used for active learning. This process can be classified as62

global-AL. When the target structure is large, e.g., a large63

grain boundary structure with more than 30 000 atoms,64

the density-functional theory calculation of the target65

structure selected by active learning becomes problem-66

atic. As a result, we have incorporated the quality-level-67

based concept with active learning of the local atomic68

environments (local-AL). The local-AL process proposed69

here has four main steps (Supplementary Fig. 3).70

Sampling. The moment tensor potential obtained after71

pretaining is used to run molecular dynamics simulations72

of the full target structure. For each snapshot resulting73

from molecular dynamics simulations, the extrapolation74

grade calculated based on the local atomic environment75

is evaluated for each atom, and the maximum local grade76

of all atoms is focused on. Hyperparameters related to77

the threshold local grade, i.e., to select the snapshot or78

stop the molecular dynamics simulations, need to be set.79

When the maximum local grade of a snapshot is larger80

than the set threshold, the snapshot is added to and ac-81

cumulated in a sampling set.82

Extraction. In this step, the number of atoms in the83

simulation cell, which is used for labeling (energy and84

forces calculation with density-functional theory) later85

on, is significantly reduced. First, the atom that has86

the maximum local grade is centered in the simulation87

cell. The local atomic environment of the centered atom88

is obtained by cutting out the atoms within a cubic box89

around the centered atom. The cubic box forms a new90

simulation cell with periodic boundary conditions. Next,91

atoms closely positioned due to the periodic boundary92

conditions are removed until the stoichiometry of atoms93

in the simulation cell is ensured.94

Relaxation. This step aims to avoid unfavorable in-95

teractions of atoms at the boundary of the simulation96

box due to the periodic boundary conditions. To protect97

the local atomic environment that has been sampled, a98
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protected region in the form of a cubic box is defined99

around the central atom, and the atoms within the pro-100

tected region are fixed during the relaxation. The rest of101

the atoms in the simulation cell are relaxed to minimize102

the atomic forces. To reduce computational cost, density-103

functional theory calculations were performed with looser104

numerical convergence parameters. In this step, only the105

final relaxed structure enters the next step. Energies and106

forces obtained during structural relaxation do not enter107

the training set, maintaining the consistency of the data108

accuracy of the training set.109

Labeling. The energies and forces of the relaxed struc-110

ture are calculated by density-functional theory with111

tight convergence parameters. Because only single-point112

density-functional theory calculations are performed, the113

computational cost is kept low. The resulting energies114

and forces of all atoms in the simulation cell with the115

corresponding relaxed structures are added to and accu-116

mulated in the training set.117

Updating. The moment tensor potential, either initial-118

ized or obtained from the previous round of active learn-119

ing, was retrained using the updated training set. The120

resulting moment tensor potential is then used for the121

next round of local-AL, starting from Sampling.122

With this method, active learning of large and complex123

structures becomes possible. Since ab initio molecular124

dynamics simulations are required only for the bulk unit125

cell, the proposed scheme is highly efficient.126

Supplementary Note 2: Consistency of continuum127

simulation models128

A: Methodology129

We employed two representations for grain boundaries130

(GBs) in polycrystalline solid electrolytes: (i) A volume-131

resolved GB model, in which the GB domain is explic-132

itly meshed, and (ii) A thickness-collapsed model, in133

which two-dimensional submanifolds represent GBs. The134

volume-resolved approach is feasible only when the GB135

width exceeds the numerical mesh size and ensures a suf-136

ficient resolution to capture the behavior within the GB137

domain. Hence, this model is limited to nanograin se-138

tups. In contrast, the collapsed GB model assumes a139

“thin” GB—typical for micrograins—so there is a clear140

separation of length scales for grain size and GB width.141

Due to the conceptually different assumptions concern-142

ing the GB representation, a straightforward quantitative143

comparison of their results is non-trivial. Here, we sys-144

tematically study the respective applicability regimes re-145

quired to guarantee physically sound results. In particu-146

lar, a transition grain size will be determined at which one147

should switch from the volume-resolved to the thickness-148

collapsed model.149

To isolate the intrinsic behavior of the two contin-150

uum models and eliminate any geometrical artifacts, we151

employed a highly idealized microstructure: a two-grain152

Voronoi tessellation (see Extended Data Fig. 9b). This153

configuration is perfectly isotropic, features symmetric154

GB junctions, and keeps the computational cost low. The155

collapsed approach allows for a parametric variation of156

the GB width on a single mesh. In contrast, changing157

the GB width in a resolved model requires rebuilding the158

three-dimensional voxel image each time to properly iden-159

tify GB voxels. Therefore, we generated resolved poly-160

crystalline models for a fixed spatial resolution where161

the GB width is a multiple of the voxel size. Because162

the considered Voronoi tessellation was fixed, increasing163

the GB width reduces the effective grain size. Designing164

a corresponding collapsed model that matches the GB165

width and GB volume fraction of the resolved model is166

then straightforward. This was done by rescaling the GB167

width parameter together with the simulation cell length.168

Simulations were then carried out for both GB represen-169

tations independently for a range of bulk and GB diffusiv-170

ities, Dbulk and DGB := DGB
∥ = DGB

⊥ . By repeating the171

procedure at several mesh resolutions, we can (i) Com-172

pare the results of both models across different grain size173

regimes depending on the inputs DGB/Dbulk, and (ii) As-174

sess how the spatial resolution influences the accuracy of175

the resolved approach. Results are shown in Extended176

Data Fig. 9c. From these systematic studies, we aim to177

(i) Identify the transition grain size at which the mod-178

eling strategy should be switched (Supplementary Note179

2 B), and (ii) Formulate a practical guideline for selecting180

a mesh resolution that ensures convergence and accurate181

results for the resolved approach (Supplementary Note182

2 C).183

B: Transition grain size and agreement of the184

models185

The true diffusion behavior of a polycrystalline mate-186

rial cannot be measured in detail, so the following consid-187

erations are based on two assumptions: (i) The resolved188

approach yields accurate results in the nanograin regime,189

and (ii) The collapsed model reliably reproduces diffu-190

sion in the micrograin regime. When both models are191

applied across the entire range of grain sizes, we therefore192

expect a transition point in between the nanograin and193

micrograin limits where the agreement is significantly im-194

proved compared to the two extremes. This is confirmed195

by the relative deviation of the macroscopic diffusivities196

shown in Extended Data Fig. 9c, which shows small devi-197

ations for medium-sized grains. Consequently, we define198

the transition grain size as the grain size at which the two199

models are most consistent, regardless of the GB-to-bulk200

diffusion contrast DGB/Dbulk, i.e., we minimize the sum201

of squared relative deviations. The transition grain size202

(indicated by the dashed lines in Extended Data Fig. 9c)203

depends strongly on the spatial resolution of the resolved204

model, which will be discussed in Supplementary Note205

2 C. Upon mesh refinement, the transition size converges206

to about 100 nm. This value was therefore adopted as207

a reference for all continuum-model results presented in208

this study. For the computations that cover the entire209

grain size range (see Extended Data Fig. 5 and Extended210

Data Fig. 6d), both the resolved and the collapsed repre-211

sentations were evaluated slightly beyond the identified212

transition grain size to demonstrate the consistency of213

the two approaches.214

The obtained transition grain size of 100 nm is specific215

to the considered GB width of 2.5 nm that was assumed216
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for the given geometry. Nevertheless, the same procedure217

can be applied to any GB width or microstructure. Con-218

verting the transition grain size to a GB volume fraction219

yields approximately 6.3%, which serves as a GB width-220

independent indicator of the regime change.221

Even in the vicinity of the transition grain size, the two222

approaches do not achieve perfect agreement (Extended223

Data Fig. 9c). This residual mismatch stems from in-224

herent differences between the two GB representations:225

(i) The explicit representation of GB junction domains in226

the volume-resolved approach versus their implicit treat-227

ment in the collapsed approach, (ii) The volume correc-228

tions required for the collapsed approach, and (iii) The229

underlying microstructures considered for the two ap-230

proaches are not identical but only match key character-231

istics. Nevertheless, the deviation is modest—typically232

below 5%—at the transition grain size.233

Large deviations occur primarily for blocking GBs, i.e.,234

when the GB diffusivity is lower than the bulk diffusivity235

(DGB < Dbulk). In this regime, the less-conductive GBs236

induce pronounced concentration jumps across the GB.237

These jumps and their effects are especially difficult to238

capture if not resolved well, as in the following two cases:239

(i) In volume-resolved simulations of micrograins, a GB240

may be represented by only a few voxel layers, leading to241

an under-resolved GB domain and noticeable staircasing242

effects. (ii) In the collapsed approach for nanograins, the243

zero-width assumption neglects a substantial GB volume.244

The impact of resolution in case (i) on concentration and245

flux fields is shown in Extended Data Fig. 9d for the246

smallest GB width relative to the grain size. Notably,247

the volume fraction varies substantially with resolution,248

even when the GB width remains fixed. This leads to249

differences in the flux magnitude in the presented results250

obtained with the volume-resolved approach.251

When GB diffusion dominates in the polycrystalline252

model (DGB > Dbulk), results from the volume-resolved253

and thickness-collapsed approaches converge for micro-254

grains. In this diffusion regime, GBs do not introduce255

concentration jumps. Rather, it provides additional dif-256

fusion pathways along the GBs. Because the grains are257

large, the contribution of these pathways to the overall258

transport is modest, so the agreement between the two259

models persists even when the GB width is resolved by260

only a few voxel layers. Therefore, the volume-resolved261

approach can be employed reliably for grain sizes beyond262

the estimated transition grain size (100 nm).263

C: Resolution requirements for volume-resolved264

GBs265

When a resolved microstructure is generated for a pre-266

scribed GB width for different resolutions, the resulting267

GB volume fraction varies slightly because the voxel-268

based discretization only approximates the GB domain.269

This prevents a direct comparison of the macroscopic dif-270

fusivities across different resolutions, since the GB vol-271

ume fraction itself influences the resulting macroscopic272

diffusivities. Therefore, the convergence behavior of the273

volume-resolved approach cannot be evaluated unam-274

biguously. Extended Data Fig. 9c shows that the mesh275

resolution has a noticeable impact on the accuracy of the276

results, considering the corresponding results from the277

collapsed approach as a resolution-independent reference.278

In the polycrystalline model, the relative GB width279

decreases with increasing grain size. Consequently, for280

a given resolution, the number of voxel layers represent-281

ing a GB varies with grain size. Extended Data Fig. 9c282

shows that only a few layers were used to resolve a GB for283

micrograins, and more layers were used for nanograins.284

The resolution effect is most pronounced for blocking GBs285

(DGB < Dbulk) combined with large grains, i.e., when the286

resolved model under-resolves the GB. The convergence287

of the relative error curves with increasing resolution im-288

plies a practical rule: The GB width should be at least289

ten times the voxel length. For a given geometry, the290

GB width in the unit cube is first adjusted to satisfy the291

prescribed ratio between GB width and grain size. The292

resolution is then selected such that the voxel size is less293

than one-tenth of the GB width. In contrast, as discussed294

in Supplementary Note 2B, results with an enhancing295

GB setup (DGB > Dbulk) exhibit almost no sensitivity to296

mesh resolution. In those cases, a coarser discretization is297

sufficient: A GB width of more than five times the voxel298

length yields mesh-independent results. In the present299

study, all volume-resolved simulations were conducted on300

a 512×512×512 voxel grid, which exceeds the resolution301

required to resolve GBs in polycrystalline models with302

nanograins (grain size less than 100 nm) while avoiding303

prohibitive computational cost.304
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Supplementary Fig. 1. Overview of the parameterization scheme for moment tensor potentials (MTP). The
“quality-level-based” concept is emphasized with the changing MTP level (lev.).
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Supplementary Fig. 2. Complete workflow of the parameterization scheme for moment tensor potentials (MTP).
MD stands for molecular dynamics simulations, while AL stands for active learning.
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end local-AL

center atom
with γlocal

max
L = 16 Å
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Supplementary Fig. 3. Details of active learning (AL) for local structures. Parameters used for Li6PS5X with
X ∈ {Cl, Br, I} are shown. MTP-MD and DFT refer to molecular dynamics simulations with moment tensor potentials and
density-functional theory, respectively. The extrapolation grade and atomic distance are denoted by γ and d, respectively.
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Supplementary Fig. 4. Precomputed map linking atomic-scale mechanisms to continuum-scale behavior in poly-
crystalline solid electrolytes. In a polycrystalline model with isotropic GBs, the x-axis indicates the assumed GB diffusivity
relative to the bulk, while the y-axis shows the resulting macroscopic diffusivity of the polycrystal relative to the bulk. Line
color represents the average grain size of the polycrystalline model, with the grain boundary width of 2.5 nm. Dash lines indicate
a one-order-of-magnitude change in macroscopic diffusivity. The inset shows an enlarged section of the precomputed map.


	Supplementary information for: Non-Arrhenius Li-ion transport and grain-size effects in argyrodite solid electrolytes
	Details of parameterizing moment tensor potentials
	Consistency of continuum simulation models
	Methodology
	Transition grain size and agreement of the models
	Resolution requirements for volume-resolved GBs

	References


