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Supplementary Note 1: Details of parameterizing
moment tensor potentials

Supplementary Fig. 1 shows an overview of the param-
eterization scheme for moment tensor potentials, with ex-
tended information shown in Supplementary Fig. 2. The
concept of quality-level-based active learning was pro-
posed and tested in a previous study [1] for the same ma-
terial system, i.e., argyrodites. At the beginning, ab ini-
tio molecular dynamics simulations are performed on the
ideal bulk structure. Considering the high computational
cost of ab initio molecular dynamics simulations, the sim-
ulation temperature is set relatively high (up to the melt-
ing point), and the simulation time is set relatively short
(a few picoseconds). The high-temperature molecular
dynamics simulations enable a quick exploration of the
phase space for a fixed chemical configuration by thermal
vibrations, and the resulting trajectories provide the basis
for the moment tensor potential training. The initial op-
timization of the moment tensor potential parameters is
essential in calculating the extrapolation grade based on
the D-optimality criterion [2]. Since the ab initio molecu-
lar dynamics trajectories contain structurally similar con-
figurations, only a small number of configurations from
the ab initio molecular dynamics are chosen for the initial
moment tensor potential training, and a pretaining step
is introduced to include more configurations evaluated
as extrapolation, i.e., with an extrapolation grade larger
than one. Unlike standard active learning schemes, where
a high level of moment tensor potential is directly used
for active learning of complex structures, a low level of
moment tensor potential is used for standard active learn-
ing, and the targeted materials’ properties (for example,
formation energy or diffusion coefficient) are evaluated at
the end of active learning with the obtained low-level mo-
ment tensor potentials. If the accuracy of the targeted
materials’ properties are not satisfied, a higher level of
untrained moment tensor potential is used, and the pre-
taining, the standard active learning, and the evaluation
processes are repeated. During the step-by-step training
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of moment tensor potentials with an increasing level, the
configurations selected by active learning and labeled by
density-functional theory are accumulated in the train-
ing set. The final moment tensor potential is obtained
when the accuracy of the targeted material’s property is
satisfied.

In a previous paper [1] focusing on grain boundaries in
LigPS5Cl, only three small grain boundaries are consid-
ered, and the full targeted grain boundary structure is
used for active learning. This process can be classified as
global-AL. When the target structure is large, e.g., a large
grain boundary structure with more than 30000 atoms,
the density-functional theory calculation of the target
structure selected by active learning becomes problem-
atic. As a result, we have incorporated the quality-level-
based concept with active learning of the local atomic
environments (local-AL). The local-AL process proposed
here has four main steps (Supplementary Fig. 3).

Sampling. The moment tensor potential obtained after
pretaining is used to run molecular dynamics simulations
of the full target structure. For each snapshot resulting
from molecular dynamics simulations, the extrapolation
grade calculated based on the local atomic environment
is evaluated for each atom, and the maximum local grade
of all atoms is focused on. Hyperparameters related to
the threshold local grade, i.e., to select the snapshot or
stop the molecular dynamics simulations, need to be set.
When the maximum local grade of a snapshot is larger
than the set threshold, the snapshot is added to and ac-
cumulated in a sampling set.

Ezxtraction. In this step, the number of atoms in the
simulation cell, which is used for labeling (energy and
forces calculation with density-functional theory) later
on, is significantly reduced. First, the atom that has
the maximum local grade is centered in the simulation
cell. The local atomic environment of the centered atom
is obtained by cutting out the atoms within a cubic box
around the centered atom. The cubic box forms a new
simulation cell with periodic boundary conditions. Next,
atoms closely positioned due to the periodic boundary
conditions are removed until the stoichiometry of atoms
in the simulation cell is ensured.

Relazation. This step aims to avoid unfavorable in-
teractions of atoms at the boundary of the simulation
box due to the periodic boundary conditions. To protect
the local atomic environment that has been sampled, a
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9 protected region in the form of a cubic box is defined
around the central atom, and the atoms within the pro-
tected region are fixed during the relaxation. The rest of
the atoms in the simulation cell are relaxed to minimize
the atomic forces. To reduce computational cost, density-
functional theory calculations were performed with looser
numerical convergence parameters. In this step, only the
final relaxed structure enters the next step. Energies and
forces obtained during structural relaxation do not enter
the training set, maintaining the consistency of the data
accuracy of the training set.

Labeling. The energies and forces of the relaxed struc-
ture are calculated by density-functional theory with
tight convergence parameters. Because only single-point
density-functional theory calculations are performed, the
computational cost is kept low. The resulting energies
and forces of all atoms in the simulation cell with the
corresponding relaxed structures are added to and accu-
mulated in the training set.

Updating. The moment tensor potential, either initial-
ized or obtained from the previous round of active learn-
ing, was retrained using the updated training set. The
resulting moment tensor potential is then used for the
next round of local-AL, starting from Sampling.

With this method, active learning of large and complex
structures becomes possible. Since ab initio molecular
dynamics simulations are required only for the bulk unit
cell, the proposed scheme is highly efficient.
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Supplementary Note 2: Consistency of continuum
simulation models

127
128

A: Methodology

129

We employed two representations for grain boundaries
(GBs) in polycrystalline solid electrolytes: (i) A volume-
resolved GB model, in which the GB domain is explic-
itly meshed, and (ii) A thickness-collapsed model, in
which two-dimensional submanifolds represent GBs. The
volume-resolved approach is feasible only when the GB
width exceeds the numerical mesh size and ensures a suf-
ficient resolution to capture the behavior within the GB
domain. Hence, this model is limited to nanograin se-
tups. In contrast, the collapsed GB model assumes a
“thin” GB—typical for micrograins—so there is a clear
separation of length scales for grain size and GB width.
Due to the conceptually different assumptions concern-
ing the GB representation, a straightforward quantitative
comparison of their results is non-trivial. Here, we sys-
tematically study the respective applicability regimes re-
quired to guarantee physically sound results. In particu-
lar, a transition grain size will be determined at which one
should switch from the volume-resolved to the thickness-
collapsed model.

To isolate the intrinsic behavior of the two contin-
uum models and eliminate any geometrical artifacts, we
employed a highly idealized microstructure: a two-grain
Voronoi tessellation (see Extended Data Fig. 9b). This
configuration is perfectly isotropic, features symmetric
GB junctions, and keeps the computational cost low. The
collapsed approach allows for a parametric variation of
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17 the GB width on a single mesh. In contrast, changing
158 the GB width in a resolved model requires rebuilding the
159 three-dimensional voxel image each time to properly iden-
160 tify GB voxels. Therefore, we generated resolved poly-
161 crystalline models for a fixed spatial resolution where
12 the GB width is a multiple of the voxel size. Because
13 the considered Voronoi tessellation was fixed, increasing
164 the GB width reduces the effective grain size. Designing
165 @ corresponding collapsed model that matches the GB
16 width and GB volume fraction of the resolved model is
1z then straightforward. This was done by rescaling the GB
e width parameter together with the simulation cell length.
160 Simulations were then carried out for both GB represen-
70 tations independently for a range of bulk and GB diffusiv-
i ities, DPUK and DGB = Dﬁ;’B = D$B. By repeating the
172 procedure at several mesh resolutions, we can (i) Com-
73 pare the results of both models across different grain size
17+ regimes depending on the inputs DB /DPuk and (i) As-
175 sess how the spatial resolution influences the accuracy of
176 the resolved approach. Results are shown in Extended
177 Data Fig. 9c. From these systematic studies, we aim to
ws (1) Identify the transition grain size at which the mod-
i eling strategy should be switched (Supplementary Note
2B), and (ii) Formulate a practical guideline for selecting
a mesh resolution that ensures convergence and accurate
results for the resolved approach (Supplementary Note
20).

180

B: Transition grain size and agreement of the
models

The true diffusion behavior of a polycrystalline mate-
rial cannot be measured in detail, so the following consid-
erations are based on two assumptions: (i) The resolved
approach yields accurate results in the nanograin regime,
and (ii) The collapsed model reliably reproduces diffu-
sion in the micrograin regime. When both models are
applied across the entire range of grain sizes, we therefore
expect a transition point in between the nanograin and
micrograin limits where the agreement is significantly im-
proved compared to the two extremes. This is confirmed
by the relative deviation of the macroscopic diffusivities
shown in Extended Data Fig. 9c, which shows small devi-
ations for medium-sized grains. Consequently, we define
the transition grain size as the grain size at which the two
models are most consistent, regardless of the GB-to-bulk
201 diffusion contrast DSB / DPulk j ¢ we minimize the sum
202 of squared relative deviations. The transition grain size
200 (indicated by the dashed lines in Extended Data Fig. 9c)
20« depends strongly on the spatial resolution of the resolved
20s model, which will be discussed in Supplementary Note
26 2 C. Upon mesh refinement, the transition size converges
207 to about 100 nm. This value was therefore adopted as
208 & reference for all continuum-model results presented in
200 this study. For the computations that cover the entire
210 grain size range (see Extended Data Fig. 5 and Extended
211 Data Fig. 6d), both the resolved and the collapsed repre-
212 sentations were evaluated slightly beyond the identified
213 transition grain size to demonstrate the consistency of
214 the two approaches.

The obtained transition grain size of 100 nm is specific
216 to the considered GB width of 2.5 nm that was assumed
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for the given geometry. Nevertheless, the same procedure
can be applied to any GB width or microstructure. Con-
verting the transition grain size to a GB volume fraction
yields approximately 6.3%, which serves as a GB width-
independent indicator of the regime change.

Even in the vicinity of the transition grain size, the two
approaches do not achieve perfect agreement (Extended
Data Fig. 9c). This residual mismatch stems from in-
herent differences between the two GB representations:
(i) The explicit representation of GB junction domains in
the volume-resolved approach versus their implicit treat-
ment in the collapsed approach, (ii) The volume correc-
tions required for the collapsed approach, and (iii) The
underlying microstructures considered for the two ap-
proaches are not identical but only match key character-
istics. Nevertheless, the deviation is modest—typically
below 5%—at the transition grain size.

Large deviations occur primarily for blocking GBs, i.e.,
when the GB diffusivity is lower than the bulk diffusivity
(DSB < DPuK). In this regime, the less-conductive GBs
induce pronounced concentration jumps across the GB.
These jumps and their effects are especially difficult to
capture if not resolved well, as in the following two cases:
(i) In volume-resolved simulations of micrograins, a GB
may be represented by only a few voxel layers, leading to
an under-resolved GB domain and noticeable staircasing
effects. (ii) In the collapsed approach for nanograins, the
zero-width assumption neglects a substantial GB volume.
The impact of resolution in case (i) on concentration and
flux fields is shown in Extended Data Fig. 9d for the
smallest GB width relative to the grain size. Notably,
the volume fraction varies substantially with resolution,
even when the GB width remains fixed. This leads to
differences in the flux magnitude in the presented results
obtained with the volume-resolved approach.

When GB diffusion dominates in the polycrystalline
model (DB > DPuK) regults from the volume-resolved
and thickness-collapsed approaches converge for micro-
grains. In this diffusion regime, GBs do not introduce
concentration jumps. Rather, it provides additional dif-
fusion pathways along the GBs. Because the grains are
large, the contribution of these pathways to the overall
transport is modest, so the agreement between the two
models persists even when the GB width is resolved by
only a few voxel layers. Therefore, the volume-resolved
approach can be employed reliably for grain sizes beyond
the estimated transition grain size (100 nm).

C: Resolution requirements for volume-resolved
GBs

When a resolved microstructure is generated for a pre-
scribed GB width for different resolutions, the resulting
GB volume fraction varies slightly because the voxel-
based discretization only approximates the GB domain.
This prevents a direct comparison of the macroscopic dif-
fusivities across different resolutions, since the GB vol-
ume fraction itself influences the resulting macroscopic
diffusivities. Therefore, the convergence behavior of the
volume-resolved approach cannot be evaluated unam-
biguously. Extended Data Fig. 9c shows that the mesh
resolution has a noticeable impact on the accuracy of the
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results, considering the corresponding results from the
collapsed approach as a resolution-independent reference.

In the polycrystalline model, the relative GB width
decreases with increasing grain size. Consequently, for
a given resolution, the number of voxel layers represent-
ing a GB varies with grain size. Extended Data Fig. 9c
shows that only a few layers were used to resolve a GB for
micrograins, and more layers were used for nanograins.
The resolution effect is most pronounced for blocking GBs
(DSB < DPWK) combined with large grains, i.e., when the
resolved model under-resolves the GB. The convergence
of the relative error curves with increasing resolution im-
plies a practical rule: The GB width should be at least
ten times the voxel length. For a given geometry, the
GB width in the unit cube is first adjusted to satisfy the
prescribed ratio between GB width and grain size. The
resolution is then selected such that the voxel size is less
than one-tenth of the GB width. In contrast, as discussed
in Supplementary Note 2B, results with an enhancing
GB setup (DSB > DPulk) exhibit almost no sensitivity to
mesh resolution. In those cases, a coarser discretization is
sufficient: A GB width of more than five times the voxel
length yields mesh-independent results. In the present
study, all volume-resolved simulations were conducted on
a 512 x 512 x 512 voxel grid, which exceeds the resolution
required to resolve GBs in polycrystalline models with
nanograins (grain size less than 100 nm) while avoiding
prohibitive computational cost.
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initialization

pretraining on lev. 6-MTP

local-AL on lev. 6-MTP

pretraining on lev. 8-MTP

local-AL on lev. 8-MTP

accumulated training set

accumulated sampling set

pretraining on lev. M-MTP

local-AL on lev. M-MTP

output accurate MTP of level M

Supplementary Fig. 1.  Overview of the parameterization scheme for moment tensor potentials (MTP). The
“quality-level-based” concept is emphasized with the changing MTP level (lev.).



/ input ideal, small-size bulk structure /

[ ab initio MD of the bulk structure ]

] sub-sample of bulk ab initio trajectories \

initialization ’ include configurations in the training set ‘
(one-time ab initio MD for bulk)

’add configurations to the training set }—){ i=i+1 }—»’ train level m-MTP; ‘(—

’ select-add of bulk ab initio trajectories o m=m +2
| =

1

pretraining (reuse ab initio trajectories of bulk) yes

[start IocaI—AL]H input target structure /

more target
structures?

end local-AL

local active learning
(for target structures)

/ output level m-MTP; /

MTP
accurate
enough?

no

output final MTP of level M
(M = m, latest i)

end

Supplementary Fig. 2. Complete workflow of the parameterization scheme for moment tensor potentials (MTP).
MD stands for molecular dynamics simulations, while AL stands for active learning.



start local-AL

input
level m-MTP;
cutoff: 1.5t0 5 A

updating
(local structure)

sampling

(full structure) \ .
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\ (local structure) (local structure)
add :
configurations remove boundary short-range filter out
to sampling set atoms until more than repuIS|_ve dmin < 1.6 A
Li:P:S: X = 200 atoms? potential in sampling set
6:1:5:1 d>16A By Y
A T ¢ (local structure)
select-add wrap atoms low-accuracy o

of sampling set n EVRErES DFT one-fime o

i fix atoms high-accuracy on training st
y set box length cut cubic box Il [y, DFT -
Lo=16A with length L |rz] <6.5A )
add
center atom ﬁ configurations —)@
logs L=16A to training set

with ymak

output
level m-MTP;
cutoff: 1.5t0 5 A

end local-AL
Parameters used for LigPSs5X with

Supplementary Fig. 3. Details of active learning (AL) for local structures.
X € {C1,Br,I} are shown. MTP-MD and DFT refer to molecular dynamics simulations with moment tensor potentials and

density-functional theory, respectively. The extrapolation grade and atomic distance are denoted by + and d, respectively.
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Supplementary Fig. 4. Precomputed map linking atomic-scale mechanisms to continuum-scale behavior in poly-
crystalline solid electrolytes. In a polycrystalline model with isotropic GBs, the z-axis indicates the assumed GB diffusivity
relative to the bulk, while the y-axis shows the resulting macroscopic diffusivity of the polycrystal relative to the bulk. Line
color represents the average grain size of the polycrystalline model, with the grain boundary width of 2.5 nm. Dash lines indicate
a one-order-of-magnitude change in macroscopic diffusivity. The inset shows an enlarged section of the precomputed map.



	Supplementary information for: Non-Arrhenius Li-ion transport and grain-size effects in argyrodite solid electrolytes
	Details of parameterizing moment tensor potentials
	Consistency of continuum simulation models
	Methodology
	Transition grain size and agreement of the models
	Resolution requirements for volume-resolved GBs

	References


